10分钟认识RAID磁盘阵列技术

合集下载

RAID磁盘阵列详解

RAID磁盘阵列详解

RAID磁盘阵列详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(RAID磁盘阵列详解)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为RAID磁盘阵列详解的全部内容。

RAID磁盘阵列详解磁盘阵列(Redundant Arrays of Inexpensive Disks,RAID),有“价格便宜具有冗余能力的磁盘阵列"之意.原理是利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。

磁盘阵列是由很多价格较便宜的磁盘,组合成一个容量巨大的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。

利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。

磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任一颗硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。

RAID 0(条带(strping))是组建磁盘阵列中最简单的一种形式,只需要2块以上的硬盘即可,成本低,可以提高整个磁盘的性能和吞吐量。

RAID 0没有提供冗余或错误修复能力,但实现成本是最低的。

特点:速度快,没有容错能力RAID1:镜像(mirroring)ID 1称为磁盘镜像,原理是把一个磁盘的数据镜像到另一个磁盘上,也就是说数据在写入一块磁盘的同时,会在另一块闲置的磁盘上生成镜像文件,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上,只要系统中任何一对镜像盘中至少有一块磁盘可以使用,甚至可以在一半数量的硬盘出现问题时系统都可以正常运行,当一块硬盘失效时,系统会忽略该硬盘,转而使用剩余的镜像盘读写数据,具备很好的磁盘冗余能力。

了解电脑的硬盘RAID技术

了解电脑的硬盘RAID技术

了解电脑的硬盘RAID技术RAID(Redundant Array of Independent Disks)是一种用于存储数据的技术,通过将多个硬盘组合在一起,提供更高的数据可靠性和性能。

本文将介绍电脑硬盘RAID技术的基本原理、不同级别的RAID以及其应用场景。

一、RAID技术的基本原理RAID技术的基本原理是将多个硬盘组合成一个逻辑盘组,通过数据的分布和备份来提高数据的安全性和性能。

其中最常见的RAID级别包括RAID 0、RAID 1、RAID 5和RAID 10。

RAID 0通过将数据分散存储在多个硬盘上,提高了数据的读写性能。

然而,RAID 0没有冗余备份机制,一旦其中一个硬盘损坏,所有数据都将丢失。

RAID 1是一种镜像技术,将数据同时写入两个硬盘,提供冗余备份以提高数据的可靠性。

当其中一个硬盘损坏时,系统可以自动切换到另一个硬盘,保持数据的完整性。

RAID 5通过将数据和奇偶校验码分散存储在多个硬盘上,提高了数据的读写性能,并且具有一定的冗余备份机制。

当其中一个硬盘损坏时,可以通过奇偶校验码恢复数据。

RAID 10是将RAID 1和RAID 0结合起来的技术,通过将数据复制到多个硬盘并分散存储,同时提供了数据的冗余备份和读写性能的提升。

二、不同级别的RAID和应用场景1. RAID 0:适用于需要高速数据读写的应用,如数据处理、视频编辑等。

由于没有冗余备份机制,不适用于对数据可靠性要求较高的场景。

2. RAID 1:适用于对数据可靠性要求较高的场景,如企业数据库、文件服务器等。

由于需要将数据同时写入两个硬盘,磁盘的使用效率较低。

3. RAID 5:适用于需要相对较高的性能和一定冗余备份的场景,如中小型企业的文件存储、邮件服务器等。

由于需要存储奇偶校验码,写入性能相对较低。

4. RAID 10:适用于对数据性能要求较高且对数据可靠性要求较高的场景,如大型数据库、虚拟化环境等。

由于需要将数据复制到多个硬盘,存储成本较高。

磁盘Raid技术详解

磁盘Raid技术详解

磁盘Raid技术详解一.Raid定义RAID(Redundant Array of Independent Disk 独立冗余磁盘阵列)技术是加州大学伯克利分校1987年提出,最初是为了组合小的廉价磁盘来代替大的昂贵磁盘,同时希望磁盘失效时不会使对数据的访问受损失而开发出一定水平的数据保护技术。

RAID就是一种由多块廉价磁盘构成的冗余阵列,在操作系统下是作为一个独立的大型存储设备出现。

RAID可以充分发挥出多块硬盘的优势,可以提升硬盘速度,增大容量,提供容错功能够确保数据安全性,易于管理的优点,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。

二、RAID的几种工作模式1、RAID0即Data Stripping数据分条技术。

RAID 0可以把多块硬盘连成一个容量更大的硬盘群,可以提高磁盘的性能和吞吐量。

RAID 0没有冗余或错误修复能力,成本低,要求至少两个磁盘,一般只是在那些对数据安全性要求不高的情况下才被使用。

(1)、RAID 0最简单方式就是把x块同样的硬盘用硬件的形式通过智能磁盘控制器或用操作系统中的磁盘驱动程序以软件的方式串联在一起,形成一个独立的逻辑驱动器,容量是单独硬盘的x倍,在电脑数据写时被依次写入到各磁盘中,当一块磁盘的空间用尽时,数据就会被自动写入到下一块磁盘中,它的好处是可以增加磁盘的容量。

速度与其中任何一块磁盘的速度相同,如果其中的任何一块磁盘出现故障,整个系统将会受到破坏,可靠性是单独使用一块硬盘的1/n。

(2)、RAID 0的另一方式是用n块硬盘选择合理的带区大小创建带区集,最好是为每一块硬盘都配备一个专门的磁盘控制器,在电脑数据读写时同时向n块磁盘读写数据,速度提升n倍。

提高系统的性能。

2、RAID 1RAID 1称为磁盘镜像:把一个磁盘的数据镜像到另一个磁盘上,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上,具有很高的数据冗余能力,但磁盘利用率为50%,故成本最高,多用在保存关键性的重要数据的场合。

raid(独立冗余磁盘阵列)基础知识

raid(独立冗余磁盘阵列)基础知识

raid(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)是一种通过将多个磁盘驱动器组合在一起来提高数据存储性能和冗余性的技术。

RAID技术通过将数据分散存储在多个磁盘上,实现了数据的并行读写和冗余备份,从而提高了数据的可靠性和性能。

RAID技术的核心思想是将多个磁盘驱动器组合在一起,形成一个逻辑卷(Logical Volume),这个逻辑卷被操作系统看作是一个单独的磁盘。

RAID可以通过不同的方式组织磁盘驱动器,从而实现不同的性能和冗余级别。

常见的RAID级别包括RAID 0、RAID 1、RAID 5和RAID 10。

RAID 0是一种数据分布方式,它将数据均匀地分布在多个磁盘上,从而提高了数据的读写性能。

RAID 0的性能优势主要体现在读取速度方面,因为数据可以同时从多个磁盘上读取。

然而,RAID 0没有冗余备份机制,一旦其中一个磁盘发生故障,所有数据都将丢失。

RAID 1是一种数据冗余方式,它通过将数据在多个磁盘上进行镜像备份来提高数据的可靠性。

RAID 1的优势在于当一个磁盘发生故障时,系统可以从其他磁盘上读取数据,保证数据的完整性。

然而,RAID 1的缺点是存储效率较低,因为每个磁盘都需要存储完整的数据。

RAID 5是一种将数据和校验信息分布在多个磁盘上的方式,通过计算校验信息来实现数据的冗余备份。

RAID 5的优势在于能够提供较高的数据存储效率和较好的读取性能,同时具备一定的容错能力。

当一个磁盘发生故障时,可以通过校验信息恢复数据。

然而,RAID 5的写入性能相对较低。

RAID 10是RAID 1和RAID 0的结合,它将数据分散存储在多个磁盘上,并通过镜像备份提供冗余性。

RAID 10的优势在于能够提供较高的读取和写入性能,同时具备较好的容错能力。

然而,RAID 10的缺点是存储效率较低,因为每个磁盘都需要存储完整的数据。

除了上述常见的RAID级别外,还存在一些其他的RAID级别,如RAID 2、RAID 3、RAID 4和RAID 6等。

RAID技术全解图解-RAID0、RAID1、RAID5、RAID100

RAID技术全解图解-RAID0、RAID1、RAID5、RAID100

RAID技术全解图解-RAID0、RAID1、RAID5、RAID100图⽂并茂 RAID 技术全解 – RAID0、RAID1、RAID5、RAID100…… RAID 技术相信⼤家都有接触过,尤其是服务器运维⼈员,RAID 概念很多,有时候会概念混淆。

这篇⽂章为⽹络转载,写得相当不错,它对 RAID 技术的概念特征、基本原理、关键技术、各种等级和发展现状进⾏了全⾯的阐述,并为⽤户如何进⾏应⽤选择提供了基本原则,对于初学者应该有很⼤的帮助。

⼀、RAID 概述 1988 年美国加州⼤学伯克利分校的 D. A. Patterson 教授等⾸次在论⽂ “A Case of Redundant Array of Inexpensive Disks”中提出了 RAID 概念 [1] ,即廉价冗余磁盘阵列( Redundant Array of Inexpensive Disks )。

由于当时⼤容量磁盘⽐较昂贵, RAID 的基本思想是将多个容量较⼩、相对廉价的磁盘进⾏有机组合,从⽽以较低的成本获得与昂贵⼤容量磁盘相当的容量、性能、可靠性。

随着磁盘成本和价格的不断降低, RAID 可以使⽤⼤部分的磁盘, “廉价” 已经毫⽆意义。

因此, RAID 咨询委员会( RAID Advisory Board, RAB )决定⽤ “ 独⽴ ” 替代 “ 廉价 ” ,于时 RAID 变成了独⽴磁盘冗余阵列( Redundant Array of Independent Disks )。

但这仅仅是名称的变化,实质内容没有改变。

RAID 这种设计思想很快被业界接纳, RAID 技术作为⾼性能、⾼可靠的存储技术,已经得到了⾮常⼴泛的应⽤。

RAID 主要利⽤数据条带、镜像和数据校验技术来获取⾼性能、可靠性、容错能⼒和扩展性,根据运⽤或组合运⽤这三种技术的策略和架构,可以把 RAID 分为不同的等级,以满⾜不同数据应⽤的需求。

10分钟认识RAID磁盘阵列技术

10分钟认识RAID磁盘阵列技术

10分钟认识RAID磁盘阵列技术在计算机发展的初期,"大容量"硬盘的价格还相当高,解决数据存储安全性问题的主要方法是使用磁带机等设备进行备份,这种方法虽然可以保证数据的安全,但查阅和备份工作都相当繁琐。

1987年,Patterson、Gibson和Katz这三位工程师在加州大学伯克利分校发表了题为《A Case of Redundant Array of Inexpensive Disks(廉价磁盘冗余阵列方案)》的论文,其基本思想就是将多只容量较小的、相对廉价的硬盘驱动器进行有机组合,使其性能超过一只昂贵的大硬盘。

这一设计思想很快被接受,从此RAID技术得到了广泛应用,数据存储进入了更快速、更安全、更廉价的新时代。

磁盘阵列对于个人电脑用户,还是比较陌生和神秘的。

印象中的磁盘阵列似乎还停留在这样的场景中:在宽阔的大厅里,林立的磁盘柜,数名表情阴郁、早早谢顶的工程师徘徊在其中,不断从中抽出一块块沉重的硬盘,再插入一块块似乎更加沉重的硬盘......终于,随着大容量硬盘的价格不断降低,个人电脑的性能不断提升,IDE-RAID作为磁盘性能改善的最廉价解决方案,开始走入一般用户的计算机系统。

一、RAID技术规范简介RAID技术主要包含RAID 0~RAID 7等数个规范,它们的侧重点各不相同,常见的规范有如下几种:RAID 0:RAID 0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有数据冗余,因此并不能算是真正的RAID结构。

RAID 0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。

因此,RAID 0不能应用于数据安全性要求高的场合。

RAID 1:它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互为备份的数据。

当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID 1可以提高读取性能。

raid(独立冗余磁盘阵列)基础知识

raid(独立冗余磁盘阵列)基础知识

raid(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)基础知识一. 什么是RAID?RAID是独立冗余磁盘阵列(Redundant Array of Independent Disks)的缩写,是一种通过将多个磁盘组合在一起来提供高数据性能和冗余存储的技术。

RAID技术通过将数据分散存储在多个磁盘上,实现数据的冗余备份和提高系统性能。

二. RAID的基本原理RAID通过将数据切分成多个块,并将这些块分别存储在不同的磁盘上,以实现数据的冗余备份和提高读写性能。

常见的RAID级别包括RAID 0、RAID 1、RAID 5、RAID 6等。

1. RAID 0:条带化(Striping)RAID 0将数据切分成固定大小的块,并将这些块依次存储在多个磁盘上,提高了数据的读写性能。

然而,RAID 0没有冗余备份功能,一旦其中一个磁盘损坏,所有数据都将丢失。

2. RAID 1:镜像化(Mirroring)RAID 1将数据同时写入两个磁盘,实现了数据的冗余备份。

当其中一个磁盘损坏时,另一个磁盘仍然可以正常工作,保证数据的可靠性。

然而,RAID 1并没有提高数据的读写性能。

3. RAID 5:条带化加分布式奇偶校验(Striping with Distributed Parity)RAID 5将数据切分成固定大小的块,并在多个磁盘上存储数据和奇偶校验位。

奇偶校验位用于恢复损坏的数据。

RAID 5的读写性能较高,并且具有冗余备份功能。

然而,当多个磁盘损坏时,数据恢复的时间和复杂度较高。

4. RAID 6:双分布式奇偶校验(Double Distributed Parity)RAID 6是在RAID 5的基础上增加了第二个奇偶校验位,提高了数据的冗余备份能力。

RAID 6可以同时容忍两个磁盘的损坏,提供了更高的数据可靠性。

三. RAID的优缺点RAID技术具有以下优点:1. 提高数据的读写性能:通过条带化技术,数据可以同时从多个磁盘读取或写入,提高了系统的读写性能。

磁盘阵列知识介绍

磁盘阵列知识介绍

1.为什么需要磁盘阵列

如何增加磁盘的存取(access)速度,如何防 止数据因磁盘的故障而失落及如何有效 的利用磁盘空间,一直是电脑专业人员和 用户的困扰;而大容量磁盘的价格非常昂 贵,对用户形成很大的负担。磁盘阵列技 术的产生一举解决了这些问题。
2. 什么是磁盘阵列(Disk Array)?

磁盘阵列(Disk Array)是由一个硬盘控 制器来控制多个硬盘的相互连接,使多 个硬盘的读写同步,减少错误,增加效 率和可靠度的技术。
3.磁盘阵列原理


磁盘阵列中针对不同的应用使用的不同技术,称为RAID level, RAID是Redundant Array of Inexpensive Disks的缩 写,而每一level代表一种技术,目前业界公认的标准是 RAID 0~RAID 5。这个level并不代表技术的高低,level 5并不高于level 3,level 1也不低过level 4,至于要选择那 一种RAID level的产品,纯视用户的操作环境(operating environment)及应用(application)而定,与level的高低没有 必然的关系。 RAID 0及RAID 1适用于PC及PC相关的系统如小型的 网络服务器(network server)及需要高磁盘容量与快速磁 盘存取的工作站等,因为比较便宜, RAID 2及RAID 3适 用于大型电脑及影像、AD/CAM等处理;RAID 5多用于 OLTP,因有金融机构及大型数据处理中心的迫切需要, 故使用较多而较有名气。
什么是什么是raidlevelraidlevelraidlevel3采用byteinterleaving数据交错存储技术硬盘在scsi控制卡下同时动作并将用于奇偶校验的数据储存到特定硬盘机中它具备了容错能力硬盘的使用效率是安装几个就减掉一个它的可靠度较佳

磁盘阵列(Raid)介绍-常见的类型

磁盘阵列(Raid)介绍-常见的类型

磁盘阵列(Raid)介绍-常见的类型RAID 0:把多个磁盘合并成一个大的磁盘,不具有冗余功能,并行I/O ,速度最快。

它是将多个磁盘并列起来,成为一个大硬盘。

在存放数据时,其将数据按磁盘的个数来进行分段,据按磁盘的个数来进行分段,然后同时将这些数据写进这些磁盘中。

然后同时将这些数据写进这些磁盘中。

然后同时将这些数据写进这些磁盘中。

所以,所以,所以,在所在所有的级别中,RAID 0的速度是最快的。

但是RAID 0没有冗余功能,如果一个磁盘(物理)损坏,则所有的数据都无法使用。

损坏,则所有的数据都无法使用。

RAID 1:两组相同的磁盘系统互作镜像,速度没有提高,但是允许单个磁盘出错,可靠性最高。

RAID 1就是镜像。

其原理为在主硬盘上存放数据的同时也在镜像硬盘上写一样的数据。

当主硬盘(物理)损坏时,镜像硬盘则代替主硬盘的工作。

因为有镜像硬盘做数据备份,所以RAID 1的数据安全性在所有的RAID 级别上来说是最好的。

但是其磁盘的利用率却只有50%,是所有RAID 上磁盘利用率最低的一个级别。

用率最低的一个级别。

RAID 3 存放数据的原理和RAID 0、RAID 1不同。

RAID 3是以一个硬盘来存放数据的奇偶校验位,数据则分段存储于其余硬盘中。

它象RAID 0一样以并行的方式来存放数,但速度没有RAID 0快。

如果数据盘(物理)损坏,只要将坏硬盘换掉,RAID 控制系统则会根据校验盘的数据校验位在新盘中重建坏盘上的数据。

利用单独的校验盘来保护数据虽然没有镜像的安全性高,但是硬盘利用率得到了很大的提高,为n-1。

但缺点是作为存放校验位的硬盘,工作负荷会很大,因为每次写操作,都会把生成的校验信息写入该磁盘,而其它磁盘的负荷相对较小,这会对性能有一定的影响。

小,这会对性能有一定的影响。

RAID 5:RAID 5是在RAID 3的基础上进行了一些改进,当向阵列中的磁盘写数据,奇偶校验数据均匀存放在阵列中的各个盘上,允许单个磁盘出错。

全程图解--教你如何做RAID磁盘阵列1

全程图解--教你如何做RAID磁盘阵列1

全程图解--教你如何做RAID磁盘阵列本文将以一款服务器的磁盘阵列配置实例向大家介绍磁盘阵列的具体配置方法。

当然,不同的阵列控制器的具体配置方法可能不完全一样,但基本步骤绝大部分是相同的,完全可以参考。

说到磁盘阵列(RAID,Redundant Array of Independent Disks),现在几乎成了网管员所必须掌握的一门技术之一,特别是中小型企业,因为磁盘阵列应用非常广泛,它是当前数据备份的主要方案之一。

然而,许多网管员只是在各种媒体上看到相关的理论知识介绍,却并没有看到一些实际的磁盘阵列配置方法,所以仍只是一知半解,到自己真正配置时,却无从下手。

在本文中给出一些关键界面,使各位对磁盘阵列的配置有一个理性认识。

当然为了使各位对磁盘阵列有一个较全面的介绍,还是先来简要回顾一下有关磁盘阵列的理论知识,这样可以为实际的配置找到理论依据。

一、磁盘阵列实现方式磁盘阵列有两种方式可以实现,那就是“软件阵列”与“硬件阵列”。

软件阵列是指通过网络操作系统自身提供的磁盘管理功能将连接的普通SCSI卡上的多块硬盘配置成逻辑盘,组成阵列。

如微软的Windows NT/2000 Server/Server 2003和NetVoll的NetWare两种操作系统都可以提供软件阵列功能,其中Windows NT/2000 Server/Server 2003可以提供RAID 0、RAID 1、RAID 5;NetWare操作系统可以实现RAID 1功能。

软件阵列可以提供数据冗余功能,但是磁盘子系统的性能会有所降低,有的降低还比较大,达30%左右。

硬件阵列是使用专门的磁盘阵列卡来实现的,这就是本文要介绍的对象。

现在的非入门级服务器几乎都提供磁盘阵列卡,不管是集成在主板上或非集成的都能轻松实现阵列功能。

硬件阵列能够提供在线扩容、动态修改阵列级别、自动数据恢复、驱动器漫游、超高速缓冲等功能。

它能提供性能、数据保护、可靠性、可用性和可管理性的解决方案。

RAID技术以及RAID卡简介

RAID技术以及RAID卡简介

RAID技术以及RAID卡支持介绍RAID0是无数据冗余的存储空间条带化,具有低本钱、极高读写性能、高存储空间利用率的RAID级别适用于Video/Audio存储、临时文件的存储对等速度要求极其严格指特殊应用.但由于没有数据冗余,其平安性大大降低,构成阵列的任何一块磁盘损坏都将带来数据灾难性的损失.RAID1使用磁盘镜像(disk mirroring )的技术,是偶数块磁盘数据完全镜像,平安性好治理方便.但无法扩展(单块磁盘容量,数据空间浪费大),RAID0中磁盘坏掉一块所有数据丧失,RAID1中磁盘坏掉一块数据不会丧失RAID10,即RAID1+0 ,先做RAID1 ,在做RAID0,具体看下列图Supports 2 disk fallircs: 1 failure per mirror set上图中.4块磁盘做R*D1O.每个RAW 支持1块磁盘掉设RAID5是目前应用很广泛的RAID 技术,各块儿独立磁盘进行条带化 分割,相同的条带区进行奇偶效验〔异或运算〕,效验数据平均分布 在每块磁盘上.以N 块磁盘构建的RAID5阵列可以有N-1块磁盘的 容量,存储空间利用率非常高.RAID5具有数据平安.较好的读写速 度、空间利用率高等优点.RAID50,即 RAID5+0 ,磁盘先做 RAID5 ,在做RAID0,HDD 4 HOC 4No data is lost bec&use of the distributed parity!HO0 qHDD 5 也0 5Supports 2 disk failures: 1 failure per RAID 5 stit^arratyRAIDS.中,每个RA山5支持一块磁盘掉缘RAID1E是RAID1的增强版本它并不是我们同城所说的RAID0+1的组合RAID的工作原理与RAID1根本上是一样的只是RAID1E的数据恢复水平更强,但由于RAID1E写一份数据至要两次,因此RAID 处理器的负载被增强,从而造成磁盘读写水平下降RAID6 的全程名叫Independent Data disks with two independent distributed parity schemes 〞〔带有两个独立分布式效验方案的两个独立磁盘〕这种RAID级别是在RAID5的根底上开展而成因此它的工作模式和RAID5有异曲同工之妙,不同的是RAID5将校验码写入到一个驱动器里,而RAID6是写入到两个驱动器里这样增加的磁盘的容错水平,同时RAID6阵列中允许出现故障的磁盘也到达了2个, 但相应的磁盘阵列数量也要4个RAID60即先做RAID6,再做RAID0 ,至少需要8块磁盘在RAID60中,每个RAID6最大允许2块磁盘掉线Supports 4 disk faikr的:2 failures per RAID 6 sub-array。

RAID磁盘阵列详解

RAID磁盘阵列详解

RAID磁盘阵列详解(一)核心提示:RAID 1.RAID概述Raid是一种将多块磁盘组成一个阵列整体的技术,我们可以把它当成单个磁盘使用。

Raid磁盘阵列根据其使用的技术不同,可用于提高数据读写效率、提高数据冗余(备份),当阵列中一个磁盘发生故障时,RAID1.RAID概述Raid是一种将多块磁盘组成一个阵列整体的技术,我们可以把它当成单个磁盘使用。

Raid磁盘阵列根据其使用的技术不同,可用于提高数据读写效率、提高数据冗余(备份),当阵列中一个磁盘发生故障时,可以通过校验数据从其它磁盘中进行恢复,大大增强了应用系统数据的读写性能及可靠性。

RAID一般是在SCSI磁盘上实现的,因为IDE磁盘的性能较慢,而且IDE通道最多只能接4个磁盘。

2.RAID的分类硬件RAID:硬件RAID是通过RAID卡来实现的,通过RAID卡把若干同等容量大小的硬盘,根据使用方向的不同,聚合起来成为一个大的虚拟RAID设备(RAID0,RAID1,RAID5或RAID10……),如果每个硬盘容量不一致,以最小容量的硬盘为基础。

它的成员是整个硬盘。

在企业级应用领域,大部份都是硬件RAID。

软RAID:通过软件来实现的,把若干同等容量大小的硬盘或分区,根据使用方向的不同,聚合起来成为一个大的虚拟RAID设备(RAID0,RAID1,RAID5或RAID10……),如果每个硬盘或分区容量不一致,以最小容量的硬盘或分区为基础。

软RAID的成员是整个硬盘或分区。

软件RAID由于性价比高,大多被中小型企业所采用。

3.常见的软RAID技术包括以下几种RAID 0:是一种最基本的阵列方式,n(磁盘数)>=2,实际容量=n x单块磁盘(分区)容量。

存取数据时,通过将数据分段同时写入到不同的磁盘中,大大提高了读写速度。

但没有数据冗余,其中任何一块磁盘损坏,都可能导致数据丢失。

所以RAID0常被用于对存储效率要求较高,但对数据安全性要求不高的应用解决方案中。

磁盘阵列技术

磁盘阵列技术

磁盘阵列技术磁盘阵列技术磁盘阵列技术是一种通过将多个硬盘组合在一起,形成一个逻辑上的单一存储设备的技术。

它能够提供更高的存储容量、更快的数据读写速度和更高的数据可靠性。

本文将从以下几个方面详细介绍磁盘阵列技术。

一、磁盘阵列基础知识1. 磁盘阵列定义磁盘阵列指的是将多个硬盘组合成一个逻辑上的单一存储设备,以提供更高的存储容量、更快的数据读写速度和更高的数据可靠性。

2. 磁盘阵列类型常见的磁盘阵列类型包括RAID 0、RAID 1、RAID 5、RAID 6等。

其中,RAID 0可以提供较高的读写速度,但没有冗余机制;RAID 1可以提供较高的数据可靠性,但存储容量较低;RAID 5和RAID 6则兼具了读写速度和数据可靠性,并且能够实现部分硬盘故障时仍然能够正常运行。

3. 磁盘阵列控制器磁盘阵列控制器是磁盘阵列的核心组成部分,它负责管理和控制硬盘的读写操作,并提供RAID级别的数据保护功能。

磁盘阵列控制器可以分为软件RAID和硬件RAID两种类型,其中硬件RAID通常性能更好、可靠性更高。

二、磁盘阵列实现原理1. RAID 0实现原理RAID 0通过将数据块分散存储在多个硬盘上,从而实现读写速度的提升。

例如,如果有两个硬盘A和B,那么一个10MB的文件可以被分成两个5MB的块,分别存储在A和B上。

当需要读取这个文件时,两个硬盘可以同时进行读取操作,从而实现读取速度的加快。

2. RAID 1实现原理RAID 1通过将数据同时存储在多个硬盘上,从而实现数据冗余备份。

例如,如果有两个硬盘A和B,在RAID 1中它们会被视为一个逻辑上的单一存储设备,并且所有数据都会被同时写入到A和B中。

当其中一个硬盘出现故障时,另一个硬盘仍然可以继续工作,从而保证数据的可靠性。

3. RAID 5实现原理RAID 5通过将数据块分散存储在多个硬盘上,并使用奇偶校验码来实现数据冗余备份。

例如,如果有三个硬盘A、B和C,在RAID 5中它们会被视为一个逻辑上的单一存储设备,并且所有数据都会被分成多个块,分别存储在A、B和C中。

使用RAID与LVM磁盘阵列技术ppt课件

使用RAID与LVM磁盘阵列技术ppt课件
19
扩容逻辑卷
第1步
把上一个实验中的逻辑 卷vo扩展至290MB。
第2步
检查硬盘的完整性,确 认目录结构、内容和文 件内容没有丢失。一般 情况下没有报错,均为 正常情况。
第3步
重置设备在系统中的容 量。刚刚是对LV(逻辑 卷)设备进行了扩容操 作,但系统内核还没有 同步到这部分新修改的 信息,需要手动进行同 步。
第1步
第2步
第3步
第4步
使 用 -s 参 数 生 成 一 个 快 照 卷 , 使 用 -L 参 数 指 定 切割的大小,需要与要 做快照的设备容量保持 一致。另外,还需要在 命令后面写上是针对哪 个逻辑卷执行的快照操 作,稍后数据也会还原 到这个相应的设备上。
在逻辑卷所挂载的目录 中创建一个100MB的垃 圾文件,然后再查看快 照卷的状态。可以发现 存储空间的占用量上升 了。
卷组管理
vgscan vgcreate vgdisplay vgremove vgextend vgreduce
逻辑卷管理
lvscan lvcreate lvdisplay lvremove lvextend lvreduce
18
LVM(逻辑卷管理器)
在虚拟机中添加两块新的 硬盘设备
步骤:
1 让新添加的两块硬盘设备支持LVM技术。 2 把两块硬盘设备加入到storage卷组中,然后查看卷组的状态。 3 切割出一个约为150MB的逻辑卷设备。需要注意切割单位的问题。 4 把生成好的逻辑卷进行格式化,然后挂载使用。
第3步
删除卷组,此处只写 卷组名称即可,不需要设 备的绝对路径。
删除 逻辑卷
第2步
删除逻辑卷设备,需 要输入y来确认操作。
第4步

磁盘阵列基本原理

磁盘阵列基本原理

磁盘阵列基本原理磁盘阵列(RAID)是一种通过将多个磁盘驱动器组合在一起来提供更高性能、更大存储容量和更高容错能力的技术。

它通过将数据分散存储在多个磁盘上,以实现更快的数据读写速度和更好的数据冗余保护。

RAID技术有多种级别,每种级别都有其独特的数据分布和冗余机制。

下面将介绍几种常见的RAID级别及其基本原理。

1. RAID 0:RAID 0是一种条带化(striping)技术,它将数据分散存储在多个磁盘上,从而提高数据读写速度。

数据被分成块,并按顺序写入不同的磁盘。

当读取数据时,多个磁盘可以同时工作,从而提供更高的吞吐量。

然而,RAID 0没有冗余机制,如果其中一个磁盘故障,所有数据都将丢失。

2. RAID 1:RAID 1是一种镜像(mirroring)技术,它将数据同时写入两个磁盘,从而实现数据的冗余备份。

当其中一个磁盘故障时,另一个磁盘仍然可以提供数据访问。

RAID 1提供了很高的数据可靠性,但存储容量利用率较低,因为每一个数据都需要在两个磁盘上存储一份。

3. RAID 5:RAID 5是一种条带化和分布式奇偶校验(distributed parity)技术的组合。

它将数据和奇偶校验信息分别存储在多个磁盘上,以提供更高的数据读写速度和冗余保护。

奇偶校验信息用于恢复故障磁盘上的数据。

RAID 5至少需要三个磁盘,其中一个磁盘用于存储奇偶校验信息。

当其中一个磁盘故障时,系统可以通过奇偶校验信息计算出丢失的数据。

4. RAID 6:RAID 6是在RAID 5的基础上增加了第二个奇偶校验信息。

它需要至少四个磁盘,并可以容忍两个磁盘的故障。

RAID 6提供了更高的容错能力,但相应地增加了存储开消。

5. RAID 10:RAID 10是RAID 1和RAID 0的组合。

它将数据分散存储在多个磁盘上,并通过镜像技术实现数据的冗余备份。

RAID 10提供了更高的数据读写速度和数据可靠性,但需要至少四个磁盘,且存储容量利用率较低。

raid介绍简单易懂

raid介绍简单易懂

raid介绍简单易懂RAID(冗余阵列独立磁盘,Redundant Array of Independent Disks)是一种通过将多个硬盘组合在一起的技术,以提高数据存储性能、可靠性和/或容量。

RAID 技术通过在多个硬盘之间分配数据和/或进行冗余备份来实现这些目标。

以下是几种常见的 RAID 级别,每个级别都有不同的工作原理和适用场景:1. RAID 0 - 带条带化(Striping):•工作原理:数据被分割成小块,然后分别写入多个硬盘。

提高读写性能,但不提供冗余,一块硬盘故障会导致数据丢失。

•适用场景:对性能要求高,对数据冗余要求不高的场景,如临时数据存储。

2. RAID 1 - 镜像(Mirroring):•工作原理:数据同时写入两块硬盘,实现数据冗余。

如果一块硬盘故障,另一块硬盘仍然可用。

•适用场景:对数据冗余和可靠性要求高的场景,如关键数据存储。

3. RAID 5 - 带分布式奇偶校验(Striping with Distributed Parity):•工作原理:将数据分割成块并分别写入多个硬盘,同时每个块的奇偶校验信息分布在其他硬盘上。

提高性能和数据冗余。

•适用场景:对性能和冗余兼顾的场景,如文件服务器。

4. RAID 6 - 带双分布式奇偶校验(Striping with Dual Distributed Parity):•工作原理:类似 RAID 5,但使用两个奇偶校验块。

可以容忍两块硬盘同时故障。

•适用场景:对冗余容错性要求极高的场景,如大容量磁盘阵列。

5. RAID 10 - RAID 1+0:•工作原理:将多块硬盘分为两组,每组实施 RAID 1 镜像,然后通过 RAID 0 带条带化。

兼具高性能和高冗余。

•适用场景:对性能和冗余兼顾的场景,如数据库服务器。

RAID 技术可以根据需求进行组合或选择,以满足不同的存储需求。

选择合适的 RAID 级别需要综合考虑性能、可靠性、成本和数据冗余等因素。

磁盘阵列RAID讲解

磁盘阵列RAID讲解

磁盘阵列RAID讲解现在服务器为了安全与性能考虑都会使用多个硬盘做阵列,一般情况下raid1或raid5用的多,这里就为大家介绍一下磁盘阵列的优缺点,需要的朋友可以参考下RAID定义RAID(Redundant Array of Independent Disk 独立冗余磁盘阵列)技术是加州大学伯克利分校1987年提出,最初是为了组合小的廉价磁盘来代替大的昂贵磁盘,同时希望磁盘失效时不会使对数据的访问受损失而开发出一定水平的数据保护技术。

RAID就是一种由多块廉价磁盘构成的冗余阵列,在操作系统下是作为一个独立的大型存储设备出现。

RAID可以充分发挥出多块硬盘的优势,可以提升硬盘速度,增大容量,提供容错功能够确保数据安全性,易于管理的优点,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。

RAID有很多分类,但我只针对常用的四种RAID进行讲解(RAID 0 RAID 1 RAID 5 RAID 10)RAID 0 (又称为Stripe或Striping--分条)即Data Stripping数据分条技术。

RAID 0可以把多块硬盘连成一个容量更大的硬盘群,可以提高磁盘的性能和吞吐量。

RAID 0没有冗余或错误修复能力,成本低,要求至少两个磁盘,一般只是在那些对数据安全性要求不高的情况下才被使用。

RAID 0 性能及安全性:性能:读写性能高,随机写性能高安全:无冗余,无热备盘,无容错性,安全性低图形表示:RAID 1 (又称为Mirror或Mirroring--镜像)RAID 1称为磁盘镜像:把一个磁盘的数据镜像到另一个磁盘上,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上,具有很高的数据冗余能力,但磁盘利用率为50%,故成本最高,多用在保存关键性的重要数据的场合。

RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。

RAID 1 性能及安全性:性能:读写性能低,随机写性能低安全:利用复制进行冗余,有热备盘,可容错,安全性高RAID 1图形表示:RAID 5分布奇偶位条带。

磁盘阵列技术

磁盘阵列技术

磁盘阵列技术什么是磁盘阵列技术?磁盘阵列技术是一种将多个独立磁盘组合起来以提供更高性能、更大容量和更好可靠性的方法。

它通过在多个硬盘之间分布数据来提高读写速度和容错能力,并且可以根据不同需求进行配置,具有很高的灵活性。

磁盘阵列的基本原理磁盘阵列技术的基本原理是将多个独立的物理硬盘组建成一个逻辑上的存储单元,通过合理的数据分布和冗余机制提供更高的性能和可靠性。

常见的磁盘阵列技术包括RAID(Redundant Array of Independent Disks)和JBOD(Just a Bunch Of Disks)。

RAID技术RAID技术是应用最为广泛的磁盘阵列技术之一。

它通过将多个硬盘组成一个逻辑驱动器,将数据分散存储在多个硬盘上,提高了数据的读写速度。

同时,RAID技术还提供了不同的冗余级别,包括RAID 0、RAID 1、RAID 5、RAID 6等,可以在不同程度上提供数据的冗余保护。

RAID 0RAID 0是一种条带化的磁盘阵列模式,它将数据分割成多个块,并将每个块依次存储在不同的硬盘上。

这种方式提高了数据的读写速度,但没有提供任何冗余保护。

如果其中一个硬盘出现故障,将会导致所有数据的丢失。

RAID 1RAID 1是一种镜像的磁盘阵列模式,它通过将数据同时写入两个硬盘中来提供冗余保护。

即使其中一个硬盘出现故障,数据仍然可以从另一个硬盘中恢复。

RAID 1虽然提供了良好的数据冗余能力,但是对存储容量的利用率较低。

RAID 5是一种条带化的磁盘阵列模式,它将数据和校验信息分散存储在多个硬盘上。

通过计算这些校验信息,可以在发生硬盘故障时恢复数据,并保证数据的完整性。

RAID 5具有较好的读写性能和冗余保护能力,并且对存储容量有一定的利用率。

RAID 6RAID 6是在RAID 5的基础上增加了更多的冗余信息,提供了更高的数据保护能力。

RAID 6可以同时容忍任意两个硬盘的故障,保持数据的完整性。

「干货」图文并茂磁盘阵列RAID详解

「干货」图文并茂磁盘阵列RAID详解

「干货」图文并茂磁盘阵列RAID详解独立硬盘冗余阵列(RAID, Redundant Array of Independent Disks),旧称廉价磁盘冗余阵列(Redundant Array of Inexpensive Disks),简称磁盘阵列。

利用虚拟化存储技术把多个硬盘组合起来,成为一个或多个硬盘阵列组,目的提升性能或数据冗余或是两者同时提升。

RAID分类1.硬件RAID:用RAId接口卡来实现;需要内核支持其驱动,并且该类设备设备显示为SCSI设备,代号为/dev/sd*。

2.软件RAID:用内核中的MD(multiple devices)模块实现,该类设备在/etc/下表示为:md*;在现在的RH 5版本中使用mdadm 工具管理软RAID;(虽然来说可以用软件模拟实现raid,但是相对对磁盘控制的功能及性能不如硬件实现的好,生产环境中最好使用硬件raid。

几种常见RAID类型描述RAID-0 :striping(条带模式),至少需要两块磁盘,做RAID 分区的大小最好是相同的(可以充分发挥并优势);而数据分散存储于不同的磁盘上,在读写的时候可以实现并发,所以相对其读写性能最好;但是没有容错功能,任何一个磁盘的损坏将损坏全部数据。

RAID-1 :mirroring(镜像卷),至少需要两块硬盘,raid大小等于两个raid分区中最小的容量(最好将分区大小分为一样),可增加热备盘提供一定的备份能力;数据有冗余,在存储时同时写入两块硬盘,实现了数据备份;但相对降低了写入性能,但是读取数据时可以并发,几乎类似于raid-0的读取效率。

RAID-5 :需要三块或以上硬盘,可以提供热备盘实现故障的恢复;采用奇偶效验,可靠性强,且只有同时损坏两块硬盘时数据才会完全损坏,只损坏一块硬盘时,系统会根据存储的奇偶校验位重建数据,临时提供服务;此时如果有热备盘,系统还会自动在热备盘上重建故障磁盘上的数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在计算机发展的初期,"大容量"硬盘的价格还相当高,解决数据存储安全性问题的主要方法是使用磁带机等设备进行备份,这种方法虽然可以保证数据的安全,但查阅和备份工作都相当繁琐。

1987年,Patterson、Gibson和Katz这三位工程师在加州大学伯克利分校发表了题为《A Case of Redundant Array of Inexpensive Disks(廉价磁盘冗余阵列方案)》的论文,其基本思想就是将多只容量较小的、相对廉价的硬盘驱动器进行有机组合,使其性能超过一只昂贵的大硬盘。

这一设计思想很快被接受,从此RAID技术得到了广泛应用,数据存储进入了更快速、更安全、更廉价的新时代。

磁盘阵列对于个人电脑用户,还是比较陌生和神秘的。

印象中的磁盘阵列似乎还停留在这样的场景中:在宽阔的大厅里,林立的磁盘柜,数名表情阴郁、早早谢顶的工程师徘徊在其中,不断从中抽出一块块沉重的硬盘,再插入一块块似乎更加沉重的硬盘......终于,随着大容量硬盘的价格不断降低,个人电脑的性能不断提升,IDE-RAID作为磁盘性能改善的最廉价解决方案,开始走入一般用户的计算机系统。

一、RAID技术规范简介RAID技术主要包含RAID 0~RAID 7等数个规范,它们的侧重点各不相同,常见的规范有如下几种:RAID 0:RAID 0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有数据冗余,因此并不能算是真正的RAID结构。

RAID 0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。

因此,RAID 0不能应用于数据安全性要求高的场合。

RAID 1:它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互为备份的数据。

当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID 1可以提高读取性能。

RAID 1是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。

当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据。

RAID 0+1: 也被称为RAID 10标准,实际是将RAID 0和RAID 1标准结合的产物,在连续地以位或字节为单位分割数据并且并行读/写多个磁盘的同时,为每一块磁盘作磁盘镜像进行冗余。

它的优点是同时拥有RAID 0的超凡速度和RAID 1的数据高可靠性,但是CPU 占用率同样也更高,而且磁盘的利用率比较低。

RAID 2:将数据条块化地分布于不同的硬盘上,条块单位为位或字节,并使用称为"加重平均纠错码(海明码)"的编码技术来提供错误检查及恢复。

这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实施更复杂,因此在商业环境中很少使用。

RAID 3:它同RAID 2非常类似,都是将数据条块化分布于不同的硬盘上,区别在于RAID 3使用简单的奇偶校验,并用单块磁盘存放奇偶校验信息。

如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据;如果奇偶盘失效则不影响数据使用。

RAID 3对于大量的连续数据可提供很好的传输率,但对于随机数据来说,奇偶盘会成为写操作的瓶颈。

RAID 4:RAID 4同样也将数据条块化并分布于不同的磁盘上,但条块单位为块或记录。

RAID 4使用一块磁盘作为奇偶校验盘,每次写操作都需要访问奇偶盘,这时奇偶校验盘会成为写操作的瓶颈,因此RAID 4在商业环境中也很少使用。

RAID 5:RAID 5不单独指定的奇偶盘,而是在所有磁盘上交叉地存取数据及奇偶校验信息。

在RAID 5上,读/写指针可同时对阵列设备进行操作,提供了更高的数据流量。

RAID 5更适合于小数据块和随机读写的数据。

RAID 3与RAID 5相比,最主要的区别在于RAID 3每进行一次数据传输就需涉及到所有的阵列盘;而对于RAID 5来说,大部分数据传输只对一块磁盘操作,并可进行并行操作。

在RAID 5中有"写损失",即每一次写操作将产生四个实际的读/写操作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。

RAID6:与RAID 5相比,RAID 6增加了第二个独立的奇偶校验信息块。

两个独立的奇偶系统使用不同的算法,数据的可靠性非常高,即使两块磁盘同时失效也不会影响数据的使用。

但RAID 6需要分配给奇偶校验信息更大的磁盘空间,相对于RAID 5有更大的"写损失",因此"写性能"非常差。

较差的性能和复杂的实施方式使得RAID 6很少得到实际应用。

RAID 7:这是一种新的RAID标准,其自身带有智能化实时操作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。

RAID 7可以看作是一种存储计算机(Storage Computer),它与其他RAID标准有明显区别。

除了以上的各种标准(如表1),我们可以如RAID 0+1那样结合多种RAID规范来构筑所需的RAID阵列,例如RAID 5+3(RAID 53)就是一种应用较为广泛的阵列形式。

用户一般可以通过灵活配置磁盘阵列来获得更加符合其要求的磁盘存储系统。

开始时RAID方案主要针对SCSI硬盘系统,系统成本比较昂贵。

1993年,HighPoint 公司推出了第一款IDE-RAID控制芯片,能够利用相对廉价的IDE硬盘来组建RAID系统,从而大大降低了RAID的"门槛"。

从此,个人用户也开始关注这项技术,因为硬盘是现代个人计算机中发展最为"缓慢"和最缺少安全性的设备,而用户存储在其中的数据却常常远超计算机的本身价格。

在花费相对较少的情况下,RAID技术可以使个人用户也享受到成倍的磁盘速度提升和更高的数据安全性,现在个人电脑市场上的IDE-RAID控制芯片主要出自HighPoint和Promise公司,此外还有一部分来自AMI公司(如表2)。

面向个人用户的IDE-RAID芯片一般只提供了RAID 0、RAID 1和RAID 0+1(RAID 10)等RAID规范的支持,虽然它们在技术上无法与商用系统相提并论,但是对普通用户来说其提供的速度提升和安全保证已经足够了。

随着硬盘接口传输率的不断提高,IDE-RAID芯片也不断地更新换代,芯片市场上的主流芯片已经全部支持ATA 100标准,而HighPoint公司新推出的HPT 372芯片和Promise最新的PDC20276芯片,甚至已经可以支持A TA 133标准的IDE硬盘。

在主板厂商竞争加剧、个人电脑用户要求逐渐提高的今天,在主板上板载RAID 芯片的厂商已经不在少数,用户完全可以不用购置RAID卡,直接组建自己的磁盘阵列,感受磁盘狂飙的速度二.通过硬件控制芯片实现IDE RAID的方法在RAID家族里,RAID 0和RAID 1在个人电脑上应用最广泛,毕竟愿意使用4块甚至更多的硬盘来构筑RAID 0+1或其他硬盘阵列的个人用户少之又少,因此我们在这里仅就这两种RAID方式进行讲解。

我们选择支持IDE-RAID功能的升技KT7A-RAID主板,一步一步向大家介绍IDE-RAID的安装。

升技KT7A-RAID集成的是HighPoint 370芯片,支持RAID 0、1、0+1。

做RAID自然少不了硬盘,RAID 0和RAID 1对磁盘的要求不一样,RAID 1(Mirror)磁盘镜像一般要求两块(或多块)硬盘容量一致,而RAID 0(Striping)磁盘一般没有这个要求,当然,选用容量相似性能相近甚至完全一样的硬盘比较理想。

为了方便测试,我们选用两块60GB的希捷酷鱼Ⅳ硬盘(Barracuda ATA Ⅳ、编号ST360021A)。

系统选用Duron 750MHz的CPU,2×128MB樵风金条SDRAM,耕升GeForce2 Pro显卡,应该说是比较普通的配置,我们也希望借此了解构建RAID所需的系统要求。

1.RAID 0的创建第一步首先要备份好硬盘中的数据。

很多用户都没有重视备份这一工作,特别是一些比较粗心的个人用户。

创建RAID对数据而言是一项比较危险的操作,稍不留神就有可能毁掉整块硬盘的数据,我们首先介绍的RAID 0更是这种情况,在创建RAID 0时,所有阵列中磁盘上的数据都将被抹去,包括硬盘分区表在内。

因此要先准备好一张带Fdisk与Format命令的Windows 98启动盘,这也是这一步要注意的重要事项。

第二步将两块硬盘的跳线设置为Master,分别接上升技KT7A-RAID的IDE3、IDE4口(它们由主板上的HighPoint370芯片控制)。

由于RAID 0会重建两块硬盘的分区表,我们就无需考虑硬盘连接的顺序(下文中我们会看到在创建RAID 1时这个顺序很重要)。

第三步对BIOS进行设置,打开ATA RAID CONTROLLER。

我们在升技KT7A-RAID主板的BIOS中进入INTEGRA TED PERIPHERALS选项并开启ATA100 RAID IDE CONTROLLER。

升技建议将开机顺序全部改为ATA 100 RAID,实际我们发现这在系统安装过程中并不可行,难道没有分区的硬盘可以启动吗?因此我们仍然设置软驱作为首选项。

第四步接下来的设置步骤是创建RAID 0的核心内容,我们以图解方式向大家详细介绍:1.系统BIOS设置完成以后重启电脑,开机检测时将不会再报告发现硬盘。

2.磁盘的管理将由HighPoint 370芯片接管。

3.下面是非常关键的HighPoint 370 BIOS设置,在HighPoint 370磁盘扫描界面同时按下"Ctrl"和"H"。

4.进入HighPoint 370 BIOS设置界面后第一个要做的工作就是选择"Create RAID"创建RAID。

5.在"Array Mode(阵列模式)"中进行RAID模式选择,这里能够看到RAID 0、RAID 1、RAID 0+1和Span的选项,在此我们选择了RAID 0项。

6.RAID模式选择完成会自动退出到上一级菜单进行"Disk Drives(磁盘驱动器)"选择,一般来说直接回车就行了。

7.下一项设置是条带单位大小,缺省值为64kB,没有特殊要求可以不予理睬。

8.接着是"Start Create(开始创建)"的选项,在你按下"Y"之前,请认真想想是否还有重要的数据留在硬盘上,这是你最后的机会!一旦开始创建RAID,硬盘上的所有数据都会被清除。

9.创建完成以后是指定BOOT启动盘,任选一个吧。

相关文档
最新文档