第三节 空气弹簧

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

也能得到足够低的刚度。
(4) 空重车自振频率基本不变 为了更清楚地看出刚度随载荷变化的情况,设静载荷Pst变P1,容积变为V1,内压力变为 p1,则刚度K1变为: (6-37) 自振频率为: (6-38) 于是,静载荷变化前后的刚度比为: (6-39) 因为空气弹簧悬挂装置通常都装有高度控制阀,所以,当静载荷变化时,工作缸内的容积不 变(V1=V0),于是静载荷变化前后的刚度比为: (6-40)
自由膜式空气弹簧的横向刚度试验结果示于图6—21
⑤ 若采用熟知的单摆概念,可将空气弹簧的横向刚度换算为摇动台的当 量吊杆长度L,则
(6-47)
⑥ 例子
以我国某客车为例,每个空气弹簧的簧上载荷为:空车时P1=52.5干牛,重 车时P2=90千牛,其有效承压面积A1=1936厘米2,帘线角为450,则相应的空气 弹簧内压力p1=2.67巴,p2=4.58巴。由相应于该型空气弹簧的图6—22可知,其 横向刚度分别为:K11=370千牛,K12=530千牛/米。而按式(6—47)计算得 当量吊杆长度分别为L1=142毫米,L2=170毫米。其平均值L=156毫米,显然, 这一当量吊杆长度太小。因此,应进一步降低空气弹簧的横向刚度。试验表明, 空气弹簧的帘线角对横向刚度有重要影响(图6—22)。帘线角愈小,则横向 刚度愈小。当帘线角为零时,空气弹簧横向刚度的试验值与由式(6一46)(不 考虑第二项K1′)求得的计算值基本一致。而当帘线角为450时,两者相差较大。 根据试验结果,自由膜式空气弹簧帘线角可取50~80。
1) 载荷P和内压力p的关系
为了求出载荷P和内压力p的关系,作一平面A一A切于橡胶空气囊 的表面且垂直于气囊的轴线,如图6—16 (a)所示。由于胶囊是柔软的橡 胶薄膜,根据薄膜理论,这种气囊不能传递弯矩和横向力,因此,在通 过气囊切点处只传递平面A—A上的力。 由力的平衡条件得:
(6—42)
式中A1和R分别为橡胶空气囊的有效承压面积和有效半径。
④ 自由膜式空气弹簧的横向刚度K1的计算式为
K1=bpA1+K1′
式中b一空气弹簧形状系数,其值为:
(6一46)
K1′ ——橡胶囊本身的横向刚度,通过试验决定。在小帘线角 时可近似取为50千牛/米左右。 由上式看出,空气弹簧的横向刚度由两部分组成。第一 部分与空气弹簧的几何参数和内压力有关,对于一定型式的 空气弹簧而言,这一部分横向刚度是基本的;而后者则主要 与橡胶囊本身的材质和结构有关。
由图6—16 (b) 可看出,当载荷P减小时,空气囊的有 效半径随之减小,最后等于盖板的半径R3, 这时空气囊的有 效承压面积A1等于盖板的面积。
2) 空气弹簧的特性方程 (1) 特性方程 任意状态下的载荷P必与囊内气体向上的总压力相平衡, 故该型空气弹簧的特性方程——载荷和位移间的关系为: (6-43)
3) 套筒式空气弹簧的刚度 (1) 空气弹簧的刚度公式推导 当活塞由于振动而向下移动h时,工作缸容积减小了dV(V=V0一 dV,dV=Ah),根据气体状态方程有:
(6-31)
又V0=H0A, 故可将上式变为:

振动时,工作缸中的空气压力因压缩和拉伸而变化。振动时活塞上 的载荷P和位移h间的关系为:
(3) 常规情况 一般情况下,气体的状态变化是一个多变过程。在气体 的多变过程中,根据气体状态方程,工作缸内绝对压力(p十pa) 和容积之间存在下列关系: (p十pa)Vn=(p0十pa)V0n (6-30)
式中n为气体的多变指数,它取决于气体变化过程的流动速度, 对于等温过程即活塞缓慢移动时n=1; 对于绝热过程即活塞移动比较迅速时n=1.4。 对于车辆实际运行过程,1<n<1.4,通常在计算时取n=1. 3~1.38,接近于绝热过程。
(2) 静平衡位置时的刚度 ① 刚度公式 将上式对位移h求导并经过适当变换后可得静平衡位置时的刚度公式:
(6-44) 式中A0为橡胶式空气弹簧在静平衡位置的有效承压面积,通常采用的空 气压力p0为3~5巴。 ② 公式分析 由式(6—44)看出,橡胶式空气弹簧的刚度是由两项组成的,第一 项和套筒式空气弹簧的刚度计算式(6—34)一样,但活塞面积A用有效 承压面积A0代替了;而第二项是有效承压面积变化率dA1/dh, dA1/dh越 大的橡胶囊的刚度越大, dA1/dh越小刚度也越小。另外,空气弹簧总容 积V0越大.其刚度越小,但V0仅影响刚度计算式的第一项,而与第二项 无关。
在活塞相当缓慢地移动的情况下,压缩时缸中空气所增加的热量和拉 伸时所减少的热量来得及与缸外周围空气进行热交换,所以工作缸内的 气体温度将保持不变,即和周围空气的温度相等,其状态变化接近于等 温过程。 在旅客上下车以及车辆通过曲线时,可以认为是接近等温过程的。 (2) 活塞快速移动 在车辆振动时,活塞移动比较迅速,因此,在压缩时所增加的热量和 拉伸时所减少的热量来不及与周围空气进行热交换,这种状态接近于绝 热过程。
(6-32)
显然,载荷P和位移h之间是非线性关系。 套筒式空气弹簧的刚度可由式(6—32)对位移 h求导 得出:
(6-33)
上式中H少写下标0
(2) 空气弹簧与钢弹簧刚度比较 由上式看出,空气弹簧的刚度随活塞上载荷增加(位移h增大)而增 大,如图6—15所示。图中曲线1的上线为重车,下线为空车时空气弹 簧的特性曲线,曲线2为钢弹簧空车时的特性曲线.
2) 自由膜式空气弹簧刚度
(1) 垂直刚度 自由模式空气弹簧的垂直刚度和有效面积变化率的计算式如下:
式中a——空气弹簧的形状系数.其值为:
其他符号同前。 由式(6一45)可见,通过选择合适的R、r、θ值,即可得到要求 的弹簧刚度K值。
自由膜式空气弹簧垂直静刚度试验结果示于图6—18上。由图看出, 理论计算值和试验结果是一致的。
பைடு நூலகம்2) 横向刚度
① 横向刚度不仅和空气弹簧的几何形状有关,而且受材质 影响较大,这种影响要通过试验来确定。
② 空气弹簧不仅垂直方向柔性大,而且通过改变帘线角(帘 线相对空气弹簧橡胶囊经线的倾斜角度)和材质等也可得到 较大的横向柔性。因此,利用空气弹簧的横向柔性就可以取 消传统的摇动台装置。
③ 膜式空气弹簧的横向弹性作用原理 为了说明膜式空气弹簧的横向弹性作用原理,取内筒和外筒为圆柱形表面的 空气弹簧为例,并认为橡胶囊断面弧长保持不变。当内筒向右移动时,则内筒和 外筒的相对位移以及橡胶囊的变化示于图6—19。囊内空气对内筒有一个相当于 pl1的力自右向左作用和一个相当于pl2的力自左向右作用。由图看出,l1>l2,所 以从左右两侧作用在内筒上的力是不平衡的,于是就产生了与(l1一l2)成正比的 横向弹性复原力。在横向位移δ不大时,可以认为(l1一l2)和δ成正比。因此,横 向弹性复原力就和位移成正比。这个弹性力还可以根据需要,通过改变膜式空气 弹簧上盖板的包角θ加以控制,如图6一20所示。
4.自由膜式空气弹簧 为了计算空气弹簧的刚度必须知道其有效承压面积变化率dA1/dh , 而dA1/dh 仅与空气弹簧的几何形状有关。下面介绍常用的自由膜式空气 弹簧垂直和横向刚度以及有效面积变化率的计算公式,作为初步设计计 算时的参考。 1) 自由膜式空气弹簧结构 图6—17所示为自由膜式空气弹簧。其几何参数为R、r、θ和φ ( φ是橡胶囊圆弧部分的回转轴与空气弹簧中心线的夹角,该回转轴是 指圆弧中点与该弧圆心的连线)。
由式(6—35)、(6—38)和(6—40)可知,静载荷变化前后的自振频率比为: (6-41) 由此可见,在采用高度控制阀的情况下,空重车的自振频率基本上保持不变。
(5) 空气弹簧的当量静挠度 通常把簧上载荷P与相应状态下的空气弹簧刚度K之比 P/K=fdst 称为空气弹簧的当量静挠度。
3 . 铁道车辆空气弹簧特点 铁道车辆上采用橡胶帘线式(简称橡胶式)空气弹簧, 它也具有上述套筒式 空气弹簧的基本特性,但又有其特点。 橡胶式空气弹簧的承压面积A1不是常数,而是随载荷变化的。 因为当载荷P 变化时,橡胶囊的形状也随着改变,因而承压面积A1和半径也随之改变。 图6—16表明橡胶式空气弹簧的工作原理,通常将任意状态下外载荷 P和囊内压力p之比P/p=A1称为有效承压面积,与之相应的橡胶囊半径R称 为有效半径。
当活塞振动位移不大时,可近似地以静平衡位置(h=0)时的刚度值来 表示,即
(6-34)
于是,车体在空气弹簧上的自振频率 f 可按下式计算:
0
a
(6-35)
套筒式空气弹簧通常采用较高的内压p0 , 则p0 》pa
(6-36)
(3) 减小空气弹簧的刚度的原因与措施 原因: 由式(6—35)看出,减小空气弹簧的刚度可以 降低车体的自振频率。 措施: 由式(6—34)看出,减小空气弹簧的刚度主要 应增大空气弹簧的总容积V0,但为了结构紧凑,其 本体容积V10不宜过大,而应增大附加空气室的容积 V2。从理论上讲,只要它的容积足够大,就可获得 低的车体自振频率。此外,若采用较高的空气压力 P0与较小的活塞面积A,即使在不很大的V0情况下,
2 . 空气弹簧的基本原理 为了便于分析和了解空气弹簧的工作特性,现以最简单的套筒式空气弹簧来说明其基本 原理。 1) 基本结构 图6—14是套筒式空气弹簧的工作原理示意图,它是由工作缸1、活塞2和附加空气 室3组成的。这种空气弹簧是利用空气的可压缩性来实现其弹性的。
2) 工作过程
(1) 活塞缓慢移动
相关文档
最新文档