(word完整版)平行线的判定(提高)知识讲解

合集下载

《平行线的判定》的数学知识点

《平行线的判定》的数学知识点

《平行线的判定》的数学知识点《平行线的判定》的数学知识点在我们的学习时代,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。

掌握知识点有助于大家更好的学习。

下面是店铺为大家收集的《平行线的判定》的'数学知识点,仅供参考,大家一起来看看吧。

1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。

平行用符号‖表示,如AB‖CD,读作AB平行于CD。

同一平面内,两条直线的位置关系只有两种:相交或平行。

注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。

(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。

简称:同位角相等,两直线平行。

平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

简称:内错角相等,两直线平行。

(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

简称:同旁内角互补,两直线平行。

补充平行线的判定方法:(1)平行于同一条直线的两直线平行。

(2)垂直于同一条直线的两直线平行。

(3)平行线的定义。

4、平行线的性质(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

【《平行线的判定》的数学知识点】。

第1讲 平行线的性质与判定

第1讲 平行线的性质与判定
C于D,EF⊥AC于F,DM∥BC,∠1=∠2,求证:
∠AMD=∠AGF. 证明:∵BD⊥AC,EF⊥AC(已知), ∴∠BDF=∠EFC=90°(垂直的性质)
∴BD∥EF(同位角相等,两直线平行),
∴∠2=∠CBD(两直线平行,同位角相等), ∵∠2=∠1(已知), ∴∠1=∠CBD(等量代换),
∴∠D=∠AHC(_两___直__线__平__行___,__同__位__角__相___等____) ∵∠A=∠D(已知) ∴∠AHC=∠A(__等__量__代__换____________________)
∴___A__B_∥__C__D___(__内__错__角__相__等___,__两__直__线___平__行_____).
★ 例题精讲
例题5 如图,已知∠ABC+∠BCD+∠CDE=360°,求证:AB∥ED.
解:连接BD, ∴∠DBC+∠BCD+∠CDB=180°, ∵∠ABC+∠BCD+∠EDC=360° ∴∠ABD+∠EDB=180°, ∴AB∥DE.
★ 例题精讲
练习5 如图,EF∥AD,∠1=∠2,∠BAC=75°。 (1)求证:AB∥DG;(2)求∠AGD.
4. 把下列命题写成“如果……那么……”的形式,并判断其真假: (1)等角的补角相等; (2)两个锐角的和是锐角; (3)负数之和仍为负数.
(1)如果两个角相等,那么这两个角的补角相等; 真命题 (2)如果两个角是锐角,那么这两个角的和也是锐角;假命题 (3)如果几个数是负数,那么它们的和也是负数. 真命题
∴ CE∥DF(同位角相等,两直线平行)
∴ ∠BCE=∠BDF(两直线平行,同位角相等) ∠EDF=∠CED(两直线平行,内错角相等)

平行线的判定和性质讲义

平行线的判定和性质讲义

在同一平面内,不相交的两条直线叫做平行线.角是平面几何图形中最活跃的元素,前面我们已学习过特殊角、数量关系角等角的知识.当两条直线相交或分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,进一步丰富了角的知识,它们在角的计算与证明中有广泛的应用.与平行线相关的问题一般都是平行线的判定与性质的综合运用,主要体现在如下两个方面:1. 由角定角已知角的关系→(判定)两直线平行→(性质)确定其他角的关系.2.由线定线已知两直线平行→(性质)角的关系行→(判定)确定其他两直线平行..平行线判定方法:(1) 同位角 相等,两直线平行。

.(2) 内错角相等,两直线平行。

(3) 同旁内角互补,两直线平行。

(4) 垂直于同一直线的两直线平行(5) 如果两条直线都与第三条直线平行,那么这两条直线平行。

平行线的性质:(1)两直线平行,同位角相等。

(2) 两直线平行,内错角相等。

(3) 两直线平行, 同旁内角互补。

【基础训练】1.下列命题正确的有 (填序号 )(1)两条直线被第三条直线所截,一定有同位角,所以这两条直线一定平行.(2)两直线不平行,同旁内角不互补.(3)如图,若1l ∥2l ,则∠1+∠2=180°.(4)如图,AD ∥BC ,则∠B +∠C =180°.(5)平行线的同位角的平分线互相平行.2.下列说法正确的是( )A .经过一点有一条直线与已知直线平行B .经过一点有无数条直线与已知直线平行C .经过一点有且只有一条直线与已知直线平行D .经过直线外一点有且只有一条直线与已知直线平行3.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种; ③若线段AB 与CD 没有交点,则AB ∥CD ;④若a ∥b ,b ∥c ,则a 与c 不相交.⑤两条射线或线段互相垂直是指它们所在的直线互相垂直.A .1个B .2个C .3个D .4个N FE D C B A N M A CD B EB DC A 4.已知:如图,∠BAE +∠AED =180°,∠1=∠2.求证:∠M =∠N .证明:∵∠BAE +∠AED =180°( ),∴ ∥ ( ).∴∠BAE = .又∵∠1=∠2(已知 ),∴∠BAE -∠1= - ( ).即∠MAE = .∴ ∥ ( ).∴∠M =∠N ( ).5如图,一张长方形纸条ABCD 沿MN 折叠后形成的图形,∠DMN =80°,求∠BNC 的度数.6.已知:如图AB //CD ,BCD DAB ∠=∠,AE 、BE 分别平分DAB ∠、ABC ∠.请求出E ∠的度数.7.如下图,已知AD ⊥BC ,NE ⊥BC ,∠E =∠EFA ,求证:AD 平分∠BAC .8.如图,已知︒=∠+∠18021, B ∠=∠3.试判断AED ∠与C ∠的关系,并予以说明.G EB D 321FCA9.如图,︒=∠25B ,︒=∠45BCD ,︒=∠30CDE ,︒=∠10E .求证: AB ∥EF .【例1】如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB互余的角有个. (安徽省中考题)思路点拨 充分运用对顶角、平行线性质等与角相关的知识,借助互余的概念判断. 注:平面几何的研究除了运用计算方法外,更多的要依靠时图形的观察(直觉能力),运用演绎推理的方法去完成,往往需要通过观察、实验操作进而猜想蛄论(性质),或由预设结论去猜想条件,再运用演绎推理方法加以证明.在学习完相交线、平行线内容后,平面几何的学习就由实验几何阶段进入论证几何阶段,顺利跨越推理论证阶段,需注意以下几点:(1)过好语言关;(2)学会识图;(3)善于分析.【例2】 如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( ) .A .4对B .8对C .12对D .16对( “希望杯”邀请赛试题)思路点拨 每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解人手.【例3】如图,已知∠B =25°,∠BCD =45°,∠CDE=30°,∠E =10°求征:AB ∥EF .思路点拨 解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角”或作出与AB 或CD 平行的直线.【例4】 如图,在ΔABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线.求证:∠EDF =∠BDF .(天津市竞赛题)EC DF A MN思路点拨综合运用角平分线、垂直的定义、平行线的判定与性质等知识,因图形复杂,故需恰当分解图形.【例5】探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?思路点拨已知AB∥CD,连结AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.注:分析主要从以下两个方面进行:(1)由因导果(综合法),即从已知条件出发推出相应结论.(2)执果溯因(分析法),即要得到结论需具备什么条件.解题时,我们既要抓住条件,又要盯住目标,努力促使已知与来知的转化与沟通.探索性问题一般具有以下特点:(1)给出了条件,但没有明确的结论;(2)给出了结论,但没有给出或没有全部给出应具备的条件,(3)先提出特殊情况进行研究,再要求归纳、猜测和确定一般结论;(4)先对某一给定条件和结论的问题进行研究,再探讨改变条件时其结论相应发生的变化,或改变结论时其条件相应发生的变化;(5)解题方法需要独立创新.“解题千万道,解后抛九霄”是难以达到提高解题能力,发展思维的目的的.善于作解题后小结,回顾解题过程,总结解题经验和体会,再进而作一题多解,一题多问,一题多变的思考,挖掘题目的深度和广度,扩大题目的辐射面,这对解题能力的提高是十分有益的.学力训练1.如图,已知AE∥CD,EF交AB于M,MN⊥EF于M,NN交CD于N,若∠BME=110°,则∠MND= .(湖北成宁市中者题)2.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2一∠3=90°,∠4=115°,那么∠3= .3.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α= .(内蒙古中考题)4.已知两个角的两边分别平行,其中一个角为40°,那么另一角是度.5.如图,下列条件中,不能判断直线l1∥l2的是( ).A.∠l=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°(南通市中考题)6..已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,符合条件l 的条数为( ).A.1 B.2 C.3 D.4(安徽省中考题)7.如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是( ).A.(1)、(3) B.(2)、(4) C.(1)、(3)、(4) D.(1)、(2)、(3)、(4)(江苏盐城市中考题)8.如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有( ).A.6个D.5个C.4个D.3个(湖北省荆门市中考题)9.如图,已知∠l+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对结论进行证明.10.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.15.如图,D、G是ΔABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( ).A,4对B.5对 C .6对D.7对16.如图,若AB∥CD,则( ).A.∠1=∠2+∠3 B.∠1=∠3一∠2C.∠1+∠2+∠3=180°∠l一∠2十∠3=180°17.如图,AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于( ).A.180°B.270°C.360°D.450°18.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( ).A.β=α+γB.α+β+γ=180°C.α+β-γ=180°D.β+γ-α=180°19.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.20.如图,已知AB∥CD,α=∠A+∠E,β=∠B+∠C+∠D,证明:β=2α.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.。

七年级下册数学 平行线的性质及尺规作图(提高) 人教版【精编】

七年级下册数学 平行线的性质及尺规作图(提高) 人教版【精编】

平行线的性质及尺规作图(提高)知识讲解【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3.了解尺规作图的基本知识及步骤;4. 通过用尺规作图活动,进一步丰富对“平行线及角”的认识.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、尺规作图1. 定义:尺规作图是指用没有刻度的直尺和圆规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.八种基本作图(有些今后学到):(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.(6)已知一角、一边做等腰三角形.(7)已知两角、一边做三角形.(8)已知一角、两边做三角形.【典型例题】类型一、平行线的性质1.(2015春•荣昌县期末)如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF 于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.举一反三:【变式】(2015•青海)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于l,若∠1=58°,则∠2=.类型二、两平行线间的距离2.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.类型三、尺规作图3. 如图所示,已知∠α和∠β,利用尺规作∠AOB,使∠AOB=2(∠α-∠β).4. (苏州中考模拟)如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m 的道路,余下的部分种植花草,求种植花草部分的面积.举一反三:【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为 ( )A.600m2 B.551m2 C.550m2 D.500m2类型四、平行的性质与判定综合应用5. (黄冈调考)如图所示,AB∥CD,分别写出下面四个图形中∠A与∠P,∠C的数量关系,请你从所得到的关系中任选一图的结论加以说明.举一反三:【变式1】如图,AB∥CD,∠ABG=42°,∠CDE=68°,∠DEF=26°.求证:BG∥EF.【变式2】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是( ) .A.120° B.130° C.140° D.150°【巩固练习】一、选择题1. 若∠1和∠2是同旁内角,若∠1=45°,则∠2的度数是 ( )A.45° B.135° C.45°或135° D.不能确定2.(2016•安徽模拟)如图AB∥CD,∠E=40°,∠A=110°,则∠C的度数为()A.60° B.80°C.75° D.70°3.(湖北襄樊)如图所示,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为( )A.150° B.130° C.120° D.100°4.如图,OP∥QR∥ST,则下列等式中正确的是( )A.∠1+∠2-∠3=90°B.∠2+∠3-∠1=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5. 如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且交EF于点O,则与∠AOE相等的角有( )A.5个 B.4个 C.3个 D.2个6.(湖北潜江)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°7. 如图所示,在一个由4×4个小正方形组成的正方形网格中,把线段EF向右平移3个单位,向下平移1个单位得到线段GH,则阴影部分面积与正方形ABCD的面积比是( )A.3:4 B.5:8 C.9:16 D.1:2二、填空题8.(2016春•江苏月考)如图,BC∥DE,AD⊥DF,∠l=30°,∠2=50°,则∠A=.9.如图所示,AB∥CD,若∠ABE=120°,∠DCE=35°,则有∠BEC=________.10.(四川攀枝花)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3=.11.一个人从点A出发向北偏东60°方向走了4m到点B,再向南偏西80°方向走了3m到点C,那么∠ABC的度数是________.12.如图所示,过点P画直线a的平行线b的作法的依据是 _.13.如图,已知ED∥AC,DF∥AB,有以下命题:①∠A=∠EDF;②∠1+∠2=180°;③∠A+∠B+∠C=180°;④∠1=∠3.其中,正确的是________.(填序号)三、解答题14.如图所示,AD⊥BC,EF⊥BC,∠3=∠C,则∠1和∠2什么关系?并说明理由.15.已知如图(1),CE∥AB,所以∠1=∠A,∠2=∠B,∴∠ACD=∠1+∠2=∠A+∠B.这是一个有用的事实,请用这个结论,在图(2)的四边形ABCD内引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.16.(2015春•澧县期末)已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.【答案与解析】一、选择题1. 【答案】D ;【解析】本题没有给出两条直线平行的条件,因此同旁内角的数量关系是不确定的.2. 【答案】D ;【解析】∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故选D .3. 【答案】C ;【解析】解:如图,∠3=30°,∠1=∠2=30°,∠C =180°-30°-30°=120°.4. 【答案】B ;【解析】反向延长射线ST 交PR 于点M,则在△MSR 中,180°-∠2+180°-∠3+∠1=180°,即有∠2+∠3-∠1=180°.5. 【答案】A【解析】与∠AOE 相等的角有:∠DCA ,∠ACB ,∠COF ,∠CAB ,∠DAC .6. 【答案】C ;【解析】解:∵AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,∴∠BCD =∠ABC =46°,∠FEC +∠ECD =180°,∴∠ECD =180°—∠FEC =26°,∴∠BCE =∠BCD —∠ECD =46°—26°=20°.7. 【答案】B ;【解析】=22+312=10S ⨯⨯⨯阴,=44=16S ⨯正ABCD ,所以ABCD S =10:165:8S =正阴:.二.填空题8. 【答案】70°;【解析】∵AD⊥DF,∴∠ADF=90°.∵∠1=30°,∴∠ADE=90°﹣30°=60°.∵BC∥DE,∴∠ABC=∠ADE=60°,∵△ABC 中,∠ABC=60°,∠2=50°,∴∠A=180°﹣60°﹣50°=70°.故答案为:70°.9.【答案】95°;【解析】如图,过点E 作EF ∥AB .所以∠ABE +∠FEB =180°(两直线平行,同旁内角互补),所以∠FEB =180°-120°=60°.又因为AB ∥CD ,EF ∥AB ,所以EF ∥CD ,所以∠FEC=∠DCE=35°(两直线平行,内错角相等),所以∠BEC=∠FEB+∠FEC=60°+35°=95°.10.【答案】60°;【解析】解:如图所示:∵l1∥l2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.11.【答案】20°;【解析】根据题意画出示意图,可得:∠ABC=80°-60°=20°.12.【答案】内错角相等,两直线平行;13.【答案】①②③④;【解析】由已知可证出:∠A=∠1=∠3=∠EDF,又∠EDF与∠1和∠3互补.三.解答题14.【解析】解:∠1=∠2.理由如下:∵ AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFB=90°.∴ AD∥EF(同位角相等,两直线平行),∴∠1=∠4(两直线平行,同位角相等).又∵∠3=∠C(已知),∴ AC∥DG(同位角相等,两直线平行).∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2.15.【解析】解:如图,过点D作DE∥AB交BC于点E.∴∠A+∠2=180°,∠B+∠3=180°(两直线平行,同旁内角互补).又∵∠3=∠1+∠C,∴∠A+∠B+∠C+∠1+∠2=360°,即∠A+∠B+∠C+∠ADC=360°.16.【解析】解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∵AB∥CD,∵AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,∵AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)中,根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).- 11 -。

平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册

平行线的判定++平行线的性质++知识考点梳理(课件)2024-2025学年北师大版数学八年级上册
∵∠EFC=142°,∴∠FCB+∠EFC=180°.
∴EF∥BC(同旁内角互补,两直线平行).
又 ∵AD∥BC,
∴EF∥AD(平行于同一条直线的两条直线平行);
7.4 平行线的性质






返回目录
(2)由(1)知∠FCB=38°,又 CE 平分∠FCB,
∴∠BCE=


∠FCB=19°(角平分线的定义).
在同一平面内,垂直于
同一条直线的两条直线
如图,∵b⊥a,c⊥a,
∴b∥c
平行
其他
方法
如 图 ,∵a ∥b,a ∥c,
平行于同一条直线的
两条直线平行
∴b∥c
7.3 平行线的判定
返回目录
归纳总结


要判断两条直线是否平行,首先要观察图形中与要判断

单 的两条直线有关的同位角、内错角、同旁内角的关系,这是
7.3 平行线的判定
返回目录
[解析]汽车行驶的方向不变,则汽车拐弯前与拐弯后


题 的行驶路线互相平行,如图所示.先右转后左转的两个角是
型 同位角,根据同位角相等,两直线平行,可知选项 D 正确

破 .
[答案] D
7.3 平行线的判定
返回目录
变式衍生 如图,已知∠1=90°,为保证两条铁轨平


∵∠1=60°(已知),∠ABC=∠1(对顶角相等),
∴∠ABC=60°(等量代换).
∵∠2=120°(已知),
∴∠ABC+∠2=180°,
∴AB∥CD(同旁内角互补,两直线平行).
∵∠2+∠BCD=180°(平角的定义),

平行线的判定与性质

平行线的判定与性质

平行线的判定与性质平行线是几何学中常见的重要概念之一。

在我们的日常生活中,平行线也有着广泛的应用。

本文将介绍平行线的判定方法以及它们的性质。

一、平行线判定方法在几何学中,有三种常见的方法可以判定两条线是否平行:1. 共线性判定法如果两条直线上的某个点与另两个不同的点的连线分别平行,那么这两条直线就是平行线。

2. 夹角判定法如果两条直线上的两个夹角相等(不等于 180 度),那么这两条直线是平行线。

3. 斜率判定法如果两条直线的斜率相等,那么这两条直线是平行线。

二、平行线的性质平行线具有许多有趣的性质,下面我们逐一介绍。

1. 对应角性质如果两条平行线被一条截线所交,那么交线两边所成的对应角是相等的。

2. 内错角性质如果两条平行线被一条截线所交,那么交线两边所成的内错角互补,即它们的和等于 180 度。

3. 外错角性质如果两条平行线被一条截线所交,那么交线两边所成的外错角是相等的。

4. 平行线之间的距离性质如果一条直线与一组平行线相交,那么从这条直线到任意平行线的距离都相等。

5. 平行线与平行线之间的距离性质如果有两组平行线相交,那么它们之间的距离是恒定的。

三、平行线的应用案例平行线在我们的日常生活中有许多应用。

以下是几个实际案例:1. 铁路与公路铁路中的两条平行线代表了两条不同方向的铁轨,保持平行关系确保了火车行驶的稳定性。

与之类似,公路中的车道也是平行的,使车辆能够有序行驶。

2. 建筑设计在建筑设计中,平行线常用于规划建筑物的布局。

比如,设计师可能会使用平行线来确定房间的大小和形状,从而达到美观和实用的目的。

3. 数学问题平行线也经常出现在数学问题中。

例如,计算几何中的一些证明和问题解决,会涉及到平行线的性质和判定方法。

四、总结平行线是几何学中的重要概念,具有多种判定方法和性质。

了解平行线的判定方法和性质有助于我们更好地理解几何学和应用它们于实际问题中。

无论是在日常生活还是学习中,平行线都有其重要的作用。

平行线的判定和性质

平行线的判定和性质

平行线的判定和性质平行线是几何中一个非常基本的概念,它在数学的研究和应用中具有重要的地位。

通过判定两条直线是否平行,我们可以深入了解平行线的性质和特点。

本文将介绍平行线的判定方法和相关性质。

一、平行线的判定1. 直线与直线的判定给定两条直线L₁和L₂,要判定它们是否平行,有以下几种方法:a) 角度判定法:如果两条直线的锐角、直角或钝角相等,那么它们是平行线。

b) 垂直判定法:如果一条直线与第二条直线的所有垂线都相等或成比例,那么它们是平行线。

c) 斜率判定法:如果两条直线的斜率相等且不为无穷大,则它们是平行线。

2. 直线与平面的判定给定一条直线L和一个平面P,要判定直线和平面是否平行,有以下几种方法:a) 垂直判定法:如果直线L和平面P的所有垂线都相等或成比例,那么它们是平行的。

b) 法线判定法:如果一条直线与平面的法线平行,那么它们是平行的。

二、平行线的性质平行线具有以下重要性质:1. 平行线的定义平行线是在同一个平面上不相交且不同于的两条直线。

2. 平行线与平移平行线之间可以进行平移变换,即将一条平行线沿着与之平行的方向平移,得到的仍然是一条平行线。

3. 平行线的夹角平行线之间的夹角为0度,即平行线之间没有交点。

4. 平行线的性质a) 平行线具有传递性:如果直线L₁与直线L₂平行,直线L₂与直线L₃平行,则直线L₁与直线L₃也平行。

b) 平行线与截线:如果一条直线与两条平行线相交,那么这两条直线所截线段的比例相等。

c) 平行线与转角:如果两条直线与平行线相交,它们所成转角相等。

d) 平行线与干涉线:如果两组平行线相互交错,即一组平行线与另一组平行线交叉相交,所交干涉线与平行线相交产生的内、外交角相等。

5. 平行线与平行四边形平行线所围成的四边形称为平行四边形。

平行四边形具有以下性质:a) 对边平行:平行四边形的对边都是平行线。

b) 对角线平分:平行四边形的对角线互相平分。

c) 同底角对顶角相等:平行四边形的同底角对顶角相等。

平行线的判定(基础)知识讲解

平行线的判定(基础)知识讲解

平行线的判定(基础)知识讲解【要点梳理】要点一、平行线的画法及平行公理1.平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.2.平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点二、平行线的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行公理及推论1.下列说法中正确的有 ( )①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥d,所以a∥d;④经过直线外一点有且只有一条直线与已知直线平行.A.1个 B 2个 C.3个 D.4个【答案】 A【解析】一条直线的平行线有无数条,故①错;②中的点在直线外还是在直线上位置不明确,所以②错,③中b与c的位置关系不明确,所以③也是错误的;根据平行公理可知④正确,故选A.【总结升华】本题主要考察的是“平行公理及推论”的内容,要正确理解必须要抓住关键字词及其重要特征,在理解的基础上记忆,在比较中理解.举一反三:【变式】直线a∥b,b∥c,则直线a与c的位置关系是 .【答案】平行类型二、平行线的判定2.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.21GF E D C BA【思路点拨】首先由BE ⊥FD ,得∠1和∠D 互余,再由已知,∠C=∠1,∠2和∠D 互余,所以得∠C=∠2,从而证得AB ∥CD .【答案与解析】证明:∵BE ⊥FD ,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D 互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB ∥CD .【总结升华】此题考查的知识点是平行线的判定,关键是由BE ⊥FD 及三角形内角和定理得出∠1和∠D 互余.举一反三:【变式1】如图,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠A=∠ECDC .∠B=∠ACBD .∠A=∠ACE【答案】D.提示:A 、两个角不是同位角、也不是内错角,故选项错误;B 、两个角不是同位角、也不是内错角,故选项错误;C 、不是EC 和AB 形成的同位角、也不是内错角,故选项错误;D 、正确.【变式2】已知,如图,BE平分∠ABC,CF平分∠BCD,∠1=∠2,求证:AB//CD.【答案】∵∠1=∠2∴ 2∠1=2∠2 ,即∠ABC=∠BCD∴ AB//CD (内错角相等,两直线平行)3.如图所示,由(1)∠1=∠3,(2)∠BAD=∠DCB,可以判定哪两条直线平行.【思路点拨】试着将复杂的图形分解成“基本图形”.【答案与解析】解:(1)由∠1=∠3,可判定AD∥BC(内错角相等,两直线平行);(2)由∠BAD=∠DCB,∠1=∠3得:∠2=∠BAD-∠1=∠DCB-∠3=∠4(等式性质),即∠2=∠4可以判定AB∥CD(内错角相等,两直线平行).综上,由(1)(2)可判定:AD∥BC,AB∥CD.【总结升华】本题探索结论的过程采用了“由因索果”的方法.即在条件下探索由这些条件可推导出哪些结论,再由这些结论推导出新的结论,直到得出结果.4.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?【答案与解析】解:这两条直线平行.理由如下:如图:∵ b⊥a, c⊥a∴∠1=∠2=90°∴ b∥c (同位角相等,两直线平行) .【总结升华】本题的结论可以作为两直线平行的判定方法.举一反三:【变式】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由.【答案】解:AB∥CD.理由如下:如图:∵ EF⊥EG,GM⊥EG (已知),∴∠FEQ=∠MGE=90°(垂直的定义).又∵∠1=∠2(已知),∴∠FEQ -∠1=∠MGE -∠2 (等式性质),即∠3=∠4.∴ AB∥CD (同位角相等,两直线平行).。

平行线的判定与性质

平行线的判定与性质

平行线的判定与性质平行线是几何学中一个重要的概念,它在许多数学问题中起着重要的作用。

本文将介绍平行线的判定方法以及平行线的一些性质。

一、平行线的判定判定两条直线是否平行,可以通过以下几种方法进行判断:1. 两线的斜率相等:设有两条直线L1和L2,它们的斜率分别为k1和k2。

如果k1=k2,那么L1和L2是平行线。

2. 两线的倾斜角相等:直线的倾斜角是指与x轴夹角的大小。

如果两条直线L1和L2的倾斜角相等,那么它们是平行线。

3. 两线的截距比相等:设有两条直线L1和L2,它们的截距分别为b1和b2。

如果b1/b2=k,k为常数,那么L1和L2是平行线。

二、平行线的性质平行线有以下几个重要的性质:1. 平行线上的任意一对对应角相等:设有两条平行线L1和L2,它们被一条横切线交于点A和点B,那么∠CAB=∠CBA,∠CDA=∠CDB,∠EAF=∠FAG等。

2. 平行线上的内角和为180度:设有两条平行线L1和L2,它们被一条横切线交于点A和点B,那么∠CAB+∠CBA=180度。

3. 平行线上的外角相等:设有两条平行线L1和L2,它们被一条横切线交于点A和点B,那么∠ADB=∠EBC。

4. 平行线与直角线的关系:如果两条直线L1和L2相互垂直,而且L1和L2中的任意一条与第三条直线L3(横切线)平行,那么L1和L2也是平行线。

5. 平行线与三角形的性质:如果一条直线与一个三角形的两边分别平行,那么这条直线与第三边也平行。

三、实例分析举个例子来说明平行线的判定和性质。

设有两条直线L1:y=2x+1和L2:y=2x+5。

首先,我们可以通过比较两条直线的斜率,发现它们的斜率相等,即k1=k2=2,因此L1和L2是平行线。

根据平行线的性质,我们可以得到一系列结论:1. 如果L1和L2是平行线,那么它们上的对应角必定相等,即∠CAB=∠CBA,∠CDA=∠CDB,∠EAF=∠FAG等。

2. 如果L1和L2是平行线,那么它们上的内角和为180度,即∠CAB+∠CBA=180度。

九年级数学平行线的判定与性质

九年级数学平行线的判定与性质

九年级数学平行线的判定与性质在九年级数学学习中,平行线的判定与性质是一个重要的知识点。

理解和掌握平行线的判定方法以及了解平行线的性质,对于解决与平行线相关的问题具有重要的意义。

本文将介绍平行线的判定方法和性质,帮助读者更好地理解和应用这一知识点。

一、平行线的判定方法在几何学中,有多种方法可以判定两条直线是否平行。

以下将介绍常用的三种判定方法。

1. 直线的斜率判定法设直线L1上两点A(x1, y1)和B(x2, y2),直线L2上两点C(x3, y3)和D(x4, y4)。

如果直线L1和直线L2的斜率相等,即m1 = (y2 - y1) / (x2 - x1)m2 = (y4 - y3) / (x4 - x3)那么L1和L2平行。

2. 直线的截距判定法设直线L1的方程为y = kx + b1,直线L2的方程为y = kx + b2。

如果直线L1和直线L2的斜率相等,即k1 = k2,且截距b1 = b2,那么L1和L2平行。

3. 直线的向量判定法设向量AB = (x2 - x1, y2 - y1),向量CD = (x4 - x3, y4 - y3)。

如果向量AB与向量CD平行(即满足比例关系),即(x2 - x1) / (x4 - x3) = (y2 - y1) / (y4 - y3)那么直线AB和CD平行。

二、平行线的性质1. 平行线之间的夹角平行线之间的夹角为零度。

即如果两条直线L1和L2平行,那么它们之间的夹角为零。

2. 平行线与横线的夹角平行线与横线的夹角为九十度。

即如果一条直线L与另一条直线L'平行,且L'是一条水平线或垂直线,那么L与L'的夹角为九十度。

3. 平行线与斜线的夹角平行线与斜线的夹角通常不为固定值。

具体的夹角取决于平行线的倾斜程度。

但是需要注意的是,如果一条直线L与另一条直线L'平行,且L'是一条斜线,那么L与L'的夹角一定小于一百八十度。

八年级平行线的判定知识点

八年级平行线的判定知识点

八年级平行线的判定知识点平行线的判定在初中数学中是一个非常重要的知识点,特别是在八年级数学学习过程中更是如此。

本文将为读者介绍关于八年级平行线的判定知识点,希望能够对读者的学习有所帮助。

一、基本概念平行线是指在同一平面内没有交点的两条直线,其符号为 || 。

平行线之间的距离是两条平行线上任意一点到另一条平行线的距离。

平行线的判定有三种方法:直接判定法、间接判定法和含角判定法。

二、直接判定法直接判定法是指通过直接比较两条直线的斜率是否相等,从而确定它们是否平行。

当两条直线的斜率相等时,它们是平行线,反之则不是。

例如,设有两条直线 L1:y=x+1 和 L2:y=2x-1,比较它们的斜率,我们可以得出:直线 L1 的斜率为 1,直线 L2 的斜率为 2,所以两条直线不平行。

三、间接判定法间接判定法是指通过直线与另一条已知平行线的关系,从而判断一条直线与已知平行线是否平行。

它包括垂线判定法和平行四边形判定法两种方式。

垂线判定法:如果一条直线与一条已知平行线垂直,则这条直线与另一条平行线平行。

例如,设有一条已知平行线 L1:y=2x+1,另有一条直线 L2,使得 L2 上任意一点到直线 L1 的距离都相等,那么 L2 与 L1 平行。

平行四边形判定法:如果两条直线分别与另外两条平行线构成的四边形两组对边分别平行,则这两条直线平行。

例如,如图所示,ABCD为平行四边形,E、F分别为 AB 和CD 上的点,连接 EF,若 EF // BC,则 AB // CD。

image四、含角判定法含角判定法是指通过两个角的关系来判断两条直线之间的关系,它包括同位角、内错角、同旁内角、同旁外角和对顶角。

同位角:两条平行线上所对应的角互相相等。

内错角:两条平行线被另一条直线所相交,内错角互相相等。

同旁内角:两条平行线被另一条直线所相交,同旁内角互相补角。

同旁外角:两条平行线被另一条直线所相交,同旁外角互相相等。

对顶角:两条平行线被另一条直线所相交,对顶角互相相等。

《相交线与平行线》全章复习与巩固(提高)知识讲解

《相交线与平行线》全章复习与巩固(提高)知识讲解

《相交线与平行线》全章复习与巩固(提高)知识讲解【知识网络】【要点梳理】要点一、两条直线的位置关系1.同一平面内两条直线的位置关系:相交与平行.要点诠释:(1)只有一个公共点的两条直线叫做相交直线,这个公共点叫做交点.(2)在同一平面内不相交的两条直线叫做平行线.平行用符号“∥”表示.2.对顶角、补角、余角(1)定义:①由两条直线相交构成的四个角中,有公共顶点且两边互为反向延长线的两个角叫做对顶角.②如果两个角的和是180°,那么这两个角互为补角,简称互补,其中一个角叫做另一个角的补角.类似地,如果两个角的和是90°,那么这两个角互为余角.简称互余,其中一个角叫做另一个角的余角.(2)性质:同角或等角的余角相等.同角或等角的补角相等.对顶角相等.3.垂线(1)垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.垂直用符号“⊥”表示,如下图.(2)垂线的性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直.②垂线段最短.(3)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性). (3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.要点诠释:(1)两条平行线之间的距离处处相等.(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)如何理解“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.要点三、用尺规作线段和角1.用尺规作线段(1)用尺规作一条线段等于已知线段.(2)用尺规作一条线段等于已知线段的倍数.(3)用尺规作一条线段等于已知线段的和.(4)用尺规作一条线段等于已知线段的差.2.用尺规作角(1)用尺规作一个角等于已知角.(2)用尺规作一个角等于已知角的倍数.(3)用尺规作一个角等于已知角的和.(4)用尺规作一个角等于已知角的差.【典型例题】类型一、两条直线的位置关系1. (1)如图(1)已知直线AB,CD相交于点0.(2)如图(2)已知直线AE,BD相交于点C.分别指出两图中哪些角是邻补角? 哪些角是对顶角?【答案与解析】解: (1)邻补角是∠DOA与∠AOC,∠AOE与∠EOB,∠BOC与∠COA,∠COE与∠DOE,∠DOA 与∠DOB,∠DOB与∠BOC;对顶角是∠AOD与∠COB,∠AOC与∠DOB.(2)邻补角是∠ACB与∠ACD,∠ECD与∠DCA,∠DCE与∠ECB,∠ECB与∠ACB;对顶角是∠ACB与∠DCE,∠BCE与∠ACD.【总结升华】当需要写出的角较多时,写完后再计算一下个数,可以检验是否写全.2.如图,直线AB、CD相交于点O,过点O作两条射线OM、ON,且∠AOM=∠CON=90°①若OC平分∠AOM,求∠AOD的度数.②若∠1=∠BOC,求∠AOC和∠MOD.【答案与解析】解:①∠AOM=∠CON=90°,OC平分∠AOM,∴∠1=∠AOC=45°,∴∠AOD=180°﹣∠AOC=180°﹣45°=135°;②∵∠AOM=90°,∴∠BOM=180°﹣90°=90°,∵∠1=∠BOC,∴∠1=∠BOM=30°,∴∠AOC=90°﹣30°=60°,∠MOD=180°﹣30°=150°.【总计升华】本题考查了角平分线定义和角的有关计算的应用,解此题的关键是能根据角平分线定义和已知求出各个角的度数.举一反三:【变式】如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD的度数.【答案】解:由角的和差,得∠EOF=∠COE﹣COF=90°﹣28°=62°.由角平分线的性质,得∠AOF=∠EOF=62°.由角的和差,得∠AOC=∠AOF﹣∠COF=62°﹣28°=34°.由对顶角相等,得∠BOD=∠AOC=34°.类型二、平行线的性质与判定3.如图所示,AB∥CD,∠1=∠B,∠2=∠D,试说明BE⊥DE.【思路点拨】这是初学几何时较为复杂的题目,通常是过“拐点”(拐角处的顶点)作平行线为辅助线,把一个大角分成两个角,分别与两个已知角建立起了联系.【答案与解析】解:过E点作EF∥AB,因为AB∥CD(已知),所以EF∥CD.所以∠4=∠D(两直线平行,内错角相等).又因为∠D=∠2(已知),所以∠4=∠2(等量代换).同理,由EF∥AB,∠1=∠B,可得∠3=∠1.因为∠1+∠2+∠3+∠4=180°(平角定义),所以∠1+∠2=∠3+∠4=90°,即∠BED=90°.故BE⊥DE.【总结升华】解此题的关键是如何构造平行关系,即过哪一点作哪条直线的平行线,只有通过适当的练习才能逐步达到熟练解题的目的.举一反三:【变式1】已知直线AB∥CD,当点E在直线AB与CD之间时,有∠BED=∠ABE+∠CDE成立;而当点E在直线AB与CD之外时,下列关系式成立的是( ).A.∠BED=∠ABE+∠CDE或∠BED=∠ABE-∠CDEB.∠BED=∠ABE-∠CDEC.∠BED=∠CDE-∠ABE或∠BED=∠ABE-∠CDED.∠BED=∠CDE-∠ABE【答案】C (提示:过点E作EF∥AB)【变式2】如图,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5+∠6= .【答案】900°4.如图,已知CD∥EF,∠1+∠2=∠ABC,求证:AB∥GF.【答案与解析】证明:如图,过点C做CK∥FG,并延长GF 、CD交于点H,∵ CD∥EF (已知),∴∠CHG=∠1(两直线平行,同位角相等).又∵ CK∥FG,∴∠CHG+∠2+∠BCK=180°((两直线平行,同旁内角互补).∴∠1+∠2+∠BCK=180°(等量代换).∵∠1+∠2=∠ABC(已知),∴∠ABC+∠BCK=180°(等量代换).∴ CK∥AB(同旁内角互补,两直线平行).∴ AB∥GF(平行的传递性).【总结升华】反复应用平行线的判定与性质,见到角相等或互补,就应该想到判断直线是否平行,见到直线平行就应联想到角相等或互补.类型三、用尺规作线段和角5. 已知:如图,AB//CD,BC//DE,∠B=70°,(1)求∠D的度数.(2)用尺规在图上作一个∠α,使∠α=∠D—∠B(不写作法,保留痕迹).A B EDC【思路点拨】(1)根据作一个角等于已知角的方法即可作出;(2)根据平行线的性质即可求解.【答案与解析】解:(1)∵AB//CD,BC//DE,∴∠C=∠B=70°,∠D=180°-∠C=180°-70°=110°.(2)作法如图:【总结升华】本题考查了基本作图:作一个角等于已知角的差,以及平行线的性质定理,正确掌握基本作图是关键.类型四、实际应用6.手工制作课上,老师先将一张长方形纸片折叠成如图所示的那样,若折痕与一条边BC的夹角∠EFB=30°,你能说出∠EGF的度数吗?【思路点拨】长方形的对边是平行的,所以AD∥BC,可得∠DEF=∠EFG=30°,又因为折后重合部分相等,所以∠GEF=∠DEF=30°,所以∠DEG=2∠DEF=60°,又因为两直线平行,同旁内角互补,所以∠EGC=180°-∠DEG,问题可解.【答案与解析】解:因为AD∥BC(已知),所以∠DEF=∠EFG=30°(两直线平行,内错角相等).因为∠GEF=∠DEF=30°(对折后重合部分相等),所以∠DEG=2∠DEF=60°.所以∠EGC=180°-∠DEG=180°-60°=120°(两直线平行,同旁内角互补). 【总结升华】本题利用了:(1)折叠的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;(2)平行线的性质.举一反三:【变式】(山东滨州)如图,把—个长方形纸片对折两次,然后剪下—个角.为了得到一个正方形,剪刀与折痕所成的角的度数应为().A.60° B.30° C.45° D.90°【答案】C。

平行线的判定

平行线的判定

平行线的判定在几何学中,平行线是指在同一平面上永不相交的两条直线。

判定两条直线是否平行是几何学中的一个基本问题,有多种方法可以进行判定。

本文将介绍两种常见的判定方法:角度判定法和距离判定法。

角度判定法角度判定法是一种直观且简单的方法,只需要测量两条直线的夹角并进行比较。

如果两条直线的夹角相等或互补(夹角之和为180度),则可以判定这两条直线是平行的。

具体步骤如下:1.使用直尺和量角器准确地绘制出两条直线。

2.使用量角器测量两条直线的夹角。

3.比较两条直线的夹角。

如果夹角相等或互补,则可以判定这两条直线是平行的。

需要注意的是,使用角度判定法进行判定时,需要确保直线的绘制和夹角的测量都非常准确,以避免误判。

距离判定法距离判定法是另一种常见的判定方法,基于两条平行线上的任意两点之间的距离相等的原理。

如果两条直线上的任意两点之间的距离都相等,则可以判定这两条直线是平行的。

具体步骤如下:1.使用直尺和量角器准确地绘制出两条直线。

2.在两条直线上各选择两个点,共计四个点。

3.使用尺子或测量工具测量这四个点之间的距离。

4.比较这四个距离。

如果它们都相等,则可以判定这两条直线是平行的。

需要注意的是,使用距离判定法进行判定时,选择的点要尽可能远离直线的交点,以免距离的测量误差影响判定结果。

总结平行线的判定是几何学中的一个基本问题,在实际应用中具有重要的意义。

角度判定法和距离判定法是两种常见的判定方法,各有优劣。

角度判定法直观简单,但要求直线和夹角的测量非常准确;而距离判定法基于距离相等的原理,更加严谨,但对于距离的测量也要求准确。

在实际应用中,可以根据具体情况选择合适的方法进行判定。

需要注意的是,在某些特殊情况下,如直线趋近于无限远时,以上方法可能不适用。

在这种情况下,可能需要采用其他判定方法,如斜率判定法或向量判定法等。

平行线的判定是几何学中的重要内容之一,对于理解和应用几何学具有重要意义。

希望本文介绍的角度判定法和距离判定法能够帮助读者更好地理解和运用平行线的判定方法。

平行线及其判定知识点总结

平行线及其判定知识点总结

平行线及其判定知识点1:平行线的定义及平面内两直线的位置关系定义:在同一平面内,的两条直线叫做平行线,直线a,b平行,记作。

在同一平面内,不重合的两条直线只有两种位置关系: 。

说明1(1)在同一平面内,两条直线的位置关系只有平行与相交两种,若没有特别说明,“重合”视为一条直线。

(2)平常所说的“两条射线平行,两条线段平行”都是指它们所在的直线平行(3)平行线的定义有三个特征:一是在同一平面内;二是两条直线;三是不相交。

三者缺一不可。

例题:下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,b∥c,则a∥eD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、平行公理的推论来判断【解析】A选项中缺少“在同一平面内”这个条件,故A选项错误。

若没有其条件限制,一条直线的平行线有无数条,故B选项错误。

平行于同一直线的两条直线平行,故C选项正确。

根据平行线的定义可知D选项错误.故选C知识点2:平行公理平行公理:经过一点.有且只有一条直线与这条直线平行。

(注意:①平行公理特别强调“经过直线外一点”,而非直线上的点,它和垂线的性质不同②“有且只有"强调直线的存在性和唯一性)如图,经过直线a外一点P,能且只能画出一条直线与直线a平行·Pa例题:下列说法正确的是()A.在同一平面内,过直线外一点有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线平行C.经过一点有且只有一条线段与已知线段平行D.过一点有且只有一条直线与己知直线垂直【解析】A选项中“在同一平面内”这个条件,不影响后半向的对错。

“过直线外一点有一条直线与已知直线平行”说的是存在性,即过直线外一点肯定有一条直线与已知直线平行,故A选项正确。

B选项错误,因为若经过直线上一点,则没有直线与已知直线平行。

C选项错误,道理同B选项。

D选项错误,因为缺少“在同一平面内”这个大前提,D选项中结论不成立,如图,AB,BC,BD是正方体的三条棱,它们两两垂直,且都经过点B,若把AB看作已知直线,则经过点B有两条直线BC,BD与已知直线AB垂直知知识点3:平行公理的推论平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也。

平行线的判定和性质知识点详解

平行线的判定和性质知识点详解

平行线的判定和性质知识点详解平行线是在同一个平面上,永不相交的两条直线。

在平行线的判定和性质中,我们会涉及到直线和角的相关概念以及它们之间的关系。

1.同位角平行线判定:如果两条直线与一条横截线相交,且同位角相等,则这两条直线是平行线。

同位角是指两条直线被横截线所形成的内外两对相似角。

2.顶角平行线判定:如果两条直线被一条直线所截断,使得内侧的两个顶角互补,则这两条直线是平行线。

顶角是指两条直线被截断所形成的内外两个相交角。

3.对顶角平行线判定:如果两条直线被一条直线所截断,使得对顶角互补,则这两条直线是平行线。

对顶角是指两条直线被截断所形成的相对两侧的相交角。

平行线的性质如下:1.同位角性质:同位角是两条平行线被横截线所形成的内外两对相似角。

性质有:同位角相等;同位角的对应角相等;同位角的内外两个对顶角互补。

2.内错角性质:内部错位的两个角,分别在两对同位角之间,互为补角。

3.外错角性质:外部错位的两个角,分别在两对同位角之间,互为补角。

4.顶角性质:顶角是两条平行线被一条截断线所形成的内外两个相交角。

性质有:顶角相等;顶角的对应角相等;顶角的内外两个对位角互为补角。

5.对顶角性质:对顶角是两条平行线被一条截断线所形成的相对两侧的相交角。

性质有:对顶角互为补角。

6.互补角性质:互补角是指两个角的和为90度。

在平行线中,同位角和对位角都是互补角。

7.直角性质:如果一条直线垂直于一条平行线,则它与这条平行线的对位角都是直角。

8.平行线之间的距离性质:平行线之间的距离在任意两点之间是相等的。

总结起来,平行线的判定方法包括同位角平行线判定、顶角平行线判定和对顶角平行线判定。

而平行线的性质包括同位角性质、内错角性质、外错角性质、顶角性质、对顶角性质、互补角性质、直角性质以及平行线之间的距离性质等。

这些性质可以帮助我们在解决平行线相关问题时更加便捷地推导和证明结论。

平行线的判定及性质课件

平行线的判定及性质课件

05
总结与展望
总结
01
02
03
04
05

直线平行的定义
直线平行的判定 方法
直线平行的性质
平行线在实际生 活中的应用
平行线在数学中 的地位
在同一平面内,不相交的 两条直线叫做平行线。
同位角相等,两直线平行 ;内错角相等,两直线平 行;同旁内角互补,两直 线平行。
两直线平行,同位角相等 ;两直线平行,内错角相 等;两直线平行,同旁内 角互补。
在几何图形中,平行线具 有非常重要的应用价值, 如矩形、菱形、正方形等 都有平行线的性质。
平行线是数学几何学中的 重要概念之一,是研究平 面图形性质的基础之一。 掌握平行线的判定方法和 性质对于学习数学几何学 非常重要。
展望
进一步探索平行线的性质
加强实际应用
除了已经学习的平行线的基本性质外,还 有许多复杂的性质和定理,值得进一步探 索和学习。
详细描述
在制造业中,机器人使用平行线来定位和移动物体,进行高效和精确的生产操作。例如 ,在汽车制造中,机器人通过使用平行线来定位和抓取车辆部件,以提高生产效率和质 量。在医疗领域,手术机器人使用平行线来精确控制手术器械,提高手术的准确性和安
全性。
04
平行线在数学问题中 的应用
代数中与平行线相关的知识点
在道路交通中,平行线是确保车辆安全行驶的重要标志。它们被用来划分车道、标识道路边缘以及引 导驾驶员在正确的车道上行驶。在高速公路上,平行线被用来表示应急车道和车道分隔线,帮助驾驶 员在紧急情况下做出正确的反应。
机器人在工作中的应用
总结词
机器人广泛应用于生产制造、医疗服务和军事等领域,平行线在机器人的工作中发挥着 重要作用。

(完整word版)平行线讲义kong

(完整word版)平行线讲义kong

课 题 平行线教学目标1、 了解同位角、内错角、同旁内角,掌握平行线的判定和平行线的性质.2、 了解平行线之间的距离.3、 学会运用几何语言进行推理演绎,体验推理过程的严谨性和逻辑性。

重点、难点● 重点:运用平行线的性质和判定解决几何演绎推理问题。

● 难点:合理运用平行线的判定方法、平行线性质.教学内容【新课学习】 一、平行线的性质:性质1:两直线平行, ; 性质2:两直线平行, ; 性质3:两直线平行, 。

【例1】 如图,直线a ‖b ,c ‖d ,∠1=106度,求∠2,∠3的度数。

解: ∵a ∥b (已知)∴∠1 = (两条平行线被第三条直线所截,内错角相等) ∵∠1 = 106(已知)∴∠2 = (等量代换) ∵c ∥d (已知)∴∠2 = ∠3 ( ) ∴∠3 = 【针对性练习】 一、填空1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = . 2.如图2,直线AB 、CD 被EF 所截,若∠1 =∠2,则∠AEF +∠CFE = .3.如图3所示,若EF∥AC,则∠A +∠ = 180°。

4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .5.如图5,AB∥CD,EG⊥AB 于G ,∠1 = 50°,则∠E = .图124 31ABCD E1 2 A B DCE F图2 1 2 3 4 5A B C D FE 图312 ABCDE F 图46.如图6,AB∥CD,AC⊥BC,图中与∠CAB 互余的角有 . 7.如图7,直线l 1∥l 2,AB⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有 个. 二、解答下列各题9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.11.如图11,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)12.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 =90°.求证:(1)AB∥CD; (2)∠2 +∠3 = 90°.图912 ACB FGED图102 1BCED图1112 ABEF DC13、如图,AB ∥CD ,BE 平分∠ABC ,CE 平分∠BCD,则∠1与∠2的关系是什么? 说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的判定(提高)知识讲解
【学习目标】
1.熟练掌握平行线的画法;
2.掌握平行公理及其推论;
3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行. 【要点梳理】
要点一、平行线的画法及平行公理
1.平行线的画法
用直尺和三角板作平行线的步骤:
①落:用三角板的一条斜边与已知直线重合.
②靠:用直尺紧靠三角板一条直角边.
③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.
④画:沿着这条斜边画一条直线,所画直线与已知直线平行.
2.平行公理及推论
平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
要点诠释:
(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.
(2)公理中“有”说明存在;“只有”说明唯一.
(3)“平行公理的推论”也叫平行线的传递性.
要点二、平行线的判定
判定方法1:同位角相等,两直线平行.如上图,几何语言:
∵∠3=∠2
∴AB∥CD(同位角相等,两直线平行)
判定方法2:内错角相等,两直线平行.如上图,几何语言:
∵∠1=∠2
∴AB∥CD(内错角相等,两直线平行)
判定方法3:同旁内角互补,两直线平行.如上图,几何语言:
∵∠4+∠2=180°
∴AB∥CD(同旁内角互补,两直线平行)
要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.
【典型例题】
类型一、平行公理及推论
1.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行. 其中正确的个数为:( ) .
A.1个B.2个C.3个D.4个
【答案】B
【解析】正确的是:(1)(3).
【总结升华】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意区分不同表述之间的联系和区别.
举一反三:
【变式】下列说法正确的个数是() .
(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.
(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.
(3)两条直线被第三条直线所截,同位角相等.
(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.
A.1个 B .2个C.3个D.4个
【答案】B
2.证明:平行于同一直线的两条直线平行.
【答案与解析】
已知:如图,a//c,b//c.求证:a//b.
证明:假设直线a与直线b不平行,则直线a与直线b相交,设交点为A,如图.
Q,
a//c,b//c
则过直线c外一点A有两条直线a、b与直线c平行,
这与平行公理矛盾,所以假设不成立.

a//b
【总结升华】本题采用的是“反证法”的证明方法,反证法证题的一般步骤:
第一步,反设:作出与求证结论相反的假设;
第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;
第三步,结论:说明反设不成立,从而肯定原命题成立.
类型二、平行线的判定
3.(2015春•荣昌县校级期中)如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.试说明:EC∥DF.
【思路点拨】根据BD平分∠ABC,CE平分∠ACB,得出∠DBF=∠ABC,∠ECB=∠ACB,
∠DBF=∠ECB,再根据∠DBF=∠F,得出∠ECB=∠F,即可证出EC∥DF.
【答案与解析】解:∵BD平分∠ABC,CE平分∠ACB,
∴∠DBF=∠ABC,∠ECB=∠ACB,
∵∠ABC=∠ACB,
∴∠DBF=∠ECB,
∵∠DBF=∠F,
∴∠ECB=∠F,
∴EC∥DF.
【总结升华】此题考查了平行线的判定,用到的知识点是同位角相等,两直线平行,关键是证出∠ECB=∠F.
举一反三:
【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )
A.第一次向左拐30°,第二次向右拐30°
B.第一次向右拐50°,第二次向左拐130°
C.第一次向右拐50°,第二次向右拐130°
D.第一次向左拐50°,第二次向左拐130°
【答案】A
提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图.
图B显然不同向,因为路线不平行.
图C中,∠1=180°-130°=50°,路线平行但不同向.
图D中,∠1=180°-130°=50°,路线平行但不同向.
只有图A路线平行且同向,故应选A.
4.如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.
【思路点拨】利用辅助线把AB、EF联系起来.
【答案与解析】
解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.
∵∠B=25°,∠E=10°(已知),
∴∠B=∠BCM,∠E=∠EDN(等量代换).
∴AB∥CM,EF∥DN(内错角相等,两直线平行).
又∵∠BCD=45°,∠CDE=30°(已知),
∴∠DCM=20°,∠CDN=20°(等式性质).
∴∠DCM=∠CDN(等量代换).
∴CM∥DN(内错角相等,两直线平行).
∵AB∥CM,EF∥DN(已证),
∴AB∥EF(平行线的传递性).
解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.
∵∠BCD=45°,∴∠NCB=135°.
∵∠B=25°,
∴∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).
又∵∠CDE=30°,∴∠EDM=150°.
又∵∠E=10°,
∴∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).
∴∠CNB=∠EMD(等量代换).
所以AB∥EF(内错角相等,两直线平行).
【总结升华】判定两条直线平行的方法有四种,选择哪种方法要根据问题提供的条件来灵活选取.
举一反三:
【变式】(2015秋•巨野县期末)如图,已知∠BED=∠B+∠D,求证:AB∥CD.
【答案】
证明:延长BE交CD于F.
∵∠BED+∠DEF=180°,(平角的定义)
∴∠DEF+∠D+∠EFD=180°(三角形的内角和等于180°),∴∠BED=∠D+∠EFD,(等量代换)
又∠BED=∠B+∠D,
∴∠B=∠EFD(等量代换),
∴AB∥CD(内错角相等,两直线平行).。

相关文档
最新文档