三视图中高难度的练习及答案
三视图之组合类测试题(含答案).docx
三视图之组合类一、单选题(共10道,每道10分)1•某几何体的三视图如图所示,则该几何体的表面积是()6.L1221622正视图侧视图俯视图A.372B.360C.292D.280答案:B解题思路:首先,由三视图可知,该几何体为组合体(上下两部分):上部分、下部分都是长方体;其次,上面长方体长为6,宽为2,高为8;下面长方体长为&宽为10,高为2.该几何体的表面和等于下面长方体的全面和与上面长方体的四个狈!|面积之和振卩S = 2(10x8 + 10x2 + 8x2) + 2(6x8+ 8x2) = 360. 故选B.三颗星知识点: 由三视图求面积.体积2•某儿何体的三视图如图所示,则该儿何体的体积为()2 4 |侧视图A.24B.26C.28D.30答案:D解题思路:苜先,由三视图可知该几何体是组合体(上下两部分):上面是底面为直角梯形(上底为1,下底为2,高为1)、高为4 的四棱柱(平放);下面是长为3、宽为4、高为2的长方体.如下图所示,四棱柱体积* =(牛x 1) x 4=6 ;长方体体积冬二=3 x 4 x 2=24 ;・・・组合体的体积7 = 6+24 = 30. 故选D.试题难度:三颗星知识点:由三视图求面枳、体枳3.某儿何体的三视图如图所示,则该儿何体的体积为()正视图A 12TIB 45JIC.刃兀D .81兀答案:c 解题思路:首先,由三视图可知该几何体是组合体(上下两部分):上面是圆锥,底面圆半径为3,母线长为5,则它的高h = ^52 -32 =4 ,体积卩]=-X (7IX 32)X 4 = 12TU .下面是圆柱,底面圆半径为3,高为5,体和冬=(71X 32)X 5 = 45TI .・•・组合体的体积/ = 12兀+ 45兀=57兀.故选C.试题难度:三颗星知识点:由三视图求面积、体积4.某几何体的三视图如图所示,则该几何体的表面积为()56侧视图224A.112B. 3C.80 + 16血D.96答案:C解题思路:首先,由三视图可知该几何体是组合体,如下图所示,俯视图上面是正四棱锥,底面是边长为4的正方形,高是2, 则棱锥侧面三角形的高h = Q + 2: = 2^2 , 四棱锥的侧面积=4x(1x4x272) = 16^・下面是正方体,棱长为4, 其四个侧面与底面面和之和S2=5X(4X4)=80・・•・组合体的表面和5 = 80 + 16^2・故选C.试题难度:三颗星知识点:由三视图求血积、体积5•某儿何体的三视图如图所示,则该儿何体的体积为()8 10A.3B.TC.3D.4答案:B解题思路:首先,由三视图可知,该几何体为组合体(上下两部分).上部分:由正、侧视图(都是三角形)可知为棱锥,结合俯视图 可知为正四棱锥,且底面边长为2,高为1,则体积珂=^-><22x 1 = £ . 3 3下部分:由正、侧视图可知为棱柱,结合俯视图可知为正四棱柱, 且底面边长为1,高为2,则体积冬=12 x2 = 2 .・••组合体的体和为宀;+ 2 = £・ 3 3故选B.试题难度:三颗星知识点:由三视图求面积、体积6•己知某几何体的三视图如图所示,其中,正视图、侧视图均是由三角形与半圆构成,俯视 图由圆及其内接三角形构成,根据图中的数据可得此儿何体的体积为()1正视I 1 侧视I俯视I答案:C 解题思路: 首先,由三视图可知该几何体是组合体,如下图所示, 上面是三棱锥,棱锥的底面是等腰直角三角形, 且直角边长为1,棱锥的高为1, 体积 ^=lx(lxlxl)xl = l ; 3 2 6 下面是一个半球,直径为三棱锥底面三角形的斜边长71, 则其体积KX (芈內=寻兀. ・•・组合体的体积/ = ; +如・6 6故选C. 试题难度:三颗星知识点:由三视图求面积、体积加一 3 +C 271-3 + 1 - 27.某儿何体的三视图如图所示,则该儿何体的体积为()A .T +7lB .f+27r 答案:A解题思路:由三视图可知该几何体是组合体,如下图所示,上面是三棱锥,底面是等腰直角三角形,且斜边长为2, 则两直角边长为迈,棱锥的高h = Jl 2-l x = A /3 , 故三棱锥的体积斤=£ X [斗X (JI )2 ] X 筋=芈.下面是圆柱,底面圆的半径为1,圆柱的高为1, 则其体积v 2 =(兀X1?) X1 =兀・ ・・・组合体的体积卩理",3故选A.俯视图侧视图4+妇4+三兀A ・ 4 B. 2答案:B解题思路:由三视图可知该几何体是组合体,如下图所示,左边是一个半圆柱,底面半圆的半径为1,圆柱的高为3, 则其体积 ^=-X (7TXl 2)x3 = -7r ;右边是长方体,底面长为2,宽为2,高为1,则其体积$ =2x2x1 =4.・・・组合体的体积r=4+-?i,2 故选B ・若俯视图中的圆弧是半圆,则该几何体的体积为(C.4+巴 2 D.4+71 8 •某几何体的三视图如图所示, 19•某几何体的三视图如图所示,则该几何体的体积为(正视图 侧视图答案:B解题思路:由三视图可知该几何体是组合体,如下图所示,A.112B.80C.72D.64上面是四棱锥,右侧面为等腰三角形,且垂直于底面, 棱锥的高为3,棱锥的底面是边长为4的正方形,则其体和* = 2x4, x3 = 16 ;3下面是正方体,棱长为4,则其体积卩2 = 43 = 64・・•・组合体的体和只=64 +16 = 80,故选B.试题难度:三颗星知识点:由三视图求面积、体积10•某儿何体的三视图如图所示,若侧视图屮的圆弧是半圆,则该儿何体的表面积为(俯视图A 92 + 14兀8 82 + 14兀C 92 + 24兀D 82 + 24兀答案:A解题思路:由三视图可知该几何体是组合体,如下图所示,上面是一个半圆柱,底面半圆的半径为2,圆柱的高为5, 则其表面和为两个底面半圆的面和与圆柱的半个侧面和之和, 即S]=2X(1X7TX22)+-^X(2KX2)X5=14TI;下面是长方体,底面长为5,宽为4,长方体的高为4, 则底面面和与四个侧面和之和S2=5X4+2(5X4+4X4)=92.・••组合体的表面和S = 92+14K・故选A.试题难度:三颗星知识点:由三视图求面枳、体枳。
高三专项训练:三视图练习题(一)
高三专项训练:三视图练习题(一)(带答案)一、选择题1.如图是某几何体的三视图,则此几何体的体积是( )A .36B .108C .72D .1802.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A 、球B 、三棱锥C 、正方体D 、圆柱3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A 、9πB 、10πC 、11πD 、12π4.有一个几何体的三视图及其尺寸如图(单位cm ),则该几何体的表面积及体积为( )A.3212,24cm cm ππB. 3212,15cm cm ππC. 3236,24cm cm ππD.以上都不正确5.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.A. B. CD .36.一空间几何体的三视图如图所示,则该几何体的体积为.A. B. C D. [7. 若某空间几何体的三视图如图所示,则该几何体的体积是A .13 B .23C .1D .28.右图是某几何体的三视图,则该几何体的体积为( )A . B.C. D.1362942π+3618π+9122π+9182π+正视图俯视图9.已知一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A .43π B . 163π C .1912π D . 193π 10.某几何体的正视图如图所示,则该几何体的俯视图不可能的是11.已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )cm 3.A .π+8B .328π+C .π+12D .3212π+侧视图主视俯视第8题图俯视图侧视图 正视图12.已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则其左视图的面积是( )(A )243cm (B )223cm (C )28cm (D )24cm13.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .6πB .7πC .8πD .9π14.如右图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 ( )A .π3B .π2C .π23 D .π4 15.如图是一个几何体的三视图,若它的体积是33,则图中正视图所标a=( )A .1B 3C 3D .316.已知某几何体的三视图如图所示(单位:cm ),其中正视图、侧视图都是等腰直角三角形,则这个几何体的体积是( )A .338cmB .3316cm C .33216cm D . 3332cm17.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .B .C .D .18.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.13 B. 23C. 1D. 2 俯视图侧视图正视图22119.某物体是空心的几何体,其三视图均为右图,则其体积为( )A 、8B 、43π C 、483π+ D 、483π- π12π34π3π312正视图 侧视图俯视图 正视第9题22 4 2侧视图 22俯视20.如图,水平放置的三棱柱ABC-A 1B 1C 1中,侧棱AA 1⊥平面A 1B 1C 1,其正视图是边长为a 的正方形.俯视图是边长为a 的正三角形,则该三棱柱的侧视图的面积为A .a 2B .a 2C a 2D 221.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3π B .24+3π C .20+4π D .24+4π22.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .12πB .π34C .3πD .π312.23.如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( )12正视图 侧视图 俯视图 AC A 11正视图 侧视图俯视图24.图1是设某几何体的三视图,则该几何体的体积为()A.942π+B.3618π+C.9122π+D.9182π+、25.已知某几何体的三视图如图所示,根据图中标注的尺寸(单位cm)可得该几何体的体积是()A.313cm B.323cmC.343cm D.383cm26.小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是A. 长方形 B. 圆柱 C. 立方体 D. 圆锥27.一个几何体的三视图如图所示,则这个几何体的体积为()正视图侧视图俯视图332正视图俯视图图1AB .12C .32 D1+28.一个空间几何体的三视图如图(1)所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积和表面积分别为 ( )A 、64,48+B 、32,48+ C 、643,32+D 、332,48+29.若某多面体的三视图(单位: cm )如图所示,则此多面体的体积是( ) A .21cm 3 B .32cm 3 C .65cm 3 D .87cm 3正视图俯视图图(1)侧(左)视图 1111130.一个空间几何体的正视图、侧视图均是长为2、高为3的矩形,俯视图是直径为2的圆(如右图),则这个几何体的表面积为A .12π+B .7πC . π8D .π2031.(一空间几何体的三视图如图所示,则该几何体的体积为( ).A. B.C.D. 32.已知几何体其三视图(如图),若图中圆半径为1,等腰三角形腰为3,则该几何体表面积为 ( ) A .6π B .5π C.4π D.3π2π+4π+2π4π+正视侧视俯视俯视..A .2,23B .22,2D .2,434.如图,有一个几何体的正视图与侧视图都是底为6cm ,腰为5cm 的等腰三角形,俯视图是直径为6cm 的圆,则该几何体的体积为 ( )A .12πcm 3B .24πcm 3C .36πcm 3D .48πcm 335 (A )348cm (B )324cm (C )332cm (D )328cm36. 如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为 ( )A .4B .3C .32D .237.某四面体的三视图如下图所示,则该四面体的四个面中,直角三角形的面积和是_______.二、填空题 正视图 左视图俯视图正视图侧视图 俯视图 第6题 ·38.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.39.如图所示是一个几何体的三视图(单位:cm ),主视图和左视图是底边长为4cm ,腰长为22的等腰三角形,俯视图是边长为4的正方形,则这个几何体的表面积是-__________40.某几何体的三视图如图所示,则该几何体的体积的最大值为 .41.一正多面体其三视图如图所示,该正多面体的体积为___________.主视图 左视图俯视图3主视图 俯视图 侧视图42.若某几何体的三视图(单位:cm )如右图所示,则该几何体的体积为 cm 2.43.已知某几何体的三视图如图所示,其中侧视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD 是直角梯形,则此几何体的体积为 ;44.某四面体的三视图如上图所示,该四面体四个面的面积中最大的是1正视图俯视图左视图45.一个几何体的三视图如右图所示(单位:),则该几何体的体积为__________46.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则球的表面积是_____.47.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为的正三角形,其俯视图轮廓为正方形,则其体积是_________.48. 某几何体的三视图如图所示,则它的体积是___________俯视图m 3m 249.设某几何体的三视图如图所示,则该几何体表面积是50.一个几何体的三视图如右图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为.三视图练习题(一)参考答案1.B【解析】此几何体是一个组合体,下面是一个正四棱柱上面是一个四棱锥.其体积为166********V =⨯⨯+⨯⨯⨯=.2.D【解析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆; 三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。
三视图练习题含答案(K12教育文档)
三视图练习题含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三视图练习题含答案(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三视图练习题含答案(word版可编辑修改)的全部内容。
23正视图侧视图2俯视图2第3题三视图练习题1.某几何体的三视图如图所示,则它的体积是( ) A 。
283π-B 。
83π- C.π28- D 。
23π2.某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32B 。
16+162 C.48 D 。
16322+3。
如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为( )A .43B .4C .23D .24。
如图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+ 5。
一个空间几何体的三视图如图所示,则该几何体的表面积为( )A 。
48 B.32+817 C.48+817 D.806.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A 。
35233cm B.3203 3cmC 。
22433cm D.1603 3cm3 32正视图侧视图第1题第2题7.若某空间几何体的三视图如图所示,则该几何体的体积是( )A 。
2B.1C.23D 。
138。
某几何体的三视图如图所示,则该几何体的体积为( )A 。
π816+B 。
π88+ C. π1616+ D. π168+ 9. 某四棱台的三视图如图所示,则该四棱台的体积是( ) A.4 B 。
三视图习题及答案
三视图练习
1.根据如图所示的组合体,在下列选项中选出正确的的左视图()
答案:B
2.如图所示为某组合体的三视图,下列主视方向(箭头方向)中与三视图对应的是
答案:A
6. [2018台州模拟]如图所示是一个模型的轴测图,其正确的三视图是()
答案:A
7.[2018浙江联考]如图所示是一个模型的轴测图,其正确的三视图是()
答案:A
8.[2018嘉兴模拟]图a是某零件的立体图,其主视图与俯视图如图b所示。
与之对应的左视图是()
答案:A
9.如图所示是某模型的三视图,下列模型中与其对应的是()
答案:D
10.[2018宁波模拟]如图所示为衣柜中支撑和固定挂衣杆的法兰座,通过自攻螺钉与木质衣柜连接,以下零件视图中,能实现法兰座功能的视图是()
答案:C
11.[2017嘉兴模拟]如图所示的结构,与构件1连接的结构正确的是()
答案:D
12.[2017.11浙江]如图所示是某形体的轴测图、主视图和俯视图,正确的左视图是()
答案:C
3. 请补全三视图中所缺的两条图线。
答案:
4. 请补全三视图中所缺的3条图线。
5. 请补全三视图中所缺的三条图线。
三视图习题50道(含答案)
word 格式三视图练习题则该几何体的体积是()(D)()(D ) 280第3题(单位cm ) 16033(D) 所得几何体的正则该几何体的俯视图为()1 3第5题(A) 2(主)视图与侧(左)视图分别如右图所示(B ) 1(C ) 292第1题(B ) 3603、若某几何体的三视图 如图所示,则此几何体的体积是 1、若某空间几何体的三视图如图所示—cm 34、一个长方体去掉一个小长方体 2、一个几何体的三视图如图,该几何体的表面积是(B ) 320cm 3“,f=L23(A ) 352cm 3 33r — 1111I ___J第2题1'1-T P5、 若一个底面是正三角形的三棱柱的正视图如图所示,则其侧.面积等于(A . . 3B . 2C . 2 3D . 66、 图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h=7、 一个几何体的三视图如图所示 ,则这个几何体的体积为 _____________AA // BB // CC , CC 丄平面 ABC3且3 AA = 3 BB = CC =AB,则多面体△ ABC - ABC 的正视图(也称主视图)是()8、如图,网格纸的小正方形的边长是1 ,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为9、如图1 , △ ABC 为正三角形,)S 2a.俯视图正(主)视图侧(左)视图A. 9 nB. 10 nC. 11 n D . 12 n10、一空间几何体的三视图如图所示,则该几何体的体积为().A.2 2.3B. 4 2 . 3侧(左)视图C. 2D. 4第11题第10题11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c m2)为(A) 48+12 . 2 (B) 48+24 . 2 ( C) 36+12 2 (D)36+24 213、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是cm3第12题正视图侧视图俯视图15题14、设某几何体的三视图如上图所示。
三视图习题(含答案)较难
几何体的三视图练习题1309131、若某空间几何体的三视图如图所示,则该几何体的体积是 ( )(A )2(B )1(C )23(D )132、一个几何体的三视图如图,该几何体的表面积是 ( ) (A )372 (B )360 (C )292 (D )2803、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 (A )3523cm 3 (B )3203cm 3 (C )2243cm 3 (D )1603cm 34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为: ( )5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( ) AB .2 C..66、图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.第2题第5题9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,的体积为().A.2π+B. 4π+C.2π+ D. 4π+11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ( ) (A ) (B ) (C ) (D ) 13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .第7题侧(左)视图正(主)视俯视图俯视图 正(主)视图 侧(左)视图第14题14、设某几何体的三视图如上图所示。
高三专项训练:三视图练习题
高三专项训练:三视图练习题(一)(带答案)一、选择题1.如图是某几何体的三视图,则此几何体的体积是( )A .36B .108C .72D .1802.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A 、球B 、三棱锥C 、正方体D 、圆柱3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A 、9πB 、10πC 、11πD 、12π4.有一个几何体的三视图及其尺寸如图(单位cm ),则该几何体的表面积及体积为( )A.3212,24cm cm ππB. 3212,15cm cm ππC. 3236,24cm cm ππD.以上都不正确5.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.A .23B .22C .5D .36.一空间几何体的三视图如图所示,则该几何体的体积为.A. 1B. 3 C 6 D. 2[7. 若某空间几何体的三视图如图所示,则该几何体的体积是A .13 B .23C .1D .28.右图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+ D.9182π+9.已知一个几何体的三视图如图所示,则该几何体外接球的表面积为( )332正视图俯视图A .43πB . 163πC .1912πD . 193π 10.某几何体的正视图如图所示,则该几何体的俯视图不可能的是11.已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )cm 3.A .π+8B .328π+C .π+12D .3212π+12.已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则侧视图主视俯视22 312第8题图2俯视图 332 1侧视图 正视图1 1 1其左视图的面积是( ) (A )243cm (B )223cm (C )28cm (D )24cm13.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .6πB .7πC .8πD .9π14.如右图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 ( )A .π3B .π2C .π23 D .π4 15.如图是一个几何体的三视图,若它的体积是33,则图中正视图所标a=( )A .1B 3C 3D .316.已知某几何体的三视图如图所示(单位:cm ),其中正视图、侧视图都是等腰直角三角形,则这个几何体的体积是( )A .338cmB .3316cm C .33216cm D . 3332cm17.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π12B .π34C .π3D .π31218.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.13 B. 23C. 1D. 2 俯视图侧视图正视图22119.某物体是空心的几何体,其三视图均为右图,则其体积为( )A 、8B 、43π C 、483π+ D 、483π-正视图 侧视图俯视图 正视第9题22 4 2侧视图 22俯视20.如图,水平放置的三棱柱ABC-A 1B 1C 1中,侧棱AA 1⊥平面A 1B 1C 1,其正视图是边长为a 的正方形.俯视图是边长为a 的正三角形,则该三棱柱的侧视图的面积为A .a 2B .12a 2C .32a 2 D .3a 221.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π22.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .12πB .π34C .3πD .π312. 23.如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( )A. 6+3B. 24+3C. 24+23D. 32正视图 侧视图 俯视图 AC A 11正视图 侧视图俯视图24.图1是设某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+ C.9122π+ D.9182π+ 、25.已知某几何体的三视图如图所示,根据图中标注的尺寸(单位cm )可得该几何体的体积是( )A .313cmB .323cm C .343cm D .383cm26.小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是A. 长方形B. 圆柱C. 立方体D. 圆锥27.一个几何体的三视图如图所示,则这个几何体的体积为( )A 32B .12C .32D 312+ 正视图侧视图俯视图 332正视图俯视图图128.一个空间几何体的三视图如图(1)所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积和表面积分别为 ( )A 、64,48+B 、32,48+C 、643,32+ D 、332,48+29.若某多面体的三视图(单位: cm )如图所示,则此多面体的体积是 ( )A .21cm 3B .32cm 3C .65cm 3 D .87cm 3 30.一个空间几何体的正视图、侧视图均是长为2、高为3的矩形,俯视图是直径为2的圆(如右图),则这个几何体的表面积为正视侧视俯视正视图俯视图图(1)侧(左)视图 11111A .12π+B .7πC . π8D .π2031.(一空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+C. 2323π+D. 2343π+ 32.已知几何体其三视图(如图),若图中圆半径为1, 等腰三角形腰为3,则该几何体表面积为 ( )A .6πB .5πC .4πD .3π33.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为( )A .2,23B .22,2 D .2,434.如图,有一个几何体的正视图与侧视图都是底为6cm ,腰为5cm 的等腰三角形,俯视图是直径为6cm 的圆,则该几何体的体积为 ( )A .12πcm 3B .24πc m 3C .36πcm 3D .48πcm 3正视图 2 32 左视图俯视图正视图 侧视图俯视35.一个多面体的三视图分别是正方形、等腰三角形和矩形, 其尺寸如图,则该多面体的体积为(A )348cm (B )324cm(C )332cm (D )328cm36. 如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为 ( )A .4B .3C .32D .237.某四面体的三视图如下图所示,则该四面体的四个面中,直角三角形的面积和是_______.38.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.二、填空题3主视图 俯视图 侧视图39.如图所示是一个几何体的三视图(单位:cm ),主视图和左视图是底边长为4cm ,腰长为22的等腰三角形,俯视图是边长为4的正方形,则这个几何体的表面积是-__________40.某几何体的三视图如图所示,则该几何体的体积的最大值为 .41.一正多面体其三视图如图所示,该正多面体的体积为___________.42.若某几何体的三视图(单位:cm )如右图所示,则该几何体的体积为 cm 2.31正视图俯视图左视图主视图 左视图俯视图43.已知某几何体的三视图如图所示,其中侧视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD是直角梯形,则此几何体的体积为;44.某四面体的三视图如上图所示,该四面体四个面的面积中最大的是45.一个几何体的三视图如右图所示(单位:m),则该几何体的体积为__________3m 46.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则球的表面积是_____.47.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是_________.主视图左视图俯视图48.某几何体的三视图如图所示,则它的体积是___________49.设某几何体的三视图如图所示,则该几何体表面积是50.一个几何体的三视图如右图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为.三视图练习题(一)参考答案1.B【解析】此几何体是一个组合体,下面是一个正四棱柱上面是一个四棱锥.其体积为166********V =⨯⨯+⨯⨯⨯=.2.D【解析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆; 三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。
三视图习题50道(含答案)
三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是()(A)2(B)1(C)23(D)132、一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360 (C)292 (D)2803、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为:()5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )AB.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。
8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+B. 4π+C. 2π+D. 4π11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .C .D .9π10π11π12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ()(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。
(完整word版)三视图练习 (2)
三视图练习1.一个几何体的三视图如右图所示,它的正视图和侧视图均为半圆,俯视图为圆,则这个空间几何体的体积是( ) A .32π B .34π C .π4 D .π32.有一个几何体的三视图及其尺寸如下图(单位:cm),则该几何体的表面积为( )A .12πcm 2B .15πcm 2C .24πcm 2D .36πcm 23.某几何体的三视图如图所示,根据图中标出的数据.可得这个几何体的表面积为( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.124.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( ). (A )38 (B )34(C )34 (D)325.一个简单几何体的三视图如图所示,其正视图和俯视图均为正三角形,侧视图为腰长是2的等腰直角三角形则该几何体的体积为( )A .B .1C .D .36.某几何体的三视图如图所示(单位:cm ),则该几何体的侧面PAB 的面积是( ) A .7B .2C .1D .37.说出下列三视图(依次为主视图、左视图、俯视图)表示的几何体是( )A .六棱柱B .六棱锥C .六棱台D .六边形8.一个空间几何体的三视图如图所示,则该几何体的体积为( )A .56πcm 3 B .3πcm 3 B .C .32πcm 3 D .37πcm 3 9.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) (A)9π (B )10π (C)11π (D)12π10.用若干单位正方体搭一个几何体,使它的正视图和俯视图如图所示,则它的体积的最大值和最小值分别为( )A. 9,14B.7,13C. 8,14D. 9,13 11.已知某几何体的三视图如上图所示,其中正视图,侧视图均是由三角形与半圆构成,视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( ) (A)2132π+(B)4136π+ (C)132+(D) 166+12.一个几何体的三视图如图所示,则该几何体的体积为( )(A)92 (B)72(C)3 (D)4 13.右图是一个几何体的三视图,根据图中数据,可得该几何体的体积是( )(A) 9π (B)1333π- (C )103π (D)133π 14.一个几何体的三视图如图所示,则该几何体的体积是( ) (A )64 (B )72 (C )80(D )11215.一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .11216.已知一个几何体的三视图如下图所示(单位:cm),其中正视图是直角梯形,侧视图和俯视图都是矩形,则这个几何体的体积是________cm 3.17.如图为一个几何体的三视图,其中俯视为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为_______。
三视图(含答案)
立体几何三视图1. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是()A. 17πB. 18πC. 20πD. 28π2. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A. 20πB. 24πC. 28πD. 32π3. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A. 90πB. 63πC. 42πD. 36π4. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为()A. 13+23πB. 13+ 23π C. 13+ 26π D. 1+ 26π5.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A. 32B. 23C. 22D. 26.某几何体的三视图如图所示,则该几何体的体积是()A. πB. 2πC. 4πD. 8π7.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8 cm3B. 12 cm3C. 32cm33D. 40cm338.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的体积为()A. 13B. 16C. 83D. 439.如图为某几何体的三视图,根据三视图可以判断这个几何体为()A. 圆锥B. 三棱锥C. 三棱柱D. 三棱台10.堑堵,我国古代数学名词,其三视图如图所示.《九章算术》中有如下问题:“今有堑堵,下广二丈,袤一十八丈六尺,高二丈五尺,问积几何?”意思是说:“今有堑堵,底面宽为2丈,长为18丈6尺,高为2丈5尺,问它的体积是多少?”(注:一丈=十尺).答案是()A. 25500立方尺B. 34300立方尺C. 46500立方尺D. 48100立方尺11.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()cm3A. πB. 2πC. 3πD. 4π12.某棱柱的三视图如图示,则该棱柱的体积为()A. 3B. 4C. 6D. 1213. 某几何体的三视图如图所示,则它的体积是( )A. 8−2π3B. 64−16π3C. 8−π3D. 64−12π3答案和解析1.【答案】A【解析】【分析】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉其中后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选A.2.【答案】C【解析】解:由三视图知,空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,∴在轴截面中圆锥的母线长是=4,∴圆锥的侧面积是π×2×4=8π,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,∴圆柱表现出来的表面积是π×22+2π×2×4=20π∴空间组合体的表面积是28π,故选:C.空间几何体是一个组合体,上面是一个圆锥,圆锥的底面直径是4,圆锥的高是2,在轴截面中圆锥的母线长使用勾股定理做出的,写出表面积,下面是一个圆柱,圆柱的底面直径是4,圆柱的高是4,做出圆柱的表面积,注意不包括重合的平面.本题考查由三视图求表面积,本题的图形结构比较简单,易错点可能是两个几何体重叠的部分忘记去掉,求表面积就有这样的弊端.3.【答案】B【解析】【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.【解答】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10-•π•32×6=63π,故选:B.4.【答案】C【解析】【分析】本题考查的知识点是由三视图求体积,根据已知的三视图,判断几何体的形状是解答的关键.由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得.故,故半球的体积为:,棱锥的底面面积为:1,高为1,故棱锥的体积,故组合体的体积为:.故选C.5.【答案】B【解析】解:由三视图可得直观图,再四棱锥P-ABCD中,最长的棱为PA,即PA===2,故选:B.根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.本题考查了三视图的问题,关键画出物体的直观图,属于基础题.6.【答案】A【解析】解:由三视图可知,该几何体为一圆柱通过轴截面的一半圆柱,底面半径直径为2,高为2.体积V==π.故选:A.由三视图可知,该几何体为底面半径直径为2,高为2的圆柱的一半,求出体积即可.本题的考点是由三视图求几何体的体积,需要由三视图判断空间几何体的结构特征,并根据三视图求出每个几何体中几何元素的长度,代入对应的体积公式分别求解,考查了空间想象能力.7.【答案】C【解析】解:由已知中的三视图可得,该几何体是一个正方体与一个正四棱锥的组合体,且正方体的棱长为2,正四棱锥的高为2;所以该组合体的体积为V=V 正方体+V 正四棱锥=23+×22×2=cm 3.故选:C .根据已知中的三视图可分析出该几何体是一个正方体与一个正四棱锥的组合体,结合图中数据,即可求出体积.本题考查了由三视图求体积的应用问题,是基础题目.8.【答案】D【解析】 解:由三视图和题意知,三棱锥的底面是等腰直角三角形,底边和底边上的高分别为、,三棱锥的高是2,∴几何体的体积V==,故选:D .由三视图和题意知,三棱锥的底面边长和三棱锥的高,由锥体的体积公式求出几何体的体积.本题考查由三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.9.【答案】C【解析】解:该几何体的正视图为矩形,俯视图亦为矩形,侧视图是一个三角形,则可得出该几何体为三棱柱(横放着的)如图.故选C .如图:该几何体的正视图与俯视图均为矩形,侧视图为三角形,易得出该几何体的形状.本题考查简单几何体的三视图,考查视图能力,是基础题.10.【答案】C【解析】解:由已知,堑堵形状为棱柱,底面是直角三角形,其体积为立方尺.故选C.由三视图得到几何体为横放的三棱柱,底面为直角三角形,利用棱柱的体积公式可求.本题主要考查空间几何体的体积.关键是正确还原几何体.11.【答案】B【解析】解:由三视图可知:此几何体为圆锥的一半,圆锥的底面半径为2,高为3,圆锥的体积为V圆锥=.此几何体的体积为.故选:B.由三视图可知:此几何体为圆锥的一半,即可得出.本题考查了由三视图恢复原几何体的体积计算,属于基础题.12.【答案】C【解析】解:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S=×(2+4)×2=6,棱柱的高为1,故棱柱的体积V=6.故选:C.由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,进而可得答案.本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.13.【答案】B【解析】解:由题意,几何体的直观图是正方体挖去一个圆锥,体积为=64-,故选B.由题意,几何体的直观图是正方体挖去一个圆锥,即可求出体积.本题考查的知识点是由三视图求体积,其中由已知中的三视图判断出几何体的形状,及棱长,高等几何量是解答的关键.。
(完整版)高中数学3三视图课后习题(带答案)
三视图课后习题1. (陕西理 5)某几何体的三视图如下图,则它的体积是2288A .3B .3C .82D .32. (全国新课标理 6)。
在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图能够为3. (湖南理 3)设图 1 是某几何体的三视图,则该几何体的体积为991218A .2B .23C .9 42D . 36 1823 正视图侧视图俯视图图 14. (广东理 7)如图 1- 3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A.6 3B.9 3C.12 3D.18 3 5.(北京理 7)某四周体的三视图如下图,该四周体四个面的面积中,最大的是A.8B.62C.10D.826.(安徽理 6)一个空间几何体的三视图如下图,则该几何体的表面积为(A) 48(B) 32+8(C) 48+8(D) 807. (辽宁理 15)一个正三棱柱的侧棱长和底面边长相等,体积为2 3,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是.8.(天津理 10)一个几何体的三视图如右图所示(单位:m),则该几何体的体积为__________ m39.( 2010 湖南文数) 13. 图 2 中的三个直角三角形是一个体积为2的几何体的三视图,则 h=cm 20cm10.(2010 浙江理数)( 12)若某几何体的三视图(单位:cm)如下图,则此几何体的体积是___________ cm3 .11.( 2010 辽宁文数)( 16)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.12. ( 2010辽宁理数)( 15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.13. ( 2010 天津文数)( 12)一个几何体的三视图如下图,则这个几何体的体积为。
三视图的应用练习题(答案)
①下图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()。
A:3 B:4 C:5 D:6答案:D解析:3,4,5都可以参照俯视图②用若干个小立方体搭成一个几何体,使它从正面看与从左面看都是下面的同一个图,那么最多有多少个小立方体。
答案:13解析:底部最多9个,上面最多4个,所以最多13个。
参照俯视图③在墙角处堆着若干个相同的正方体箱子,问看不见的箱子共有多少个。
答案:35解析:第2层中看不见的箱子有1个。
第3层中看不见的箱子有1+2个。
第4层中看不见的箱子有1+2+3个。
第5层中看不见的箱子有1+2+3+4个。
第6层中看不见的箱子有1+2+3+4+5个。
所以看不见的箱子共有1+3+6+10+15=35个④下图是一个由8个棱长是2厘米的正方体组成的零件,求它的表面积。
答案:136(平方厘米)解析:正视图有6个正方形,左视图有4个正方形(有两个正方形看不见,需要另外加算),俯视图有6个正方形,每一个正方形的面积是4所以它的表面积是((6+4+6)×2+2)×4=136(平方厘米)⑤用若干个小立方体搭成一个几何体,使它从正面看与从左面看都是下面的同一个图,那么最少需要多少块小立方体。
答案:6解析:高的部分至少需要4块,旁边的需要2块即可,例如右图(俯视图)⑥一个由10个同样的正方体组成的零件,已知它的表面积是1000平方厘米,那么它的体积是多少答案:1250(立方厘米)解析:正视图有5个正方形,左视图有8个正方形,俯视图有7个正方形,设每一个正方形的面积是a平方厘米有方程(5+8+7)×2×a=1000解得a=25,即棱长是5,所以体积是5³×10=1250(立方厘米)。
三视图习题50道(含答案)
三视图习题50道(含答案)三视图练习题1、若某空间⼏何体的三视图如图所⽰,则该⼏何体的体积是()(A)2 (B)1 (C)23(D)132、⼀个⼏何体的三视图如图,该⼏何体的表⾯积是()(A)372 (B)360 (C)292 (D)2803、若某⼏何体的三视图(单位:cm)如图所⽰,则此⼏何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、⼀个长⽅体去掉⼀个⼩长⽅体,所得⼏何体的正(主)视图与侧(左)视图分别如右图所⽰,则该⼏何体的俯视图为:()5、若⼀个底⾯是正三⾓形的三棱柱的正视图如图所⽰,则其侧⾯积...等于 ( )A.2 C..66、图2中的三个直⾓三⾓形是⼀个体积为20cm2的⼏何体的三视图,则h= cm第2题第5题7、⼀个⼏何体的三视图如图所⽰,则这个⼏何体的体积为。
8、如图,⽹格纸的⼩正⽅形的边长是1,在其上⽤粗线画出了某多⾯体的三视图,则这个多⾯体最长的⼀条棱的长为______.9、如图1,△ ABC 为正三⾓形,AA '//BB ' //CC ' , CC ' ⊥平⾯ABC 且3AA '= 32BB '=CC '=AB,则多⾯体△ABC -A B C '''的正视图(也称主视图)是()10、⼀空间⼏何体的三视图如图所⽰,则该⼏何体的体积为( ).A.2π+B. 4π+C. 23π+D. 43π+ 11、上图是⼀个⼏何体的三视图,根据图中数据,可得该⼏何体的表⾯积是()A .9πB .10πC .11πD .12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、⼀个棱锥的三视图如图,则该棱锥的全⾯积(单位:c2m)为()(A)(B)(C)(D)13、若某⼏何体的三视图(单位:cm)如图所⽰,则此⼏何体的体积是3cm.14、设某⼏何体的三视图如上图所⽰。
高中三视图试题及答案
高中三视图试题及答案一、选择题(每题2分,共10分)1. 在三视图中,主视图、左视图和俯视图分别表示物体的哪个面?A. 正面、侧面、上面B. 侧面、正面、上面C. 正面、上面、侧面D. 上面、侧面、正面2. 以下哪个选项不是三视图的组成部分?A. 主视图B. 左视图C. 右视图D. 俯视图3. 根据三视图的规则,物体的长、宽、高分别在哪个视图中表示?A. 主视图、俯视图、左视图B. 俯视图、主视图、左视图C. 左视图、主视图、俯视图D. 主视图、左视图、俯视图4. 如果一个物体的主视图和俯视图都是圆形,那么这个物体可能是:A. 圆柱体B. 圆锥体C. 球体D. 立方体5. 在绘制三视图时,如果一个物体的左视图和主视图相同,那么这个物体可能是:A. 正方体B. 长方体C. 圆柱体D. 圆锥体二、填空题(每空1分,共10分)6. 三视图包括______、______和______。
7. 物体的三视图应该按照______、______、______的顺序排列。
8. 在三视图中,______视图可以反映物体的高度和长度。
9. 如果一个物体的主视图是一个矩形,左视图是一个圆形,那么这个物体可能是______。
10. 在绘制三视图时,需要考虑物体的______、______和______。
三、简答题(每题5分,共10分)11. 简述三视图的定义及其重要性。
12. 描述如何根据一个物体的主视图和俯视图推断其形状。
四、绘图题(每题5分,共10分)13. 根据以下描述绘制一个物体的三视图:- 主视图:一个正方形- 左视图:一个矩形,宽度为正方形的边长的一半- 俯视图:一个圆形,直径等于正方形的边长14. 根据以下三视图,描述物体的形状:- 主视图:一个圆形- 左视图:一个矩形- 俯视图:一个圆形答案:一、选择题1. A2. C3. D4. C5. A二、填空题6. 主视图、左视图、俯视图7. 主视图、左视图、俯视图8. 左视图9. 圆柱体10. 长度、宽度、高度三、简答题11. 三视图是工程图学中用来描述物体形状的三个基本视图,包括主视图、左视图和俯视图。
三视图习题(含答案)
几何体的三视图练习题2、一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360 (C)292 (D)2804、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为:()5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( ) A.4 B.2 C.5 D.66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm7、一个几何体的三视图如图所示,则这个几何体的体积为。
第2题第5题第6题8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) A .9πB .10πC .11πD .12π14、设某几何体的三视图如上图所示。
则该几何体的体积为 3m15、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A.34000cm 3 B.38000cm 3C.32000cm D.34000cm20、如图所示,一个空间几何体的正视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,第7题 第8题俯视图 正(主)视图 侧(左)视图 2 3 2 2 第11题 第14题 2020正视图 20侧视图10 10 20俯视图 第15题那么这个几何体的表面积为( )A .2πB .52π C .4π D .5π18、下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A.9πB.10πC.11π D .12π21、一个几何体的三视图及其尺寸(单位:cm)如图所示,则该几何体的侧面积为_ ______cm 2.题 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15第18题 俯视图 8 5 5 8 侧(左)视图 8 5 5 第21题。
三视图练习题
三视图练习题在我们学习几何的过程中,三视图可是一个非常重要的知识点。
它就像是一个神奇的魔法,能够让我们通过不同角度的观察,了解一个物体的形状和结构。
今天,咱们就一起来做做三视图的练习题,好好地练练手!先来看看什么是三视图。
三视图,简单来说,就是从三个不同的方向去观察一个物体,然后把看到的形状分别画出来。
这三个方向通常是正视图(也叫主视图)、侧视图(分为左视图和右视图)和俯视图。
比如说,有一个长方体,它的长、宽、高分别是 5 厘米、3 厘米、2 厘米。
那正视图看到的就是一个长 5 厘米、高 2 厘米的长方形;左视图呢,是一个宽 3 厘米、高 2 厘米的长方形;俯视图则是一个长 5 厘米、宽 3 厘米的长方形。
咱们来做一道练习题。
有一个圆柱体,底面半径是 2 厘米,高是 5厘米。
那它的正视图是什么样的?答案就是一个长 4 厘米(因为直径是 4 厘米)、高 5 厘米的长方形。
俯视图呢,是一个半径为 2 厘米的圆。
左视图和正视图是一样的。
再看这道题,有一个圆锥,底面半径 3 厘米,高 4 厘米。
正视图是一个底边为 6 厘米(直径),高 4 厘米的等腰三角形。
俯视图是一个半径为 3 厘米的圆。
左视图也是一个底边为 6 厘米,高 4 厘米的等腰三角形。
做三视图练习题的时候,有几个要点要注意。
首先,一定要看清楚题目中给出的物体的尺寸和形状,别粗心大意。
其次,要想象自己站在不同的角度去看这个物体,在脑海里形成清晰的图像。
还有,画图的时候,线条要画直,比例要正确,尺寸标注要清晰。
下面咱们来做几道稍微有点难度的练习题。
有一个组合体,是由一个长方体和一个圆柱体组成的。
长方体的长、宽、高分别是 5 厘米、4 厘米、3 厘米,圆柱体的底面直径是 2 厘米,高是 4 厘米,放在长方体的上面,并且圆柱体的底面圆心和长方体上面的中心重合。
那这道题的正视图怎么画呢?先画一个长 5 厘米、高 3 厘米的长方形,这是长方体部分。
然后在长方形的上面中间位置,画一个直径 2厘米、高 4 厘米的长方形,这是圆柱体部分。
(word完整版)三视图中高难度的练习及答案
绝密★启用前2018年11月02日高中数学的高中数学组卷立体几何三视图练习中难度考试范围:xxx;考试时间:100分钟;命题人:xxx题号一总分得分注意事项:1 •答题前填写好自己的姓名、班级、考号等信息2 •请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分•选择题(共15小题)1•一个几何体的三视图如图所示,贝U该几何体的体积为(2•某几何体的三视图如图所示,贝U该几何体的体积为(om也B.116 C. 2 D.6A. B. 16 C. 8 D. 243.已知几何体的三视图如图所示,贝U该几何体是(A.体积为2的三棱锥B.体积为2的四棱锥C.体积为6的三棱锥D.体积为6的四棱锥4.如图,网格纸上小正方形的边长为2,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=( )A. 40 nB. 41 nC. 42 nD. 48 n5.—个几何体的三视图如图所示,贝U该几何体的体积为(A. 26 .某几何体的三视图如图所示,其中俯视图为扇形,贝U该几何体的体积为题答内线订装在要不请O OABCD- A 1B 1C 1D 1 中,点 M , N , 0, P, R , S 分别为棱 AB, D 1A 1, A 1A 的中点,则六边形 MNOPRS 在正方体各个面上9.已知某几何体的三视图如图所示,贝U 该几何体的体积是( z :J16兀 B. 4吒 c 唇 D. ieK 3 3 g 9 A . 6 6 N B. C. 0 ni Nd D . [ / A . 8.某几何体的三视图如图所示,其中俯视图和左视图中正方形的边长均为 3, 主视图和俯视图中三角形均为等腰直角三角形,则该几何体的体积为 \ 0 A . 16 ( ) B •普 7.如图,在正方体 BC, CC , C i D i , 的投影可能为( C. 8 D . 12O O10.某四棱锥的三视图如图所示(单位: cm ),则该四棱锥的体积(单位:cm 3 )是(11.某几何体的三视图如图所示,贝U 该几何体的侧面积为(A. ; :一B. ; 'I ; . c m+L D . I . ■:13.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图, 则该几何体的体积为( )A . 48 B. 36 C . 24 D . 16A .B ・一C . 4D . 8A . 4+2 :: B. 2+4.: C. 2+2 f 12.如图是一个几何体的三视图,图中每个小正方形边长均为 D . 4+4.:丄,则该几何体的表面积是( i L > X J h h i h i L 」 k1 k Hl 」LF ----------- 亠 / / \ --------/ / \IF亠/ / \ F 1 / / \IF■M■-------- 亠 、■■ ■ 、 ■■------- ■ W ---------■ i F 1r 1 r 1 r i r i f 1 ! 1 F 、 F 1 ■Fr题 答 内 线 订 装 在 要 不 请fl (£j tUE14.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为((单位:cm)如图所示,且此多面体的体积V=6cm3,A.-B.…33C-1- D.4C. 41 nD. 31 nB. 3C. 6D. 415.若某多面体的三视图请点击修改第第U卷(非选择题)n卷的文字说明题答内线订装在要不请O OO O 线线O O 订号考订O 级班O 名姓装校学装O O 外内O O2018年11月02日高中数学的高中数学组卷参考答案与试题解析.选择题(共15小题)1•一个几何体的三视图如图所示,贝U 该几何体的体积为(【分析】画出几何体的直观图,根据柱体和椎体的体积公式计算即可.【解答】解:由三视图知几何体的直观图如图所示:个三棱柱去掉一个三棱锥的几何体,v=v 三棱柱—V三棱锥丄一 1*一一【点评】本题考查了由三视图求几何体的体积,解答此类问题关键是判断几何体的形状及数据所对应的几何量.2.某几何体的三视B •—C. 2 D •—图如图所示,贝U该几何体的体积为()】再C. 8D. 24【分析】根据三视图知几何体是三棱锥为棱长为4, 2 2「泊勺长方体的一部分,画出直观图,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.【解答】解:根据三视图知几何体是:三棱锥D- ABC,如图所示,C分别是长方体的底面棱长的中点,三棱锥为棱长为4,2. 2.泊勺长方体的一部分,所以几何体的体积V二:二「- . - -:=8【点评】本题考查由三视图求几何体的条件,在三视图与直观图转化过程中,以一个长方体为载体是很好的方式,使得作图更直观,考查空间想象能力.3.已知几何体的三视图如图所示,贝U该几何体是()【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积即可. 【解答】解:几何体的直观图如图:由题意可得几何体的底面积为:亠-■ =3,2 体积为:V 吉xsx 2=2. 故选:B.【点评】本题考查三视图判断几何体的形状,以及几何体的体积的求法,考 查计算能力.4. 如图,网格纸上小正方形的边长为2,粗实线画出的是某多面体的三视图, 则该多面体的外接球的表面积S=(【分析】判断三视图复原的几何体的形状,通过已知的三视图的数据,求出 该多面体的外接球的表面积.【解答】解析:该多面体如图示,外接球的半径为 AG,A .体积为2的三棱锥 C.体积为6的三棱锥B. 体积为2的四棱锥 D.体积为6的四棱锥B. 41 nC. 42 n D . 48 nHA ABC 外接圆的半径,HG=2 HA 丄,2 故R =AG=4+H *=^^,•••该多面体的外接球的表面积 S=4冗R =41 n 【点评】本题考查多面体的外接球的表面积的求法, 考查空间几何体三视图、 多面体的外接球等基础知识,考查空间想象能力、运算求解能力,考查函 数与方程思想,是中档题.5•—个几何体的三视图如图所示,贝U 该几何体的体积为(【分析】由已知的三视图可得:该几何体是一个以正视图为底面的四棱锥, 计算出底面面积和高,代入锥体体积公式,可得答案.【解答】解:由已知的三视图可得:该几何体是一个以正视图为底面的四棱 锥, 棱锥的底面面积S=2X 2=4, 棱锥的高h=1故棱锥的体积V 丄“.二, 故选:D .A . 2B.二 C . 4故选:B .【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是 得到该几何体的形状.6•某几何体的三视图如图所示,其中俯视图为扇形,贝U 该几何体的体积为A.冒B. 4耳C ,M^D .冒33g9【分析】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的 数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底 面圆的半径为2,把数据代入圆锥的体积公式计算.【解答】解:由三视图知几何体是圆锥的一部分,由俯视图与左视图可得:底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,故选:D.•••几何体的体积v=1X 丄 X nX 22x 4=—冗・( )【点评】本题考查了由三视图求几何体的体积,解答的关键是判断几何体的 形状及三视图的数据所对应的几何量.7•如图,在正方体ABC — A i B i C i D i 中,点M , N , O , P , R , S 分别为棱AB,BC, CC , C 1D 1, D 1A 1, A i A 的中点,则六边形 MNOPRS 在正方体各个面上 的投影可能为()【分析】根据题意分别画出六边形 MNOPRS 六个面上的投影即可. 【解答】解:正方体ABCD- A i B i C i D i 中,六边形MNOPRS 前后两个面上的投C .影如图i 所示;在左右两个面上的投影如图在上下两个面上的投影如图3所示; 圜 故选:D.【点评】本题考查了空间几何体三视图的应用问题,是基础题.8.某几何体的三视图如图所示,其中俯视图和左视图中正方形的边长均为 3,主视图和俯视图中三角形均为等腰直角三角形,则该几何体的体积为【分析】画出几何体的直观图,利用三视图的数据求解几何体的体积即可. 【解答】解:由题意可知几何体的直观图如图:右侧是放倒的三棱柱,左侧 是四棱锥,俯视图和左视图中正方形的边长均为 3,主视图和俯视图中三角形均为等腰A . 16( )B 」C. 8 D . 12直角三角形,则该几何体的体积为:=--2 yX3X3X X3X 3X 3故选:B.【点评】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键,考查计算能力.9 •已知某几何体的三视图如图所示,贝U该几何体的体积是()A. 48B. 36C. 24D. 16【分析】由已知中的三视图,判断该几何体是一个四棱锥,四棱锥的底面是一个以4和3为边长的长方形,棱柱的高为4,分别求出棱柱和棱锥的体积,进而可得答案.【解答】解:由已知中的该几何体是一个四棱锥的几何体,四棱锥的底面为边长为4和3的长方形,高为4,故V四棱锥—X 4X 3X 4=16.3【点评】本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状,并找出棱长、高等关键的数据是解答本题的关键.10.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积(单位:cm3)是(【分析】首先还原几何体,根据图中数据计算几何体体积. 【解答】解:由三视图得到几何体如图:正方体的棱长为 2, 该四棱锥P -ABCD 的体积(单位:cm 3)是 【点评】本题考查了几何体的三视图;要求对应的几何体的体积或者表面积, 关键是正确还原几何体.11.某几何体的三视图如图所示,贝U 该几何体的侧面积为(【分析】首先还原几何体,根据图中数据计算几何体的侧面积.【解答】解:由三视图得到几何体如图:正方体的棱长为 2, 该四棱锥P -ABCD 的侧面积(单位:cm 2)是 yX2X2+-^X2X "心血号 XgX?血=4+4迈; 故选:D.A-1C. 4 D .8A. 4+2 :■:B. 2+4 ■:C. 2+2 :■:D. 4+4*体积为苧2X 2XBa «■(卸個C【点评】本题考查了几何体的三视图;要求对应的几何体的体积或者表面积, 关键是正确还原几何体.12 •如图是一个几何体的三视图,图中每个小正方形边长均为丄,则该几何【分析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可. 【解答】解:几何体的三视图可知几何体的直观图如图:卩从底面ABC,P0=2, AB=BC=2 ABCD是正方形,AB丄AC, 则PB=PA= PCD的高为:2 ■:.则该几何体的表面积是-X2X2+2-b2X2-H|-xV5X故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.32B.… D.333【分析】几何体为从正方体中切出来的一个三棱锥.作出直观图代入数值计算即可.【解答】解:由三视图可知几何体为边长为6的正方体中切出的三棱锥P-ABC作出直观图如图所示:正方体的棱长为4, 其中A, B, P分别是正方体棱的中点,则棱锥的底面积S丄XQX 2=42棱锥的高h=4所以棱锥的体积V丄:-•.一 ^一.3 3故选:B.13.如图,网格纸上小正方形的边长为则该几何体的体积为()1,粗线画出的是某几何体的三视图,【点评】本题考查了不规则放置的几何体的三视图和体积计算,以正方体为模型作出直观图是解题关键.14.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为()A.竽B•警C. 41 n D. 31 n【分析】根据三视图得出空间几何体是镶嵌在正方体中的四棱锥0 - ABCD, 正方体的棱长为4, A, D为棱的中点,利用球的几何性质求解即可.【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥0- ABCD正方体的棱长为4, A,D为棱的中点,根据几何体可以判断:球心应该在过A,D的平行于底面的中截面上,设球心到截面BCO的距离为x,则到AD的距离为:4-x,••• R2=x2+ (2:-:)2, F2=22+ (4-x)2,解得出:x丄,R= 丁 ,该多面体外接球的表面积为:4nR=41n故选:C.【点评】本题综合考查了空间几何体的性质,学生的空间思维能力,构造思 想,关键是镶嵌在常见的几何体中解决.15. 若某多面体的三视图(单位:cm )如图所示,且此多面体的体积 V=6cm 3, 则 a=() 【分析】由三视图可知,几何体为三棱锥,根据公式求解即可.【解答】解:由三视图可知,几何体为三棱锥,高为 2,底边长为a ,底面 高为2, 顶点在底面上的射影是等腰三角形的顶点, 所以 V 丄x a x^x 2X 2=6,解得 a=9.3 2故选:A .【点评】本题考查学生的空间想象能力,由三视图求体积,是基础题.A . 9 B. 3 C. 6 D . 4㈣规图。
三视图习题及答案
三视图练习
1.根据如图所示的组合体,在下列选项中选出正确的的左视图()
答案:B
2.如图所示为某组合体的三视图,下列主视方向(箭头方向)中与三视图对应的是
答案:A
6. [2018台州模拟]如图所示是一个模型的轴测图,其正确的三视图是()
答案:A
7.[2018浙江联考]如图所示是一个模型的轴测图,其正确的三视图是()
答案:A
8.[2018嘉兴模拟]图a是某零件的立体图,其主视图与俯视图如图b所示。
与之对应的左视图是()
答案:A
9.如图所示是某模型的三视图,下列模型中与其对应的是()
答案:D
10.[2018宁波模拟]如图所示为衣柜中支撑和固定挂衣杆的法兰座,通过自攻螺钉与木质衣柜连接,以下零件视图中,能实现法兰座功能的视图是()
答案:C
11.[2017嘉兴模拟]如图所示的结构,与构件1连接的结构正确的是()
答案:D
12.[2017.11浙江]如图所示是某形体的轴测图、主视图和俯视图,正确的左视图是()
答案:C
3. 请补全三视图中所缺的两条图线。
答案:
4. 请补全三视图中所缺的3条图线。
5. 请补全三视图中所缺的三条图线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
【分析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.
【解答】解:几何体的三视图可知几何体的直观图如图:PA⊥底面ABC,
PO=2,AB=BC=2,ABCD是正方形,AB⊥AC,
V=V三棱柱﹣V三棱锥= = ,
故选:B.
【点评】本题考查了由三视图求几何体的体积,解答此类问题关键是判断几何体的形状及数据所对应的几何量.
2.某几何体的三视图如图所示,则该几何体的体积为( )
A. B.16C.8D.24
【分析】根据三视图知几何体是三棱锥为棱长为4,2 ,2 的长方体的一部分,画出直观图,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.
1.一个几何体的三视图如图所示,则该几何体的体积为( )
A. B. C.2D.
2.某几何体的三视图如图所示,则该几何体的体积为( )
A. B.16C.8D.24
3.已知几何体的三视图如图所示,则该几何体是( )
A.体积为2的三棱锥B.体积为2的四棱锥
C.体积为6的三棱锥D.体积为6的四棱锥
4.如图,网格纸上小正方形的边长为2,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=( )
【解答】解:由已知中的该几何体是一个四棱锥的几何体,
四棱锥的底面为边长为4和3的长方形,高为4,
故V四棱锥= ×4×3×4=16.
故选:D.
【点评】本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状,并找出棱长、高等关键的数据是解答本题的关键.
10.某四棱锥的三视图如图所示(单位:cm),则该四棱锥的体积(单位:cm3)是( )
俯视图和左视图中正方形的边长均为3,主视图和俯视图中三角形均为等腰直角三角形,
则该几何体的体积为: = .
故选:B.
【点评】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键,考查计算能力.
9.已知某几何体的三视图如图所示,则该几何体的体积是( )
A.48B.36C.24D.16
【分析】由已知中的三视图,判断该几何体是一个四棱锥,四棱锥的底面是一个以4和3为边长的长方形,棱柱的高为4,分别求出棱柱和棱锥的体积,进而可得答案.
则PB=PA= ,△PCD的高为:2 .
则该几何体的表面积是: =6+2 2 .
故选:B.
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
13.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )
A. B. C. D.
【分析】几何体为从正方体中切出来的一个三棱锥.作出直观图代入数值计算即可.
故选:A.
【点评】本题考查学生的空间想象能力,由三视图求体积,是基础题.
绝密★启用前
2018年11月02日高中数学的高中数学组卷
立体几何三视图练习中难度
考试范围:xxx;考试时间:100分钟;命题人:xxx
题号
一
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一.选择题(共15小题)
底面扇形的圆心角为120°,
又由侧视图知几何体的高为4,底面圆的半径为2,
∴几何体的体积V= × ×π×22×4= π.
故选:D.
【点评】本题考查了由三视图求几何体的体积,解答的关键是判断几何体的形状及三视图的数据所对应的几何量.
7.如图,在正方体ABCD﹣A1B1C1D1中,点M,N,O,P,R,S分别为棱AB,BC,CC1,C1D1,D1A1,A1A的中点,则六边形MNOPRS在正方体各个面上的投影可能为( )
15.若某多面体的三视图(单位:cm)如图所示,且此多面体的体积V=6cm3,则a=( )
A.9B.3C.6D.4
【分析】由三视图可知,几何体为三棱锥,根据公式求解即可.
【解答】解:由三视图可知,几何体为三棱锥,高为2,底边长为a,底面高为2,
顶点在底面上的射影是等腰三角形的顶点,
所以V= ×a× ×2×2=6,解得a=9.
【分析】由已知的三视图可得:该几何体是一个以正视图为底面的四棱锥,计算出底面面积和高,代入锥体体积公式,可得答案.
【解答】解:由已知的三视图可得:该几何体是一个以正视图为底面的四棱锥,
棱锥的底面面积S=2×2=4,
棱锥的高h=1
故棱锥的体积V= = ,
故选:D.
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
14.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为( )
A. B. C.41πD.31π
【分析】根据三视图得出空间几何体是镶嵌在正方体中的四棱锥O﹣ABCD,正方体的棱长为4,A,D为棱的中点,利用球的几何性质求解即可.
【解答】解:根据三视图得出:该几何体是镶嵌在正方体中的四棱锥O﹣ABCD,正方体的棱长为4,A,D为棱的中点,
A. B. C. D.
【分析】根据题意分别画出六边形MNOPRS在六个面上的投影即可.
【解答】解:正方体ABCD﹣A1B1C1D1中,六边形MNOPRS前后两个面上的投影如图1所示;
在左右两个面上的投影如图2所示;
在上下两个面上的投影如图3所示;
故选:D.
【点评】本题考查了空间几何体三视图的应用问题,是基础题.
A.40πB.41πC.42πD.48π
5.一个几何体的三视图如图所示,则该几何体的体积为( )
A.2B. C.4D.
6.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )
A. B. C. D.
7.如图,在正方体ABCD﹣A1B1C1D1中,点M,N,O,P,R,S分别为棱AB,BC,CC1,C1D1,D1A1,A1A的中点,则六边形MNOPRS在正方体各个面上的投影可能为( )
请点击修改第Ⅱ卷的文字说明
2018年11月02日高中数学的高中数学组卷
参考答案与试题解析
一.选择题(共15小题)
1.一个几何体的三视图如图所示,则该几何体的体积为( )
A. B. C.2D.
【分析】画出几何பைடு நூலகம்的直观图,根据柱体和椎体的体积公式计算即可.
【解答】解:由三视图知几何体的直观图如图所示:
一个三棱柱去掉一个三棱锥的几何体,
3.已知几何体的三视图如图所示,则该几何体是( )
A.体积为2的三棱锥B.体积为2的四棱锥
C.体积为6的三棱锥D.体积为6的四棱锥
【分析】画出几何体的直观图,利用三视图的数据,求解几何体的体积即可.
【解答】解:几何体的直观图如图:由题意可得几何体的底面积为: =3,体积为:V= .
故选:B.
【点评】本题考查三视图判断几何体的形状,以及几何体的体积的求法,考查计算能力.
A. B. C.4D.8
11.某几何体的三视图如图所示,则该几何体的侧面积为( )
A.4+2 B.2+4 C.2+2 D.4+4
12.如图是一个几何体的三视图,图中每个小正方形边长均为 ,则该几何体的表面积是( )
A. B. C. D.
13.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )
【解答】解:由三视图可知几何体为边长为6的正方体中切出的三棱锥P﹣ABC,作出直观图如图所示:正方体的棱长为4,
其中A,B,P分别是正方体棱的中点,
则棱锥的底面积S= =4
棱锥的高h=4
所以棱锥的体积V= = .
故选:B.
【点评】本题考查了不规则放置的几何体的三视图和体积计算,以正方体为模型作出直观图是解题关键.
A. B. C. D.
14.如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为( )
A. B. C.41πD.31π
15.若某多面体的三视图(单位:cm)如图所示,且此多面体的体积V=6cm3,则a=( )
A.9B.3C.6D.4
第Ⅱ卷(非选择题)
6.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )
A. B. C. D.
【分析】根据三视图判断几何体是圆锥的一部分,再根据俯视图与左视图的数据可求得底面扇形的圆心角为120°,又由侧视图知几何体的高为4,底面圆的半径为2,把数据代入圆锥的体积公式计算.
【解答】解:由三视图知几何体是圆锥的一部分,由俯视图与左视图可得:
故R=AG= = ,
∴该多面体的外接球的表面积S=4πR2=41π.
故选:B.
【点评】本题考查多面体的外接球的表面积的求法,考查空间几何体三视图、多面体的外接球等基础知识,考查空间想象能力、运算求解能力,考查函数与方程思想,是中档题.
5.一个几何体的三视图如图所示,则该几何体的体积为( )
A.2B. C.4D.
4.如图,网格纸上小正方形的边长为2,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=( )
A.40πB.41πC.42πD.48π
【分析】判断三视图复原的几何体的形状,通过已知的三视图的数据,求出该多面体的外接球的表面积.
【解答】解析:该多面体如图示,外接球的半径为AG,
HA为△ABC外接圆的半径,HG=2,HA= ,
根据几何体可以判断:球心应该在过A,D的平行于底面的中截面上,
设球心到截面BCO的距离为x,则到AD的距离为:4﹣x,