小学奥数周期问题

合集下载

小学三年级《周期问题》奥数教案

小学三年级《周期问题》奥数教案

(三年级)备课教员:第四讲周期问题一、教学目标: 1. 使学生了解许多事物变化的周期性,掌握事物变化的周期;2. 使学生结合具体情境,探索并发现简单周期现象中的排列规律,能根据规律确定某个序号所代表的是什么物体或图形;3. 知道使用除法,利用余数进行推理方法的便捷,掌握利用余数进行推理的方法;4. 经历探索、合作交流的过程,使学生在探索规律的过程中体会数学与日常生活的联系,获得成功的体验。

二、教学重点:让学生用除法计算的策略解决这类排列问题。

三、教学难点:计算策略中,确定几个物体为一组,怎样根据余数来确定某个序号所代表的是什么物体或图形。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)谈话引入:师:小朋友知道现在是什么季节吗?生:秋季。

师:秋季过了,接下去是什么季节呢?生:冬季。

师:再接着是什么季节呢?生:春季、夏季。

师:过完夏季我们又该到什么季节了?生:……师:我想过完秋季直接过春季行吗?生:不行。

师:那能不能再继续过秋季?为什么不行?生:……师:又如我们每个星期的学习生活是从那天开始的?(周一)接着是周几?生:……小结:一年四季春夏秋冬、每个星期都是按照规律依次重复出现,周而复始。

像这样:按照一定的规律,依次不断重复出现的,我们把这种现象叫“周期”,今天我们就来学习周期问题。

【板书课题:周期问题】二、探索发现授课(40分)(一)例题1:(13分)黑珠、白珠共74个,穿成一串(如下图所示),在这串珠子中,最后一个珠子是什么颜色的?○○●○○●○○●○○……师:大家一起来把题目读一下。

生: ……师:这里面有几种颜色的珠子呢?生:黑、白两种。

师:大家在一起观察一下图,它们是怎样排列的。

生:2白1黑。

师:看来大家观察的很仔细,图形里是按2白1黑进行排列的,所以我们把2 白1黑看作一个周期。

师:我们把2白1黑看作一个周期,总共有多少个珠子,所以怎么求呢?生:2+1=3个。

师:很好,我们知道了一个周期是3个珠子,那74个珠子有多少个周期,怎么求?生:也就是求74里面有多少个这样的一周期。

小学奥数周期问题专题训练含答案

小学奥数周期问题专题训练含答案

小学奥数周期问题专题训练姓名:1.马路一侧插满了彩旗,它们的规律是“红, 黄, 红, 蓝, 蓝, 紫, 红, 黄, 红, 蓝, 蓝, 紫……”请问,第97根旗是什么颜色的?2.如下图摆法摆251个图形,其中有几个正方形? 3.把72化成小数后第351位是几?4.某闰年二月的最终一天是星期日,则同年的7月1日是星期几?5.21999=n ,n 的最终一位是多少?6.下表是11位数,随意相邻的三个数字之和是17,请将剩下几位填完。

7.下表中,每列上下的两个汉字成为一组,如第一组为“学做”, 第二组为“习接”,则第649组是什么? 8.循环小数··51238.0及··522348944.0首次出现该数位的数字都是5是在小数点后的哪一位? 9.2001年的植树节是星期一,则这年的国庆节是星期几?10.一本童话书,每2页文字之间有3页插图,也就是说3页插图前后各有1页文字,假如这本书有128页,而第1页是文字,这本书共有插图多少页?11.100个3相乘,得数的个位是几?12.小张工作3天休息1天,小李工作4天休息一天,小刘工作7天休息一天,假设今日他们都休息,则下次都休息是在几天以后?小学奥数周期问题专题训练(答案)1.马路一侧插满了彩旗,它们的规律是“红, 黄, 红, 蓝, 蓝, 紫, 红, 黄, 红, 蓝, 蓝, 紫……”请问,第97根旗是什么颜色的?97÷6=16(组)……1(根)答:第97根旗是红颜色的。

2.如下图摆法摆251个图形,其中有几个正方形?251÷7=35(组)……6(个) 35×2+2=72(个)答:其中有72个正方形。

3.把72化成小数后第351位是几?2÷7=``485712.0 351÷6=58(组)……3(位) 答:把72化成小数后第351位是5。

4.某闰年二月的最终一天是星期日,则同年的7月1日是星期几? 31×2+30×2+1=123(天) 123÷7=17(周)……4(天)答:同年的7月1日是星期四5.21999=n ,n 的最终一位是多少?规律:2个位2,2²个位4,2³个位8,24个位6,25个位2又开始循环 1999÷4=499(组)……3(位) 答:n 的最终一位是8。

小学五年级奥数周期问题及答案

小学五年级奥数周期问题及答案

小学五年级奥数周期问题及答案例1:有249朵花,按5朵红花,9朵黄花,13朵绿花地顺序轮流排列,最后一朵是什么颜色地花?这249朵花中,红花、黄花、绿花各有多少朵?朵花中,红花、黄花、绿花各有多少朵?249÷(5+9+13)=9(组)……6(朵)(朵)这六朵花,前5朵是红花,最后1朵应是黄花。

朵应是黄花。

红花:5×5×99+5=50(朵)黄花:9×9×99+1=82(朵)(朵)绿花:13×13×99=117(朵)(朵)答:最后一朵是黄花。

这249朵花中,红花有50朵,黄花有82朵,绿花有117朵。

朵。

模拟练习:模拟练习: 1、有红、白、黑三种纸牌共158张,按5张红色,3张白色,4张黑色的顺序排列下去,最后一张是什么颜色?第140张是什么颜色?张是什么颜色?158÷(5+3+4)=13(组)......2(张)140÷(5+3+4)=11(组)......8(张)(张)答:最后一张是红色。

第140张是白色。

张是白色。

2、有47盏彩灯,按二盏红灯、四盏蓝灯、三盏黄灯地顺序排列着。

最后一盏灯是什么颜色?三种颜色地灯各占总数地几分之几?颜色?三种颜色地灯各占总数地几分之几?47÷(2+4+3)=5(组)......2(盏)红灯有2×2×5+2=125+2=12(盏)蓝灯有4×4×5=205=20(盏) 黄灯有3×3×5=155=15(盏)答:最后一盏是红灯。

红灯占总数的12/47,蓝灯占总数的20/47;黄灯占总数的15/47。

例2:2002年元旦是星期二,那么,2003年1月1日是星期几?日是星期几?2002年是平年,365+1=366(天) 366÷366÷7=527=52(周)......2(天)答:每个周期的第一天是星期二,所以,2003年1月1日就是星期三。

小学奥数周期问题知识大全

小学奥数周期问题知识大全

小学奥数周期问题知识大全小学奥数是数学项目,其中涉及到很多知识。

有了奥林匹克数学,学生可以学会基本的数学概念,如最简单的运算、数组、几何和推理。

此外,学生还可以学习一些关于周期问题的知识。

一、关于周期问题周期问题是小学奥数中的重要知识点。

它涉及到可以以特定时间间隔循环出现的一系列特定事件。

比如,每月都有一次新月,每季度都有一次春夏秋冬,每年都有一次四季变换等等。

二、关于周期的各种定义1.时间周期:它是指一个完整的周期。

比如一天的时间就是一个时间周期;一个星期的时间就是一个时间周期。

2.计数周期:指一个完整的数学周期,比如一个月中有30天,一年中有365天,一个月中有4周,一年中有12个月等等。

3.循环周期:指周期性计算循环所需要的时间。

比如,一个月要30天,一个季度要90天,一年要365天。

4.节奏周期:指每个周期有几个相同的重复,比如一个月有4个星期,一年有52个星期。

三、关于周期知识的运用1.时间周期的知识可用于计算日期、时间和其他特定的物体出现的间隔,如每月有多少天,每年有多少个月,每之多天有一个新月等等。

2.计数周期的知识可用于计算数学公式,如圆周率π的计算,数列的推理,正方形的求解,三角形的计算等问题。

3.循环周期的知识可用于计算特定事件以及物体以及它们循环出现的间隔。

比如,每年有多少月,每月有多少天,每季度有多少周等等。

4.节奏周期的知识可用于计算特定的时间节点,如每个月的第一个星期,每年的第一个季度,每四年的第一个礼拜等等。

四、学习周期知识的重要性周期知识在小学奥数中是一个非常重要的知识领域,它可以帮助学生掌握一些数学基础知识,如运算、数组、几何和推理。

当学生掌握了周期知识后,可以使用它来解决一些复杂的奥数问题,例如:把一个天文轨道模型用数学模型表示出来,用周期知识来计算物体以及它们循环出现的间隔等等。

总而言之,学习周期知识在小学奥数中是十分重要的,必须花一定的时间和精力去进行学习。

五年级奥数周期问题练习题

五年级奥数周期问题练习题

五年级奥数周期问题练习题问题1:某个班级有30个学生,其中15个是男生,剩下的是女生。

男生和女生一起组成了几对?请在下面作答:解答1:班级有30个学生,其中15个是男生,剩下的是15个女生。

男生和女生是一对一配对的,所以有15对。

问题2:在一个奥数比赛中,一支队伍需要有4个人。

有9个学生报名参赛。

请问一共有多少种不同的组队方式?请在下面作答:解答2:从9个学生中选出4个来组成一支队伍,可以使用组合的方法来计算。

C(9, 4) = 9! / (4! * (9-4)!) = 126所以一共有126种不同的组队方式。

问题3:一个街区有10幢房子,每幢房子都有不同的颜色。

现在有4个人,每个人都要住在不同颜色的房子里。

请问一共有多少种不同的安排方式?请在下面作答:解答3:第一个人有10种选择,第二个人有9种选择,第三个人有8种选择,第四个人有7种选择。

所以一共有10 * 9 * 8 * 7 = 5040种不同的安排方式。

问题4:某个月有31天,现在要将这31天分成3个连续的周期(每个周期可以不完整)。

请问一共有多少种不同的分法?请在下面作答:解答4:将31天分成3个周期,可以使用组合的方法来计算。

C(31+3-1, 3-1) = C(33, 2) = 33! / (2! * (33-2)!) = 528所以一共有528种不同的分法。

问题5:一个四位数的各位数字互不相同,且是4个奇数。

请问一共有多少个满足条件的四位数?请在下面作答:解答5:个位数字只能是1、3、5、7、9中的一个。

百位数字只能是1、3、5、7、9中的一个,并且不能和个位数字相同,所以有4种选择。

千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字相同,所以有3种选择。

千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字、千位数字相同,所以有2种选择。

所以一共有5 * 4 * 3 * 2 = 120个满足条件的四位数。

人教版四年级上册数学奥数 周期问题(课件)(共19张PPT)

人教版四年级上册数学奥数 周期问题(课件)(共19张PPT)

【例3】下表中,将每列上面的汉字和下面的字母组成一组,例如,第一组为(我,A), 第二组为(们,B),那么第136组是什么?
【分析与解答】 咦,这道题中上、下两行的周期不一样啊!上面是5个汉字为一个周期,下面是4个字母为一个 周期。对,这就是这道题与前面例题不同的地方,上、下两行的变化规律不统一,也就是周期 里汉字、字母的个数不同。因此,我们必须分别找出两行中第136个汉字或字母是什么,把它们 组成一组。这样,问题就迎刃而解了。
我来解答:130÷4=32(组)……2(个) (5+6+4+2)×32+5+6=17×32+11=555
小结与提示 解答这道题时要注意:求和时,最后多出来的两个数是5和6,别漏加或错加。
实践与应用
【练习2】 P124 有一列数:6,1,0,8,6,1,0,8,··· (1)第122个数是多少? (2)这122个数相加的和是多少?
实践与应用
【练习4】 P126 2016年植树节是星期六,则2017年植树节是星期几?
【例5】 10个2连乘的积的个位上是几?
【分析与解答】 这道题很简单,只要把10个2连乘起来,不就知道积的个位上的数字了吗?这个方法虽行得通, 但太麻烦,假如有100个2连乘,那该怎么算啊?我们应该找出积的个位上的变化规律。 对,这道题只要求出积的个位上的数字,就可以利用列表的方法找出积的个位上的变化规律。 从表中可以清楚地看出,积的个位上的数字以2,4,8,6为一个周期。 我来解答:10÷4=2(组)…2(个),所以,10个2连乘的积的个位上是4。 小结与提示 当求许多个相同的数相乘的积的个位上的数字时,一个一个求积太麻烦,我们不妨过列表 一一列举,这样就能发现规律。即使100个相同的数相乘,也能快速解答。

小学四年级奥数-周期问题

小学四年级奥数-周期问题

周期问题(一)我们知道,一年有12个月,从一月开始,一月、二月、三月、……十二月;每周有七天,从星期一开始,星期一、星期二、……星期天。

在日常生活中有许多类似这样重复出现的现象,一些数、图形的变化也是周而复始地循环出现的,我们把这种特殊的规律性问题称为周期问题。

解答这类题目只有找到规律,才能获得正确的方法。

例1.●●○●●○●●○……上面黑、白两色小球按照一定的规律排列着,其中第90个是( )例2.有同样大小的红、白黑珠共150个,按先5个红的,再4个白的,再3个黑的排列着。

第144个珠是什么颜色?例3.有249朵花,按5朵红花、9朵黄花、13朵绿花的顺序排列,最后一朵花是什么颜色的?例4.有同样大小的红、黄、蓝弹子共180个,按先4个红的,再2个黄的,再3个蓝的排列着。

三种颜色的弹子各有多少个?例5.上表中,将每列上下两个字组成一组,例如,第一组为(共,社),第二组为(产,会),那么,第128组是( )练习与思考1.根据图中物体的排列规律,填空。

(2)□○△□○△……第55个是( )2.把1~100号的卡片依次发给小红、小芳、小华、小明四个人,已知1号发绘小红,16号发给谁?38号呢?3.四(1)班六位同学在进行报数游戏,他们围成一圈,小娟报“1”,小华报“2”,小丽报“3”,小勇报“4”,小强报“5”,小琳报“6”,每位报的数总比前一位多1。

“72”是谁报的?“190”呢?4.一些黑白珠子按一定规律排列(如图),如果这些珠子共有50个,则倒数第六个珠子是什么颜色?●●●○●●●○●●●○……5.有同样大小的红、白、黑珠共90个,按先3个红的,后2个白的,再1个黑的排列。

黑珠共有几个?第68个珠子是什么颜色?6.有100朵花,按4朵红花,3朵绿花,5朵黄花,2朵紫花的顺序排列,最后一朵是什么颜色的花?四种花各有几朵?7.第26列的字母和数字各是什么?B ),第26组是什么?周期问题(二)例1.10个2连乘的积的个位数是几?例2.1998年元旦是星期四,1999年元旦是星期几?例3.黑珠、白珠共185个串成一串,排列如图:○●○○○●○○○●○○○……例4.把自然数按下图的规律排列后,分成A 、B 、C 、D 、E 五类,例如,4在D 类,10在B 类。

小学奥数周期问题例题讲解

小学奥数周期问题例题讲解

小学奥数周期问题例题讲解小学奥数周期问题是指小学生在从事奥数(奥林匹克竞赛数学题)时,会定期考察某些题型,这种定期考察有规律可循,可以称之为“周期”。

下面提供了几道典型的小学奥数周期问题,通过讲解这些题型,可以帮助小学生更好的理解小学奥数周期问题的规律。

1、数字序列给出一组数字,把它们按照一定的规律排序,要求小学生能够通过规律把数字按照顺序排列出来。

例如:(1):2,6,11,17,24这里的数字组成了一个等差数列,其公差为5,所以答案是:2,6,11,17,24,29,34,39,44。

(2):1,4,9,16,25这里的数字组成了一个等比数列,其公比为2,所以答案是:1,4,9,16,25,36,49,64,81。

2、对称数字给出一组数字,要求小学生从中找出对称的数字,例如:(1):1,4,6,9这里可以看出,1和9是对称的,4和6也是对称的,所以答案是:1,9,4,6。

(2):2,4,6,7这里可以看出,2和7是对称的,4和6也是对称的,所以答案是:2,7,4,6。

3、数的调整给出一组数字,要求小学生从中找出一个数字,使得所有的数字按从小到大的顺序排列,例如:(1):4,5,6,9这里可以看出,4,5,6按从小到大的顺序排列,但是9大于6,不符合要求,所以我们可以用8替换9,使得所有数字按从小到大的顺序排列,所以答案是:4,5,6,8。

(2):1,3,5,8这里可以看出,1,3,5按从小到大的顺序排列,但是8大于5,不符合要求,所以我们可以用7替换8,使得所有数字按从小到大的顺序排列,所以答案是:1,3,5,7。

4、数字变换给出一组数字,要求小学生用一个数字替换另一个数字,使得所有数字增加或减少一个相同的数字。

例如:(1):3,5,7,9这里可以看出,如果我们用2替换9,那么其它三个数字都会减少2,所以答案是:3,5,7,2。

(2):1,3,5,7这里可以看出,如果我们用4替换7,那么其它三个数字都会增加2,所以答案是:1,3,5,4。

二年级奥数《周期问题》练习题

二年级奥数《周期问题》练习题

第七讲周期问题(必做与选做)1.找出下列图形的规律,根据规律算出第18个图形是()。

A. △B. ○C. ☆D. □解析:这列图形的排列是有一定的规律,它是按照一个○、一个△、一个□、一个☆的次序排列的,也就是每4个图形一组,不断重复出现。

我们算18个图形可以排成几组,18÷4=4(组)……2(个),余数是2,表示第18个图形是第5组的第2个,是△。

2.找出下列图形的规律,根据规律算出第34个图形是()。

A. △B. ◇C. □D. ○解析:这列图形的排列是有一定的规律,它是按照2个△、1个◇、1个□,1个○的次序排列的,也就是每5个图形一组,不断重复出现。

我们算34个图形可以排成几组,34÷5=6(组)……4(个),余数是4,表示第34个图形是第7组的第4个,是□。

3.按照下面的规律画圆,第21个圆应该是()的。

A. 蓝色B. 红色C. 绿色D. 黄色解析:这些圆按照1个蓝色、3个红色、2个绿色、1个黄色的规律排列的,也就是每7个图形一组,不断重复出现。

我们算21个圆可以排成几组,21÷7=3(组),没有余数,表示第21个圆是第3组的最后一个,是黄色的圆。

4.有编号1—20个球,阿派、欧拉、米德、卡尔四人依次按编号顺序拿球,9号球会被()拿到。

A. 阿派B. 米德C. 欧拉D. 卡尔解析:这些球从左到右每4个球为一组,要求9号球被谁拿到,根据9÷4=2(组)……1(个),余数为1,说明9号球应该在阿派手上。

5.二(2)班教室四周挂了60个彩球,按红、黄、绿、蓝、紫的顺序依次排列,那么第28个彩球是()颜色。

A. 红B. 黄C. 绿D. 紫解析:这些彩球按“红、黄、绿、蓝、紫”5个颜色分组,也就是5个彩球分为一组,要知道第28个彩球是什么颜色,根据28÷5=5(组)……3(个),余数是3,说明第28个彩球应该是绿色。

6.如果除0以外的全体自然数如下表排列,第40个应该排在()字母下面。

小学三年级奥数-周期问题

小学三年级奥数-周期问题
1
2
……
练习1:
01
如图,算出第20个图形是什么?
02
△△□□□○△△□□□○△△……
03
“数学趣味题数学趣味题……”依次重复排列,第2001个字是什么?
04
把38面小三角旗按下图排列,其中有多少面白旗?
【例题2】2001年10月1日是星期一,问:10月25日是星期几?
01
【思路导航】我们知道,每星期有7天,也就是说以7天为一个周期不断地重复。从10月1日到10月25日经过25-1=24天,24÷7=3(星期)……3(天),说明24天中包括3个星期还多3天。所以从10月1日开始过3个星期,最后一天还是星期一,从这最后一天起再过3天就应是星期四。
02
有一列数“……”,请问从左起第2个数字到第25个数字之间(含第2个与第25个数字)所有数字的和是多少?
【例题5】小红买了一本童话书,每两页文字之间有3页插图,也就是说3页插图前后各有1页文字。如果这本书有128页,而第1页是文字,这本童话书共有插图多少页?
【思路导航】已知这本童话书3页插图前后各有1页文字,也就是说这本书是按“1页文字3页插图“的规律重复排列的,把“1页文字3页插图”看作一周期,128页中含有128÷(1+3)=32个周期,所以这本童话书共有插图3×32=96页。
周期问题
单击此处添加副标题
一、知识要点
在日常生活中,有一些按照一定的规律不断重复的现象,如:人的十二生肖,一年有春夏秋冬四个季节,一个星期七天等等。像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。这类问题一般要利用余数的知识来解答。
在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果。

小学奥数教程:周期问题_全国通用(含答案)

小学奥数教程:周期问题_全国通用(含答案)

1. 掌握各种周期问题的求解方法.2. 培养学生观察、分析和逻辑推理能力。

知识点说明: 周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类:1.图形中的周期问题; 2.数列中的周期问题;3.年月日中的周期问题. 周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个; 例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829¸=,所以第18个数是2.⑵如果比整数个周期多n 个,那么为下个周期里的第n 个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351¸=×××,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-¸=×××,所以第16个数是2.板块一、图形中的周期问题 【例 1】 小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列: ●●○●●○●●○… 你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【考点】周期问题 【难度】2星 【题型】解答【解析】 仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330¸=,正好有30个周期,第90个是白球.100333¸=…1,有33个周期还多1个,所以,第100个是黑球.【答案】第90个是白球,第100个是黑球【巩固】 美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的: 例题精讲知识精讲教学目标 周期问题○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【考点】周期问题 【难度】2星 【题型】解答【解析】 观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425¸=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【答案】最后一个珠子是黑色的,黑色珠子在这串珠子中共有26个【巩固】 黑珠、白珠共101颗,穿成一串,排列如下图。

小学奥数周期问题

小学奥数周期问题
特点:一定规律、重复出现
【例1】小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列, 你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球 呢?
●●●●●●●●… 解析: 周期=3 ÷3=30(组) 100÷3=33(组)······1(个) 答:第90个是 黑 球,第100个又是 白 球。
2. 解析:仔细分析可得,规律是1分,2分,5分。
3. 100 ÷ 3=33(组)··· ···1(个) 周期=3
① 1+2=5=8(分) ② × 33+1=265(分)
4. 265分=2.65元
5. 答:第100枚是1分硬币,前100枚硬币一共是2.65元。
【例3】 24个2相乘,积末位数字是几?
2008年1月1日是星期二。
答:……………………………………………………………… ………
课堂小结
找规律:确定周期和总数 除周期:总数(总个数,总天数···)除以周期 对余数:余数是几对应周期中的第几个
○ 没有余数,对应周期最后一个
【例2】有一列数按“”排列,那么第48个数字是多少?前48个 数字之和是多少?
解析:观察例题数列,重复出现的循环是1、2、5、6、9。
÷5=9(组)······3(个)
周期=5
1+2+5+6+9=23
×9+1+2+5=215
答:第48个数字是5,前48个数字之和是215。
1. 巩固练习:小明和小华做游戏,将存钱罐里的硬币拿出来,按一枚1分硬币,一 枚2分硬币,一枚5分硬币,再一枚1分硬币,一枚2分硬币,一枚5分硬币......, 这样的顺序往下摆,请你算一算第100枚是几分硬币?前100枚硬币一共是多少元?

(完整版)小学五年级奥数周期问题

(完整版)小学五年级奥数周期问题

第三讲 周期问题知识要点:周期问题是指事物在运动变化的发展过程中,某些特征循环往复地出现,其连续两次出现所经过的时间叫做周期。

例1、有249朵花,按5朵红花,9朵黄花,13朵绿化的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,红花、黄花、绿花各有多少朵?分析:这些花按5红、9黄、13绿的顺序轮流排列,即5+9+13=27(朵)花为一周期,不断循环。

练习、71=0.142857142857…小数点后面第100个数字是多少?例2、下面是一个11位数,每3个相邻数字之和都是17,你知道“?”表示的数字是几吗?分析:因为每相邻的3个数字之和为17,从左数起第一位数字与第二、三位数字之和为17,第二、三位数字与第四位数字之和也是17,所以第四位数字是8。

这样,就找到一条规律:从左向右每3位一循环,每隔两位必出现一个相同的数字。

练习、下面是一个8位数,每3个相邻数字之和都是14,你知道问号表示的数例3、2012年6月1日是星期五,问9月1日是星期几?分析:一个星期有7天,因此7天为一个周期。

2013年1月1日是星期二,2013年的6月1日是星期几?例4、将奇数如下图所示排列,各列分别用A、B、C、D、E作为代表,问2001所在的列以哪个字母作为代表?A B C D E1 3 5 715 13 11 917 19 21 2331 29 27 25……………………分析:这些数按每8个数一组有规律地排列着(两行一组)。

2001是这些数中的第1001个数。

练习、将偶数2,4,6,8,…按下图依次排列,2014出现在哪一列?A B C D E8 6 4 210 12 14 1624 22 20 1826 28 30 32……………………例5、888…8÷7,当商是整数时,余数是几?100个8练习、444…4÷3,当商是整数时,余数是几?100个41、有47盏彩灯,按2盏红灯、4盏蓝灯、3盏黄灯的顺序排列着。

小学六年级奥数周期循环与数表规律问题专项强化训练题(高难度)

小学六年级奥数周期循环与数表规律问题专项强化训练题(高难度)

小学六年级奥数周期循环与数表规律问题专项强化训练题(高难度)例题1:小明使用一个周期为3的循环序列{1, 2, 3},按照以下规律将序列中的数分别填入数表中的方格中。

1 2 31 ? ? ?2 ? ? ?3 ? ? ?根据给定的规律,填入正确的数。

解析:根据题目所给的周期循环序列{1, 2, 3},我们可以观察到:第一行的数按照序列的顺序依次填入,即1、2、3;第二行的数也按照序列的顺序填入,但是序列的起始位置向右移动一位,即2、3、1;第三行的数同样按照序列的顺序填入,但是序列的起始位置再向右移动一位,即3、1、2。

因此,填入数表的数字为:1 2 31 12 32 23 13 3 1 2专项练习题:1. 使用一个周期为4的循环序列{2, 4, 6, 8},按照上述规律填入下面的数表中。

3()4()2. 使用一个周期为5的循环序列{5, 3, 7, 1, 9},按照上述规律填入下面的数表中。

1 2 3 41()2()3()4()3. 使用一个周期为2的循环序列{4, 7},按照上述规律填入下面的数表中。

1 2 3 41()2()3()4()4. 使用一个周期为3的循环序列{9, 2, 5},按照上述规律填入下面的数表中。

1 2 3 41()2()3()4()5. 使用一个周期为6的循环序列{7, 8, 9, 5, 6, 3},按照上述规律填入下面的数表中。

3()4()6. 使用一个周期为4的循环序列{1, 3, 2, 4},按照上述规律填入下面的数表中。

1 2 3 41()2()3()4()7. 使用一个周期为5的循环序列{6, 8, 4, 2, 7},按照上述规律填入下面的数表中。

1 2 3 41()2()3()4()8. 使用一个周期为3的循环序列{3, 6, 9},按照上述规律填入下面的数表中。

1 2 3 41()2()3()4()9. 使用一个周期为6的循环序列{4, 2, 8, 5, 9, 6},按照上述规律填入下面的数表中。

小学奥数周期问题公式

小学奥数周期问题公式

小学奥数周期问题公式
函数周期性公式及推导:f(x+a)=-f(x)周期为2a。

证明过程:因为f(x+a)=-
f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。

sinx的函数周期公式t=2π,sinx是正弦函数,周期是2π。

cosx的函数周期公式t=2π,cosx就是余弦函数,周期2π。

tanx和cotx的函数周期公式t=π,tanx和cotx分别是正切和余切。

secx和cscx的函数周期公式t=2π,secx和cscx就是余割和正割。

设函数f(x)在区间x上有定义,若存在一一个与x无关的正数t,使对于任一x∈x,恒有f(x+t)=f(x)
则表示f(x)就是以t为周期的周期函数,把满足用户上式的最轻正数t称作函数f(x)的周期。

二、周期函数的运算性质:
1、若t为f(x)的周期,则f(ax+b)的周期为t/al。

2、若f(x),g(x)均就是以t为周期的函数,则f(x)+g(x)也就是以t为周期的函数。

3、若f(x),g(x)分别是以t1,t2,t1≠t2为周期的函数,则f(x)+g(x)是以t1,t2的最小公倍数为周期的函数。

小学奥数-周期问题

小学奥数-周期问题

第十一讲周期问题(一)世间万物;千奇百怪;运动变化;千姿百态.可这貌似“杂乱无章”的世界却受到各式各样的规律支配着.在这些规律中;有一种最常见的规律就是从形形色色的周期现象中提炼出来的规律.如果某一事物的变化具有周期性;那么;该事物在经历一段变化后;又会呈现原俩的状态.我们把事物所经历的这一段;叫该事物变化的周期.例如;在自然数列中;各位数字变化的周期是10;星期日出现的周期是7(天);用动物记年的走器是12(年)等等.在数学中;我们把与周期性有关的数学问题叫做周期问题.解答这类问题;要抓住一下几点:1.找出规律;发现周期现象.2.把要求的问题和某一周期的变化相对应;以求得问题解决.例1 有249朵花;按5朵红花;9朵黄花;13朵绿花的顺序轮流排列;最后一朵是什么颜色的花?这249朵花中;红花、黄花、绿花各有多少朵?例2 1997年元旦是星期三;那么;同年12月1日是星期几?例3 国庆节;路旁挂起了一盏盏彩灯;小华看到每两盏白灯之间有红、黄、绿灯各一盏.那么;第80盏灯应是什么颜色的?例4 7 1998 表示1998个7连乘;它的结果末位上的数字是几?例5 下面是一个11位数;每3个相邻数字之和都是17;你知道“?”表示的数字是几吗?6思考与练习1.把 1\7化成小数;请回答:(1)小数点后面第80个数字是几?(2)小数点后面前80个数字的和是多少?2.把1\81化成小数后;小数点后面100位数字之和是多少?3.今天是星期一;从明天开始第1800天是星期几?4.有同样大小的红珠、白珠、黑株共有160个?按4个红株;3个白株;2个黑株的顺序排列着.黑株共有几个?第101个株子是什么颜色?5.我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪这12种动物按顺序轮流代表各年号.如果1940年是龙年;那么;1996年是什么年?6.科学家进行一项试验;每隔6小时做一次记录.第10次记录时;挂钟的时针恰好指向7;问:做第几一次记录时;时针指向几?7.12415表示15个124连乘;所得积的末位数字是几?8.下面是一个11位数;每三个相邻数字之和都是15;你知道问好表示的数字是几吗?这个11位数水多少?第十二讲周期问题(二)例1 有13名小朋友编成1到13号;他们呢依次围成月毫个源泉做游戏.现在从1号开始;每数到第3个人发一粒糖(每人只拿一次糖).那么;最后一个拿到糖的小朋友是几号?例2 紧接着1998后面写一串数字;写下的每个数字都是它前面两个数字的乘积的各个位数.例如;9 X 8 =72 .在8 后面写1;8;X 2 = 16;在2后面写6;……得到一串数:199826……这串数字从1开始往右数;第1998个数字是几?例3 把自然数按下表规律排列后;可分成A 、B 、C 、D 、E 五类;例如;3在C 类;10在B 类.那么985在哪一行;哪一类?例4 把1至8个数码摆成一个圆圈《现在有一个小球;第一天从1号顺时针前进203个位置;第二天再顺时针前进335个位置;第三天又顺时针前进203个位置;第四天再舒适镇前进335个位置;第五天又顺时针前进203个位置……试问:至少经过几天后;小球又回到1号位置?例5下表中;将每列上下两个汉字组成一组;例如;第一组为(学做);第二组为(习接).那么第649组是什么?例6 在一根长100厘米的木棍上;自左至右每隔6厘米染一个红点;同时自右至左每隔5厘米也染一个红点;然后沿红点处将木棍逐段锯开.那么;长度是1厘米的短木棍有多少根?练习与思考(第1~4题每题17分;其余每题16分;共100分.)1.有 a、b、c、d四条直线(如图);从直线a上开始;按箭头方向从1开始依次在a、b、c、d上写自然数1;2;3;4;5;6;…(1)106在哪条线上?(2)直线a上第56个数是多少?2.在一列数2;9;8;2;…从第三个数起;每个数都是它前面两个数成积的个位数.比如;第三个数8;是前两个数的积 2 X 9 =18 的个位数字.这一列数的第180个数是几?3.将奇数1;3;5;7;…依次排成五列(如图);把最左边的一列叫做第一列;从左到右依次将每列写上数.1997出现在哪一列?4.把16把椅子摆成一个圆圈;依次编上1到16号.现在有一个人从第一号椅子顺时针前进213把椅子;再逆时针前进285把椅子;又顺时针前进213把椅子;再逆时针前进285把椅子;又顺时针前进12把椅子;这时他到了第几号椅子?5.下表中每列上下两个汉字和字母组成一组;例如;第一组是(我A);第二组是(们B);…(3)第82组是什么?(2)如果(爱C)代表1978年;(数D)代表1979年;…那么;2000年将对应哪一组?6在一根长 80厘米的木棍上;自左至右每隔5厘米染上一个红点;同时自右至左每隔4厘米染上一个红点;然后沿红点处将木棍逐段锯开;那么;长度是1厘米的短木棍有多少根?。

小学奥数周期问题知识大全

小学奥数周期问题知识大全

小学奥数周期问题知识大全早在几千年前,中国就有“洛书”之类的作品,其中提到了“周期”,它是一种规律性的现象,然而,在其后的几个世纪里,人们对周期的研究仍然很少,直到20世纪以后,有了新的发展,诞生了越来越多的技术和科学理论,人们逐渐深入研究了周期,并将它们运用到日常生活中。

小学奥数周期问题是一种非常具有挑战性的数学领域,它可以提高孩子的数学思维能力,同时也能锻炼孩子的推理能力。

小学奥数周期问题一般包括时间序列、图形依次出现、数字排序等,是学习奥数很重要的一部分。

以下是一些关于小学奥数周期问题的常见知识:一、时间序列时间序列就是按照一定的顺序排列的数字,奥数周期问题中的时间序列让孩子们从中推出以下关系:一个数字到下一个数字的差值是不变的,这就可以构成时间序列。

二、图形依次出现在图形依次出现中,每个图形的形状、大小、颜色等都是不同的,孩子们需要从给出的图形中找出特定的规律,从而判断出图形出现的顺序,推断出这些图形出现的规律,这样才能解答这类图形出现的奥数周期问题。

三、数字排序数字排序包括算术序列和调换数字序列,其中,算术序列要求孩子们从给出的数字中提取出特定的规律,然后按照规律给出下一个数字;而调换数字序列要求孩子们从给出的数字中找出特定的规律,然后按照规律调换数字;另外,还需要孩子们注意数字的顺序,才能够解答这类数字排序的奥数周期问题。

小学奥数周期问题可以说是孩子们学习奥数的必备知识,它可以提高孩子们的数学思维能力和推理能力,进而提升他们奥数能力,让他们做出更多更困难的奥数题。

因此,给孩子们提供一些关于小学奥数周期问题的知识和经验,是培养他们数学思维能力的不可或缺的一步。

尽管小学奥数周期问题可能会给孩子们带来一定的困难,但其实并不像大家想象中那么难,只要孩子们能够仔细思考,把已知和未知因素联系起来,例如数字之间的关系、图形之间的变化等,就可以很轻松地解答这类奥数周期问题。

另外,家长也可以在孩子们解答这类问题时给予帮助,这样可以让孩子们更轻松地掌握相关知识,提高奥数水平。

小学奥数-周期问题

小学奥数-周期问题

思考一
思考二
第24个彩灯是什么? 第18个彩灯是什么? 18÷4=4(组)……2(个) 24÷4=6(组 )
周期问题解题过程
确定周期。找到总数总数÷周期=组数·△三种图形按一定的规则排列:○○△△△△□□○○△△△……
问第16个图形是什么?第100个图形又是什么?
例题2.
算一算,找出积的个位数字的周期规律
包含了几个周期.
通过余数确定末位数字是几.
小提示
7 7 7 7 7 7 7 7 ……7 9 3 1 7 9 3 1……发现7,9,3,1四个数是一个周期,50里面包含几个周期呢?50÷4=12(个)……2(个)这个周期里第二个数字是9,也就是积的个位数字是9.
4
16 17 18 19 20 21
算出一共有多少天
01
这些天包括几个星期,零几天
02
写出从哪到哪是一周期
03
通过余数确定是星期几
04
小提示
牛刀小试
首先要知道9月份有多少天? (30天)从9月10日到9月30日一共有多少天?30-10+1=21(天)21天是几个星期?21÷7=3(个)三 四 五 六 日 一 二 三 四 五 六 日 一 二 …… 所以9月最后一天应该是星期二.
7×8
+1+4=61
7
7
7
7
7
7
7
7
8个7
2+3+4=9
有一列数:2,3,4,2,3,4,2,3,4……第20个数字是多少?这20个数的和是多少? 20÷3=6(组)……2(个)
9×6+2+3=59
答:第20个数字是3,这20个数的和是59。

三年级奥数简单的周期问题

三年级奥数简单的周期问题

周期问题练习题
姓名:
1、小明问小刚:“今天是星期五,再过31天是星期几?”
2、一个星期7天,小朋友上学5天,星期六、日都休息。

而每年1月都是31天。

如果这个月的5号是星期天,问1月31号是上学还是在家休息?
3、有一堆棋子按二黑三白的规律往下排,第47个是什么颜色的棋子?
4、按下面的方法摆60个三角形,最后一个三角形是什么颜色?
5、小明放学回家准备开灯做作业,他拉了开关,灯没有亮,连续拉了10次,灯都没有亮。

原来电线被刮断了。

你知道电线修好时,小明家的电灯亮不亮?
6、有同样大小的红白黑珠共96个,按先5个红,再4个白,再3个黑的顺序排列着,问黑珠共有多少个?
7、刘老师把54张牌依次发给甲、乙、丙、丁4个同学,最后一张牌发给了谁?
8、国庆期间,公园挂彩灯按“红、黄、白、绿”的顺序,挂了32盏彩灯,第32盏是什么颜色?有几盏黄色彩灯?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四讲:周期问题知识点说明周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类:1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,,所以第18个数是2.⑵如果比整数个周期多个,那么为下个周期里的第个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,,所以第16个数是2.板块一、图形中的周期问题【例 1】小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【解析】仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为,正好有30个周期,第90个是白球.…1,有33个周期还多1个,所以,第100个是黑球.【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有(个)【例 2】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第73颗是什么颜色的?⑵第10颗黄珠子是从头起第几颗?⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【解析】⑴这些珠子是按红、黄、蓝、绿、白的顺序排列,每一组有5颗.(组)……3(颗),第73颗是第15组的第3颗,所以是蓝色的.⑵第10颗黄珠子前面有完整的9组,一共有(颗)珠子.第10颗黄珠子是第l0组的第2颗,所以它是从头数的第47颗.列式:(颗)⑶第8颗红珠子与第11颗红珠子之间一共有14颗珠子.第8颗红珠子与第11颗红珠子之间有完整的两组(第9、10组),共l0颗珠子,第8颗红珠子后面还有4颗珠子,所以是14颗.列式:(颗).【巩固】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?【解析】这道题是按“北京欢迎你”的规律重复排列,即5个字为一个周期.因为…3,所以28个字里含有5个周期还多3个字,即第28个字就是所列一个周期中的第3个字,所以第28个字是“欢”字.【巩固】节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯.那么第73盏灯是什么颜色的灯?【解析】从第一盏白灯开始,每隔三盏彩灯就又出现一盏白灯,不难看出白灯的编号依次是:1,5,9,13,……,这些编号被4除所得的余数都是1.,即73被4除的余数是1,因此第73盏灯是白灯.【例 3】节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后又是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:⑴第150盏灯是什么颜色?⑵前200盏彩灯中有多少盏蓝灯?【解析】⑴街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,这样一个周期变化的,实际上一个周期就是(盏)灯.,150盏灯刚好15个周期,所以第150盏应该是这个周期的最后一盏,是黄色的灯.⑵如果是200盏灯,就是的周期.每个周期都有4盏蓝灯,(盏)前200盏彩灯中有80盏蓝灯.【巩固】在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?【解析】…5.(个).【巩固】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是几分硬币⑵这200枚硬币一共价值多少钱?【解析】⑴每个周期有枚硬币,要求最后一枚,用这个数除以6,根据余数来判断……2,所以最后一枚是1分硬币⑵每个周期中6枚硬币共价值(分),用这个数乘以周期次数再加上余下的,就可以得到一共价值多少了(分),所以,这200枚硬币一共价值398分.【巩固】桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【解析】…1,…2,所以,第19枚硬币是一角的,第14枚硬币是五角的.【巩固】有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,什么花最多,什么花最少?最少的花比最多的花少几朵?【解析】这些花按5红、9黄、13绿的顺序轮流排列,它的一个周期内有(朵)花.因为……6,所以,这249朵花中含有9个周期还余下6朵花.按花的排列规律,这6朵花中前5朵应是红花,最后一朵应是黄花.在这一个周期里,绿花最多,红花最少,所以在249朵花中,自然也是绿花最多,红花最少.少几朵呢?有两种解法:(方法1) (6)红花有:(朵)绿花有:(朵)红花比绿花少:(朵)(方法2)……6,一个周期少的:(朵),(朵),余下的6朵中还有5朵红花,所以(朵).【例 4】如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,”,第二组是“们,”……我们爱科学我们爱科学我…………⑴写出第62组是什么?⑵如果“爱,”代表1991年,那么“科,”代表1992年……问2008年对应怎样的组?【解析】(1)要求第62组是什么数,我们要分别求出上、下两行是什么字(字母),上面一行是以“我们爱科学”五个字为一个周期,下面一行则是以“”七个字母为一个周期……2 ,……6,所以第62组是“们,”⑵2008是1991之后的第17组,现在上面一行按“科学我们爱”五个字为一个周期,下面一行则按“”七个字母为一个周期:(组), (2)……3,所以2008年对应的组为“学,”.【巩固】在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北林),那么第50组是什么?新北京新奥运新北京新奥运新北京新奥运……奥林匹克运动会奥林匹克运动会奥林匹克运动会……【解析】要知道第50组是哪两个数,我们首先要弄清楚第一行和第二行的第50个字分别应该是什么.第一行“新北京新奥运”是6个字一个周期,…2,第50个字就是北.再看第二行“奥林匹克运动会”是7个字一个周期,…1,第50个字就是奥.把第一行和第二行合在一起,第50组就是“北奥”.【例 5】如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。

一只小鸟飞来飞去,四处觅食,它最初停留在0号位,过了一会儿,它跃过水洼,飞到关于A点对称的1号位;不久,它又飞到关于B点对称的2号位;接着,它飞到关于C点对称的3号位,再飞到关于A点对称的4号位,……,如此继续,一直对称地飞下去。

由此推断,2004号位和0号位之间的距离是多少米?【解析】0米。

根据题上给出的条件,动手画出,就可以了!四次再次回到0号位置!2004是4的倍数,所以第2004号位和0号位之间的距离是0米。

板块二、数列中的周期问题【例 6】小和尚在地上写了一列数:7,0,2,5,3,7,0,2,5,3…你知道他写的第81个数是多少吗?你能求出这81个数相加的和是多少吗?【解析】⑴从排列上可以看出这组数按7,0,2,5,3依次重复排列,那么每个周期就有5个数.81个数则是16个周期还多1个,第1个数是7,所以第81个数是7, (1)⑵每个周期各个数之和是:.再用每个周期各数之和乘以周期次数再加上余下的各数,即可得到答案.,所以,这81个数相加的和是279.【巩固】根据下面一组数列的规律求出51是第几个数?1、2、3、4、6、7、8、9、11、12、13、14、16、17……【解析】观察题目可知数列个位数字每九个数一组,十位数字依次增加,0~4共五个数,则可列式为:5×9+1=46,即51为第46个数。

【例 7】⑴……(25个4),积的个位数是几?⑵24个2相乘,积末位数字是几?【解析】⑴按照乘数的个数,积的末位数字的规律是:4,6,4,6,4,6,……,奇数个4相乘得数的末位数字是4,偶数个4相乘得数的末位数是6,所以…1,25个4相乘,积的末位数字是4.⑵按照乘数的个数,末位数字的规律是2,4,8,6,2,4,8,6,……,4个一组,所以24个2相乘,积末位数字是6.【巩固】紧接着1989后面写一串数字,写下的每一个数字都是它前面两个数字的乘积的个位数.例如,,在9后面写2,,在2后面写8……得到一串数字:…,问:这串数字从1开始,往右数,第l999个数字是几?这1999个数字的和是多少?【解析】⑴根据题意,写出这列数的前面部分数字:19892868842868842……“286884”这6个数字重复出现,周期是6.⑵第1999个数字是:因为,所以,第l999个数字是6.⑶这1999个数字的和是:【例 8】12个同学围成一圈做传手绢的游戏,如图.⑴从1号同学开始,顺时针传l00次,手绢应在谁手中?⑵从1号同学开始,逆时针传l00次,手绢又在谁手中?⑶从1号同学开始,先顺时针传l56次,然后从那个同学开始逆时针传143次,再顺时针传107次,最后手绢在谁手中?121110987654 3 21【解析】⑴因为一圈有l2个同学,所以传一圈还回到原来同学手中,现在,从1号开始,顺时针传l00次,我们先用除法求传了几圈、还余几次.(圈)……4(次)从1号同学顺时针传4次正好传到5号同学手中.⑵与第一小题的道理一样,先做除法.(圈)……4(次)这4次是逆时针传,正好传到9号同学手中(如图).⑶先顺时针传156次,然后逆时针传l43次,相当于顺时针传(次);再顺时针传l07次,与13次合并,相当于顺时针传(次),(圈),手绢又回到l号同学手中.121110987654 3 21【巩固】8个队员围成一圈做传球游戏,从⑴号开始,按顺时针方向向下一个人传球.在传球的同时,按顺序报数.当报到72时,球在几号队员手上?876543 21【解析】将8名队员看作一组,每组报8个数,72个数可以分成几组:组,没有余数,球正好在一组的最后一位队员手中,因此球应该在8号队员手上.【巩固】如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈.现在,一只红跳蚤从标有数字.的圆圈按顺时针方向跳了1991步,落在一个圆圈里.一只黑跳蚤也从标有数字.的圆圈起跳,但它是沿着逆时针方向跳了1949步,落在另一个圆圈里.问:这两个圆圈里数字的乘积是多少?1110987654 3 21【解析】解答此类问题时,只要能发现旋转周期现象,并充分加以利用,就能较快找到解题的关键.本题中,不难看出这是一个与周期性有关的问题,电子跳蚤每跳12步就回到了原来的位置,如此循环,周期为12.⑴因为,所以,红跳蚤跳了1991步后落到了标有数字11的圆圈.⑵因为,所以,黑跳蚤跳了1949步后落到了标有数字7的圆圈.⑶所求的乘积是.【巩固】如右图,把1~8八个号码摆成一个圆圈,现有一个小球,第一天从1号开始按顺时针方向前进329个位置,第二天接着按逆时针方向前进485个位置,第三天又顺时针前进329个位置,第四天再逆时针前进485个位置……如此继续下去,问至少经过几天,小球又回到原来的1号位置?【解析】根据题意,小球按顺时针、逆时针、顺时针、逆时针……两天一个周期循环变换方向.每一个周期中,小球实际上是按逆时针方向前进485-329=156(个)位置. 156÷8=19……4,就是说,每个周期(2天)中,小球是逆旋转了19周后再逆时针前进4个位置. 要使小球回到原来的1号位,至少应逆时针前进8个位置. 8÷4=2(个)周期,2×2=4(天),所以至少要用4天,小球才又回到原来“1”号位置.【巩固】如右图,有16把椅子摆成一个圆圈,依次编上从1到16的号码.现在有一人从第1号椅子顺时针前进328个,再逆时针前进485个,又顺时针前进328个,再逆时针前进485个,又顺时针前进136个,这时他到了第几号椅子?【解析】这个人顺时针前进了328+328+136=792个位置,由于792÷16=49…8,所以他走到9号位置.又这个人逆时针共退回485+485=970个位置,由于970÷16=60…10,因此这个人到了第15(=9+16-10)号椅子.【例 9】甲、乙两人对一根3米长的木棍涂色。

相关文档
最新文档