初中数学二次函数应用题专题训练
完整版)初中数学二次函数专题经典练习题(附答案)

完整版)初中数学二次函数专题经典练习题(附答案)1.抛物线$y=-3x^2+2x-1$与坐标轴的交点情况是(A)没有交点。
(C)有且只有两个交点。
(D)有且只有三个交点。
2.已知直线$y=x$与二次函数$y=ax^2-2x-1$的一个交点的横坐标为1,则$a$的值为(C)3.3.二次函数$y=x^2-4x+3$的图象交$x$轴于$A$、$B$两点,交$y$轴于点$C$,则$\triangle ABC$的面积为(B)4.4.函数$y=ax^2+bx+c$中,若$a>0$,$b<0$,$c<0$,则这个函数图象与$x$轴的交点情况是(D)一个在$x$轴的正半轴,另一个在$x$轴的负半轴。
5.已知$(2,5)$、$(4,5)$是抛物线$y=ax^2+bx+c$上的两点,则这个抛物线的对称轴方程是(B)$x=3$。
6.无法正确反映函数$y=ax+b$图象的选项已删除。
7.二次函数$y=2x^2-4x+5$的最小值是$4.5$。
8.某二次函数的图象与$x$轴交于点$(-1,0)$,$(4,0)$,且它的形状与$y=-x$形状相同。
则这个二次函数的解析式为$y=-\frac{1}{25}(x-1)(x-4)$。
9.若函数$y=-x+4$的函数值$y>0$,则自变量$x$的取值范围是$(-\infty,4)$。
10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:定价(元) 100 110 120 130 140 150 销量(个) 80 100 110 100 80 60.为获得最大利润,销售商应将该品牌电饭锅定价为120元。
11.函数$y=ax^2-(a-3)x+1$的图象与$x$轴只有一个交点,那么$a$的值和交点坐标分别为$(a,0)$和$(\frac{a-3}{2},0)$。
12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽$AB=1.6m$,涵洞顶点$O$到水面的距离为$2.4m$,在图中的直角坐标系内,涵洞所在抛物线的解析式为$y=-\frac{5}{6}(x-2)^2+2.4$。
二次函数综合应用题(有答案)中考23题必练经典

函数综合应用题题目分析及题目对学生的要求1.求解析式:要求学生能够根据题意建立相应坐标系,将实际问题转化成数学问题。
需要注意的是:(1) 不能忘记写自变量的取值范围(2) 在考虑自变量的取值范围时要结合它所代表的实际意义。
2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求学生能够熟练地对二次三项式进行配方,利用解析式探讨实际问题中的最值问题。
最值的求法:(1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。
(2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。
3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起来。
推荐思路:画出不等式左右两边的图象,结合函数图象求出x的取值范围。
备选思路一:先将不等号看做等号,求出x的取值,再结合图象考虑将等号还原为不等号后x的取值范围;备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。
这一问里需要注意的是在注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。
1/ 182 / 18一、求利润的最值(2010·武汉)23. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。
当每个房间每天的房价每增加10元时,就会有一个房间空闲。
宾馆需对游客居住的每个房间每天支出20元的各种费用。
根据规定,每个房间每天的房价不得高于340元。
设每个房间的房价每天增加x 元(x 为10的正整数倍)。
(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。
(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000; (3) W= -101x 2+34x +8000= -101(x -170)2+10890,当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。
二次函数应用题专题(带答案)

二次函数应用题专题(带答案)0)时,可用交点式y=a(x-x1x-x2求其解析式。
4)根据问题要求,利用解析式求出所需的未知量。
三、练1、一枚炮弹在发射点上空爆炸,爆炸点离发射点水平距离1800米,爆炸高度为400米,求炮弹的初速度和仰角。
2、一架飞机以900km/h的速度飞行,飞行高度为2km,发现前方有一座山峰,山顶离飞机水平距离为10km,求飞机的爬升率和俯冲率。
3、一个人从距离地面20米的悬崖上抛出一个物体,物体抛出初速度为20m/s,抛出角度为60度,求物体落地点到悬崖的水平距离。
XXX:1、设炮弹飞行时间为t,初速度为v,仰角为θ,则可列出方程组:x=vtcosθy=vtsinθ-1/2gtx2y21800)2400)=xxxxxxx解得v600m/s,θ≈48.6°。
2、设飞机的爬升率和俯冲率分别为a和b,则可列出方程组:tan(θ-a)=4000/tan(θ+b)=2000/解得a≈2.5°,b≈1.4°。
3、设物体落地点到悬崖的水平距离为d,则可列出方程:d=vcosθtt=2vsinθ/g代入可得d≈40.8m。
评析:二次函数应用题需要学生熟练掌握建立坐标系、求解析式、利用解析式求未知量的方法,同时也需要学生对物理知识有一定的掌握,如抛物线运动、平抛运动等。
练中的例题和练题都体现了这些要点,可以帮助学生加深对二次函数应用的理解和掌握。
在教学过程中,可以引导学生多思考实际问题中的数学应用,提高他们的应用能力和解决问题的能力。
例2、某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.1)求y与x之间的关系式;2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?解:(1)依题意设y=kx+b,则有 y= -30x+960 (16≤x≤32).2)每月获得利润P=(-30x+960)(x-16)=30(-x+32)(x-16)=-30+48x-512+1920.所以当x=24时,P有最大值,最大值为1920.答:当价格为24元时,才能使每月获得最大利润,最大利润为1920元.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用一次函数求最值.例3、在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5)1)求这个二次函数的解析式;2)该男同学把铅球推出去多远?(精确到0.01米)解:(1)设二次函数的解析式为 y=ax^2+bx+c。
二次函数中考应用题大全

中考二次函数与实际问题大全利用二次函数解决实际问题关键是把实际问题转化为二次函数模型,有时要根据实际问题的情境建立平面直角坐标系,建立坐标系以简单为原则,例1写出下列各函数关系,并判断它们是什么类型的函数.①圆的面积y (cm 2)与它的周长x (cm )之间的函数关系;②某种储蓄的年利率是1.98%,存入10000元本金,若不计利息税,求本息和y (元)与所存年数x 之间的函数关系;③菱形的两条对角线的和为26cm ,求菱形的面积S (cm 2)与一对角线长x (cm )之间的函数关系.[例2]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少? (2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x ,∴521+-=x y ,x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S .练习 1 .某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.2练习2. 如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少? (2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由; 解:(1)设正方形的边长为cm ,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm ,盒子的侧面积为cm2,则与的函数关系式为:.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.例4一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到的最大高度是3.5米,然后准确落入篮圈,已知篮球中心到地面的距离为3.05米,①根据题意建立直角坐标系,并求出抛物线的解析式。
中考二次函数应用题(及答案解析)

中考二次函数应用题(及答案解析)二次函数应用题1.2022年2月,北京冬奥会成功举办,吉祥物纪念品等深受人们喜爱.某商店在冬奥会前购进数量相同的甲、乙两种纪念品,分别花费10400元,14000元,已知乙种纪念品比甲种纪念品每个进价多9元.(1)求甲、乙两种纪念品每个的进价.(2)经销中发现,甲种纪念品每个售价46元时,每天可售40个,乙种纪念品每个售价45元时,每天可售80个,商店决定甲种纪念品降价,乙种纪念品提价.结果甲种纪念品单价降1元可多卖4个,乙种纪念品单价提1元就少卖2个,若某天两种纪念品共销售140个,则这天最大利润是多少?2.2022年冬奥会成功在北京张家口举行,奥林匹克精神鼓舞了越来越多的年轻人从事冰雪运动,在长8m ,高6m 的斜面上,滑雪运动员P 从顶端腾空而起,最终刚好落在斜面底端,其轨迹可视为抛物线的一部分.按如图方式建立平面直角坐标系,设斜面所在直线的函数关系式为1y kx b =+,运动员轨迹所在抛物线的函数关系式为2214y ax x c =++,设运动员P 距离地面的高度为()m h ,腾空过程中离开斜面的距离为()m d ,回答下列问题:(1)分别求出1y 、2y 与x 之间的函数关系式;(2)求出d 的最大值和此时点P 的坐标.3.因为疫情,体育中考中考生进入考点需检测体温.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y (人)与时间x (分钟)的变化情况,数据如下: 时间x (分钟) 01 2 3 4 5 6 7 8 9 915x <≤ 人数y (人) 0 170 320 450 560 650 720 770 800 810 810 (1)研究表中数据发现9分钟内考生进入考点的累计人数是时间的二次函数,请求出9分钟内y 与x 之间的函数关系式.(2)如果考生一进考点就开始排队测量体温,体温检测点有2个,每个检测点每分钟检测20人,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?4.跳台滑雪是北京冬奥会的项目之一.某跳台滑雪训练场的横截面示意图如图并建立平面直角坐标系.抛物线2117:1126C y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出(即A 点坐标为(0,4)),滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到距A 处的水平距离为4米时,距图中水平线的高度为8米(即经过点(4,8)),求抛物线C 2的函数解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?5.冰墩墩(BingDwenDwen ).是2022年北京冬季奥运会的吉样物.它将银猫形象与富有超能量的冰晶外壳结合.头部外壳造型取自冰雪运动头盔.装饰彩色光环.整体形象酷似航天员.冬奥会期间.某商家开始古样物“冰墩墩“纪含品的销售.每个纪念品进价40元.规定销售单价不低于44元.且不高于52元.销售期间发现.当销售单价定为44元时.每天可出售300个.销售单价每上涨1元.每天销量减少10个.现商家决定提价销售.设每天销售量为y 个.销售单价为x 元(1)求当每个纪念品的销售单价是多少元时.商家每天获利2400元:(2)将纪念品的销售单价定为多少元时.商家每天销售纪念品获得的利润w 元最大?最大利润是多少元?6.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 7.嘉琪第一期培植盆景与花卉各40盆,售后统计,盆景的平均每盆利润是120元,花卉的平均每盆利润是15元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.嘉琪计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).(1)第二期盆景的数量为_________盆,花卉的数量为_________盆;(2)用含x 的代数式分别表示1W ,2W ;(3)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?8.某市政府大力扶持大学生创业,小明在政府的扶持下投资销售一种进价为每千克6元的农产品.销售过程中发现,每天的销售量y (千克)与销售单价x (元)之间满足一次函数关系,部分数据如下表所示,另外在销售过程中小明每天需要支付其他费用200元. 销售单价x (元/千克) 1011 销售量y (千克) 300 270(1)求y 与x 的函数关系式:(2)根据物价部门的规定,这种农产品的销售单价不得高于12元,那么如何定价才能使小明每天获得的纯利润最大?最大纯利润是多少元?9.为了优化人居环境、提升城市品质,某小区准备在空地上新建一个边长为8m 的正方形花坛;如图,该花坛由4块全等的小正方形组成.在小正方形ABCD 中,O 为对称中心,点E 、F 分别在AB 、AD 上,AE =AF ,G 、H 分别为BE 、DF 的中点.(1)设m AE x =,请用x 的代数式表示四边形OHFG 的面积S (单位:2m );(2)已知:小正方形ABCD 中,在△AFG 、四边形OHFG 内分别种植不同的花卉,每平方米的种植成本分别是80元、60元;其余部分种植草坪,每平方米的种植成本为95元.若另外的3块正方形区域也按相同方式种植,问:在这个花坛内种植花卉和草坪至少需要花费多少元?10.某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.经调查,若该商品每降价0.5元,每天可多销售4件,设每件商品的售价下降x 元,每天的销售利润为w 元.(1)求w 与x 的函数关系式;(2)每天要想获得510元的利润,每件应降价多少元?(3)每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?【参考答案】二次函数应用题1.(1)甲、乙两种纪念品每个进价分别为26元、35元(2)2000元【解析】【分析】(1)设甲种纪念品每个进价为m 元,则乙种纪念品每个进价为()9m +元,根据购进甲乙两种纪念品的数量相等列出方程即可求解;(2)设甲种纪念品每个降价x 元,则每天销售甲种纪念品()404x +个,进而每天销售乙种纪念品140(404)(1004)x x -+=-个,表示出乙种纪念品的单价提高了多少元,最后利用甲乙两种纪念品的利润和等于一天的总利润列出函数关系式求解即可.(1)解:设甲种纪念品每个进价为m 元,则乙种纪念品每个进价为()9m +元 由题意,得10400140009m m =+.解得26m =.经检验26m =是原方程的解.此时935m +=.即甲、乙两种纪念品每个进价分别为26元、35元.(2)解:设甲种纪念品每个降价x 元,则每天销售甲种纪念品()404x +个.进而每天销售乙种纪念品140(404)(1004)x x -+=-个.比原来销售80个少(420)x -个,因此乙种纪念品的单价提高了(210)x -元.设每天的销售毛利为y 元,则(4626)(404)[4535(210)](1004)y x x x x =--++-+--.整理,得212(10)2000(520)y x x =--+≤≤.当10x =时,y 取得最大值,最大值为2000.即这一天销售的最大利润是2000元.【点睛】本题考查了分式方程的应用及二次函数性质的应用求最大值问题,解题的关键是理解题意,找出题目中数量关系,列出方程或函数关系式.2.(1)1364y x =-+,2211684y x x =-++; (2)max 85d =m ,P (4,5) 【解析】【分析】(1)把点(8,0)和(0,6)分别代入直线的函数关系式1y kx b =+,运动员轨迹所在抛物线的函数关系式2214y ax x c =++,,进而得出答案; (2)设与抛物线2211684y x x =-++相切,且与1364y x =-+平行的直线:334y x h =-+,那么切点就是所求的点P ,直线1364y x =-+与直线334y x h =-+之间的距离就是所求的距离.(1)解:把点(8,0)和(6,0)代入直线 1y kx b =+得,806k b b +=⎧⎨=⎩ 解得346k b ⎧=-⎪⎨⎪=⎩ ∴1364y x =-+把点(8,0)和(6,0)代入抛物线2214y ax x c =++得, 210=8846a c c⎧⨯+⨯+⎪⎨⎪=⎩ 解得186a c ⎧=-⎪⎨⎪=⎩ ∴2211684y x x =-++ (2)解:设与抛物线2211684y x x =-++相切的直线为334y x h =-+, 联立2y 与3y 得:211684x x -++34x h =-+, 化简得:20168x x h ++-=- ∵抛物线2y 与直线3y 相切∴20168x x h ++-=-有两个相等的实数根 ∴ ∆=114()(8)08h -⨯-⨯-= 解得8h =∴3384y x =-+ 联立抛2y 和3y 解得:45x y =⎧⎨=⎩ 此时点P 的坐标为(4,5)如图,过点A 作AC ⊥直线3y ,垂足为点C ,∵ 直线AC 与直线1y 垂直且过点A (0,6)∴直线AC 的解析式为4463y x =+联立3y 和4y 得34384463y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩解得242518225x y ⎧=⎪⎪⎨⎪=⎪⎩∴ 点C 的坐标为(2425,18225) 线段AC 的长度就是所求的 d ,max 408255d ===. 【点睛】本题考查了一次函数和二次函数图像的综合题,解题的关键是数形结合,熟练掌握抛物线的三种解析式,特别是顶点式;还要注意当直线与抛物线相切时距离最大;两条直线互相垂直的直线:121k k =-.3.(1)210180y x x =-+(2)排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)2【解析】【分析】(1)利用待定系数法可求解析式;(2)设第x 分钟时的排队人数为w 人,由二次函数的性质和一次函数的性质可求当x =7时,w 的最大值=490,当9<x ≤15时,210≤w <450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m 个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.(1)根据表格中数据可知,当x =0时,y =0,∴二次函数的关系式可设为:y =ax 2+bx ,将()()1,1703450,,代入,得 17093450a b a b =⎧⎨=⎩++ 解得:10180a b =-⎧⎨=⎩, ∴9分钟内y 与x 之间的函数关系式()21018009y x x x =-≤≤+; (2)设第x 分钟时的排队人数为w 人,()810915y x =<≤由题意可得:w =y −40x =210140(09)81040(915)x x x x x ⎧-≤≤⎨-≤⎩+<, ①当0≤x ≤9时,w =−10x 2+140x =−10(x −7)2+490,∴当x =7时,w 的最大值=490,②当9<x ≤15时,w =810−40x ,w 随x 的增大而减小,∴210≤w <450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810−40x =0,解得:x =20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m 个检测点,由题意得:12×20(m +2)≥810,解得m ≥118, ∵m 是整数,∴m ≥118的最小整数是2, ∴一开始就应该至少增加2个检测点.【点睛】本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y 与x 之间的函数关系式是本题的关键.4.(1)213482y x x =-++ (2)运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.【解析】【分析】(1)根据题意将点(0,4)和(4,8)代入C 2:y =-18x 2+bx +c 求出b 、c 的值即可写出C 2的函数解析式;(2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1,解出m 即可. (1)由题意可知抛物线C 2:y =﹣18x 2+bx +c 过点(0,4)和(4,8),将其代入得: 2414488c b c =⎧⎪⎨-⨯++=⎪⎩, 解得:324b c ⎧=⎪⎨⎪=⎩,∴抛物线C 2的函数解析式为:213482y x x =-++; (2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得: ﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1, 整理得:(m ﹣12)(m +4)=0,解得:m 1=12,m 2=﹣4(舍去),故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米.【点睛】本题考查了二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.5.(1)50元(2)52元;2640元【解析】【分析】(1)根据题意直接写出y 与x 之间的函数关系式和自变量的取值范围,根据销售量×(售价-进价)=2400,解方程求出在自变量范围内的解即可;(2)根据销售利润=销售量×(售价-进价),列出平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.(1)解:由题意得:300104410740y x x =--=-+(), ∴y 与x 之间的函数关系式为107404452y x x =-+≤≤();当获利2400元时,由题意得:10740402400x x -+-=()(), 整理得:211432000x x -+=,解得:125064x x ==,,∵4452x ≤≤,∴50x =,∴当每个纪念品的销售单价是50元时,商家每天获利2400元;(2)根据题意得:2210740401011402960010572890w x x x x x =-+-=-+-=--+()()() ,∵-10<0,∴当57x <时,w 随x 的增大而增大,∵4452x ≤≤,∴当52x =时,w 有最大值,最大值为2640,∴将纪念品的销售单价定为52元时,商家每天销售纪念品获得的利润最大,最大利润是2640元.【点睛】本题考查了二次函数在实际生活中的应用以及一元二次方程的应用,最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在2b x a=-时取得. 6.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.7.(1)40x +,60x -(2)212404800W x x =-++,215900W x =-+(3)6x =时,W 最大,最大利润为5778元【解析】【分析】(1)根据第二期培植盆景与花卉共100盆,培植的盆景比第一期增加x 盆列式即可; (2)根据利润=平均利润×销售数量列式计算即可;(3)表示出总利润W ,根据二次函数的性质求出最大值即可.(1)解:由题意得:第二期盆景的数量为()40x +盆,则花卉的数量为()()1004060x x -+=-盆,故答案为:40x +,60x -;(2)解:由题意得:21(40)(1202)2404800W x x x x =+-=-++,()2156015900W x x =-=-+;(3)解:由题意得:22122404800159002255700W W W x x x x x -++--+=++=+=, ∵对称轴为254x =,而x 为正整数, ∴当6x =时,5778W =,当7x =时,5777W =,∵57785777>,∴6x =时,W 最大,最大利润为5778元.【点睛】本题主要考查了二次函数的应用,找到合适的数量关系列出算式是解题的关键. 8.(1)y =-30x +600(2)当销售单价定为12元时,小明每月获得的纯利润最大,最大纯利润是1240元【解析】【分析】(1)根据待定系数法设y =kx +b (k ≠0),代入数值组成二元一次方程组求解即可;(2)设每天获得的纯利润为W 元,可列出二次函数表达式,根据二次函数的性质可得.(1)解:设y =kx +b (k ≠0)根据题意得:10+=30011+=270k b k b ⎧⎨⎩, 解得:=-30=600k b ⎧⎨⎩∴y =-30x +600(2)解:设每天获得的纯利润为W 元,根据题意得:W =(-30x +600)(x -6) -200=-30x 2+780x -3800=-30(x -13)2+1270∵-30<0∴抛物线开口向下∵抛物线对称轴为x =13,销售单价不得高于12元∴当x ≤12时,W 随x 的增大而增大∴当x =12时,W 有最大值,W 最大值=-30× (12-13)2+1270=1240 (元)答:当销售单价定为12元时,小明每月获得的纯利润最大,最大纯利润是1240元【点睛】本题考查的是求一次函数的解析式和二次函数的应用,学会用待定系数法求解析式和求最大值是解题的关键.9.(1)21=44S x -+ (2)5475元【解析】【分析】(1)分别计算出AGF 和四边形AGOH 的面积即可得到答案;(2)首先计算出正方形ABCD 中种草坪部分的面积,再根据题意可用x 表示出总共的花费,最后根据二次函数的性质即得出答案.(1)解:∵AE x =,4AB =∴4BE x =-, ∴122EG BG x ==-, ∴112222AG AE EG x x x =+=+-=+, ∴2111()224122AGF AG A S F x x x x =⋅=⨯=++. ∵O 为对称中心,∴O 到AD 的距离等于O 到AB 的距离等于422=, ∴1=22242AGO AHO AGO AGOH S S G x S S A +==⋅⋅⨯+=四边形 ∴2211=4()444A OH GF AG S S x Sx x x -=+-+=-+四边形; (2) 解:在正方形ABCD 中,种植草坪的面积为221144()(4)1244AGF ABCD S S x S x x x --=⨯-+--+=-正方形, ∴在正方形ABCD 中,需要费用为2221180()60(4)95(12)515138044x x x x x x ++-++-=-+, ∴在这个花坛内种植花卉和草坪需要花费2224(5151380)2060552020(3)5475x x x x x -+=-+=-+.∴当3x =时,在这个大正方形花坛内种植花卉和草坪所需的总费用最低,为5475元.【点睛】本题考查了二次函数的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出等式.10.(1)w =−8x 2+32x +480;(2)每件商品应降价2.5元;(3)每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.【解析】【分析】(1)设每件商品应降价x 元,由每件利润×销售数量=每天获得的利润可列出关于x 的关系式;(2)根据题意列出一元二次方程,解方程可得答案;(3)把w 关于x 的函数解析式配方成顶点式,再利用二次函数的性质可得答案.(1)解:由题意得w =(40−30−x )(4×0.5x +48)=−8x 2+32x +480, 答:w 与x 的函数关系式是w =−8x 2+32x +480;(2)解:由题意得,510=−8x 2+32x +480,解得:x 1=1.5,x 2=2.5,所以为尽快减少库存每件商品应降价2.5元;答:每天要想获得510元的利润,每件应降价2.5元.(3)解:∵w =−8x 2+32x +480=−8(x −2)2+512,∴当x =2时,w 有最大值512,此时售价为40−2=38(元),答:每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.【点睛】此题主要考查了二次函数的应用,一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.。
中考二次函数应用题(附答案解析)

中考二次函数应用题(附答案解析)二次函数应用题1.某商场销售一种小商品,进货价为8元/件,当售价为10元/件时,每天的销售量为100件.在销售过程中发现:销售单价每上涨1元,每天的销售量就减少10件.设销售单价为x (元/件)(10x ≥的整数),每天销售利润为y (元). (1)求y 与x 的函数关系式,并写出x 的取值范围;(2)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润y 的取值范围.2.东东在网上销售一种成本为30元/件的T 恤衫.销售过程中的其他各种费用(不再含T 恤衫成本)总计50(百元).若销售价格为x (元/件).销售量为y (百件).当4060x ≤≤时,y 与x 之间满足一次函数关系.且当40x =时,6y =,有关销售量y (百件)与销售价格x (元/件)的相关信息如下: 销售量y (百件) _____________ 240y x =销售价格x (元/件)4060x ≤≤6080x ≤≤(1)求当4060x ≤≤时.y 与x 的函数关系式:(2)①求销售这种T 恤衫的纯利润w (百元)与销售价格x (元/件)的函数关系式; ②销售价格定为每件多少元时.获得的利润最大?最大利润是多少?3.跳台滑雪是北京冬奥会的项目之一.某跳台滑雪训练场的横截面示意图如图并建立平面直角坐标系.抛物线2117:1126C y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出(即A 点坐标为(0,4)),滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到距A 处的水平距离为4米时,距图中水平线的高度为8米(即经过点(4,8)),求抛物线C 2的函数解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?4.某商店销售一种商品,童威经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w (元)的三组对应值如表:售价x(元/件)607080周销售量y(件)1008060周销售利润w(元)200024002400【注:周销售利润=周销售量×(售价﹣进价)】(1)①直接写出:此商品进价元,y关于x的函数解析式是.(不要求写出自变量的取值范围)②当售价是多少元/件时,周销售利润最大,并求出最大利润.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过70元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1600元,求m的值.5.为了“创建文明城市,建设美丽家园”,青春科技生态有限公司种植和销售一种有机绿色草皮.已知该草皮的成本是15元/2m,规定销售价格不低于成本,又不高于成本的两y与销售价格x(元/2m)的函数关系如图倍.经市场调查发现,某天该草皮的销售量()2m所示.(1)求y与x间的函数解析式;(2)求这一天销售草皮获得的利润w的最大值;(3)若该公司按每销售21m草皮提取1元用于捐资助学,且保证捐款后每天的销售利润不低于7200元,直接写出该草皮销售价格的范围.6.某数学兴趣小组对函数y=|x2+2x|的图象和性质进行了探究,探究过程如下所示,其中自变量x取全体实数,x与y的几组对应值如表所示.x﹣4﹣3﹣2﹣10123 y8m0n03815(1)根据如表数据填空:m = ,n = ;(2)在如图所示的平面直角坐标系中描点,并用平滑的曲线将函数图象补充完整; (3)观察该函数的图象,解决下列问题. ①该函数图象与直线y =12的交点有 个; ②若y 随x 的增大而减小,求此时x 的取值范围;③在同一平面内,若直线y =x +b 与函数y =|x 2+2x |的图象有a 个交点,且a ≥3,求b 的取值范围.7.某公司分别在A ,B 两城生产同种产品,共100件.A 城生产产品的成本y (万元)与产品数量x (件)之间具有函数关系220100y x x =++,B 城生产产品的每件成本为60万元.(1)当A 城生产多少件产品时,A ,B 两城生产这批产品成本的和最小,最小值是多少? (2)从A 城把该产品运往C ,D 两地的费用分别为1万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件.C 地需要90件,D 地需要10件,在(1)的条件下,怎样调运可使A ,B 两城运费的和最小?8.某商店购进一批进价为40元/件的日用商品,第一个月,按进价提高50%的价格出售,售出600件;第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y (件)与销售单价x (元)的关系如图所示.(1)请直接写出y 与x 之间的函数表达式: ;自变量x 的取值范围为 ; (2)第二个月的销售单价定为多少元时,可获得最大利润?最大利润是多少?9.“互联网+”时代,网上购物备受消费者青睐.某网店销售某种儿童玩具,如果每件利润为30元,每天可售出40件.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每天可多销售2件.设销售单价降价x 元,每天售出y 件. (1)请写出y 与x 之间的函数表达式;(2)当销售单价降低多少元时,该网店每天销售这种玩具可获利润1248元?(3)当销售单价降低多少元时,该网店每天销售这种玩具获得的利润最大,最大利润是多少?10.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么一个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价为多少元时,才能在一个月内获得最大利润?【参考答案】二次函数应用题1.(1)2102801600y x x =-+- (10x ≥的整数) (2)200360y ≤≤ 【解析】 【分析】(1)销售单价为x 元/件时,每件的利润为(8)x -元,此时销量为[10010(10)]x --,由此计算每天的利润y 即可;(2)首先求出利润不超过100%时的销售单价的范围,且每天的进货总成本不超过800元,再结合(1)的解析式,利用二次函数的性质求解即可. (1)解:(1)根据题意得: (8)[10010(10)]y x x =--- 整理,得 2102801600y x x =-+-(10x ≥的整数) (2)解:∵每件小商品的利润不超过100%,∴8100%8x -⨯≤, ∴16x ≤,∵每天进货总成本不超过800元, ∴[100(10)10]8800x --⨯⨯≤, ∴10x ≥, ∴1016x ≤≤,∵2210280160010(14)360y x x x =-+-=--+, 当14x =时,有360y =最大值当10x =时,有210(1014)360200y =-⨯-+=最小值,∴小商品每天销售利润y 的取值范围是:200360y ≤≤ 【点睛】本题考查二次函数的实际应用问题,准确表示出题中的数量关系,熟练运用二次函数的性质求解是解题关键. 2.(1)0.110y x =-+(2)①当4060x ≤≤时,20.113350=-+-w x x ;当6080x <≤时,7200190=-+w x; ②销售价格定为80元/件时,获得的利润最大,最大利润是100百元 【解析】 【分析】(1)把把60x =代入240y x=得4y =,设y 与x 的函数关系式为:y =kx +b ,把x =40,y =6;x =60,y =4,代入解方程组即可得到结论;(2)①根据x 的范围分类讨论,由“总利润=单件利润×销售量”可得函数解析式; ②结合①中两个函数解析式,分别依据二次函数的性质和反比例函数的性质求其最值即可. (1)解:把60x =代入240y x=得4y =. 设y 与x 的函数关系式为:y kx b =+, ∵当40x =时,6y =,当60x =时,4y =,∴406604k b k b +=⎧⎨+=⎩, 解得:0.110k b =-⎧⎨=⎩,∴y 与x 的函数关系式为:0.110y x =-+. (2)①当4060x ≤≤时,()()2300.110500.113350w x x x x =--+-=-+-;当6080x <≤时,()24072003050190w x x x=-⋅-=-+; ②当4060x ≤≤时,()220.1133500.16572.5w x x x =-+-=--+, ∵4060,65,x x ω≤≤≤随x 的增大而增大. ∴当60,70x w ==最大 (百元). 当6080x ≤≤时,7200190xω=-+ ∵72000-<,∴w 随x 的增大而增大,当80x =时,100w =最大 (百元).答:销售价格定为80元/件时,获得的利润最大,最大利润是100百元. 【点睛】本题主要考查二次函数和反比例函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和反比例函数的性质是解题的关键.3.(1)213482y x x =-++(2)运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米. 【解析】 【分析】(1)根据题意将点(0,4)和(4,8)代入C 2:y =-18x 2+bx +c 求出b 、c 的值即可写出C 2的函数解析式;(2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1,解出m 即可.(1)由题意可知抛物线C 2:y =﹣18x 2+bx +c 过点(0,4)和(4,8),将其代入得:2414488c b c =⎧⎪⎨-⨯++=⎪⎩, 解得:324b c ⎧=⎪⎨⎪=⎩, ∴抛物线C 2的函数解析式为:213482y x x =-++;(2)设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为1米,依题意得:﹣18m 2+32m +4﹣(﹣112m 2+76m +1)=1,整理得:(m ﹣12)(m +4)=0, 解得:m 1=12,m 2=﹣4(舍去),故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米. 【点睛】本题考查了二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.4.(1)①40,y =﹣2x +220;②当售价是75元/件时,周销售利润最大,最大利润是2450元;(2)销售最大利润是1600元时,m 的值为10. 【解析】 【分析】(1)①该商品进价等于周销售利润除以周销售量,再减去进价;设y 关于x 的函数解析式为y =kx +b ,用待定系数法求解即可;②根据周销售利润=周销售量×(售价-进价),列出w 关于x 的二次函数,根据二次函数的性质可得答案;(2)根据周销售利润=周销售量×(售价-进价),列出w 关于x 的二次函数,根据题意及二次函数的性质得出取得最大利润时的售价,再列出关于m 的方程,求解即可. (1)解:(1)①该商品进价是60﹣2000÷100=40(元/件);设y 关于x 的函数解析式为y =kx +b ,将(60,100),(70,80)分别代入得:100608070k bk b =+⎧⎨=+⎩, 解得:k =﹣2,b =220.∴y 关于x 的函数解析式为y =﹣2x +220; 故答案为:40,y =﹣2x +220;②由题意得:w =y (x ﹣40)=(﹣2x +220)(x ﹣40)=﹣2x 2+300x ﹣8800=﹣2(x ﹣75)2+2450,∵二次项系数﹣2<0,抛物线开口向下,∴当售价是75元/件时,周销售利润最大,最大利润是2450元; (2)解∶ 由题意得:w =(﹣2x +220)(x ﹣40﹣m ) =﹣2x 2+(300+2m )x ﹣8800﹣220m ,∵二次项系数﹣2<0,抛物线开口向下,对称轴为:300217542m x m +=-=+-, 又∵x ≤70,∴当x <7512m +时,w 随x 的增大而增大,∴当x =70时,w 有最大值:(﹣2×70+220)(70﹣40﹣m )=1600, 解得:m =10.∴周销售最大利润是1600元时,m 的值为10. 【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键. 5.(1)()()200580015258002530x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩(2)最大值为12000元 (3)2030x ≤≤ 【解析】 【分析】(1)根据图象中的点,待定系数法求解析式即可;(2)根据(1)的解析式,分1525≤≤x ,2530x <≤,两种情况列出w 的解析式,根据二次函数和一次函数的性质分别求得最大值;(3)根据二次函数的性质解不等式求得当1525≤≤x 时的定价范围,解一元一次不等式求得当2530x <≤时的定价范围.(1)解:根据函数图像可知,当2530x <≤时,800y =, 当1525≤≤x 时,设y kx b =+ 将()()15,2800,25,800代入得,28001580025k bk b =+⎧⎨=+⎩ 解得2005800k b =-⎧⎨=⎩2005800y x ∴=-+综上所述,()()200580015258002530x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩(2)当1525≤≤x 时,()()()215152005800200880087000w x y x x x x =-=--+=-+-对称轴为8800222400b a --==- 22x ∴=时,w 最大,2max 20022880022870009800w =-⨯+⨯-=当2530x <≤时,()1580080012000w x x =-⨯=-当30x =时,取得最大值,最大值为12000元 综上所述,最大值为12000元 (3)①当1525≤≤x 时,()()()2151162005800200900092800w x y x x x x =--=--+=-+-当22009007209002800x x -+-= 解得:1220,25x x == ∴定价为2025x ≤≤②当2530x <≤时,()()151158007200w x y x =--=-⨯≥解得25x ≥∴定价范围为2030x ≤≤【点睛】本题考查了一次函数的应用,二次函数的应用,一元一次不等式的应用,根据题意列出函数关系式是解题的关键. 6.(1)3;1 (2)见解析(3)①4;②x ≤-2或-1≤x ≤0;③2≤b ≤94【解析】【分析】(1)分别把x=-3和x=-1代入函数解析式求出结果;(2)根据表格,利用描点、连线画出函数图象;的图象,观察交点个数得出结果;(3)①画出y=12②观察函数图象得出结果;③利用一元二次方程根的判别式计算即可.(1)解:当x=-3时,m=|x2+2x|=|9-6|=3,当x=-1时,m=|1-2|=|-1|=1,故答案为3,1;(2)如图;(3)①由图象知图象与直线y=1有4个交点,2故答案为4;②由图象知,当x≤-2或-1≤x≤0时,图象从左到右逐渐下降,故若y随x的增大而减小,此时x的取值范围x≤-2或-1≤x≤0;③由题意可得,3≤a≤4.当直线y=x+b过点(-2,0)和点(-1,1)时,该直线与函数y=|x2+2x|的图象有三个交点,此时b=2;由图象可得在-2≤x≤-1段的函数解析式为y=-x2-2x,令x+b=-x2-2x,整理得x2+3x+b=0. 当该段函数图象与直线y=x+b有交点时,判别式为9-4b≥0,∴b≤94.综上,b的取值范围是2≤b≤94.【点睛】本题考查画函数图象以及利用函数图象解决问题,数形结合思想的应用是解决问题的关键.7.(1)A城生产20件,最小值是5700万元;(2)从A城把该产品运往C地的产品数量为20件,则从A城把该产品运往D地的产品数量为0件;从B城把该产品运往C地的产品数量为70件,则从B城把该产品运往D地的产品数量为10件时,可使A,B两城运费的和最小.【解析】【分析】(1)设A,B两城生产这批产品的总成本的和为W(万元),则W等于A城生产产品的总成本加上B城生产产品的总成本,由此可列出W关于x的二次函数,将其写成顶点式,根据二次函数的性质可得答案;(2)设从A城把该产品运往C地的产品数量为n件,分别用含n的式子表示出从A城把该产品运往D地的产品数量、从B城把该产品运往C地的产品数量及从B城把该产品运往D地的产品数量,再列不等式组求得n的取值范围,然后用含n的式子表示出A,B两城总运费之和P ,根据一次函数的性质可得答案.(1)解:设A ,B 两城生产这批产品的总成本的和为W (万元),则22010060(100)W x x x =+++-2406100x x =-+2(20)5700x =-+,∴当20x时,W 取得最小值,最小值为5700万元, ∴城生产20件,A ,B 两城生产这批产品成本的和最小,最小值是5700万元;(2) 设从A 城把该产品运往C 地的产品数量为n 件,则从A 城把该产品运往D 地的产品数量为(20)n -件,从B 城把该产品运往C 地的产品数量为(90)n -件,则从B 城把该产品运往D 地的产品数量为(1020)n -+件,运费的和为P (万元),由题意得:20010200n n -⎧⎨-+⎩, 解得1020n ,3(20)(90)2(1020)P n n n n =+-+-+-+60390220n n n n =+-+-+-2130n n =-+130n =-+,根据一次函数的性质可得:P 随n 增大而减小,∴当20n =时,P 取得最小值,最小值为110,∴从A 城把该产品运往C 地的产品数量为20件,则从A 城把该产品运往D 地的产品数量为0件;从B 城把该产品运往C 地的产品数量为70件,则从B 城把该产品运往D 地的产品数量为10件时,可使A 、B 两城运费的和最小.【点睛】本题考查了二次函数和一次函数在实际问题中的应用,解题的关键是理清题中的数量关系并熟练掌握一次函数和二次函数的性质.8.(1)y =-20x +1800,60≤x ≤90(2)第二个月的销售单价定为65元/件时,可获得最大利润,最大利润是12500元【解析】【分析】(1)利用待定系数法求解即可;(2)根据总利润=单件利润乘以销售量,列出函数解析式,根据二次函数的性质求解即可.(1)第一个月该商品的售价为40×(1+50%)=60(元),设y 与x 之间的函数解析式为y =kx +b ,将点(60,600),(70,400)代入y =kx +b 中,得6006040070k b k b=+⎧⎨=+⎩, 解得201800k b =-⎧⎨=⎩, ∴y 与x 之间的函数解析式为y =-20x +1800;当y =0时,x =90,∴自变量x 的取值范围为60≤x ≤90;故答案为:y =-20x +1800;60≤x ≤90;(2)设第二个月的利润为w 元,由题意得,24040201()()()8002(0651250)0w x y x x x =-=-=+--+-.∵200-<,∴当x =65时,w 的最大值为12500.∴第二个月的销售单价定为65元/件时,可获得最大利润,最大利润是12500元.【点睛】本题主要考查了二次函数及一次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式,并根据题意确定等量关系,列出函数解析式.9.(1)402y x =+(2)当销售单价降低4元或6元时,该网店每天销售这种玩具可获利润1248元;(3)当销售单价降低5元时,该网店每天销售这种玩具获得的利润最大,最大利润是1250元.【解析】【分析】(1)根据销售单价每降1元,则每天可多销售2件.即可列出关于x 、y 的等式,即得出y 与x 之间的函数表达式;(2)根据题意可列出关于x 的一元二次方程,解出x 即得出答案;(3)设最大利润为w 元,根据题意可得出w 与x 的关系为二次函数关系,再根据二次函数的性质解题即可.(1)根据题意可列出等式:402y x =+.故y 与x 之间的函数表达式为402y x =+;(2)根据题意可列方程:(30)(402)1248x x -+=,解得:1246x x ==,.故当销售单价降低4元或6元时,该网店每天销售这种玩具可获利润1248元;(3)设最大利润为w 元,根据题意得:2(30)(402)2(5)1250w x x x =-+=--+∵20-<,∴当5x =时,w 有最大值,max 1250w =.故当销售单价降低5元时,该网店每天销售这种玩具获得的利润最大,最大利润是1250元.【点睛】本题考查一次函数、二次函数的实际应用,一元二次方程的实际应用.根据题意找出等量关系,列出等式是解题关键.10.售价为35元时,才能在一个月内获得最大利润【解析】【分析】设销售单价为x 元,月销售利润为y 元,根据月销售利润=单件利润×月销量,求得函数关系式,利用二次函数的性质即可解决问题.【详解】解:设销售单价为x 元,销售利润为y 元,依题意得,单件利润为(20)x -元,月销量为[]40020(30)x --件,月销售利润[](20)40020(30)y x x =---,整理得220140020000y x x =-+-,配方得220(35)4500y x =--+,所以35x =时,y 取得最大值4500.故售价为35元时,才能在一个月内获得最大利润,最大利润为4500元.【点睛】本题考查了二次函数的实际应用,解题的关键是能够根据题意构建二次函数解决最值问题.。
九年级数学二次函数应用题专题复习

二次函数应用题专题复习含答案例1、实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y毫克/百毫升与时间x时的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后包括1.5小时y与x可近似地用反比例函数y=k>0刻画如图所示.1根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值最大值为多少②当x=5时,y=45,求k的值.2按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班请说明理由.例2、2016•葫芦岛某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y本与每本纪念册的售价x元之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.1请直接写出y与x的函数关系式;2当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元3设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大最大利润是多少例3、某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1元/台与采购数量x1台满足y1=﹣20x1+15000<x1≤20,x1为整数;冰箱的采购单价y2元/台与采购数量x2台满足y2=﹣10x2+13000<x2≤20,x2为整数.1经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案2该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在1的条件下,问采购空调多少台时总利润最大并求最大利润.例4、九年级3班数学兴趣小组经过市场调查整理出某种商品在第x天1≤x≤90,且x为整数的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y单位:元/件,每天的销售量为p单位:件,每天的销售利润为w单位:元.时间x天 1 30 60 90 每天销售量p件198 140 80 201求出w与x的函数关系式;2问销售该商品第几天时,当天的销售利润最大并求出最大利润;3该商品在销售过程中,共有多少天每天的销售利润不低于5600元请直接写出结果.例5、2016•绥化自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为0,0和5,0.画出二次函数y=x2﹣5x的大致图象如图所示,由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:1上述解题过程中,渗透了下列数学思想中的和.只填序号①转化思想②分类讨论思想③数形结合思想2一元二次不等式x2﹣5x<0的解集为.3用类似的方法解一元二次不等式:x2﹣2x﹣3>0.例6、2016•黄石科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间分钟,纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.1请写出图中曲线对应的函数解析式;2为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟对应练习:1.一个小球被抛出后,如果距离地面的高度h米和运行时间t秒的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是A.1米B.3米C.5米D.6米2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y单位:万元与销售量x 单位:辆之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为A.30万元B.40万元C.45万元D.46万元3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的A.第9.5秒B.第10秒C.第10.5秒D.第11秒4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x 轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为A.y=x+32B.y=x+32C.y=x﹣32 D.y=x﹣325.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度hm与飞行时间ts的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为A.2s B.4s C.6s D.8s6一小球被抛出后,距离地面的高度h米和飞行时间t秒满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是A.2米B.5米C.6米D.14米7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度hm与飞行时间ts的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为A.3s B.4s C.5s D.6s8.某车的刹车距离ym与开始刹车时的速度xm/s之间满足二次函数y=x>0,若该车某次的刹车距离为5m,则开始刹车时的速度为A.40 m/s B.20 m/s C.10 m/s D.5 m/s9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶拱桥洞的最高点离水面2米,水面下降1米时,水面的宽度为_________米.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣x﹣62+4,则选取点B为坐标原点时的抛物线解析式是_________.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元20≤x≤30,且x为整数出售,可卖出30﹣x件.若使利润最大,每件的售价应为_________元.12.在平面直角坐标系中,点A、B、C的坐标分别为0,1、4,2、2,6.如果Px,y是△ABC围成的区域含边界上的点,那么当w=xy取得最大值时,点P的坐标是_________.13.如图,小李推铅球,如果铅球运行时离地面的高度y米关于水平距离x米的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w元与降价x元的函数关系如图.这种工艺品的销售量为_________件用含x的代数式表示.15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.1若公司每天的现售价为x元时则每天销售量为多少2如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元16.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y千克与销售价x元/千克之间的函数关系如图所示:1求y与x之间的函数关系式,并写出自变量x的取值范围;2求每天的销售利润W元与销售价x元/千克之间的函数关系式.当销售价为多少时,每天的销售利润最大最大利润是多少3该经销商想要每天获得150元的销售利润,销售价应定为多少17.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=x﹣602+m部分图象如图所示,当x=40时,两组材料的温度相同.1分别求y A、y B关于x的函数关系式;2当A组材料的温度降至120℃时,B组材料的温度是多少3在0<x<40的什么时刻,两组材料温差最大18.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.1求出每天的销售利润y元与销售单价x元之间的函数关系式;2求出销售单价为多少元时,每天的销售利润最大最大利润是多少3如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内每天的总成本=每件的成本×每天的销售量19.某种商品每天的销售利润y元与销售单价x元之间满足关系:y=ax2+bx﹣75.其图象如图所示.1销售单价为多少元时,该种商品每天的销售利润最大最大利润为多少元2销售单价在什么范围时,该种商品每天的销售利润不低于16元参考答案与点评例1、实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y毫克/百毫升与时间x时的关系可近似地用二次函数y=﹣200x2+400x刻画;1.5小时后包括1.5小时y与x可近似地用反比例函数y=k>0刻画如图所示.1根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值最大值为多少②当x=5时,y=45,求k的值.2按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班请说明理由.考点:二次函数的应用;反比例函数的应用分析:1①利用y=﹣200x2+400x=﹣200x﹣12+200确定最大值;②直接利用待定系数法求反比例函数解析式即可;2求出x=11时,y的值,进而得出能否驾车去上班.解答:解:1①y=﹣200x2+400x=﹣200x﹣12+200,∴喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;②∵当x=5时,y=45,y=k>0,∴k=xy=45×5=225;2不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=,则y=>20,∴第二天早上7:00不能驾车去上班.例2、2016•葫芦岛某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y本与每本纪念册的售价x元之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.1请直接写出y与x的函数关系式;2当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元3设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大最大利润是多少分析1设y=kx+b,根据题意,利用待定系数法确定出y与x的函数关系式即可;2根据题意结合销量×每本的利润=150,进而求出答案;3根据题意结合销量×每本的利润=w,进而利用二次函数增减性求出答案.解答解:1设y=kx+b,把22,36与24,32代入得:,解得:,则y=﹣2x+80;2设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意得:x﹣20y=150,则x﹣20﹣2x+80=150,整理得:x2﹣60x+875=0,x﹣25x﹣35=0,解得:x1=25,x2=35不合题意舍去,答:每本纪念册的销售单价是25元;3由题意可得:w=x﹣20﹣2x+80=﹣2x2+120x﹣1600=﹣2x﹣302+200,此时当x=30时,w最大,又∵售价不低于20元且不高于28元,∴x<30时,y随x的增大而增大,即当x=28时,w最大=﹣228﹣302+200=192元,答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.点评此题主要考查了二次函数的应用以及一元二次方程的应用、待定系数法求一次函数解析式等知识,正确利用销量×每本的利润=w得出函数关系式是解题关键.例3、某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1元/台与采购数量x1台满足y1=﹣20x1+15000<x1≤20,x1为整数;冰箱的采购单价y2元/台与采购数量x2台满足y2=﹣10x2+13000<x2≤20,x2为整数.1经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案2该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在1的条件下,问采购空调多少台时总利润最大并求最大利润.考点:二次函数的应用;一元一次不等式组的应用.菁优网分析:1设空调的采购数量为x台,则冰箱的采购数量为20﹣x台,然后根据数量和单价列出不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;2设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式并整理成顶点式形式,然后根据二次函数的增减性求出最大值即可.解答:解:1设空调的采购数量为x台,则冰箱的采购数量为20﹣x台,由题意得,,解不等式①得,x≥11,解不等式②得,x≤15,所以,不等式组的解集是11≤x≤15,∵x为正整数,∴x可取的值为11、12、13、14、15,所以,该商家共有5种进货方案;2设总利润为W元,y2=﹣10x2+1300=﹣1020﹣x+1300=10x+1100,则W=1760﹣y1x1+1700﹣y2x2,=1760x﹣﹣20x+1500x+1700﹣10x﹣110020﹣x,=1760x+20x2﹣1500x+10x2﹣800x+12000,=30x2﹣540x+12000,=30x﹣92+9570,当x>9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W最大值=3015﹣92+9570=10650元,答:采购空调15台时,获得总利润最大,最大利润值为10650元.点评:本题考查了二次函数的应用,一元一次不等式组的应用,1关键在于确定出两个不等关系,2难点在于用空调的台数表示出冰箱的台数并列出利润的表达式.例4、九年级3班数学兴趣小组经过市场调查整理出某种商品在第x天1≤x≤90,且x为整数的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y单位:元/件,每天的销售量为p单位:件,每天的销售利润为w单位:元.时间x天 1 30 60 90 每天销售量p件198 140 80 201求出w与x的函数关系式;2问销售该商品第几天时,当天的销售利润最大并求出最大利润;3该商品在销售过程中,共有多少天每天的销售利润不低于5600元请直接写出结果.分析1当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50<x≤90时,y=90.再结合给定表格,设每天的销售量p 与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;2根据w关于x的函数关系式,分段考虑其最值问题.当1≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50<x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;3令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.解答解:1当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+bk、b为常数且k≠0,∵y=kx+b经过点0,40、50,90,∴,解得:,∴售价y与时间x的函数关系式为y=x+40;当50<x≤90时,y=90.∴售价y与时间x的函数关系式为y=.由数据可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+nm、n为常数,且m≠0,∵p=mx+n过点60,80、30,140,∴,解得:,∴p=﹣2x+2000≤x≤90,且x为整数,当1≤x≤50时,w=y﹣30•p=x+40﹣30﹣2x+200=﹣2x2+180x+2000;当50<x≤90时,w=90﹣30﹣2x+200=﹣120x+12000.综上所示,每天的销售利润w与时间x的函数关系式是w=.2当1≤x≤50时,w=﹣2x2+180x+2000=﹣2x﹣452+6050,∵a=﹣2<0且1≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.3当1≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,解得:30≤x≤50,50﹣30+1=21天;当50<x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,解得:50<x≤53,∵x为整数,∴50<x≤53,53﹣50=3天.综上可知:21+3=24天,故该商品在销售过程中,共有24天每天的销售利润不低于5600元.点评本题考查了二次函数的应用、一元一次不等式的应用、一元二次不等式的应用以及利用待定系数法求函数解析式,解题的关键:1根据点的坐标利用待定系数法求出函数关系式;2利用二次函数与一次函数的性质解决最值问题;3得出关于x的一元一次和一元二次不等式.本题属于中档题,难度不大,但较繁琐,解决该题型题目时,根据给定数量关系,找出函数关系式是关键.例5、2016•绥化自主学习,请阅读下列解题过程.解一元二次不等式:x2﹣5x>0.解:设x2﹣5x=0,解得:x1=0,x2=5,则抛物线y=x2﹣5x与x轴的交点坐标为0,0和5,0.画出二次函数y=x2﹣5x的大致图象如图所示,由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5x>0,所以,一元二次不等式x2﹣5x>0的解集为:x<0,或x>5.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:1上述解题过程中,渗透了下列数学思想中的①和③.只填序号①转化思想②分类讨论思想③数形结合思想2一元二次不等式x2﹣5x<0的解集为0<x<5.3用类似的方法解一元二次不等式:x2﹣2x﹣3>0.分析1根据题意容易得出结论;2由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,即可得出结果;3设x2﹣2x﹣3=0,解方程得出抛物线y=x2﹣2x﹣3与x轴的交点坐标,画出二次函数y=x2﹣,2x﹣3的大致图象,由图象可知:当x<﹣1,或x>5时函数图象位于x轴上方,此时y>0,即x2﹣5=2x﹣3>0,即可得出结果.解答解:1上述解题过程中,渗透了下列数学思想中的①和③;故答案为:①,③;2由图象可知:当0<x<5时函数图象位于x轴下方,此时y<0,即x2﹣5x<0,∴一元二次不等式x2﹣5x<0的解集为:0<x<5;故答案为:0<x<5.3设x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴抛物线y=x2﹣2x﹣3与x轴的交点坐标为3,0和﹣1,0.画出二次函数y=x2﹣2x﹣3的大致图象如图所示,由图象可知:当x<﹣1,或x>3时函数图象位于x轴上方,此时y>0,即x2﹣2x﹣3>0,∴一元二次不等式x2﹣2x﹣3>0的解集为:x<﹣1,或x>3.点评本题考查了二次函数与不等式组的关系、二次函数的图象、抛物线与x轴的交点坐标、一元二次方程的解法等知识;熟练掌握二次函数与不等式组的关系是解决问题的关键.例6、2016•黄石科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间分钟,纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.1请写出图中曲线对应的函数解析式;2为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟分析1构建待定系数法即可解决问题.2先求出馆内人数等于684人时的时间,再求出直到馆内人数减少到624人时的时间,即可解决问题.解答解1由图象可知,300=a×302,解得a=,n=700,b×30﹣902+700=300,解得b=﹣,∴y=,2由题意﹣x﹣902+700=684,解得x=78,∴=15,∴15+30+90﹣78=57分钟所以,馆外游客最多等待57分钟.点评本题考查二次函数的应用、一元二次方程等知识,解题的关键是熟练掌握待定系数法,学会用方程的思想思考问题,属于中考常考题型.反馈练习参考答案与试题解析一.选择题共8小题1.一个小球被抛出后,如果距离地面的高度h米和运行时间t秒的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是A.1米B.3米C.5米D.6米考点:二次函数的应用.分析:直接利用配方法求出二次函数最值进而求出答案.解答:解:h=﹣5t2+10t+1=﹣5t2﹣2t+1=﹣5t﹣12+6,故小球到达最高点时距离地面的高度是:6m.故选:D.点评:此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y单位:万元与销售量x 单位:辆之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为A.30万元B.40万元C.45万元D.46万元考点:二次函数的应用.分析:首先根据题意得出总利润与x之间的函数关系式,进而求出最值即可.解答:解:设在甲地销售x辆,则在乙地销售15﹣x量,根据题意得出:W=y1+y2=﹣x2+10x+215﹣x=﹣x2+8x+30,∴最大利润为:==46万元,故选:D.点评:此题主要考查了二次函数的应用,得出函数关系式进而利用最值公式求出是解题关键.3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的A.第9.5秒B.第10秒C.第10.5秒D.第11秒考点:二次函数的应用.分析:根据题意,x=7时和x=14时y值相等,因此得到关于a,b的关系式,代入到x=﹣中求x的值.解答:解:当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=﹣21a,根据二次函数的对称性及抛物线的开口向下,当x=﹣=10.5时,y最大即高度最高.因为10最接近10.5.故选:C.点评:此题主要考查了二次函数的应用,根据对称性看备选项中哪个与之最近得出结论是解题关键.4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x 轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为A.y=x+32B.y=x+32C.y=x﹣32D.y=x﹣32考点:二次函数的应用.专题:应用题.分析:利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为1,1,由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为﹣3,0,于是得到右边抛物线的顶点C 的坐标为3,0,然后设顶点式利用待定系数法求抛物线的解析式.解答:解:∵高CH=1cm,BD=2cm,而B、D关于y轴对称,∴D点坐标为1,1,∵AB∥x轴,AB=4cm,最低点C在x轴上,∴AB关于直线CH对称,∴左边抛物线的顶点C的坐标为﹣3,0,∴右边抛物线的顶点C的坐标为3,0,设右边抛物线的解析式为y=ax﹣32,把D1,1代入得1=a×1﹣32,解得a=,故右边抛物线的解析式为y=x﹣32.故选C.点评:本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.5.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度hm与飞行时间ts的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为A.2s B.4s C.6s D.8s考点:二次函数的应用.分析:礼炮在点火升空到最高点处引爆,故求h的最大值.解答:解:由题意知礼炮的升空高度hm与飞行时间ts的关系式是:,∵<0∴当t=4s时,h最大为40m,故选B.点评:本题考查二次函数的实际应用,借助二次函数解决实际问题.6.一小球被抛出后,距离地面的高度h米和飞行时间t秒满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是A.2米B.5米C.6米D.14米考点:二次函数的应用.分析:把二次函数的解析式化成顶点式,即可得出小球距离地面的最大高度.解答:解:h=﹣5t2+20t﹣14=﹣5t2﹣4t﹣14=﹣5t2﹣4t+4+20﹣14=﹣5t﹣22+6,﹣5<0,则抛物线的开口向下,有最大值,当t=2时,h有最大值是6米.故选:C.点评:本题考查了二次函数的应用以及配方法求二次函数最值,把函数式化成顶点式是解题关键.7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度hm与飞行时间ts的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为A.3s B.4s C.5s D.6s考点:二次函数的应用.专题:计算题;应用题.分析:到最高点爆炸,那么所需时间为﹣.解答:解:∵礼炮在点火升空到最高点引爆,∴t=﹣=﹣=4s.故选B.点评:考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.8.某车的刹车距离ym与开始刹车时的速度xm/s之间满足二次函数y=x>0,若该车某次的刹车距离为5m,则开始刹车时的速度为A.40 m/s B.20 m/s C.10 m/s D. 5 m/s考点:二次函数的应用.专题:应用题.分析:本题实际是告知函数值求自变量的值,代入求解即可,另外实际问题中,负值舍去.。
中考必练二次函数综合应用题(带答案)

中考必练二次函数综合应用题(带答案)二次函数应用题1.某果农在销瓯柑时,经市场调査发现:瓯柑若售价为5元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设瓯柑售价为x元/千克(x≥5且为正整数).(1)若某日销售量为24千克,求该日瓯柑的单价;(2)若政府将销售价格定为不超过15元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过350元,并且只有5种不同的单价使日收入不少于340元,请直按写出所有符合题意的a的值.2.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查,在一段时间内,销售单价是40元,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.x>),请你分别用x的代数式来表示销售(1)不妨设该种品牌玩具的销售单价为x元(40量y件和销售该品牌玩具获得利润ω元.(2)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?3.某地草莓已经到了收获季节,已知草莓的成本价为10元/千克,投入市场销售后,发现该草莓销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围.(2)若产量足够,当该品种的草莓定价为多少时,每天销售获得的利润最大?最大利润是多少?4.某服装厂批发应季T恤衫,其单价y(元)与一次批发数量x(件)(x为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 5.问题提出(1)如图①,在矩形ABCD 中,4AB =,6BC =,点F 是AB 的中点,点E 在BC 上,2BE EC =,连接FE 并延长交DC 的延长线于点G ,求CG 的长;问题解决(2)如图②,某生态农庄有一块形状为平行四边形ABCD 的土地,其中4km AB =,6km BC =,60B ∠=︒.管理者想规划出一个形状为EMP 的区域建成亲子采摘中心,根据设计要求,点E 是AD 的中点,点P 、M 分别在BC 、AB 上,PM AB ⊥.设BP 的长为(km)x ,EMP 的面积为y 2(km ).①求y 与x 之间的函数关系式;②为容纳更多的游客,要求EMP 的面积尽可能的大,请求出EMP 面积的最大值,并求出此时BP 的长.6.某公司分别在A ,B 两城生产同种产品,共100件.A 城生产产品的成本y (万元)与产品数量x (件)之间具有函数关系220100y x x =++,B 城生产产品的每件成本为60万元.(1)当A 城生产多少件产品时,A ,B 两城生产这批产品成本的和最小,最小值是多少?(2)从A 城把该产品运往C ,D 两地的费用分别为1万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件.C 地需要90件,D 地需要10件,在(1)的条件下,怎样调运可使A ,B 两城运费的和最小?7.安徽省在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y (万元)与年产量x (万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额-生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围):并求年产量多少万件时,所获毛利润最大(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润8.某商场销售一款服装,经市场调查发现,每月的销售量y(件)与销售单价x(元/件)之间的函数关系如表格所示.同时,商场每出售1件服装,还要扣除各种费用150元.销售单价x(元/件)260240220销售量y(件)637791(1)求y与x之间的函数关系式;(2)当销售单价为多少元时,商场每月能够获得最大利润?最大利润是多少?(3)4月底,商场还有本款服装库存580件.若按(2)中获得最大月利润的方式进行销售,到12月底商场能否销售完这批服装?请说明理由.9.某商店购进一批成本为每件30元的商品,销售单价为40元时,每天销售量为80件,经调查发现,销售单价每上涨1元,每天销售量减少2件.设该商品每天的销售量y (件)与销售单价x(元).(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)求当销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?(3)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(4)若商店要使销售该商品每天获得的利润不低于800元,试利用函数图象确定销售单价最多为多少元?10.某商场将进价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至70元范围内,这种台灯的售价每上涨1元,其销售量就减少10个.为了实现每月获得最大的销售利润,这种台灯的售价应定为多少?最大利润为多少元?【参考答案】二次函数应用题1.(1)10元/千克(2)2244w x x =-+(515x ≤≤,且x 为正整数)最大值是242元,最小值为170元(3)106 107 108【解析】【分析】(1)根据售价每提高1元/千克,日销售量就减少2千克,且某日销售量为24千克,列方程可解答;(2)根据题意,利用销售额等于销售量乘以销售单价,列出函数关系式,根据二次函数的性质及配方法可求得答案;(3)由题意得:2340244350x x a ≤-++≤,由二次函数的对称性可知x 的取值为9,10,11,12,13,从而计算可得a 值.(1)解:根据题意得342524x --=(), 解得10x =.答:该日瓯柑的单价是10元/千克;(2)解:根据题意得222342524422212112121124]2[w x x x x x x x =--=-+=--+-=--+()()(),由题意得515x ≤≤,且x 为正整数,∵20-< ,∴11x =时,w 有最大值是242元,∵11-5=6,15-11=4,抛物线开口向下,∴5x =时,w 有最小值是22511242170--+=()元;则w 关于x 的函数表达式为:23425244[]w x x x x =--=-+()(515x ≤≤,且x 为正整数);(3)解:由题意得2340244350x x a ≤-++≤,∵只有5种不同的单价使日收入不少于340元,5为奇数,∴由二次函数的对称性可知,x 的取值为9,10,11,12,13当9x =或13时,2244234x x -+=;当10x =或12时,2244240x x -+=,当11x =时,2244242x x -+=.∵补贴后不超过350元,234+106=340,242+108=350,∴当106a =或107或108时符合题意.答:所有符合题意的a 值为:106,107,108.【点睛】本题主要考查二次函数的应用.得到每天可售出的千克数是解决本题的突破点;本题需注意x 的取值应为整数.解题的关键是熟练掌握待定系数法求函数解析式、根据销售额的相等关系列出函数解析式及二次函数的性质.2.(1)y=1000−10x ,w =−10x 2+1300x −30000;(2)商场销售该品牌玩具获得的最大利润为8640元.【解析】【分析】(1)由销售单价每涨1元,就会少售出10件玩具,得y =600−(x −40)×10=1000−10x ,利润w =(1000−10x )(x −30)=−10x 2+1300x −30000;(2)首先求出x 的取值范围,然后把w =−10x 2+1300x −30000转化成y =−10(x −65)2+12250,结合x 的取值范围,求出最大利润.(1)解:由题意得:销售量y=600−(x −40)×10=1000−10x ,销售玩具获得利润w =(1000−10x )(x −30)=−10x 2+1300x −30000;(2)解:根据题意得10001054045x x -≥⎧⎨≥⎩, 解之得:45≤x ≤46,w =−10x 2+1300x −30000=−10(x −65)2+12250,∵a =−10<0,对称轴是直线x =65,∴当45≤x ≤46时,w 随x 增大而增大.∴当x =46时,w 最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.【点睛】本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.3.(1)10300y x =-+,1030x ≤≤;(2)当该品种的草莓定价为20元时,每天销售获得的利润最大,为1000元.【解析】【分析】(1)由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系,设y kx b =+,将(10,200),(15,150)代入解析式求解即可;(2)设利润为w 元,求得w 与x 的关系式,然后利用二次函数的性质求解即可.(1)解:由图象可知每天销售量y (千克)与销售单价x (元/千克)之间是一次函数的关系, 设y kx b =+,将(10,200),(15,150)代入解析式,可得1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩ 即10300y x =-+,由题意可得,10x ≥,103000x -+≥,解得1030x ≤≤即10300y x =-+,1030x ≤≤,(2)解:设利润为w 元,则2(10)(10300)104003000w x x x x =--+=-+-,∵100-<,开口向下,对称轴为20x,1030x ≤≤ ∴当20x时,w 有最大值,为1000元,【点睛】此题考查了一次函数与二次函数的应用,解题的关键是掌握二次函数的性质,理解题意,找到题中的等量关系,正确列出函数关系式.4.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)一次批发250件时,获得的最大利润为6250元【解析】【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答.(1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70; 综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩ (2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+=()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元.【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键.5.(1)1CG =(2)①2311388y x x =-+;②EMP 面积的最大值为21213km 32,此时BP 的长为11km 2 【解析】【分析】(1)证明FEB GEC △∽△,依据相似三角形的性质进行求解即可;(2)①分点P 在点H 左侧和右侧两种情况讨论求解即可;②由二次函数的性质可得解.(1)在矩形ABCD 中,90ABC BCD BCG ∠=∠=∠=︒,∵FEB GEC ∠=∠,∴FEB GEC △∽△,∴BF BE CG CE =, ∵4AB =,6BC =,点F 是AB 的中点,2BE EC =,∴2BF =,4BE =,2CE =,∴242CG =, ∴1CG =.(2)①过点E 作EH //AB 交BC 于点H ,交射线MP 于点G ,易得四边形ABHE 是平行四边形, ∴4EH AB ==.∵EH //AB ,PM AB ⊥,∴60PHG B ∠=∠=︒,EG PM ⊥,即EG 是PME △边MP 上的高.∵点E 是AD 的中点,∴3BH AE ==.如图1-1,当点P 在点H 左侧时,3PH x =-,∴1322x HG PH -==, ∴311422x x EG EH HG --=+=+=. 如图1-2,当点P 在点H 右侧时,3PH x =-,∴1322x HG PH -==, ∴311422x x EG EH HG --=-=-=, ∴PME △的边MP 上的高112x EG -=. 在Rt MBP 中,3sin 60x MP BP =⋅︒=∴2113113113222x x y MP EG x -=⋅==. ②)222311333111213112y x x x x ⎫==-=-⎪⎝⎭ ∴当112x =时,1213y =最大 ∴EMP 21213,此时BP 的长为11km 2. 【点睛】 本题是一道相似形的综合题,考查了全等三角形的判定及性质,相似三角形的判定及性质,三角函数值的运用.在解答时添加辅助线构建全等形和相似形是关键.6.(1)A 城生产20件,最小值是5700万元;(2)从A 城把该产品运往C 地的产品数量为20件,则从A 城把该产品运往D 地的产品数量为0件;从B 城把该产品运往C 地的产品数量为70件,则从B 城把该产品运往D 地的产品数量为10件时,可使A ,B 两城运费的和最小.【解析】【分析】(1)设A ,B 两城生产这批产品的总成本的和为W (万元),则W 等于A 城生产产品的总成本加上B 城生产产品的总成本,由此可列出W 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案;(2)设从A 城把该产品运往C 地的产品数量为n 件,分别用含n 的式子表示出从A 城把该产品运往D 地的产品数量、从B 城把该产品运往C 地的产品数量及从B 城把该产品运往D 地的产品数量,再列不等式组求得n 的取值范围,然后用含n 的式子表示出A ,B 两城总运费之和P ,根据一次函数的性质可得答案.(1)解:设A ,B 两城生产这批产品的总成本的和为W (万元),则22010060(100)W x x x =+++-2406100x x =-+2(20)5700x =-+,∴当20x时,W 取得最小值,最小值为5700万元, ∴城生产20件,A ,B 两城生产这批产品成本的和最小,最小值是5700万元;(2) 设从A 城把该产品运往C 地的产品数量为n 件,则从A 城把该产品运往D 地的产品数量为(20)n -件,从B 城把该产品运往C 地的产品数量为(90)n -件,则从B 城把该产品运往D 地的产品数量为(1020)n -+件,运费的和为P (万元),由题意得:20010200n n -⎧⎨-+⎩, 解得1020n ,3(20)(90)2(1020)P n n n n =+-+-+-+60390220n n n n =+-+-+-2130n n =-+130n =-+,根据一次函数的性质可得:P 随n 增大而减小,∴当20n =时,P 取得最小值,最小值为110,∴从A 城把该产品运往C 地的产品数量为20件,则从A 城把该产品运往D 地的产品数量为0件;从B 城把该产品运往C 地的产品数量为70件,则从B 城把该产品运往D 地的产品数量为10件时,可使A 、B 两城运费的和最小.【点睛】本题考查了二次函数和一次函数在实际问题中的应用,解题的关键是理清题中的数量关系并熟练掌握一次函数和二次函数的性质.7.(1)21(0100)10y x x =≤≤,130(0100)10z x x =-+≤≤; (2)21(75)1125(0100)5W x x =--+≤≤,年产量75万件时,所获毛利润最大; (3)今年最多可获得1080万元的毛利润【解析】【分析】(1)利用待定系数法可求出y 与x 以及z 与x 之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额-生产费用,可得出w 与x 之间的函数关系式; (3)首先求出x 的取值范围,再利用二次函数增减性得出答案即可.(1)解:设y 与x 之间的函数关系式为2y ax =,21000100a =⨯,得110a =, 即y 与x 之间的函数关系式为21(0100)10y x x =≤≤; 设z 与x 的函数关系式为z kx b =+,3010020b k b =⎧⎨+=⎩,得1,1030k b ⎧=-⎪⎨⎪=⎩ 即z 与x 的函数关系式为130(0100)10z x x =-+≤≤; (2)解:由题意可得, 2211130(75)112510105W zx y x x x x ⎛⎫=-=-+-=--+ ⎪⎝⎭, 即W 与x 之间的函数关系式为21(75)1125(0100)5W x x =--+≤≤, ∵21(75)11255W x =--+, ∴当75x =时,W 取得最大值,此时1125W =,即年产量75万件时,所获毛利润最大;(3)解:∵今年投入生产的费用不会超过360万元,∴360y ≤,令y =360,得2136010x =, 解得:x =±60(负值舍去),由图象可知,当0<y ≤360时,0<x ≤60, ∵21(75)11255W x =--+, ∴当60x =时,W 取得最大值,此时1080W =,即今年最多可获得1080万元的毛利润.【点睛】本题考查了二次函数的应用及一次函数的应用,解题的关键是利用待定系数法求函数解析式,注意培养自己利用数学知识解决实际问题的能力,难度一般.8.(1)724510y x =-+ (2)当售价为250元时,商场每月所获利润最大,最大利润为7000元(3)不能,理由见解析【解析】【分析】(1)根据表格数据判断为一次函数,设y kx b =+,用待定系数法求出解析时; (2)利润=单件利润⨯销售数量,化简为二次函数的顶点式,根据函数性质判断; (3)计算按(2)中获得最大月利润的方式进行销售时的数量,与580比较.(1)解:由表格可知,此函数为一次函数,故设y kx b =+;则有24077{22091k b k b +=+=, 解得710245k b ⎧=-⎪⎨⎪=⎩, 724510y x ∴=-+; (2)设销售利润为w 元,由题意得:7(150)(245)10w x x =--+ 273503675010x x =-+- 27(250)700010x =--+ 7010a =-<, w ∴有最大值,∴当250x =时,w 取最大值,7000w =最大,答:当售价为250元时,商场每月所获利润最大,最大利润为7000元;(3)当250x =时,70y =(件),70(124)560580⨯-=<,∴12月底不能销售完这批服装.【点睛】本题考查一次函数和二次函数的实际应用,解题关键用待定系数法求出一次函数解析式,注意二次函数最值讨论时,一般整理成顶点式,再通过看a 值确定最大值或最小值. 9.(1)y =-2x +160(2)定价为55元时,每天的销售利润有最大值为1250(3)销售单价定为50元时,该超市每天的利润最大,最大利润1200元(4)70元【解析】【分析】(1)根据题意可得y 与x 的关系式;(2)由题意得w =(x -30)(-2x +160)=-2(x -55)2+1250,即可求解;(3)根据二次函数的关系式和单价的取值范围可得最大利润;(4)由题意可得:(x -30)(-2x +160)=800,再根据函数的图象可得答案.(1)依题意得,y =80-2(x -40)=-2x +160;(2)由题意得:2(30)(2160)2(55)1250w x x x =--+=--+,20-<,∴当55x =时,w 有最大值,此时,1250w =,(3)20-<,故当55x <时,w 随x 的增大而增大,而3050x ≤≤,∴当50x =时,w 有最大值,此时,1200w =,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(4)由题意得:(30)(2160)800x x --+≥,解得:4070x ≤≤,∴销售单价最多为70元.【点睛】此题主要考查了二次函数的应用,正确利用销量×每件的利润=w 得出函数关系式是解题关键.10.这种台灯的售价应定为65元时,最大利润为12250元.【解析】【分析】设这种台灯应涨价x 元,那么就少卖出10x 个,根据“总利润=每个台灯的利润×销售量”列出函数解析式,最后运用二次函数求最值即可.【详解】解:设售价为x 元,根据题意得:()()()2306001040106512250W x x x =---=--+⎡⎤⎣⎦,∴当x =65时,12250y =最大,答:这种台灯的售价应定为65元时,最大利润为12250元.【点睛】本题主要考查二次函数的应用,根据“总利润=每个台灯的利润×销售量”列出函数解析式是解答本题的关键.。
中考数学总复习《二次函数的实际应用》专项测试卷带答案

中考数学总复习《二次函数的实际应用》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】1.如图1,质量为m的小球从某高处由静止开始下落到竖直放置的轻弹簧上并压缩弹簧(已知自然状态下,弹簧的初始长度为12cm).从小球刚接触弹簧到将弹簧压缩至最短的过程中(不计空气阻力,弹簧在整个过程中始终发生弹性形变),得到小球的速度v( cm/s)和弹簧被压缩的长度Δl(cm)之间的关系图象如图2所示.根据图象,下列说法正确的是( )A.小球从刚接触弹簧就开始减速B.当弹簧被压缩至最短时,小球的速度最大C.当小球的速度最大时,弹簧的长度为2 cmD.当小球下落至最低点时,弹簧的长度为6 cm2.在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点)处.小球在空中所经过的路线是抛物线y=-x2+bx的一部分.则抛物线最高点A(3,32的坐标是.3.(2024·自贡中考)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE=6.6 m,OE=1.4 m,OB=6 m,OC=5 m,OD=3 m,班长买来可切断的围栏16 m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是m2.4.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=-5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t 秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是;当2≤t≤3时,w的取值范围是.5.(2024·广东中考)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外,若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.6.端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽的进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.【B层·能力提升】7.(2024·黔南一模)如图1是某公园喷水头喷出的水柱.如图2是其示意图,点O处有一个喷水头,距离喷水头8 m的M处有一棵高度是2.3 m的树,距离这棵树10 m 的N处有一面高2.2 m的围墙(点O,M,N在同一直线上).建立如图2所示的平面直角坐标系.已知浇灌时,喷水头喷出的水柱的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a<0).某次喷水浇灌时,测得x与y的几组数据如表:x02610121416y00.882.162.802.882.802.56(1)根据上述数据,求这些数据满足的函数关系式.(2)判断喷水头喷出的水柱能否越过这棵树,并请说明理由.(3)在另一次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y与水平距离x近似满足函数关系y=-0.04x2+bx.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,求出b的取值范围.8.(2024·无锡模拟)某服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y (百件)与时间(t 为整数,单位:天)的函数关系为:y 1=-15t 2+6t ,网上商店的日销售量(百件)与时间(t 为整数,单位:天)的部分对应值如图所示.(1)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(2)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大?并求出此时的最大值.9.(2024·扬州模拟)如图,某跳水运动员在10米跳台上进行跳水训练,水面边缘点E 的坐标为(-1,-10),运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为(34,916),正常情况下,运动员在距水面高度5米之前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误,运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式,并求出入水处点B的坐标.(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为4米,问该运动员此次跳水会不会失误?通过计算说明理由.10.(2024·泰州一模)制作简易水流装置设计方案如图,CD是进水通道,AB是出水通道,OE是圆柱形容器的底面直径,从CD将圆柱形容器注满水,内部安装调节器,水流从B处流出且呈抛物线形.以点O为坐标原点,EO所在直线为x轴,OA所在直线为y轴建立平面直角坐标系xOy,水流最终落到x轴上的点M处.示意图已知AB∥x轴,AB=5 cm,OM=15 cm,点B为水流抛物线的顶点,点A,B,O,E,M在同一平面内,水流所在抛物线的函数表达式为y=ax2+bx+15(a≠0)任务一求水流抛物线的函数表达式;任务二现有一个底面半径为3 cm,高为11 cm的圆柱形水杯,将该水杯底面圆的圆心恰好在M处,水流是否能流到圆柱形水杯内?请通过计算说明理由.(圆柱形水杯的厚度忽略不计)任务三还是任务二的水杯,水杯的底面圆的圆心P在x轴上运动,为了使水流能流到圆柱形水杯内,直接写出OP长的取值范围.请根据活动过程完成任务一、任务二和任务三.【C层·素养挑战】11.(2024·吉林中考)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x的值为-2时,输出y的值为1;输入x的值为2时,输出y的值为3;输入x的值为3时,输出y的值为6.(1)直接写出k,a,b的值.(2)小明在平面直角坐标系中画出了关于x的函数图象,如图(2).Ⅰ.当y随x的增大而增大时,求x的取值范围.Ⅱ.若关于x的方程ax2+bx+3-t=0(t为实数),在0<x<4时无解,求t的取值范围.Ⅲ.若在函数图象上有点P,Q(P与Q不重合).P的横坐标为m,Q的横坐标为-m+1.小明对P,Q之间(含P,Q两点)的图象进行研究,当图象对应函数的最大值与最小值均不随m的变化而变化时,直接写出m的取值范围.参考答案【A层·基础过关】1.(2024·遵义红花岗一模)如图1,质量为m的小球从某高处由静止开始下落到竖直放置的轻弹簧上并压缩弹簧(已知自然状态下,弹簧的初始长度为12cm).从小球刚接触弹簧到将弹簧压缩至最短的过程中(不计空气阻力,弹簧在整个过程中始终发生弹性形变),得到小球的速度v( cm/s)和弹簧被压缩的长度Δl(cm)之间的关系图象如图2所示.根据图象,下列说法正确的是(D)A.小球从刚接触弹簧就开始减速B.当弹簧被压缩至最短时,小球的速度最大C.当小球的速度最大时,弹簧的长度为2 cmD.当小球下落至最低点时,弹簧的长度为6 cm2.(2024·青海中考改编)在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点A(3,32)处.小球在空中所经过的路线是抛物线y=-x2+bx的一部分.则抛物线最高点的坐标是(74,4916).3.(2024·自贡中考)九(1)班劳动实践基地内有一块面积足够大的平整空地,地上两段围墙AB⊥CD于点O(如图),其中AB上的EO段围墙空缺.同学们测得AE= 6.6 m,OE=1.4 m,OB=6 m,OC=5 m,OD=3 m,班长买来可切断的围栏16 m,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是46.4m2.4.距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=-5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t 秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是0≤w≤5;当2≤t≤3时,w的取值范围是5≤w≤20.5.(2024·广东中考)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外,若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.【解析】设该果商定价x万元时每天的“利润”为w万元w=(x-2)[100+50(5-x)]=-50(x-4.5)2+312.5∵-50<0∴w随x的增大而减小∴当x=4.5时,w有最大值,最大值为312.5万元.答:该果商定价为4.5万元时才能使每天的“利润”或“销售收入”最大,其最大值为312.5万元.6.端午节吃粽子是中华民族的传统习俗,市场上猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽的进价为100元.(1)求每盒猪肉粽和豆沙粽的进价;(2)在销售中,某商家发现当每盒猪肉粽售价为50元时,每天可售出100盒,若每盒售价提高1元,则每天少售出2盒.设每盒猪肉粽售价为a元,销售猪肉粽的利润为w元,求该商家每天销售猪肉粽获得的最大利润.【解析】(1)设每盒猪肉粽的进价为x元,每盒豆沙粽的进价为y元由题意得{x-y=10x+2y=100,解得{x=40 y=30∴每盒猪肉粽的进价为40元,每盒豆沙粽的进价为30元;(2)w=(a-40)[100-2(a-50)]=-2(a-70)2+1 800,∵-2<0,∴当a=70时,w有最大值,最大值为1 800元.∴该商家每天销售猪肉粽获得的最大利润为1 800元.【B层·能力提升】7.(2024·黔南一模)如图1是某公园喷水头喷出的水柱.如图2是其示意图,点O处有一个喷水头,距离喷水头8 m的M处有一棵高度是2.3 m的树,距离这棵树10 m 的N处有一面高2.2 m的围墙(点O,M,N在同一直线上).建立如图2所示的平面直角坐标系.已知浇灌时,喷水头喷出的水柱的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a<0).某次喷水浇灌时,测得x与y的几组数据如表:x02610121416y00.882.162.802.882.802.56(1)根据上述数据,求这些数据满足的函数关系式.(2)判断喷水头喷出的水柱能否越过这棵树,并请说明理由.(3)在另一次喷水浇灌时,已知喷水头喷出的水柱的竖直高度y与水平距离x近似满足函数关系y=-0.04x2+bx.假设喷水头喷出的水柱能够越过这棵树,且不会浇到墙外,求出b的取值范围.【解析】(1)由题意,根据抛物线过原点,设抛物线解析式为y =ax 2+bx 把x =2,y =0.88和x =6,y =2.16代入y =ax 2+bx 得:{4a +2b =0.8836a +6b =2.16解得{a =-0.02b =0.48∴抛物线解析式为y =-0.02x 2+0.48x. (2)由题意,当x =8时,y =-0.02×82+0.48×8=2.56. ∵2.56>2.3∴喷水头喷出的水柱能越过这棵树. (3)∵喷水头喷出的水柱能够越过这棵树 ∴当x =8时,y >2.3 即-0.04×82+8b >2.3 ∴b >243400∵喷水头喷出的水柱不会浇到墙外 ∴当x =18时,y <2.2 即-0.04×182+18b <2.2,∴b <379450抛物线对称轴为x =-b2×(-0.04)=b2×0.04∵喷水头喷出的水柱能够越过这棵树,且不会浇到墙外 ∴对称轴所在直线在围墙与喷水头中点的左侧. ∴b 2×0.04<182=9,∴b <1825.∴243400<b <1825.8.(2024·无锡模拟)某服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y (百件)与时间(t 为整数,单位:天)的函数关系为:y 1=-15t 2+6t ,网上商店的日销售量(百件)与时间(t 为整数,单位:天)的部分对应值如图所示.(1)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(2)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大?并求出此时的最大值. 【解析】(1)当0≤t ≤10时,设y 2=kt ∵(10,40)在其图像上,∴10k =40,∴k =4 ∴y 2与t 的函数关系式为y 2=4t ; 当10≤t ≤30时,设y 2=mt +n 将(10,40),(30,60)代入得{10m +n =4030m +n =60,解得{m =1n =30∴y 2与t 的函数关系式为y 2=t +30综上所述,y 2与t 的函数关系式为y 2={4t (0≤t ≤10且为整数)t +30(10<t ≤30且为整数);(2)依题意得y =y 1+y 2,当0≤t ≤10时,y =-15t 2+6t +4t =-15t 2+10t =-15(t -25)2+125,∴t =10时,y最大=80;当10<t ≤30时,y =-15t 2+6t +t +30=-15t 2+7t +30=-15(t -352)2+3654∵t 为整数,∴t =17或18时,y 最大=91.2∵91.2>80,∴当t =17或18时,日销售总量y 达到最大,最大值为91.2百件.9.(2024·扬州模拟)如图,某跳水运动员在10米跳台上进行跳水训练,水面边缘点E 的坐标为(-1,-10),运动员(将运动员看成一点)在空中运动的路线是经过原点O 的抛物线.在跳某个规定动作时,运动员在空中最高处A 点的坐标为(34,916),正常情况下,运动员在距水面高度5米之前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误,运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式,并求出入水处点B 的坐标. (2)若运动员在空中调整好入水姿势时,恰好距点E 的水平距离为4米,问该运动员此次跳水会不会失误?通过计算说明理由. 【解析】∵运动员在空中最高处A 点的坐标为(34,916),∴A 点为抛物线的顶点,∴设该抛物线的解析式为y =a (x -34)2+916∵该抛物线经过点(0,0),∴916a =-916∴a =-1∴抛物线的解析式为y =-(x -34)2+916=-x 2+32x. ∵跳水运动员在10米跳台上进行跳水训练 ∴令y =-10,则-x 2+32x =-10∴x =4或x =-52,∴B (4,-10);(2)该运动员此次跳水不会失误,理由:∵运动员在空中调整好入水姿势时,恰好距点E 的水平距离为4米,点E 的坐标为(-1,-10),∴运动员在空中调整好入水姿势时的点的横坐标为3当x=3时,y=-32+3×32=-92∴运动员距水面高度为10-92=5.5(米)∵5.5>5,∴该运动员此次跳水不会失误.10.(2024·泰州一模)制作简易水流装置设计方案如图,CD是进水通道,AB是出水通道,OE是圆柱形容器的底面直径,从CD将圆柱形容器注满水,内部安装调节器,水流从B处流出且呈抛物线形.以点O为坐标原点,EO所在直线为x轴,OA所在直线为y轴建立平面直角坐标系xOy,水流最终落到x轴上的点M处.示意图已知AB∥x轴,AB=5 cm,OM=15 cm,点B为水流抛物线的顶点,点A,B,O,E,M在同一平面内,水流所在抛物线的函数表达式为y=ax2+bx+15(a≠0)任务一求水流抛物线的函数表达式;任务二现有一个底面半径为3 cm,高为11 cm的圆柱形水杯,将该水杯底面圆的圆心恰好在M处,水流是否能流到圆柱形水杯内?请通过计算说明理由.(圆柱形水杯的厚度忽略不计)任务还是任务二的水杯,水杯的底面圆的圆心P在x轴上运动,为了使水流能流到圆柱形水杯内,直接写出OP长的取值范围.三请根据活动过程完成任务一、任务二和任务三.【解析】任务一:∵AB∥x轴,AB=5 cm,点B为水流抛物线的顶点,∴抛物线的对称轴为x=5.∴-b=5.∴b=-10a.2a把点M(15,0)代入抛物线y=ax2+bx+15得:15a+b+1=0把b=-10a代入15a+b+1=0 得:15a-10a+1=0,解得a=-1,∴b=25x2+2x+15.∴水流抛物线的函数表达式为y=-15任务二:圆柱形水杯最左端到点O的距离是15-3=12,当x=12时×122+2×12+15=10.2,∵11>10.2y=-15∴水流不能流到圆柱形水杯内.任务三:2+3√5<OP<8+3√5.【C层·素养挑战】11.(2024·吉林中考)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x的值为-2时,输出y的值为1;输入x的值为2时,输出y的值为3;输入x的值为3时,输出y的值为6.(1)直接写出k,a,b的值.(2)小明在平面直角坐标系中画出了关于x的函数图象,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程ax 2+bx +3-t =0(t 为实数),在0<x <4时无解,求t 的取值范围. Ⅲ.若在函数图象上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为-m +1.小明对P ,Q 之间(含P ,Q 两点)的图象进行研究,当图象对应函数的最大值与最小值均不随m 的变化而变化时,直接写出m 的取值范围. 【解析】(1)∵x =-2<0 ∴将x =-2,y =1代入y =kx +3 得-2k +3=1,解得k =1. ∵x =2>0,x =3>0∴将x =2,y =3,x =3,y =6代入 y =ax 2+bx +3得{4a +2b +3=39a +3b +3=6,解得{a =1b =-2. (2)Ⅰ.∵k =1,a =1,b =-2∴一次函数解析式为y =x +3,二次函数解析式为y =x 2-2x +3. 当x >0时,y =x 2-2x +3,对称轴为直线x =1,开口向上 ∴当x ≥1时,y 随x 的增大而增大; 当x ≤0时,y =x +3,k =1>0∴当x ≤0时,y 随x 的增大而增大. 综上,x 的取值范围为x ≤0或x ≥1.Ⅱ.∵ax 2+bx +3-t =0∴ax 2+bx +3=t 在0<x <4时无解∴问题转化为抛物线y =x 2-2x +3与直线y =t 在0<x <4时无交点.∵对于y=x2-2x+3,当x=1时,y=2∴顶点为(1,2),如图:∴当t=2时,抛物线y=x2-2x+3与直线y=t在0<x<4时正好有一个交点;当t<2时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点.当x=4时,y=16-8+3=11∴当t≥11时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点∴当t<2或t≥11时,抛物线y=x2-2x+3与直线y=t在0<x<4时没有交点即当t<2或t≥11时,关于x的方程ax2+bx+3-t=0(t为实数),在0<x<4时无解.Ⅲ.∵x P=m,x Q=-m+1∴m+(-m+1)2=1 2∴点P,Q关于直线x=12对称.当x=1时,y最小值=1-2+3=2,当x=0时,y最大值=3.∵图象对应函数的最大值与最小值均不随m的变化而变化,而当x=2时,y=3,当x=-1时,y=2∴①当m>12时,如图:由题意得{-1≤-m+1≤01≤m≤2∴1≤m≤2;时,如图:②当m<12由题意得{-1≤m≤01≤-m+1≤2∴-1≤m≤0.综上,-1≤m≤0或1≤m≤2.。
2023年中考数学 二次函数实际应用问题 函数综合 专项练习(无答案)

【二次函数实际应用题+函数综合】专项练习1.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)13610…日销售量(m件)198194188180…②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<5050≤x≤90销售价格(元/件)x+60100(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.2.在平面直角坐标系中,已知抛物线y=x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点D为该抛物线的顶点,设点E(m,0)(m>2),如果△BDE和△CDE的面积相等,求E点坐标.3.某花木公司生产的花卉产品年产量为6万件,每年可通过在网上销售和批发部销售全部售完.该花卉产品平均每件产品的利润与销售的关系如表:销售量(万件)平均每件产品的利润(元)网上销售x当0<x≤2时,y1=140当2≤x<6时,y1=﹣5x+150批发部销售n当0<n≤2时,y2=120当2≤n<6时,y2=﹣5n+130(1)①当网上销售量为4.2万件时,y1=;y2=②y2与x的函数关系为:当0<x≤时,y2=;当≤x<6时,y2=120.(2)求每年该公司销售这种花卉产品的总利润w(万元)与网上销售数量x(万件)的函数关系式,并指出x的取值范围;(3)该公司每年网上、批发部的销售量各为多少万件时,可使公司每年的总利润最大?最大值为多少万元?4.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(﹣,3 ),AB=2,AD=3.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数y=(x>0)的图象上,得矩形A'B'C'D'.求矩形ABCD的平移距离m和反比例函数的解析式.5.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a (x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?6.如图,直线y=k1x+b1与反比例函数y=的图象及坐标轴依次相交于A、B、C、D四点,且点A坐标为(﹣3,),点B坐标为(1,n).(1)求反比例函数及一次函数的解析式;(2)求证:AC=BD;(3)若将一次函数的图象上下平移若干个单位后得到y=k1x+n,其与反比例函数图象及两坐标轴的交点仍然依次为A、B、C、D.(2)中的结论还成立吗?请写出理由,对于任意k<0的直线y=kx+b.(2)中的结论还成立吗?(请直接写出结论)7.大圩葡萄味美多汁,深受消费者喜爱.某品种的葡萄采摘后常温保存最多只能存放一周,如果立即放在冷库中保存则可适当延长保鲜时间(保鲜期延长最多不超过120天).另外冷藏保鲜时每天仍有一定数量的葡萄变质,保鲜期内的葡萄因水分流失损失的质量可忽略不计.现有一位个体户,按市场价10元/千克收购了这种葡萄2000千克放在冷库室内保鲜,据测算,伺候每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有10千克葡萄变质丢弃.(1)存放x天后将这批葡萄一次性出售,设这批葡萄的销售金额为y元,写出y关于x的函数关系式,并说明销售金额y随存放天数x的变化情况;(2)考虑资金周转因式,该个体户决定在两个月(每月以30天计算)内将这批葡萄一次性出售,问该个体户将这批葡萄存放多少天后出售,可获得最大利润?最大利润时多少元?8.某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元.(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季.为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格均在今年5月份的基础上降低a%,预计这种青椒在市区、园区的销售量将在今年5月份的基础上分别增长30%、20%,要使6月份该青椒的总销售额不低于18360元,则a的最大值是多少?9.如图,已知抛物线经过点A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的函数解析式;(2)连接BC交x轴于点F.试在y轴负半轴上找一点P,使得△POC∽△BOF.10.某企业生成一种节能产品,投放市场供不应求.若该企业每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于120万元.已知这种产品的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=190﹣2x.月产量x(套)与生成总成本y2(万元)存在如图所示的函数关系.(1)直接写出y2(2)与x之间的函数关系式;(3)求月产量x的取值范围;(4)当月产量x(套)为多少时,这种产品的利润W(万元)最大?最大利润是多少?11.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.12.如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积;(3)在第一象限内,当一次函数y=﹣x+5的值小于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.13、某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.14、某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于14m,算出x≤18.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)求活动区的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?月份(x)1月2月3月4月5月6月销售量(p) 3.9万台 4.0万台 4.1万台 4.2万台 4.3万台 4.4万台15、一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:销售单价x(元/kg)120130 (180)每天销量y(kg)10095 (70)设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,每天销售利润最大?最大利润是多少?16、水库90天内的日捕捞量y(kg)与时间第x(天)满足一次函数的关系,部分数据如表:时间第x(天)13610日捕捞量(kg)198194188180(1)求出y与x之间的函数解析式;(2)水库前50天采用每天降低水位的办法减少捕捞成本,到达最低水位标准后,后40天水库维持最低水位进行捕捞.捕捞成本和时间的关系如下表:时间第x(天)1≤x<5050≤x≤90捕捞成本(元/kg)60﹣x10已知鲜鱼销售单价为每千克70元,假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出.设销售该鲜鱼的当天收入w元(当天收入=日销售额﹣日捕捞成本),①请写出w与x之间的函数解析式,并求出90天内哪天收入最大?当天收入是多少?②若当天收入不低于4800元,请直接写出x的取值范围?17、某公司生产A种产品,它的成本是6元/件,售价是8元/件,年销售量为5万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x万元,产品的年销售量将是原销售量的y倍,且y与x之间满足我们学过的二种函数(即一次函数和二次函数)关系中的一种,它们的关系如下表:x(万元)00.51 1.52…y1 1.275 1.5 1.675 1.8…(1)求y与x的函数关系式(不要求写出自变量的取值范围)(2)如果把利润看作是销售总额减去成本费用和广告费用,试求出年利润W(万元)与广告费用x(万元)的函数关系式,并计算每年投入的广告费是多少万元时所获得的利润最大?(3)如果公司希望年利润W(万元)不低于14万元,请你帮公司确定广告费的范围.18、合肥周谷堆农副产品批发市场某商铺购进一批红薯,通过商店批发和在淘宝网上进行销售,首月进行了销售情况的统计.其中商店日批发量y1(百斤)与时间x(x为整数,单位:天)的部分对应值如下表所示;在淘宝网上的日销售量y2(百斤)与时间x(x为整数,单位:天)的部分对应值如图所示.时间x(天)0510********日批发量y1(百斤)025*********(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与x之间的函数关系式;(2)求y2与x之间的函数关系式;(3)设这个月中,日销售总量为y,求y与x之间的函数关系式;并求出当x为何值时,日销售总量y最大,最大值为多少?19、为满足市场需求,某超市购进一种品牌糕点,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种糕点的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售糕点多少盒?20、农民购买农机设备政府会给予一定额度的补贴,其中购买Ⅰ、Ⅱ型农机设备的金额与政府补贴的金额存在表所示的函数对应关系:型号Ⅰ型设备Ⅱ型设备金额购买金额x(万元)x1x24补贴金额y(万元)y1=kx(k≠0)0.4y2=ax2+bx(a≠0) 2.4 3.2(1)分别求出y1和y2的函数解析式;(2)张大伯打算共用10万元购买Ⅰ、Ⅱ两型农机设备.请你帮助张大伯设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.。
二次函数的实际应用解答题专项练习(原卷版)—2024-2025学年九年级数学上册(人教版)

二次函数实际应用解答题专项训练类型一:几何图形的面积问题类型二:销售中的利润问题类型三:抛物线形的形状问题类型四:抛物线形的运动轨迹问题类型一:几何图形的面积问题1.如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为x m,面积为y m2.(1)若要围成面积为63m2的花圃,则AB的长是多少?(2)求AB为何值时,使花圃面积最大,并求出花圃的最大面积.2.某养殖户准备围建一个矩形鸡舍,其中一边靠墙MN,另外的边(虚线部分)用长为28米的篱笆围成,并将矩形鸡舍分成两个相同的房间,每个房间并各留出宽1米的门方便进出.已知墙的长度为12米,设这个鸡舍垂直于墙的一边的长为x米,鸡舍的面积为S.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)求出鸡舍的面积S的最大值,此时x为多少米?3.如图,是400米跑道示意图,中间的足球场ABCD是矩形,两边是半圆,直道AB的长是多少?你一定知道是100米!可你也许不知道,这不仅仅为了比赛的需要,还有另外一个原因,等你做完本题就明白了.设AB=x米.(1)请用含x的代数式表示BC.(2)设矩形ABCD的面积为S.①求出S关于x的函数表达式.②当直道AB为多少米时,矩形ABCD的面积最大?4.春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为x m,用含x的代数式表示下列各量:花卉A的种植面积是 m2,花卉B的种植面积是 m2,花卉C的种植面积是 m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.5.如图1,用一段长为33米的篱笆围成一个一边靠墙并且中间有一道篱笆隔墙的矩形ABCD菜园,墙长为12米.设AB的长为x米,矩形ABCD菜园的面积为S平方米.(1)分别用含x的代数式表示BC与S;(2)若S=54,求x的值;(3)如图2,若在分成的两个小矩形的正前方各开一个1.5米宽的门(无需篱笆),当x为何值时,S取最大值,最大值为多少?6.如图,某农户计划用篱笆围成一个矩形场地养殖家禽,为充分利用现有资源,该矩形场地一面靠墙(墙的长度为18m),另外三面用篱笆围成,中间再用篱笆把它分成三个面积相等的矩形分别养殖不同的家禽,计划购买篱笆的总长度为32m,设矩形场地的长为x m,宽为y m,面积为s m2.(1)分别求出y与x,s与x的函数解析式;(2)当x为何值时,矩形场地的总面积最大?最大面积为多少?(3)若购买的篱笆总长增加8m,矩形场地的最大总面积能否达到100m2?若能,请求出x的值;若不能,请说明理由.7.某家禽养殖场,用总长为200m的围栏靠墙(墙长为65m)围成如图所示的三块矩形区域,矩形EAGH 与矩形HGBF面积相等,矩形EAGH面积等于矩形DEFC面积的二分之一,设AD长为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?(3)现需要在矩形EAGH和矩形DEFC区域分别安装不同种类的养殖设备,单价分别为40元/平方米和20元/平方米,若要使安装成本不超过30000元,请直接写出x的取值范围.8.小明准备给长16米,宽12米的长方形空地栽种花卉和草坪,图中I、II、III三个区域分别栽种甲、乙、丙三种花卉,其余区域栽种草坪.四边形ABCD和EFGH均为正方形,且各有两边与长方形边重合,矩形MFNC(区域II)是这两个正方形的重叠部分,如图所示.(1)若花卉均价为450元/米2,种植花卉的面积为S(米2),草坪均价为300元/米2,且花卉和草坪裁种总价不超过65400元,求S的最大值;(2)若矩形MFNC满足MF:FN=1:3.①求MF,FN的长;②若甲、乙、丙三种花卉单价分别为150元/米2,80元/米2,150元/米2,且边BN的长不小于边ME长的倍.求图中I、II、II三个区域栽种花卉总价W元的最大值.9.阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求多项式x2﹣4x+5的最小值.解:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,因为(x﹣2)2≥0,所以(x﹣2)2+1≥1.当x=2时,(x﹣2)2+1=1.因此(x﹣2)2+1有最小值,最小值为1,即x2﹣4x+5的最小值为1.通过阅读,理解材料的解题思路,请解决以下问题:(1)【理解探究】已知代数式A=x2+10x+20,则A的最小值为 ;(2)【类比应用】张大爷家有甲、乙两块长方形菜地,已知甲菜地的两边长分别是(3a+2)米,(2a+5)米,乙菜地的两边长分别是5a米,(a+5)米,试比较这两块菜地的面积S甲和S乙的大小,并说明理由;(3)【拓展升华】如图,△ABC中,∠C=90°,AC=8cm,BC=12cm,点M、N分别是线段AC和BC上的动点,点M 从A点出发以1cm/s的速度向C点运动;同时点N从C点出发以2cm/s的速度向B点运动,当其中一点到达终点时,两点同时停止运动,设运动的时间为t秒,请直接写出△MCN的面积最大值.10.综合与实践,研究小组想利用在前面的空地围出一个,矩的函数表达式,同时求出自变量的取值范围,再结合函数性质求出的最大值:比较并判断矩形种植园的面积最类型二:销售中的利润问题11.麻花是我国的一种特色油炸面食小吃,其色、香、味俱全,品种多样,十分畅销.阳光超市购进了一批麻花礼盒进行销售,成本价为30元/件,根据市场预测,在一段时间内,销售单价为40元/件时,每天的销售量为300件,销售单价每提高10元/件,将少售出50件.(1)求超市销售该麻花礼盒每天的销售量y(件)与销售单价x(元/件)之间的函数关系式,并求出出变量取值范围;(2)当销售单价定为多少时,超市销售该麻花礼盒每天获得的利润最大?并求出最大利润.12.某乡镇贸易公司开设了一家网店,销售当地某种农产品,已知该农产品成本为每千克10元,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30)(1)写出y与x之间的函数关系式及自变量的取值范围;(2)当销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?13.某文具商店用销售进价为28元/盒的彩色铅笔,市场调查发现,若以每盒40元的价格销售,平均每天销售80盒,价格每提高1元,平均每天少销售2盒,设每盒彩色铅笔的销售,价为x(x>40)元,平均每天销售y盒,平均每天的销售利润为W元.(1)直接写出y与x之间的函数关系式: .(2)求W与x之间的函数关系式.(3)为稳定市场,物价部门规定每盒彩色铅笔的售价不得高于50元,当每盒的销售价为多少元时,平均每天获得的利润最大?最大利润是多少元?14.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件,如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)若每件商品的售价定价为55元,则每个月可卖出 件;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)若在销售过程中每一件商品有a(a>2)元的其他费用,商家发现当售价每件不低于57元时,每月的销售利润随x的增大而减小,请求出a的取值范围.15.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.小柳按照政策投资销售本市生产的一种网红螺蛳粉.已知这种网红螺蛳粉的成本价为每箱80元,出厂价为每箱100元,每月销售量y(箱)与销售单价x(元)之间满足函数关系:y=﹣2x+400.(1)小柳在开始销售的第1月将螺蛳粉的销售单价定为120元,这个月他销售该螺蛳粉可获利 元.(2)设小柳销售螺蛳粉获得的月利润为w(元),当销售单价为多少元时,月利润最大,最大利润是多少元?(3)物价部门规定,这种网红螺蛳粉的销售单价不得高于150元,那么政府每个月为他承担的总差价最少为多少元?16.某商场某商品现在的售价为每件60元,每星期可以卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出10件.已知商品的进价为每件40元.设售价为x元/件(x为正整数),每星期销售量为y件,每星期销售利润为W元.(1)直接写出y与x,W与x的函数解析式以及自变量x的取值范围;(26000元,那么该商品的售价是多少?(3)当该商品的售价定为多少时,每星期的销售利润最大?最大利润是多少?17.某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式p=x+8,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:销售价格x(元/千克)24 (10)市场需求量q(百千克)1210 (4)当每天的产量不大于市场需求量时,这种半成品食材能全部售出;而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.已知销售价格不低于2元/千克,不得高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量不大于市场需求量时,求厂家每天获得的利润的最大值;(3)当每天的产量大于市场需求量时,求厂家每天获得的最大利润.18.某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于36元,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间符合一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)设商场销售这种商品每天获利w(元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?19.端午节是中华民族的传统节日,吃粽子是端午节的风俗之一.在今年端午节即将到来之际,某食品店以15元/盒的价格购进某种粽子,为了确定售价,食品店安排人员调查了附近A,B,C,D,E五个食品店近期该种粽子的售价与日销量情况.【数据整理】将调查数据按照一定顺序进行整理,得到下列表格:(1)分析数据的变化规律,发现日销售量与售价间存在我们学过的某种函数关系,请求出这种函数关系式(不要求写出自变量的取值范围);【拓广应用】(2)①要想每天获得198元的利润,应如何定价?②售价定为多少时,每天能获得最大利润?最大利润是多少?20.某农户在30天内采用线下店面和抖音平台带货两种方式销售一批农产品.其中一部分农产品在抖音平台带货销售,已知抖音平台带货销售日销售量y1(件)与时间x(天)关系如图所示.另一部分农产品在线下店铺销售,农产品的日销售量y2(件)与时间x(天)之间满足函数关系,其中部分对应值如表所示.销售时间x(天)0102030日销售量y2(件)07510075(1)写出y1与x的函数关系式及自变量x的取值范围;(2)试确定线下店铺日销售量y2与x的函数关系式并求出线下店铺日销售量y2的最大值;(3)已知该农户线下销售该农产品每件利润为20元,在抖音平台销售该农产品每件利润为30元,设该农户销售农产品的日销售总利润为w,写出w与时间x的函数关系式,并判断第几天日销售总利润w最大,并求出此时最大值.类型三:抛物线形的形状问题21.蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它的出现使人们可以吃到反季节蔬菜.如图,某菜农搭建了一个横截面为抛物线的大棚,宽度AB为8米,棚顶最高点距离地面高度OC为4米.以AB所在直线为x轴,OC所在直线为y轴建立平面直角坐标系.(1)求该抛物线的函数表达式;(2)若借助横梁DE(DE∥AB)在大棚正中建一个2米高的门(DE到地面AB的距离为2米),求横梁DE的长度是多少米?(结果保留根号)22.一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L1与缆索L2均呈抛物线型,桥塔AO与桥塔BC 均垂直于桥面,如图所示,以O为原点,以直线FF′为x轴,以桥塔AO所在直线为y轴,建立平而直角坐标系.已知:缆索L1所在抛物线与缆索L2所在抛物线关于y轴对称,桥塔AO与桥塔BC之间的距离OC=100m,AO=BC=17m,缆索L1的最低点P到FF′的距离PD=2m.(桥塔的粗细忽略不计)(1)求缆索L1所在抛物线的函数表达式;(2)点E在缆索L2上,EF⊥FF′,且EF=2.6m,FO<OD,求FO的长.23.如图①为某景区一长廊,该长廊顶部的截面可近似看作抛物线型,其跨度AB为2m,长廊顶部的最高点与地面的距离CD为3m,两侧的柱子OA、BE均垂直于地面,且高度为2.5m,线段OE表示水平地面,建立如图②所示的平面直角坐标系.(1)求该抛物线的函数表达式;(2)为了夜间美观,景区工作人员计划分别在距离A,B两端水平距离为0.5m处的抛物线型长廊顶部各悬挂一盏灯笼,且灯笼底部要保持离地面至少2.6m的安全距离,现市面上有一款长度为0.2m的小灯笼,试通过计算说明该款灯笼是否符合要求(忽略悬挂处长度).24.如图1某桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B 到水面的距离是4m.(1)按如图1所示的坐标系,求该桥拱OBA的函数表达式;(2)要保证高2.26米的小船能够通过此桥(船顶与桥拱的距离不小于0.3米),求小船的最大宽度是多少?(3)如图2,桥拱所在的函数图象的抛物线的x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.现将新函数图象向右平移m(m>0)个单位长度,使得平移后的函数图象在9≤x≤10之间,且y随x的增大而减小,请直接写出m的取值范围.25.某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.26.古往今来,桥给人们的生活带来便利,解决跨水或者越谷的交通,便于运输工具或行人在桥上畅通无阻,中国桥梁的桥拱线大多采用圆弧形、抛物线形和悬链形,坐落在河北省赵县汶河上的赵州桥建于隋朝,距今已有约1400年的历史,是当今世界上现存最早、保存最完整的古代敞肩石拱桥,赵州桥的主桥拱便是圆弧形.(1)某桥A主桥拱是圆弧形(如图①中),已知跨度AC=40m,拱高BD=10m,则这条桥主桥拱的半径是 m;(2)某桥B的主桥拱是抛物线形(如图②),若水面宽MN=10m,拱顶P(抛物线顶点)距离水面4m,求桥拱抛物线的解析式;(3)如图③,某时桥A和桥B的桥下水位均上升了2m,求此时两桥的水面宽度.27.开封黑岗口引黄调蓄水库上的东京大桥,又名“彩虹桥”.夜晚在桥上彩灯的映衬下好似彩虹般绚丽.主景观由三个抛物线型钢拱组成(如图①所示),其中最高的钢拱近似看成二次函数的图象抛物线,钢拱最高处C点与路面的距离OC为50米,若以点O为原点,OC所在的直线为y轴,建立如图②所示的平面直角坐标系,抛物线与x轴相交于A、B两点,且AB两点间的距离为80米.(1)求这条抛物线的解析式;(2)钢拱最高处C点与水面的距离CD为72米,请求出此时这条钢拱之间水面的宽度;(3)当﹣32<x<16时,求y的取值范围.28.根据以下素材,探索完成任务.)种植技术已十分成熟,一块土地上有一个蔬菜大棚,其横截面顶部上,根支DE根中棚顶向上调整,支架总数不变,对应支架上升(接问题解决29.综合与实践主题:设计高速公路的隧道高速公路隧道设计及行驶常识:为了行驶安全,高速公路的隧道设计一般是单向行驶车道,要求货车,车货总高度从地.为了保证行驶的安全,货车右侧某高速公路准备修建一个单向双车道(两个车道的宽度一样)的隧道,隧道的截面近似看成由抛物线3.5)与隧道两侧的距离类型四:抛物线形的运动轨迹问题30.某小区花园新安装了一排音乐喷泉装置,其中位于中间的喷水装置OA喷水能力最强,水流在各个方向上沿形状相同的抛物线路径落下,若喷出的水流高度为y(m),水流与OA之间的水平距离为x(m),y 与x之间满足二次函数关系.如图所示,经测量,喷水装置OA高度为3.5米,水流最高处离喷水装置OA的水平距离为3米,离地面竖直距离为8米.(1)求水流喷出的高度y(m)与水平距离x(m)之间的函数关系式;(2)若在音乐喷泉四周摆放花盆,不计其它因素,花盆需至少离喷水装置OA多少米处,才不会被喷出的水流击中?31.“急行跳远”是田径运动项目之一.运动员起跳后的腾空路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到落入沙坑的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离x/m02 2.53 3.54竖直高度y/m00.80.8750.90.8750.8根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x﹣h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.25(x﹣2.2)2+1.21,记该运动员第一次训练落入沙坑点的水平距离为l1,第二次训练落入沙坑点的水平距离为l2,请比较l1,l2的大小.32.如图1,某公园一个圆形喷水池,在喷水池中心O处竖直安装一根高度为1m的水管OA,A处是喷头,喷出水流沿形状相同的曲线向各个方向落下,喷出水流的运动路线可以看作是抛物线的一部分.建立如图2所示的平面直角坐标系,测得喷出水流距离喷水池中心O的最远水平距离OB为3m,水流竖直高度的最高处位置C距离喷水池中心O的水平距离OD为1m.(1)求喷出水流的竖直高度y(m)与距离水池中心O的水平距离x(m)之间的关系式,并求水流最大竖直高度CD的长;(2)安装师傅调试时发现,喷头竖直上下移动时,抛物线形水流随之竖直上下移动(假设抛物线水流移动时,保持对称轴及形状不变),若要使水流离喷水池中心O的最远水平距离增大至4m,则水管OA的高度增加多少米?33.高楼火灾越来越受到重视,某区消防中队开展消防技能比赛,如图,在一废弃高楼距地面10m的点A 和其正上方点B处各设置了一个火源.消防员来到火源正前方,水枪喷出的水流看作抛物线的一部分(水流出口与地面的距离忽略不计),第一次灭火时,站在水平地面上的点C处,水流恰好到达点A处,且水流的最大高度为12m.待A处火熄灭后,消防员退到点D处,调整水枪进行第二次灭火,使水流恰好到达点B处,已知点D到高楼的水平距离为12m,假设两次灭火时水流的最高点到高楼的水平距离均为3m.建立如图所示的平面直角坐标系.(1)求消防员第一次灭火时水流所在抛物线的解析式;(2)若两次灭火时水流所在抛物线的形状相同,求A、B之间的距离;(3)若消防员站在到高楼水平距离为9m的地方,想要扑灭距地面高度12~18m范围内的火苗,当水流最高点到高楼的水平距离始终为3m时,直接写出a的取值范围.34.甲、乙两名同学进行羽毛球比赛,羽毛球发出并飞行一段距离后,其飞行路线可以看作是抛物线的一部分.如图建立平面直角坐标系,羽毛球从点O 的正上方发出,飞行过程中羽毛球与地面的垂直高度y (单位:m )与水平距离x (单位:m )之间近似满足二次函数关系.比赛中,甲同学某次发球时如图1,羽毛球飞出一段距离后,抛物线部分的飞行高度y 与此时水平距离x 的对应七组数据如下:水平距离x /m23 3.54 4.556…竖直高度y /m3.444.15 4.2 4.154 3.4…根据以上数据,回答下列问题:(1)①当羽毛球飞行到最高点时,距地面 m ,此时水平距离是 m ;②在水平距离5m 处,放置一个高1.55m 的球网,羽毛球 (填“是”或“否”)可以过网;(2)求出y 与x 的函数解析式;(3)若甲发球过网后,乙在羽毛球飞行的水平距离为7m 的点Q 处接住球(如图2).此时如果乙选择扣球,羽毛球的飞行高度y(m )与水平距离x (m )近似满足一次函数关系y =0.4x +m .如果乙选择吊球,羽毛球的飞行高度 y (m ) x (m ) 近似满足二次函数关系y =n (x ﹣6)2+3.2.上面两种击球方式均能使球过网.要使球的落地点到O 点的距离更远,请通过计算判断乙应选择哪种击球方式更合适.35.如图1,某广场要修建一个景观喷水池,水从喷头喷出后呈抛物线形状先向上至最高点后落下.将中间立柱近似看作一条线,以其为y轴建立如图2所示直角坐标系.已知中间立柱顶端C到地面的距离为6m,喷水头D恰好是立柱OC的中点.若水柱上升到最高点E时,高度为4m,到中间立柱的距离为1m.(1)求图2中第一象限内抛物线的函数表达式.(2)为了使水落下后全部进入水池中,请判断圆形水池的直径不能小于多少米?(3)实际施工时,决定对喷水设施做如下设计改进,把水池的直径修成7m,在不改变喷出的抛物线形水柱形状的情况下,且喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,需对水管的长度进行调整,求调整后水管的最大长度.36.如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E(﹣1.5,﹣10),运动员(可视为一质点)在空中运动的路线是经过原点O的抛物线,在跳某个规定动作时,运动员在空中最高处点A(1,1.25),正常情况下,运动员在距水面高度5米前必须完成规定的翻腾,打开动作,并调整好入水姿势,否则就为失误.运动员入水后,运动路线为另一条抛物线.(1)求该运动员在空中运动时所对应抛物线的解析式;(2)若运动员在空中调整好入水姿势时,入水点恰好距点E的水平距离为5米,问该运动员此次跳水是否失误?请通过计算说明理由;(3)在该运动员入水点B的正前方M,N两点,且EM=10.5,EN=13.5,该运动员入水后运动路线对应的抛物线解析式为y=a(x﹣h)2+k且顶点C距水面4米.若该运动员的出水点D在MN之间(含M,N两点),求a的取值范围.。
人教版九年级上册数学期末实际问题与二次函数应用题专题训练(含答案)

(2)当销售单价定为多少时, 最大,最大为多少元?
(3)销售期间,为了确保获利不低入36000元,直接写出该花生销售价格的范围.
10.合肥某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价为25元/件时,每天的销售量是150件;销售单价每上涨1元,每天的销售量就减少10件.
(1)求该款T恤4月份到6月份销售量的月平均增长率;
(2)从7月份起,商场决定采用降价促销回馈顾客,销售利润不超过30%.经试验,发现该款T恤在6月份销售量的基础上,每降价1元,月销售量就会增加20件.如何定价才能使利润最大?并求出最大利润是多少元?
16.某商场销售一种成本为每件20元的商品,销售过程中发现,每月销售量y(件)(元)之间的关系可近似的看作一次函数: .
(1)求y与x的函数解析式
(2)求出当x是多少时,利润y有最大值,最大值是多少?
2.某超市销售一种饮料,每瓶进价为9元,当每瓶售价为10元时,日均销售量为560瓶.经市场调查表明,每瓶售价每增加 元,日均销售量减少40瓶.
(1)当每㼛售价为11元时,日均销售量为______瓶;
(2)当每㼛售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?
(1)当每月获利5250元时,求此时每顶头盔的售价;
(2)当每顶头盔售价多少元时,每月的销售利润最大?最大利润是多少元?
9.直播扶贫助农已经成为10万淘宝主播共同的公益事业.为切实提高农民的收入,推动贫困乡村脱贫致富,在明星直播间销售花生.已知该花生的成本为8元/kg,销售量 与销售单价 (元/kg)的函数关系如图所示,销售获利为 元.
6.(1) ,详见解析
(2)售价定为70元/千克时,最大利润是1800元
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数应用题专题训练1.利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x元,该经销店的月利润为y元.(1)当每吨售价为240元时,计算此时的月销售量;(2)求y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.2.(2010恩施)恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?3.(2010德州)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元.(1)分别求出y 1、y 2与x 之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?4(2010河北)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =1001x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费).(1)当x = 1000时,y = 元/件,w 内 = 元; (2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?5.某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,以统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x (角),零售店每天销售这种面包所获得的利润为y (角). ⑴用含x 的代数式分别表示出每个面包的利润与卖出的面包个数; ⑵求y 与x 之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?6.(2010贵阳)某商场以每件50元的价格购进一种商品,销售中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数,其图象如图所示. (1)每天的销售数量m (件)与每件的销售价格x (元) 的函数表达式是 .(3分)(2)求该商场每天销售这种商品的销售利润y (元)与每件的销售价格x (元)之间的函数表达式;(4分)(3)每件商品的销售价格在什么范围内,每天的销售利润随着销售价格的提高而增加?(3分)O100100销售数量(m )件销售价格(x )元7.(2010荆州)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21701-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系.(1)直接写出....2y 与x 之间的函数关系式; (2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大?最大利润是多少?8.(2010青岛)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) 9、(2009烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?10、(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?11. (2009年重庆市江津区)某商场在销售旺季临近时,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。
(1)请建立销售价格y (元)与周次x 之间的函数关系;(2)若该品牌童装于进货当周售完,且这种童装每件进价z (元)与周次x 之间的关系为12)8(812+--=x z , 1≤ x ≤11,且x 为整数,那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少? 12、(2009年茂名市)茂名石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:出厂价成本价排污处理费甲种塑料 2100(元/吨) 800(元/吨) 200(元/吨) 乙种塑料2400(元/吨)1100(元/吨)100(元/吨)每月还需支付设备管理、维护费20000元(1)设该车间每月生产甲、乙两种塑料各x 吨,利润分别为1y 元和2y 元,分别求1y 和2y 与x 的函数关系式(注:利润=总收入-总支出);(6分)(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?(4分)13.(2009年黄石市)为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,价目品种国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元? (2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益Z 与政府补贴款额x 之间的函数关系式;(3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值. 14.宏志中学九年级300名同学毕业前夕给灾区90名同学捐赠了一批学习用品(书包和文具盒),由于零花钱有限,每6人合买一个书包,每2人合买一个文具盒(每个同学都只参加一件学习用品的购买),书包和文具盒的单价分别是54元和12元.(1)若有x 名同学参加购买书包,试求出购买学习用品的总件数y 与x 之间的函数关系式(不要求写出自变量的取值范围);(2)若捐赠学习用品总金额超过了2300元,且灾区90名同学每人至少得到了一件学习用品,请问同学们如何安排购买书包和文具盒的人数?此时选择其中哪种方案,使购买学习用品的总件数最多?15.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定1200 800400 y (台)x (元)z (元) x (元) 200 160 200 0 图① 图②支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1)求y 与x 的函数关系式;(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?16.已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果. (3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.O 60204批发单价(元)5 批发量(kg )①②17.丹东市“建设社会主义新农村”工作组到东港市大棚蔬菜生产基地指导菜农修建大棚种植蔬菜。