奥本海姆-信号与系统-第6章

合集下载

奥本海姆目录

奥本海姆目录

《信号与系统》第1章信号与系统1.0 引言1.1 连续时间和离散时间信号1.1.1 举例与数学表示1.1.2 信号能量与功率1.2 自变数的变换1.2.1 自变数变换举例1.2.2 周期信号1.2.3 偶信号与奇信号1.3 指数信号与正弦信号1.3.1 连续时间复指数信号与正弦信号1.3.2 离散时间复指数信号与正弦信号1.3.3 离散时间复指数序列的周期性质1.4 单位冲激与单位阶跃函数1.4.1 离散时间单位脉冲和单位阶跃序列1.4.2 连续时间单位阶跃和单位冲激函数1.5 连续时间和离散时间系统1.5.1 简单系统举例1.5.2 系统的互联1.6 基本系统性质1.6.1 记忆系统与无记忆系统1.6.2 可逆性与可逆系统1.6.3 因果性1.6.4 稳定性1.6.5 时不变性1.6.6 线性1.7 小结习题第2章线性时不变系统2.0 引言2.1 离散时间LTI系统:卷积和2.1.1 用脉冲表示离散时间信号2.1.2 离散时间LTI系统的单位脉冲响应及卷积和表示2.2 连续时间LTI系统:卷积积分2.2.1 用冲激表示连续时间信号2.2.2 连续时间LTI系统的单位冲激响应及卷积积分表示2.3 线性时不变系统的性质2.3.1 交换律性质2.3.2 分配律性质2.3.3 结合律性质2.3.4 有记忆和无记忆LTI系统2.3.5 LTL系统的可逆性2.3.6 LTI系统的因果性2.3.7 LTI系统的稳定性2.3.8 LTI系统的单位阶跃响应2.4 用微分和差分方程描述的因果LTI系统2.4.1 线性常系数微分方程2.4.2 线性常系数差分方程2.4.3 用微分和差分方程描述的一阶系统的方框图表示2.5 奇异函数2.5.1 作为理想化短脉冲的单位冲激2.5.2 通过卷积定义单位冲激2.5.3 单位冲激偶和其它的奇异函数2.6 小结习题第3章周期信号的傅里叶级数表示3.0 引言3.1 历史回顾3.2 LTI系统对复指数信号的响应3.3 连续时间周期信号的傅里叶级数表示3.3.1 成谐波关系的复指数信号的线性组合3.3.2 连续时间周期信号傅里叶级数表示的确定3.4 傅里叶级数的收敛3.5 连续时间傅里叶级数性质3.5.1 线性3.5.2 时移性质3.5.3 时间反转3.5.4 时域尺度变换3.5.5 相乘3.5.6 共轭及共轭对称性3.5.7 连续时间周期信号的帕斯瓦尔定理3.5.8 连续时间傅里叶级数性质列表3.5.9 举例3.6 离散时间周期信号的傅里叶级数表示3.6.1 成谐波关系的复指数信号的线性组合3.6.2 周期信号傅里叶级数表示的确定3.7 离散时间傅里叶级数性质3.7.1 相乘3.7.2 一阶差分3.7.3 离散时间周期信号的帕斯瓦尔定理3.7.4 举例3.8 傅里叶级数与LTI系统3.9 滤波3.9.1 频率成形滤波器3.9.2 频率选择性滤波器3.10 用微分方程描述的连续时间滤波器举例3.10.1 简单RC低通滤波器3.10.2 简单RC高通滤波器3.11 用差分方程描述的离散时间滤波器举例3.11.1 一阶递归离散时间滤波器3.11.2 非递归离散时间滤波器3.12 小结习题第4章连续时间傅里叶变换4.0 引言4.1 非周期信号的表示:连续时间傅里叶变换4.1.1 非周期信号傅里叶变换表示的导出4.1.2 傅里叶变换的收敛4.1.3 连续时间傅里叶变换举例4.2 周期信号的傅里叶变换4.3 连续时间傅里叶变换性质4.3.1 线性4.3.2 时移性质4.3.3 共轭及共轭对称性4.3.4 微分与积分4.3.5 时间与频率的尺度变换4.3.6 对偶性4.3.7 帕斯瓦尔定理4.4 卷积性质4.4.1 举例4.5 相乘性质4.5.1 具有可变中心频率的频率选择性滤波4.6 傅里叶变换性质和基本傅里叶变换对列表4.7 由线性常系数微分方程表征的系统4.8 小结习题第5章离散时间傅里叶变换5.0 引言5.1 非周期信号的表示:离散时间傅里叶变换5.1.1 离散时间傅里叶变换的导出5.1.2 离散时间傅里叶变换举例5.1.3 关于离散时间傅里叶变换的收敛问题5.2 周期信号的傅里叶变换5.3 离散时间傅里叶变换性质5.3.1 离散时间傅里叶变换的周期性5.3.2 线性5.3.3 时移与频移性质5.3.4 共轭与共轭对称性5.3.5 差分与累加5.3.6 时间反转5.3.7 时域扩展5.3.8 频域微分5.3.9 帕斯瓦尔定理5.4 卷积性质5.4.1 举例5.5 相乘性质5.6 傅里叶变换性质和基本傅里叶变换对列表5.7 对偶性5.7.1 离散时间傅里叶级数的对偶性5.7.2 离散时间傅里叶变换和连续时间傅里叶级数之间的对偶性5.8 由线性常系数差分方程表征的系统5.9 小结习题第6章信号与系统的时域和频域特性6.0 引言6.1 傅里叶变换的模和相位表示6.2 LTI系统频率响应的模和相位表示6.2.1 线性与非线性相位6.2.2 群时延6.2.3 对数模和波特图6.3 理想频率选择性滤波器的时域特性6.4 非理想滤波器的时域和频域特性讨论6.5 一阶与二阶连续时间系统6.5.1 一阶连续时间系统6.5.2 二阶连续时间系统6.5.3 有理型频率响应的波特图6.6 一阶与二阶离散时间系统6.6.1 一阶离散时间系统6.6.2 二阶离散时间系统6.7 系统的时域分析与频域分析举例6.7.1 汽车减震系统的分析6.7.2 离散时间非递归滤波器举例6.8 小结习题第7章采样7.0 引言7.1 用信号样本表示连续时间信号:采样定理7.1.1 冲激串采样7.1.2 零阶保持采样7.2 利用内插由样本重建信号7.3 欠采样的效果:混迭现象7.4 连续时间信号的离散时间处理7.4.1 数字微分器7.4.2 半采样间隔延时7.5 离散时间信号采样7.5.1 脉冲串采样7.5.2 离散时间抽取与内插7.6 小结习题第8章通信系统8.0 引言8.1 复指数与正弦幅度调制8.1.1 复指数载波的幅度调制8.1.2 正弦载波的幅度调制8.2 正弦AM的解调8.2.1 同步解调8.2.2 异步解调8.3 频分多路复用8.4 单边带正弦幅度调制8.5 用脉冲串作载波的幅度调制8.5.1 脉冲串载波调制8.5.2 时分多路复用8.6 脉冲幅度调制8.6.1 脉冲幅度已调信号8.6.2 在PAM系统中的码间干扰8.6.3 数字脉冲幅度和脉冲编码调制8.7 正弦频率调制8.7.1 窄带频率调制8.7.2 宽带频率调制8.7.3 周期方波调制信号8.8 离散时间调制8.8.1 离散时间正弦幅度调制8.8.2 离散时间调制转换8.9 小结习题第9章拉普拉斯变换9.0 引言9.1 拉普拉斯变换9.3 拉普拉斯反变换9.4 由零极点图对傅里叶变换进行几何求值9.4.1 一阶系统9.4.2 二阶系统9.4.3 全通系统9.5 拉普拉斯变换的性质9.5.1 线性9.5.2 时移性质9.5.3 S域平移9.5.4 时域尺度变换9.5.5 共轭9.5.6 卷积性质9.5.7 时域微分9.5.8 S域微分9.5.9 时域积分9.5.10 初值与终值定理9.5.11 性质列表9.6 常用拉普拉斯变换对9.7 用拉普拉斯变换分析和表征LTI系统9.7.1 因果性9.7.2 稳定性9.7.3 由线性常系数微分方程表征的LTI系统9.7.4 系统特性与系统函数的关系举例9.7.5 巴特沃兹滤波器9.8 系统函数的代数属性与方框图表示9.8.1 LTI系统互联的系统函数9.8.2 由微分方程和有理系统函数描述的因果LTI系统的方框图表示9.9单边拉普拉斯变换9.9.1 单边拉普拉斯变换举例9.9.3 利用单边拉普拉斯变换求解微分方程9.10 小结习题第10章Z变换10.0 引言10.1 Z变换10.2 Z变换的收敛域10.3 Z反变换10.4 由零极点图对傅里叶变换进行几何求值10.4.1 一阶系统10.4.2 二阶系统10.5 Z变换的性质10.5.1 线性10.5.2 时移性质10.5.3 Z域尺度变换10.5.4 时间反转10.5.5 时间扩展10.5.6 共轭10.5.7 卷积性质10.5.8 Z域微分10.5.9 初值定理10.5.10 性质小结10.6 几个常用Z变换对10.7 利用Z变换分析与表征LTI系统10.7.1 因果性10.7.2 稳定性10.7.3 由线性常系数差分方程表征的LTI系统10.7.4 系统特性与系统函数的关系举例10.8 系统函数的代数属性与方框图表示10.8.1 LTI系统互联的系统函数10.8.2 由差分方程和有理系统函数描述的因果LTI系统的方框图表示10.9 单边Z变换10.9.1 单边Z变换和单边Z反变换举例10.9.2 单边Z变换性质10.9.3 利用单边Z变换求解差分方程10.10 小结习题第11章线性反馈系统11.0 引言11.1 线性反馈系统11.2 反馈的某些应用及结果11.2.1 逆系统设计11.2.2 非理想组件的补偿11.2.3 不稳定系统的稳定11.2.4 采样数据反馈系统11.2.5 跟踪系统11.2.6 反馈引起的不稳定11.3 线性反馈系统的根轨迹分析法11.3.1 一个例子11.3.2 死循环极点方程11.3.3 根轨迹的端点:K=0和|K|=+∞时的死循环极点11.3.4 角判据11.3.5 根轨迹的性质11.4 奈奎斯特稳定性判据11.4.1 围线性质11.4.2 连续时间LTI反馈系统的奈奎斯特判据11.4.3 离散时间LTI反馈系统的奈奎斯特判据11.5 增益和相位裕度11.6 小结。

信号与系统奥本海姆原版PPT第六章

信号与系统奥本海姆原版PPT第六章

6 Time and frequency characterization of S&S
6 Time and frequency characterization of S&S
6 Time and frequency characterization of S&S
Problems: 6.5
6.23
F x(t ) X ( j )
X ( j ) | X ( j ) | e jX ( j )
| X ( j ) | Magnitude Spectrum e jX ( j ) Phase Spectrum
6 Time aБайду номын сангаасd frequency characterization of S&S
6 Time and frequency characterization of S&S
6 Time and frequency characterization of S&S
6.3 Time-Domain Properties of Ideal Frequencyselective Filters Lowpass filter: (1) Continous time:
6 Time and frequency characterization of S&S
6. Time and Frequency Characterization of Signals and Systems 6.1 The Magnitude-phase Representation of the Fourier Transform For signal x(t) :
6 Time and frequency characterization of S&S

信号与系统课件(奥本海姆+第二版)+中文课件.pdf

信号与系统课件(奥本海姆+第二版)+中文课件.pdf

解:因为 x[n] = e jω0n = cos ω0n + j sin ω0n (欧拉公式)
则有 e jω0n = 1
∑ ∑ ∞

E∞ = x[n] 2 = 1= ∞
n=−∞
n=−∞
∑ P∞
=
lim
N→∞
1N 2N +1n=−N
x[n] 2
= lim N→∞
1 ×(2N 2N +1
+1)
=1
所以是功率信号
控制
执行机构
网络
图 1 控制系统
R+
uc (t)
x (t)
C
uc (t)
-
t
图 2 RC电路
6 / 94
二、信号的分类 信号的分类方法很多。
1、确定性信号与随机信号 按信号与时间的函数关系来分,信号可分为确定性信号与随
机信号。 1)、确定性信号——指能够表示为确定的时间函数的信号。 当给定某一时间值时,信号有确定的数值。 例如:正弦信号、指数信号和各种周期信号等。 2)、随机信号——不是时间t的确定函数的信号。 它在每一个确定时刻的分布值是不确定的。 例如:电器元件中的热噪声等。
11 / 94
5、连续时间信号和离散时间信号——按自变量的取值是否连续来分。
1、连续时间信号——自变量是连续可变的,因此信号在自变量的连续值上 都有定义。我们用t表示连续时间变量,用圆括号(.)把自变量括在里面。例 如 图一的 x(t)。
x (t)
x [n]
X[1] X[-1]
0
t
图一 连续时间信号
1)、时间特性——波形、幅度、重复周期及信号变化的快慢等。 ω
2)、频率特性——振幅频谱和相位频谱。即从频域 来研究信号的变化情 况。

信号与系统奥本海姆版复习要点

信号与系统奥本海姆版复习要点

第一章:Singnals and System(信号与系统)1-1:continuous-time and discrete-time signals(连续时间与离散时间信号)信号:信息的载体。

在信号与系统分析中,信号的表达式为函数(functions)P3:Signals are represented mathematically as functions of one or more independent variables(独立自变量)。

例如:关于某导线电流强度对应不同时间的函数I(t);等比数列的某一个数对应其序号的函数a[n]=b^n。

自变量的定义域为连续的时间段(有限或无限)的信号(函数)称为连续时间信号x(t)自变量的定义域为间断的时间点(一般地,归一为整数点…-1,0,1,2…)的信号称为离散时间信号x[n],又叫序列(sequences)。

两者有相似处,离散时间函数(又称为离散时间序列)可以看作连续时间函数对整数点时间进行抽样得到,但两者计算上有很大区别。

信号(函数)对应某一自变量值的信号函数值大小称为信号的幅度(phenomenon)。

例如x(t)=2t,在t=3时x(t)=x(3)=6就是此刻的幅度。

Signal energy and power(信号的能量与功率)把信号看作电流,该电流在某一段时间内流过1欧姆的电阻产生的能量和平均功率(average power)便是信号在该段时间的能量与功率。

因此可得在t1~~t2内信号x(t)的能量为:E=∫(t1~t2)(|x(t)|^2)dt,而相应这段时间的功率则为P=E/(t2-t1)信号在整个定义域的能量E∞=(limT→∞)∫(-T~T)(|x(t)|^2)dt信号在整个定义域的平均功率P∞=(limT→∞)(1/2T)∫(-T~T)(|x(t)|^2)dt相应的,对于离散时间信号则有P6-7(1,7)(1,9)(这个东西要输入太困难了,呵呵)显然,对于一个信号在无穷区间的能量与平均功率有三种可能:(1)平均功率无穷大,总能量无穷大(2)平均功率有限,总能量无穷大(3)总能量有限,平均功率无穷小(也是有限)1-2:Transformations of the independent variable(自变量的变换)自变量的变换就是对信号x(t)或x[n]的自变量t或n进行相应变换,由此会影响信号。

信号与系统奥本海姆英文版课后答案chapter6

信号与系统奥本海姆英文版课后答案chapter6
0, ω << 1 ⎧ ⎪ 20 log10 H ( jω ) ≈ ⎨ −40 log10 ω , 1 << ω << 50 ⎪ −20 log (ω ) − 34, ω >> 50 10 ⎩
6.12. Using the Bode magnitude plot, specified in Figure P6.12(a). we may obtain an expression For H1 (j ω ). The figure shows that H1 (j ω ) has the break frequencies ω1 =1, ω2 =8,And
G ( jω ) = FT {2h(t ) cos(4000π t )} = H ( j (ω − 4000π )) + H ( j (ω + 4000π ))
H(j
This is as shown in figure s6.7
-4000
-2000
-1000
1000
π
2000
π
4000
π
G (j ω )
ω3 =40. The frequency response rises as 20dB/decade after ω1 . At ω2 ,this rise is canceled by a -20 dB/decade contribution. Finally, at ω3 ,an additional -20 dB/decade. Contribution results in the
k =0 N k k =1
M
− j (ω −π ) k
1 − ∑ ak e
= H (e j (ω −π ) ).

[指南]奥本海姆信号与系统中文版课后习题答案

[指南]奥本海姆信号与系统中文版课后习题答案

1.对一个LTI 系统,我们已知如下信息:输入信号2()4()t x t e u t =-;输出响应22()()()t t y t e u t e u t -=-+ (a) 确定系统的系统函数H(s)及收敛域。

(b) 求系统的单位冲激响应h(t)(c) 如果输入信号x(t)为(),t x t e t -=-∞<<+∞ 求输出y(t)。

解:(a) 4114(),Re{}2,(),2Re{}2222(2)(2)X s s Y s s s s s s s ---=<=+=<-<--+-+1(),Re{}22H s s s =>-+ (b) 2()()t h t e u t -=(c) ()2()()t t y t e e u d e τ+∞---τ--∞=ττ=⎰; ()(1)t t y t H e e --=-=.2. 已知因果全通系统的系统函数1()1s H s s -=+,输出信号2()()t y t e u t -=(a) 求产生此输出的输入信号x(t).(b) 若已知dt ∞∞<∞⎰+-|x(t)|,求输出信号x(t).(c) 已知一稳定系统当输入为2()t e u t -时,输出为上述x(t)中的一个,确定是哪个?求出系统的单位冲激响应h(t).解:(a)1()2Y s s =+。

Re{}2s >-,()1()()(1)(2)Y s s X s H s s s +==-+由于()H s 的ROC 为Re{}1s >-,()X s ∴的ROC 为2Re{}1s -<<或Re{}1s >若 1ROC 为-2<Re{s}<1,则2112()()()33t t x t e u t e u t -=--若2ROC 为Re{s}>1,221()(2)()3tt x t e e u t -=+ (b) 若dt ∞∞<∞⎰+-|x(t)|,则只能是1()()x t x t =即:212()()()33t t x t e u t e u t -=--(c) 212()()()()33t t y t x t e u t e u t -==--; 1(),2Re{}1(1)(2)s Y s s s s +=-<<-+()1()()1Y s s H s X s s +∴==-, 这就是(a)中系统的逆系统。

奥本海姆《信号与系统》(第2版)知识点归纳考研复习(下册)

奥本海姆《信号与系统》(第2版)知识点归纳考研复习(下册)

第7章采样第8章通信系统第9章拉普拉斯变换第10章Z变换第11章线性反馈系统第7章采样7.2连续时间信号x(t)从一个截止频率为的理想低通滤波器的输出得到,如果对x(t)完成冲激串采样,那么下列采样周期中的哪一些可能保证x(t)在利用一个合适的低通滤波器后能从它的样本中得到恢复?7.3在采样定理中,采样频率必须要超过的那个频率称为奈奎斯特率。

试确定下列各信号的奈奎斯特率:7.4设x(t)是一个奈奎斯特率为ω0的信号,试确定下列各信号的奈奎斯特率:7.5设x(t)是一个奈奎斯特率为ω0的信号,同时设其中。

7.6在如图7-1所示系统中,有两个时间函数x1(t)和x2(t)相乘,其乘积W (t)由一冲激串采样,x1(t)带限于ω17.7信号x(t)用采样周期T经过一个零阶保持的处理产生一个信号x0(t),设x1(t)是在x(t)的样本上经过一阶保持处理的结果,即7.8有一实值且为奇函数的周期信号x(t),它的傅里叶级数表示为7.9考虑信号x(t)为7.10判断下面每一种说法是否正确。

7.11设是一连续时间信号,它的傅里叶变换具有如下特点:7.12有一离散时间信号其傅里叶变换具有如下性质:7.13参照如图7-7所示的滤波方法,假定所用的采样周期为T,输入xc(t)为带限,而有7.14假定在上题中有重做习题7.13。

7.15对进行脉冲串采样,得到若7.16关于及其傅里叶变换7.17考虑理想离散时间带阻滤波器,其单位脉冲响应为频率响应在条件下为7.18假设截止频率为π/2的一个理想离散时间低通滤波器的单位脉冲响应是用于内插的,以得到一个2倍的增采样序列,求对应于这个增采样单位脉冲响应的频率响应。

7.19考虑如图7-11所示的系统,输入为x[n],输出为y[n]。

零值插入系统在每一序列x[n]值之间插入两个零值点,抽取系统定义为其中W[n]是抽取系统的输入序列。

若输入x[n]为试确定下列ω1值时的输出y[n]:7.20有两个离散时间系统S1和S2用于实现一个截止频率为π/4的理想低通滤波器。

奥本海姆《信号与系统》第二版信号与系统答案

奥本海姆《信号与系统》第二版信号与系统答案


4 3
(e)
x 2[n] = e
j(
n
2
) 8
,
x 2[n] =1. therefore, E = x 2[n] = ,
2


Байду номын сангаас
2
P
N = lim 1 N 2 N 1 n N
n
x 2[n]
2
N 1 lim 1 1. N 2 N 1 n N
(d)
1
T
1 COS (2t ) 1 dt 2 2
n
2 1 u[n] . Therefore, E = [n] 2 1 1 u[n] , [ n ] [ n ] x1 x 1 x n0 4 4 2 P =0,because E < .


v 1

1
(b) Since (c)
x1(t) is an odd signal,
x [ n] x
v 2
is zero for all values of t.
1 [ n] v x3 2

n n 1 1 1 [ n ] [ n ] u [ n 3] u [ n 3] x1 x1 2 2 2
1
(b) {x (t )} 2 cos( ) cos(3t 2 ) cos(3t ) e 0t cos(3t 0) 2 (c) {x (t )} e t sin(3 t ) e t sin(3t ) 3 2 (d) 1.9. (a)
Signals & Systems

奥本海姆《信号与系统》配套题库【课后习题】(信号与系统的时域和频域特性)

奥本海姆《信号与系统》配套题库【课后习题】(信号与系统的时域和频域特性)
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 6 章 信号与系统的时域和频域特性
基础题
6.1 考虑一个频率响应为
且实值单位冲激响应为 h(t)的连
续时间线性时丌变系统。假设在该系统上斲加一个输入
所得到的输出可表示成如下形式:y(t)=Ax(t-t0)
其中 A 是一个非负实数,代表一个幅度放大因子,t0 是一个延时。
向原点集中。
6.6 考虑一个离散时间理想高通滤波器.其频率响应是
(a)若 h[n]是该滤波器的单位脉冲响应,确定一个凼数 g[n],使乊有,
(b)当 ωc 增加时,该滤波器的单位脉冲响应是更加向原点集中呢,还是丌是?
4 / 84
圣才电子书 十万种考研考证电子书、题库视频学习平台

故 A=1
(b)
H(
j)
1 1
j j
12 2 12
j
H(
j)
arctan
1
2
2
() d( H ( j)) d(arctan 2 ) / d 2
d
12
12
2 / 84
圣才电子书 十万种考研考证电子书、题库视频学习平台


,所以说法(2)是正确的。
6.4 考虑一个频率响应为 H(ejω)且实值单位脉冲响应为 h[n]的离散时间线性时丌变 系统,该系统的群时延凼数定义为

(对某整数 k)
6.3 一个因果稳定线性时丌变系统具有如下频率响应:
(a)证明:|H(jω)|=A,并求出 A 的值。
(b)对该系统的群时延 ,试判断下面哪种说法是对的。注意
其中
表示成丌包含仸何丌连续点的形式。
(1)

信号与系统_奥本海姆_中文答案_全章节

信号与系统_奥本海姆_中文答案_全章节

第一章 1.3 解:(a). 2401lim(),04Tt T TE x t dt e dt P ∞-∞∞→∞-====⎰⎰(b) dt t x TP T TT ⎰-∞→∞=2)(21lim121lim ==⎰-∞→dt T TTT∞===⎰⎰∞∞--∞→∞dt t x dt t x E TTT 22)()(lim(c).222lim()cos (),111cos(2)1lim()lim2222TT TTTT T TTE x t dt t dt t P x t dt dt TT∞∞→∞--∞∞→∞→∞--===∞+===⎰⎰⎰⎰(d) 034121lim )21(121lim ][121lim 022=⋅+=+=+=∞→=∞→-=∞→∞∑∑N N n x N P N Nn n N N N n N 34)21()(lim202===∑∑-∞=∞→∞nNNn N n x E (e). 2()1,x n E ∞==∞211lim []lim 112121N NN N n N n NP x n N N ∞→∞→∞=-=-===++∑∑ (f) ∑-=∞→∞=+=NNn N n x N P 21)(121lim 2∑-=∞→∞∞===NNn N n x E 2)(lim1.9. a). 00210,105T ππω===; b) 非周期的; c) 00007,,22m N N ωωππ=== d). 010;N = e). 非周期的; 1.12 解:∑∞=--3)1(k k n δ对于4n ≥时,为1即4≥n 时,x(n)为0,其余n 值时,x(n)为1 易有:)3()(+-=n u n x , 01,3;M n =-=-1.15 解:(a)]3[21]2[][][222-+-==n x n x n y n y , 又2111()()2()4(1)x n y n x n x n ==+-, 1111()2[2]4[3][3]2[4]y n x n x n x nx n ∴=-+-+-+-,1()()x n x n =()2[2]5[3]2[4]y n x n x n x n =-+-+- 其中][n x 为系统输入。

信号与系统课件(奥本海姆+第二版)+中文课件

信号与系统课件(奥本海姆+第二版)+中文课件
T0
●离散周期信号可表示为: x[n]=x[n+mN] , m=0,1,2,3,……
其中:N为正整数。 把能使上式成立的最小正整数N,称为x[n]的基波周期 N 0 。
x [n]
N0
-4
-1
2
5
-5 -3 -2 0 1 3 4 6
2)、不满足上述关系的信号则称为非周期信号。
nN0 = 3
3、奇信号与偶信号
1、若 0< a <1,则x(at)是将x(t)在时间轴线性展宽a倍。(使变化减慢)
例如:若取a=1/2,则得x(t/2) 。此时原函数x(t)中t=1 时的值,等于在 x(t/2)中 t =2的值,即x(2*1/2)= x (1)。如图(b)所示;
2、若 a >1 , 则x(at)是将x(t)在时间轴线性压缩a倍。(使变化加速)
∫t2
2
E∞
=
lim
T →∞
t1
x (t )
dt
∫ ,
P∞
= lim 1 T→∞ T
t2
2
x(t) dt
t1
1)、能量信号
信号的能量E满足: 0< E∞ <∞
,而
P∞
= lim E∞ T →∞ 2T
=0
2 )、功率信号
信号的平均功率P满足:0 < P∞ < ∞ ,而 E∞ = ∞
例1:已知信号为 x[n] = e jω0n,试问是能量信号还是功率信号。
一、时移(信号的平移)——即信号的波形沿x轴左右平行移动,但波的形状 不变。
1、设连续信号x(t)的波形如图(a)所示,今将x(t)沿t轴平移 t 0 ,即得到平移
信号x(t-

奥本海姆信号与系统总结精品PPT课件

奥本海姆信号与系统总结精品PPT课件
解(1)令g (k) = f(k –kd) T[{0}, g (k)] = g(k) g (k –1) = f (k –kd) f (k–kd –1 )
而 yf (k –kd) = f (k –kd) f (k–kd –1) 显然 T[{0},f(k –kd)] = yf (k –kd) 故该系统是时不变的。 (2) 令g (t) = f(t –td)
• 同时,通过习题和实验,学生应在分析问 题与解决问题的能力及实践技能方面有所 提高。
Teaching Request
• 概念第一、方法第二、技巧第三 • 根据个人定位按广度、深度分层次学习
– 重视基本概念的思考 – 注重物理概念与数学分析之间的对照,不要盲目计算 – 在掌握基本理论和基本方法上下功夫 – 记笔记、记重点、记思路、记方法 – 不强调复杂计算 – 比较学习方法 – 重视预习、复习、练习和章节小结这些学习环节 – 做好作业与一定的习题量,做到熟能生巧
(2)LTI连续系统的微分特性和积分特性
①微分特性: 若 f (t) → yzs(t) , 则 f ’(t) → y ’ zs (t)
T[{0}, df (t)] dyzs (t)
dt
dt
②积分特性:
若 f (t) → yzs(t) , f () 0, yzs () 0 则
t
t
f (x)d x yzs (x)d x
y(t) = 4x’(t)+ 3x(t) 根据前面,逆过程,得
y”(t) + 2y’(t) + 3y(t) = 4f’(t)+ 3建立差分方程
由n阶差分方程描述的系统称为n阶系统。 描述LTI离散系统的是线性常系数差分方程。
2. 差分方程的模拟框图

信号与系统奥本海姆课件第6章

信号与系统奥本海姆课件第6章
11
| H ( j ) |
Magnitude of Frequency Response : Gain 增益/幅频特性 调整输入信号各频率分量的相对强度(幅度)关系 幅频特性
Phase of Frequency Response : Phase shift 相移/相频特性 相频特性 调整输入信号各频率分量的相对位置(相位)关系
F
| X ( j ) | e
j X ( j )
e jt
| H ( j ) | e j
H ( j )
jt F 1 e
| Y ( j ) | e j
Y ( j )
X ( j )
H ( j )

Y ( j )
被滤除

各频率成份 | X ( j) | 各频率成份
| H ( j) |


F 1
t
x (t ) changing faster
higher frequency
t
7
C. Effect of Phase:
相位对信号的影响
1 2 x(t ) 1 cos(2 t 1 ) cos(4 t 2 ) cos(6 t 3 ) 2 3
引起信号在时间上的平移。若连续时间 LTI系统:
H ( j ) e
jt0
则 y(t ) x(t t0 )
此时并未丢失信号所携带的任何信息,只是发生 时间上的延迟,因而在工程应用中是允许的。
17
6.2.1 Linear and Nonlinear Phase
A.
Linear Phase :linear function of 线性相位: 的线性函数
6.2.3. log-magnitude and phase plots 对数模与Bode图

奥本海姆《信号与系统》笔记和课后习题(含考研真题)详解(上册)(信号与系统的时域和频域特性)

奥本海姆《信号与系统》笔记和课后习题(含考研真题)详解(上册)(信号与系统的时域和频域特性)

第6章信号与系统的时域和频域特性6.1 复习笔记一、傅里叶变换的模和相位表示1.基本表示方法傅里叶变换是复数值的,可以用它的实部和虚部,或者用它的模和相位来表示。

(1)连续时间傅里叶变换X(jω)的模-相表示是(2)离散时间傅里叶变换X(e jω)的模-相表示是2.振幅与相位(1)模|X(jω)|所描述的是一个信号的基本频率含量,也即给出的是组成x(t)的各复指数信号相对振幅的信息。

是x(t)的能谱密度,即可认为是信号x(t)中位于频率由ω到ω+dω之间这样一个无限小的频带内所占有的能量。

(2)相位角不影响各个频率分量的大小,但提供的是有关这些复指数信号的相对相位信息。

二、线性时不变系统频率响应的模和相位表示1.基本表示(1)根据连续时间傅里叶变换的卷积性质,一个线性时不变系统的输入和输出的傅里叶变换X(jω)和Y(jω)的关系:Y(jω)=H(jω)X(jω)其中H(jω)是系统的频率响应,也即系统单位冲激响应的傅里叶变换(2)在离散时间情况下,一个频率响应为H(e jω)的线性时不变系统,其输入和输出的傅里叶变换X(e jω)和Y(e jω)的关系是Y(e jω)=H(e jω)X(e jω)因此,一个线性时不变系统对输入的作用就是改变信号中每一频率分量的复振幅。

(3)在连续时间情况下,|Y(jω)|=|H(jω)||X(jω)|且①线性时不变系统对输入傅里叶变换模特性的作用就是将其乘以系统频率响应的模。

②由线性时不变系统将输入的相位变化成在它基础上附加了一个相位(系统的相移)。

系统的相移可以改变输入信号中各分量之间的相对相位关系。

2.线性与非线性相位(1)线性相位①在连续时间情况下,当相移是ω的线性函数时,具有这种频率响应特性的系统所产生的输出就是输入的时移,即y(t)=x(t-t0)②在离散时间情况下,当线性相位的斜率是一个整数时,线性时不变系统所产生的输出就是输入的简单移位,即y[n]=x[n-n0](2)非线性相位、如果输入信号受到的是一个ω的非线性函数的相移,那么在输入中各不同频率的复指数分量都将以某种方式移位,从而在它们的相对相位上发生变化。

信号与系统第二版课后习题解答(6-7-9)奥本海姆

信号与系统第二版课后习题解答(6-7-9)奥本海姆

Chap 66.1 Consider a continuous-time LTI system with frequency response()()|()|H j H j H j e ωωω=and real impulse response h(t). Suppose that we apply an input 00()cos()x t t ωφ=+ to this system .The resulting output can be shown to be of the form0()()y t Ax t t =-Where A is a nonnegative real number representing anamplitude-scaling factor and 0t is a time delay.(a)Express A in terms of |()|H j ω.(b)Express 0t in terms of0()H j ω Solution:(a) For 0()()y t Ax t t =-So 0()()jt Y j AX j eωωω-= 0()()()j t Y j H j Ae X j ωωωω-== So |()|A H j ω=(b) for 0()H j t ωω=- So 0()H j t ωω=-6.3 Consider the following frequency response for a causal and stable LTI system:1()1j H j j ωωω-=+ (a) Show that |()|H j A ω=,and determine the values of A. (b)Determine which of the following statements is true about ()τω,the group delay of the system.(Note()(())/d H j d τωωω=-,where ()H j ωis expressed in aform that does not contain any discontinuities.)1.()0 0for τωω=>2.()0 0for τωω>>3 ()0 0for τωω<>Solution:(a) for |()|1H j ω== So A=1(b) for )(2)()()1()1()(ωωωωωωarctg arctg arctg j j j H -=--=+∠--∠=∠ 212)()(ωωωωτ+=∠-=d j H d So ()0 0for τωω>>6.5 Consider a continuous-time ideal bandpass filter whose frequency response is⎩⎨⎧≤≤=elsewherej H c c,03||,1)(ωωωω (a) If h(t) is the impulse response of this filter, determine a functiong(t) such that)(sin )(t g t t t h c πω=(b) As c ω is increased, dose the impulse response of the filter get more concentrated or less concentrated about the origin?Solution(a) Method 1. Let1()()()()()()2h t x t g t H j X j G j ωωωπ=↔=* They are shown in the figures,where1,sin ()(){0,c c ctx t X j t ωωωωωωπ<=↔=> So we can get()2cos(2)()2[(2)(2)]c c c g t t G j ωωπδωωδωω=↔=-++Method 2. Using the inverse FT definition,it is obtained331(){}2c c c cj t j t h t e d e d ωωωωωωωωπ--=+⎰⎰ 11{sin 3sin }{sin }{2cos 2}c c c c t t t t t tωωωωππ=-= (b) more concentrated.Chap 77.1 A real-valued signal x(t) is know to be uniquely determined by its samples when the sampling frequency is10,000s ωπ=.For what values ofω is ()X j ω guaranteed to be zero? Solution:According to the sampling theorem 2s M w w > That is 110000500022M s w w ππ<== So if 5000M w w π>=,0)(=jw X7.2 A continuous-time signal x(t) is obtained at the output of an ideal lowpass filter with cutoff frequency 1,000c ωπ=.If impulse-train sampling is performed on x(t), which of the following sampling periods would guarantee that x(t) can be recovered from its sampled version using an appropriate lowpass filter?(a) 30.510T -=⨯(b) 3210T -=⨯(c) 410T -= Solution: π1000==c M w wFrom the sampling theorem,∴π20002=>M s w w ,that is 3102000222-==<πππM s w T ∴the conditions (a) and (c) are satisfied with the sampling theorem,(b) is not satisfied.7.3 The frequency which, under the sampling theorem, must be exceeded by the sampling frequency is called the Nyquist rate. Determine the Nyquist rate corresponding to each of the following signals:(a)()1cos(2,000)sin(4,000)x t t t ππ=++ (b)sin(4,000)()t x t tππ=(c) 2sin(4,000)()()t x t t ππ= Solution: (a) )4000sin()2000cos(1)(t t t x ππ++=max(0,2000,4000)4000M w πππ==∴ the Nyquist rate is 28000s M w w π>= (b) sin(4000)()t x t tππ= 4000M w π=∴ the Nyquist rate is 28000s M w w π>= (c) 2sin(4000)()t x t t ππ⎛⎫= ⎪⎝⎭ 2sin(4000)()t x tt ππ⎛⎫= ⎪⎝⎭221(1cos(8000))2t t ππ=- ∴8000M w π=∴the Nyquist rate is 216000s M w w π>=7.4 Let x(t) be a signal with Nyquist rate 0ω. Determine the Nyquist rate for each of the following signals:(a)()(1)x t x t +- (b)()dx t dt(c)2()x t(d)0()cos x t t ωSolution:(a) we let 1()()(1)y t x t x t =+-So 1()()()(1)()j j Y j X j e X j e X j ωωωωωω--=+=+ So the Nyquist rate of signal (a) is 0ω.(b) we let 2()()dx t y t dt= So 2()()Y j j X j ωωω=So the Nyquist rate of signal (b) is0ω. (c) we let 23()()y t x t = So 31()()*()2Y j X j X j ωωωπ= So the Nyquist rate of signal (c) is 20ω.(d) we let 40()()cos y t x t t ω=For 000cos [()()]FT t ωπδωωδωω→-++ So 4001()((()(())2Y j X j X j ωωωωω=-++ So the Nyquist rate of signal (d) is 03ω7.9 Consider the signal 2sin 50()()t x t tππ= Which we wish to sample with a sampling frequency of 150s ωπ= to obtain a signal g(t) with Fourier transform ()G j ω.Determine the maximum value of 0ω for which it is guaranteed that0()75() ||G j X j for ωωωω=≤Where ()X j ω is the Fourier transform of x(t).Solution: 2sin(50)()t x t t ππ⎛⎫= ⎪⎝⎭))100cos(1(2122t t ππ-= ∴100M w π=But π150=s wthe figure about before-sampling and after-sampling of )(jw H isWe can see that only when π500≤w , the before-sampling and after-sampling of )(jw H have the same figure.So if 0..)..(75)(w w for jw X jw G ≤=The maximum value of 0w is π50.Chap 99.2 Consider the signal 5()(1)t x t e u t -=- and denote its Laplace transform by X(s).(a)Using eq.(9.3),evaluate X(s) and specify its region of convergence. (b)Determine the values of the finite numbers A and 0t such that the Laplace transform G(s) of 50()()t g t Ae u t t -=-- has the same algebraic form as X(s).what is the region of convergencecorresponding to G(s)?Solution:(a). According to eq.(9.3), we will getdt e t x s X st -∞∞-⎰=)()(dt e t u e st t --∞∞--=⎰)1(5dt e t s )5(1+-∞⎰=)5()5()5()5()5(1)5(+=+--=+-=+-+-∞+-s e s e s e s s t s ROC:Re{s}>-5 (b). )()(05t t u Ae t g t --=-−→←LT 0)5(5)(t s e s A s G ++-=, Re{s}<-5 ∴ If )()(s X s G =then it ’s obviously that A=-1, 10-=t , Re{s}<-5.9.5 For each of the following algebraic expressions for the Laplace transform of a signal, determine the number of zeros located in the finite s-plane and the number of zeros located at infinity: (a)1113s s +++ (b) 211s s +- (c) 3211s s s -++ Solution :(a).1, 1)3)(1(423111+++=+++s s s s s ∴ it has a zero in the finite s-plane, that is 2-=sAnd because the order of the denominator exceeds the order of the numerator by 1∴ X(s) has 1 zero at infinity.(b). 0, 111)1)(1(1112-=-++=-+s s s s s s ∴ it has no zero in the finite s-plane.And because the order of the denominator exceeds the order of the numerator by 1∴ X(s) has 1 zero at infinity.(c). 1, 011)1)(1(112223-=++++-=++-s s s s s s s s s ∴ it has a zero in the finite s-plane, that is 1=sAnd because the order of the denominator equals to the order of the numerator∴ X(s) has no zero at infinity.9.7 How many signals have a Laplace transform that may be expressed as 2(1)(2)(3)(1)s s s s s -++++ in its region of convergence?Solution:There are 4 poles in the expression, but only 3 of them have different real part.∴ The s-plane will be divided into 4 strips which parallel to the jw-axis and have no cut-across.∴ There are 4 signals having the same Laplace transform expression.9.8 Let x(t) be a signal that has a rational Laplace transform with exactly two poles located at s=-1 and s=-3. If2()() ()t g t e x t and G j ω=[ the Fourier transform of g(t)]converges, determine whether x(t) is left sided, right sided, or two sided.Solution:)()(2t x e t g t =∴)2()(-=s X s G ROC: R(x)+Re{2}And x(t) have three possible ROC strips:),1(),1,3(),3,(+∞-----∞∴g(t) have three possible ROC strips: ),1(),1,1(),1,(+∞---∞ IF jw s s G jw G ==|)()(Then the ROC of )(s G is (-1,1)∴)(t x is two sides. 9.9 Given that1(),{}Re{}sat e u t Re s a s a -↔>-+ Determine the inverse Laplace transform of22(2)(),Re{}3712s X s s s s +=>-++ Solution: It is obtained from the partial-fractional expansion:22(2)2(2)42()712(4)(3)43s s X s s s s s s s ++-===+++++++,Re{}3s >-We can get the inverse Laplace transform from given formula and linear property.43()4()2()t t x t e u t e u t --=-9.10 Using geometric evaluation of the magnitude of the Fourier transform from the corresponding pole-zero plot ,determine, for each of the following Laplace transforms, whether the magnitude of the corresponding Fourier transform is approximately lowpass, highpass, or bandpass. (a): 1}Re{,.........)3)(1(1)(1->++=s s s s H (b): 221(),{}12s H s e s s s =ℜ>-++(c): 232(),{}121s H s e s s s =ℜ>-++ Solution:(a). 1}Re{,.........)3)(1(1)(1->++=s s s s H It ’s lowpass.(b).21}Re{,.........1)(22->++=s s s s s H It ’s bandpass.(c). 1}Re{., (1)2)(223->++=s s s s s H It ’s highpass.9.13 Let ()()()g t x t x t α=+- ,Where ()()t x t e u t β-=. Andthe Laplace transform of g(t) is 2(),1{}11s G s e s s =-<ℜ<-. Determine the values of the constantsαand βSolution: ()()()g t x t x t α=+-,and ()()t x t e u t β-=The Laplace transform : ()()()G s X s X s α=+- and()1X s s β=+,Re{}1s >- From the scale property of Laplace transform, ()1X s s β-=-+,Re{}1s < So 2(1)(1)()()()111s G s X s X s s s s βαββαβαα--+=+-=+=+-+-,1Re{}1s -<< From given 2()1s G s s =-,1Re{}1s -<< We can determine : 11,2αβ=-=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k
即z
lim k f (k )
k
Rx 2
可见左边序列的收敛域是半径为 R x 2的圆内部分。 6、双边序列的收敛域
F ( z)
k 1
z平面

f (k ) z k f (k ) z k f (k ) z k
k k 0
故只有 Rx1 Rx 2 时,两个收敛域才有 重叠,z变换存在收敛域为 Rx1 z Rx 2
z a (k ) za
k
z a
z a
第6章 离散系统的Z域分析
6.2
1、线性性质
if
Z变换性质
f 2 (k ) F2 ( z)
式中a,b为任意常 数。叠加后新的 z变换的收敛域至 少是原两个z变换 收敛域重叠部分
f1 (k ) F1 ( z )
then af1 (k ) bf2 (k ) aF 1 ( z ) bF 2 ( z)
z e j 1
z e j 1
a
z 1
第6章 离散系统的Z域分析
2、移位特性
(1)双边z变换 若f (k )是双边序列,其双边z变换为 f (k ) F ( z )
F[ f (k )]
k


f (k ) z k
f (1 n) z1n f (n) z n f (1 n) z 1n
z n ( ) a n 1
k


f (k )z k a z
k k
1
k
n k

n
n n a z
1
z 1即 z a,有 a z Z[ak (k 1)] a z z za 1 a z k 收敛域 即 a ( k 1) za
Fs ( s)


k


f (t ) (t kT )e dt f ( kT )e skT
st
k
f (t )(t kT )


sT 引入一个新的复变量z,令 z e 或 s
则上式变为 F ( z )
k


1 ln z T
则f (k n) z n F ( z )
f (k n) z n F ( z )
收敛域不变
第6章 离散系统的Z域分析
(2)单边z变换 若 f (k )是双边序列,其单边z变换为 f (k ) (k ) F ( z) 则左移后 f (k n) (k ) z F ( z ) z
z
Im[z ]
4、右边序列(因果序列)的收敛域
k F ( z ) f ( k ) z 由根值法:如果 k 0
k f (k ) z k 1 则z变化存在(收敛) lim k
R x1
Re [z ]
即 z lim k f (k ) Rx1
k
可见右边序列的收敛域是半径为 Rx1 的圆外部分。
例5、求序列cos( k ) (k ) 的z变换 z k a (k ) z 1 j k 解: j k za ] (k ) cos( k ) (k ) [e e 2 1 z z z ( z cos ) [ ] 2 z e j z e j z 2 2 z cos 1
当上式的公比 q z 1 1 ,即( z 1)时,级数收敛。根据等比
1 z 级数求和公式,得 Z [ (n)] 1 1 z z 1 z 即 ( n ) z 1 z 1 z 1
n 0
第6章 离散系统的Z域分析
例3、求指数序列 a k (k )的z变换 解: Z[ak (k )]
f (k ) z k收敛的z取值范围,
ak 1 , ①比值判断法:若有级数通项 ak ,而 lim k ak k 当 1时,级数收敛, 1不定。 1 时,级数发散,

②根值判断法: lim k ak ,当 1时,级数收敛,
k
n n n

k 0 n
n 1
f (k ) z k
1
收敛域不变
右移后 f (k n) (k ) z F ( z ) z
f (k )
k n

f (k ) z k
k
1 2 3 4 5 6 7 z0 z z z z z z z
第6章 离散系统的Z域分析
则左移后 f (k n) (k ) z F ( z ) z
二、z变换的收敛域
z变换是z的幂级数数, F ( z ) z变换存在的充分条件是
k


f (k ) z k
k


f (k ) z k
绝对可和
第6章 离散系统的Z域分析
1、z变换的收敛域:使 F ( z )
称为收敛域。 2、判别级数收敛的两种方法
k


收敛域不变
第6章 离散系统的Z域分析
4、z域积分(序列除k+m)
若f (k ) F ( z )
F f k m z d m 1 z k m m k 0, m Z
收敛域不变
m 0, k 0
F f k d z k
第6章 离散系统的Z域分析
3、z域微分(序列线性加权)
若f (k ) F ( z ) d m d m k f (k ) ( z ) F ( z ) kf (k ) z F ( z ) dz dz 例7、求斜边序列 k (k ) 的z变换 z z 1 解: (k ) z 1 d z z ] Z[k (k )] z [ dz z 1 ( z 1)2 z 1 d d z Z[k 2 (k )] z [ z [ ]] dz dz z 1
1
z
1

z
1

k 1
的Z变换。
a k k a k 1 k 1 a 1a k k 1
z a k za 1 z a k k 1 z a a k 1 a a
第6章 离散系统的Z域分析
第6章
本章要点
离散系统的Z域分析
6.1 6.2 6.3 6.4
Z变换 Z变换的性质 逆Z变换 Z域分析
第6章 离散系统的Z域分析
6.0
引言
与连续系统类似,离散系统也可用变换域法进
行分析。 Z变换 差分方程 代数方程
第6章 离散系统的Z域分析
6.1
一 Z变换的定义
f (t )
n n
n

k 0 n
n 1
f (k ) z k
1
右移后 f (k n) (k ) z F ( z ) z
若f (k )是因果序列, f (k ) f (k ) (k )
f (k-n) (k n) z n F ( z)
f (k n) (k n) z n F ( z ) z n f (k ) z k
Z变换

由抽样信号的拉氏变换引出z变换定义。
T ( t )
(1)
k
(t kT )

×
0
t

0 T 2T
t
f s (t )
fs( t ) f ( t ) T ( t )
0
t
k
f (t )(t kT )

第6章 离散系统的Z域分析
fs( t ) f ( t ) T ( t )
f (k ) z k ,记作 Z [ f (k )]
上式称为序列 f (k )的双边z变换。 若 f (k )为因果序列,则 F ( z ) f (k ) z k,称 F ( z ) 为序列 f (k ) 的单边z变换。
k 0
此后不特别说明,所指z变换为单边z变换。
第6章 离散系统的Z域分析
解: Z [k (k )]
k
z ( z 1) 2
z a
z 1
az ka (k ) 2 z ( z a ) 2 ( 1) a
z a
第6章 离散系统的Z域分析
6、k域反转
若f (k ) F ( z ) f ( k ) F ( z )
例10:求 a 解: k
k
F [ f (k n)] F [ g (k )]
k
g (k ) z

k

k


f ( k n) z k

(
f (1 n) z1 f (0 n) z 0 f (1 n) z 1
f (1 n) z1n f (n) z n f (1 n) z 1n )zn
n 1 k 0
k n

f (k ) z k
f (k 1) (k 1) zF ( z ) zf (0)
f (k 2) (k 2) z 2 F ( z ) z 2 f (0) zf (1)
例6、求序列 f (k ) (k ) (k 4) 的z变换 z 1 1 1 (k 4) 3 解: (k ) f (k ) (z 3 ) z 1 z ( z 1) z 1 z z 1 z 1 z 0
a k k k a z ( ) k 0 k 0 z

a 1即 z a,有 z 1 z k Z [a (k )] a za 1 z z 即a k (k ) 收敛域 za
z a
第6章 离散系统的Z域分析
相关文档
最新文档