2017-2018学年江苏省苏州市七年级上期末数学试卷含答案解析

合集下载

2023-2024学年江苏省苏州市姑苏区立达中学七年级(上)期末数学试卷及答案解析

2023-2024学年江苏省苏州市姑苏区立达中学七年级(上)期末数学试卷及答案解析

2023-2024学年江苏省苏州市姑苏区立达中学七年级(上)期末数学试卷一.选择题(共8小题,满分16分,每小题2分)1.(2分)﹣2023的相反数是()A.B.﹣2023C.D.20232.(2分)若a,b在数轴上的位置如图所示,则下列结论正确的是()A.ab>0B.ab<0C.a>﹣b D.﹣a<b3.(2分)5G是第五代移动通信技术的简称,5G网络理论下载速度可以达到每秒1300000KB 以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示为()A.1.3×106B.1.3×105C.13×105D.1.3×107 4.(2分)下面的计算正确的是()A.2a﹣a=1B.a+2a2=2a3C.﹣(a﹣b)=﹣a+b D.3(a+b)=3a+b5.(2分)若x=﹣1是方程2x+m﹣6=0的解,则m的值是()A.﹣4B.4C.﹣8D.86.(2分)下列几何体中,从正面看和从左面看形状相同的几何体有()A.1个B.2个C.3个D.4个7.(2分)如果关于y的方程有非负整数解,且关于x的不等式组的解集为x≥1,则所有符合条件的整数a的和为()A.﹣5B.﹣8C.﹣9D.﹣128.(2分)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如k=1+2+3+…+(n﹣1)+n,=(x+3)+(x+4)+…+(x+n);若对于任意x都有[x2+k(x﹣a)]=5x2+bx+80,则a,b的值分别是()A.4,﹣20B.4,20C.﹣4,﹣20D.﹣4,20二.填空题(共10小题,满分20分,每小题2分)9.(2分)单项式﹣4ab2的次数是.10.(2分)如图,OA的方向是北偏东15°,OB的方向是北偏西40°,若∠AOC=∠AOB,则OC的方向是.11.(2分)已知|x|=6,y2=9,且x•y<0,则x+y=.12.(2分)|x﹣3|=3﹣x,则x的取值范围是.13.(2分)定义:若a﹣b=0,则称a与b互为平衡数,若2x2﹣2与x+4互为平衡数,则代数式4x2﹣2x﹣11=.14.(2分)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕.若∠ABE=30°,则∠DBC为度.15.(2分)已知图1中的小正方形和图2中所有小正方形的大小都完全一样,将图1的小正方形分别放在图2中的①或②或③的某一个位置上,放置后所组成的图形不能围成一个正方体的位置是.(填序号)16.(2分)已知A=2x2+ax﹣7,B=bx2﹣x﹣.当A﹣2B的值与x无关时,a+b=.17.(2分)有一个数值转换机,原理如图所示,若开始输入的x的值是1,可发现第1次输出的结果是6,第2次输出的结果是3,…依次继续下去,第2024次输出的结果是.18.(2分)如图,一副三角板中两个直角顶点C叠放在一起,其中∠A=30°,∠B=60°,∠D=∠E=45°,保持三角板ABC不动,三角板DCE可绕点C旋转,则下列结论:①∠ACE=∠BCD;②∠BCE+∠ACD随着∠ACD的变化而变化;③当AB∥CE时,则∠ACD=60°或150°;④当∠BCE=3∠ACD时,DE一定垂直于AC.其中正确的是.三.解答题(共9小题,满分64分)19.(6分)计算:(1);(2).20.(6分)解方程:(1)3(x+1)=9;(2)﹣1=.21.(6分)解不等式组,并将解集表示在数轴上.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.23.(6分)先化简,再求值.﹣2y3+(3xy2﹣x2y)﹣2(xy2﹣y3).其中x,y满足(x+1)2+|y ﹣2|=0.24.(8分)如图,是由10个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.(2)直接写出这个几何体的表面积:平方厘米.25.(6分)以直线AB上一点O为端点,在直线AB的上方作射线OC,使∠BOC=50°,将一个直角三角板DOE的直角顶点放在O处,即∠DOE=90°,直角三角板DOE可绕顶点O转动,在转动的过程中,直角三角板DOE所有部分始终保持在直线AB上或上方.(1)如图1,若直角三角板DOE的一边OE在射线OA上,则∠COD=;(2)将直角三角板DOE绕点O转动后,使其一边OD在∠BOC的内部,如图2所示,①若OE恰好平分∠AOC,求此时∠BOD的度数;②若∠COD=∠AOE,求此时∠BOD的度数.26.(10分)某市居民使用自来水按如下标准收费(水费按月缴纳):户月用水量单价不超过12m3的部分a元/m3超过12m3但不超过20m3的部分 1.5a元/m3超过20m3的部分2a元/m3(1)当a=2时,某用户一个月用了28m3水,求该用户这个月应缴纳的水费元.(2)设某户月用水量为n立方米,当n>20时,则该用户应缴纳的水费为________元(用含a、n的整式表示).(3)当a=2时,甲、乙两用户一个月共用水40m3,设甲用户这个月用水x m3,试求下列甲、乙两用户一个月共缴纳的水费(用含x的整式表示).①当12<x≤20时,甲、乙两用户一个月共缴纳的水费为元.②当20<x≤28时,甲、乙两用户一个月共缴纳的水费为元.③当28<x≤40时,甲、乙两用户一个月共缴纳的水费为元.27.(12分)如图,数轴上有A、B、C三个点,分别表示数﹣18、﹣10、20,有两条动线段PQ和MN(点Q与点A重合,点N与点B重合,且点P总在点Q的左边,点M总在点N的左边),PQ=2,MN=5,线段MN以每秒1个单位的速度从点B开始一直向右匀速运动,同时线段PQ以每秒3个单位的速度从点A开始向右匀速运动.当点Q运动到点C时,线段PQ立即以相同的速度返回;当点P运动到点A时,线段PQ、MN立即同时停止运动.设运动时间为t秒(整个运动过程中,线段PQ和MN保持长度不变).(1)当t=2时,点Q表示的数为,点M表示的数为.(2)当开始运动后,t=秒时,点Q和点C重合.(3)在整个运动过程中,求点Q和点N重合时t的值.(4)在整个运动过程中,当线段PQ和MN重合部分长度为1时,请直接写出此时t的值.2023-2024学年江苏省苏州市姑苏区立达中学七年级(上)期末数学试卷参考答案与试题解析一.选择题(共8小题,满分16分,每小题2分)1.【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:﹣2023的相反数为2023.故选:D.【点评】本题主要考查相反数,关键是掌握相反数的定义.2.【分析】根据数轴上a、b的位置判断a、b、﹣a、﹣b的大小和符号,然后据此进行解答即可.【解答】解:如图:由数轴可得,a<﹣b<0<b<﹣a,∴ab<0,选项A错误;选项B正确;a<﹣b,选项C错误;﹣a>b,选项D错误.故选:B.【点评】本题主要考查了数轴与数的大小,掌握数轴上数的大小和在数轴上表示数、有理数乘法的符号规律是解题的关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1300000=1.3×106.故选:A.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为10n的形式,其中1≤|a|<10,n为整数是关键.4.【分析】根据去括号,合并同类项运算法则进行化简,从而作出判断,【解答】解:A、原式=a,故此选项不符合题意;B、a与2a2不是同类项,不能合并计算,故此选项不符合题意;C、原式=﹣a+b,故此选项符合题意;D、原式=3a+3b,故此选项不符合题意;故选:C.【点评】本题考查整式的加减,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.5.【分析】根据方程解的定义,把x=﹣1代入方程2x+m﹣6=0,可解得m.【解答】解:把x=﹣1代入方程2x+m﹣6=0可得:2×(﹣1)+m﹣6=0,解得:m=8,故选:D.【点评】本题主要考查方程解的定义,解题的关键是把方程的解代入方程得到所求参数的方程.6.【分析】分别判断这四个几何体从正面看和从左面看的形状,进而求解.【解答】解:球从正面看和从左面看都是圆,形状相同;三棱柱从正面看是长方形,从左面看是三角形,形状不同;圆锥从正面看和从左面看都是三角形,形状相同;圆柱从正面看和从左面看都是长方形,形状相同;综上,从正面看和从左面看形状相同的几何体有3个;故选:C.【点评】本题考查了从不同方向看几何体,正确判断从正面看和从左面看的形状是关键.7.【分析】解方程得出,根据关于y的方程有非负整数解,得出a ≥﹣5,且为整数,由不等式的解集得出a≤﹣3,进而即可求解.【解答】解:,解得:,∵关于y的方程有非负整数解,∴,解得:a≥﹣5,且为整数,关于x的不等式组整理得:,∵不等式组的解集为x≥1,∴a+4≤1,解得:a≤﹣3,∴﹣5≤a≤﹣3且为整数,∴a=﹣5,﹣3,于是符合条件的所有整数a的值之和为:﹣5﹣3=﹣8.故选:B.【点评】本题考查的是一元一次不等式组的整数解,解决本题的关键是先求出整个解集,然后在解集中求特殊解.8.【分析】由新定义知x2+2(x﹣a)+x2+3(x﹣a)+…+x2+n(x﹣a)=5x2+bx+80,整理可得5x2+20x﹣20a=5x2+bx+80,据此解答即可.【解答】解:根据题意知x2+2(x﹣a)+x2+3(x﹣a)+…+x2+n(x﹣a)=5x2+bx+80,则n=6,所以x2+2(x﹣a)+x2+3(x﹣a)+x2+4(x﹣a)+x2+5(x﹣a)+x2+6(x﹣a)=5x2+bx+80,即5x2+20x﹣20a=5x2+bx+80,则b=20,﹣20a=80,即a=﹣4,故选:D.【点评】本题主要考查数字的变化类,解题的关键是理解新定义,并据此列出关于x的整式.二.填空题(共10小题,满分20分,每小题2分)9.【分析】根据单项式的次数的意义:所有字母的指数和,即可解答.【解答】解:单项式﹣4ab2的次数是3,故答案为:3.【点评】本题考查了单项式,熟练掌握单项式的次数的意义是解题的关键.10.【分析】根据角的和差,方向角的表示方法,可得答案.【解答】解:如图,由题意可知:∵∠BOD=40°,∠AOD=15°,∴∠AOC=∠AOB=∠AOD+BOD=55°,∴∠COD=∠AOC+∠AOD=15+55=70°.故答案为:北偏东70°.【点评】本题考查了方向角,利用角的和差得出∠COD是解题关键.11.【分析】根据绝对值的定义,有理数乘方性质,有理数乘法法则求得x、y,再运用有理数加法法则计算便可.【解答】解:∵|x|=6,y2=9,∴x=±6,y=±3,∵x•y<0,∴x=6,y=﹣3或x=﹣6,y=3,当x=6,y=﹣3时,x+y=6﹣3=3,当x=﹣6,y=3时,x+y=﹣6+3=﹣3,故答案为:±3.【点评】本题主要考查了绝对值,有理数的乘方,有理数的乘法,熟记这些定义与法则是解题的关键.12.【分析】根据绝对值的意义,绝对值表示距离,所以3﹣x≥0,即可求解;【解答】解:3﹣x≥0,∴x≤3;故答案为x≤3;【点评】本题考查绝对值的意义;理解绝对值的意义是解题的关键.13.【分析】根据题意,2x2﹣2与x+4互为平衡数,得2x2﹣2﹣x﹣4=0,得到2x2﹣x=6,即可求出答案.【解答】解:∵2x2﹣2与x+4互为平衡数,∴2x2﹣2﹣x﹣4=0,∴2x2﹣x=6,∴4x2﹣2x﹣11=2(2x2﹣x)﹣11=2×6﹣11=1.故答案为:1.【点评】本题考查整式的加减,解答本题的关键是明确整式加减的计算方法.14.【分析】根据折叠思想,通过角的和差计算即可求解.【解答】解:∵BD、BE为折痕,∴BD、BE分别平分∠CBC′、∠ABA′∴∠A′BE=∠ABE=30°,∠DBC=∠DBC′∵∠A′BE+∠ABE+∠DBC+∠DBC′=180°∴∠ABE+∠DBC=90°∴∠DBC=60°.故答案为:60.【点评】本题考查了角的计算,用正确角分线是解决本题的关键.15.【分析】根据正方体展开图即可解答.【解答】解:由正方体展开图可知,如将图1放在①处,会有重叠面出现,无法折叠出正方体.故答案为:①.【点评】本题考查了正方体的折叠与展开图,准确理解正方体展开图的方式和牢记正方体展开图常见图形是解题的关键.16.【分析】因为A﹣2B的值与x无关,所以化简后,关于x2,x的系数为0,可得2﹣2b =0,a+3=0,从而得解.【解答】解:A﹣2B=(2x2+ax﹣7)﹣2(bx2﹣x﹣)=2x2+ax﹣7﹣2bx2+3x+5=(2﹣2b)x2+(a+3)x﹣2,∵A﹣2B的值与x无关,∴2﹣2b=0,a+3=0,∴a=﹣3,b=1,∴a+b=﹣3+1=﹣2,故答案为:﹣2.【点评】本题考查的是整式的加减与化简,解题的关键是A﹣2B的值与x无关,则x2,x 的系数为0.17.【分析】根据原理图可算出每一次输出的结果,从中找出规律即可求出第2024次的结果.【解答】解:第1次输出的结果是6,第2次输出的结果是3,第3次输出的结果是3+5=8,第4次输出的结果是×8=4,第5次输出的结果是×4=2,第6次输出的结果是=1,第7次输出的结果是1+5=6,……,以此类推,从第一次开始,每6次输入为一个循环,输出结果为6、3、8、4、2、1依次出现,∵2024÷6=337…2,∴第2024次输出的结果为3.故答案为:3.【点评】此题主要考查了规律型:数字的变化类,代数式求值问题,要熟练掌握,解答此题的关键要明确:从第一次输出的结果开始,每次输出的结果分别是6、3、8、4、2、1、6、3、…,每6个数一个循环.18.【分析】根据题意,利用旋转和平行线的性质,对所给结论依次进行判断即可.【解答】解:由题知,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠ECD﹣∠ACD,即∠ACE=∠BCD;故①正确.∵∠BCE=∠BCA+∠ACE,∴∠BCE+∠ACD=∠BCA+∠ACE+∠ACD=∠BCA+∠DCE=180°,所以∠BCE+∠ACD的大小不随着∠ACD的变化而变化.故②错误.当旋转角小于90°时,∵AB∥CE,∴∠ACE=∠A=30°,∴∠ACD=90°﹣30°=60°.当旋转角大于90°时,如图所示,∵AB∥CE,∴∠BCE=∠B=60°,∴∠ACD=180°﹣60°=120°.故③错误.由②知,∠BCE+∠ACD=180°,∵∠BCE=3∠ACD,∴∠BCE=135°.当旋转角小于90°时,∠ACE=135°﹣90°=45°,又∵∠E=45°,∴DE⊥AC.当旋转角大于90°时,∵∠BCE=135°,∴∠ACD=45°,又∵∠D=45°,∴∠ACD=∠D,∴DE∥AC.故④错误.故答案为:①.【点评】本题考查旋转的性质及平行线的性质,对旋转角度是否大于90°进行分类讨论是解题的关键.三.解答题(共9小题,满分64分)19.【分析】(1)根据有理数的加减计算法则求解即可;(2)根据含乘方的有理数混合计算法则求解即可.【解答】解:(1)原式=2+2﹣5+5=(2+5)+(2﹣5)=8﹣3=5(2)原式=﹣9÷3+×12﹣(﹣1)=﹣3+6﹣8+1=﹣4.【点评】本题主要考查了有理数的加减计算,含乘方的有理数混合计算,熟知相关计算法则是解题的关键.20.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x+3=9,移项合并得:3x=6,系数化为1得:x=2;(2)去分母得:3(x﹣1)﹣6=2(2+x),去括号得:3x﹣3﹣6=4+2x,移项合并得:x=13.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.21.【分析】分别求解两个不等式,得到不等式组的解集,然后将解集表示在数轴上即可.【解答】解:,解不等式①得:x>﹣2,解不等式②得:x≤﹣1,∴不等式组的解集为:﹣2<x≤﹣1,表示在数轴上,如图所示:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【分析】(1)由两点之间线段最短可知,连接AD、BC交于H,则H为蓄水池位置;(2)根据垂线段最短可知,要做一个垂直EF的线段.【解答】解:(1)∵两点之间线段最短,∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.(2)过H作HG⊥EF,垂足为G.“过直线外一点与直线上各点的连线中,垂线段最短”是把河水引入蓄水池H中开渠最短的根据.【点评】本题考查了线段和垂线的性质在实际生活中的运用.23.【分析】先去括号,然后合并同类项化简,再根据非负数的性质求出x、y的值,最后代值计算即可.【解答】解:﹣2y3+(3xy2﹣x2y)﹣2(xy2﹣y3)=﹣2y3+3xy2﹣x2y﹣2xy2+2y3=﹣x2y+xy2,∵(x+1)2+|y﹣2|=0,(x+1)2≥0,|y﹣2|≥0,∴(x+1)2=0,|y﹣2|=0,∴x+1=0,y﹣2=0,∴x=﹣1,y=2,∴原式=﹣(﹣1)2×2+(﹣1)×22=﹣2﹣4=﹣6.【点评】本题主要考查了整式的化简求值,非负数的性质,正确计算是解题的关键.24.【分析】(1)直接利用三视图的画法得出符合题意的答案;(2)根据几何体的形状得出其表面积即可求解.【解答】解:(1)如图所示,(2)这个几何体的表面积为:6×6×(1×1)=36(平方厘米);【点评】此题主要考查了几何体的表面积及三视图,正确掌握不同视图的观察角度是解题关键.25.【分析】(1)根据两个角互为余角,求出∠COD的度数;(2)①根据平角定义先求出∠AOC,根据角平分线的定义得,进而求出∠BOD;②如图,先求出∠COD=50°﹣∠BOD,∠AOE=90°﹣∠BOD,然后代入计算即可.【解答】解:(1)∵∠DOE=90°,∴∠DOB=90°,∵∠BOC=50°,∴∠COD=40°,故答案为:40°;(2)①∵∠BOC=50°,∴∠AOC=180°﹣50°=130°,∵OE恰好平分∠AOC,∴,∴∠BOD=180°﹣∠AOE﹣∠DOE=25°;②如图,当∠COD在∠BOC的内部时,∵∠COD=∠BOC﹣∠BOD,∠BOC=50°,∴∠COD=50°﹣∠BOD.∵∠AOE+∠DOE+∠BOD=180°,∠DOE=90°,∴∠AOE=90°﹣∠BOD.∵,∴,∴∠BOD=30°.【点评】本题考查了作图——复杂作图、余角和补角,几何图形中的角度计算,角平分线的定义等知识的综合运用,运用分类讨论的思想进行分析是解题的关键.26.【分析】(1)(2)分段计算对应水量的费用,再将它们相加即可;(3)①②③根据x的取值范围,计算出对应乙用户用水量(40﹣x)的取值范围,进而分别求出甲、乙两用户的水费,再将二者相加即可.【解答】解:(1)当a=2时,12a+(20﹣12)×1.5a+(28﹣20)×2a=40a=80(元),故答案为:80.(2)12a+(20﹣12)×1.5a+(n﹣20)×2a=2na﹣16a(元),故答案为:(2na﹣16a).(3)根据题意可知,乙用户用水量为(40﹣x)m3.①∵12<x≤20,∴20≤40﹣x<28,∴甲用户一个月缴纳的水费为12a+(x﹣12)×1.5a=1.5ax﹣6a(元),乙用户一个月缴纳的水费为12a+(20﹣12)×1.5a+(40﹣x﹣20)×2a=﹣2ax+64a(元),∴当a=2时,甲、乙两用户一个月共缴纳的水费为1.5ax﹣6a﹣2ax+64a=﹣0.5ax+58a =116﹣x(元),故答案为:(116﹣x).②∵20<x≤28,∴12≤40﹣x<20,∴甲用户一个月缴纳的水费为12a+(20﹣12)×1.5a+(x﹣20)×2a=2ax﹣16a(元),乙用户一个月缴纳的水费为12a+(40﹣x﹣12)×1.5a=﹣1.5ax+54a(元),∴当a=2时,甲、乙两用户一个月共缴纳的水费为2ax﹣16a﹣1.5ax+54a=0.5ax+38a=x+76(元),故答案为:(x+76).③∵28<x≤40,∴0≤40﹣x<12,∴甲用户一个月缴纳的水费为12a+(20﹣12)×1.5a+(x﹣20)×2a=2ax﹣16a(元),乙用户一个月缴纳的水费为(40﹣x)a=﹣ax+40a(元),∴当a=2时,甲、乙两用户一个月共缴纳的水费为2ax﹣16a﹣ax+40a=ax+24a=2x+48(元),故答案为:(2x+48).【点评】本题考查列代数式和代数式求值,理解题意并根据用水量计算对应区间的水费是本题的关键.27.【分析】(1)当t=2时,点Q表示的数为﹣18+2×3=﹣12,点M表示的数为﹣10﹣5+2×1=﹣13;(2)根据题意得:﹣18+3t=20,即可解得答案;(3)分两种情况:当0<t<时,Q表示﹣18+3t,当<t≤,Q表示的数是20﹣3(t﹣),N表示的数是﹣10+t,即得﹣18+3t=﹣10+t或20﹣3(t﹣)=﹣10+t,可解得答案;(4)分四种情况:①Q未到达C,若Q在M右边1个单位时,可得t=2,②Q未到达C,N在P右侧1个单位时,可得t=4.5;③PQ返回,N在P右侧1个单位时,得t=,④PQ返回,Q在M右边1个单位时,得t=18.【解答】解:(1)当t=2时,点Q表示的数为﹣18+2×3=﹣12,点M表示的数为﹣10﹣5+2×1=﹣13,故答案为:﹣12,﹣13;(2)根据题意得:﹣18+3t=20,解得t=,故答案为:;(3)当0<t<,即Q未到C时,Q表示﹣18+3t,当<t≤,即PQ返回时,Q表示的数是20﹣3(t﹣),而N表示的数是﹣10+t,∴﹣18+3t=﹣10+t或20﹣3(t﹣)=﹣10+t,解得t=4或t=17,∴点Q和点N重合时t的值是4秒或17秒;(4)当0<t<时,Q表示﹣18+3t,P表示的数﹣20+3t,当<t≤时,Q表示的数是20﹣3(t﹣),P表示的数是18﹣3(t﹣),N表示的数是﹣10+t,M表示的数是﹣15+t,①Q未到达C,若Q在M右边1个单位时,(﹣18+3t)﹣(﹣15+t)=1,解得t=2,②Q未到达C,N在P右侧1个单位时,﹣10+t﹣(﹣20+3t)=1,解得t=4.5;③PQ返回,N在P右侧1个单位时,﹣10+t﹣[18﹣3(t﹣)]=1,解得t=,④PQ返回,Q在M右边1个单位时,20﹣3(t﹣)﹣(﹣15+t)=1,解得t=18;综上所述,t的值是2或4.5或或18.【点评】本题考查数轴上的动点问题,解题的关键是用含t的代数式表示点运动后表示的数。

2020-2021学年江苏省苏州市张家港市、常熟市等四市联考七年级(上)期末数学试卷(附答案详解)

2020-2021学年江苏省苏州市张家港市、常熟市等四市联考七年级(上)期末数学试卷(附答案详解)

2020-2021学年江苏省苏州市张家港市、常熟市等四市联考七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.−2的相反数是()A. 12B. ±2 C. 2 D. −122.疫情期间,我市红十字会累计接收社会各界爱心人士捐赠口罩、隔离衣、手套等88批次物资,价值约为5100000万元,则5100000用科学记数法可表示为()A. 5.1×105B. 5.1×106C. 51.0×106D. 5.1×1073.下列计算结果正确的是()A. 3x+2y=5xyB. 5x2−2x2=3C. 2a+a=2a2D. 4x2y−3x2y=x2y4.下列方程中,解为x=2的是()A. 3x+6=0B. 3−2x=0C. −12x=1 D. −14x+12=05.下列平面图形中,经过折叠能围成一个正方体的是()A. B. C. D.6.若3x m+5y2与23x8y n的差是一个单项式,则代数式−m n的值为()A. −8B. 9C. −9D. −67.若关于x的方程2x+a+5b=0的解是x=−3,则代数式6−2a−10b的值为()A. −6B. 0C. 12D. 188.下列说法正确的是()A. 具有公共顶点的两个角是对顶角B. A、B两点之间的距离就是线段ABC. 两点之间,线段最短D. 不相交的两条直线叫做平行线9.《九章算术》是我国古代数学名著,卷7“盈不足”中有题译文如下:现有一伙人共同买一个物品,每人出8钱,还余3钱;每人出7钱,还差4钱,问有人数、物价各是多少?设物价为x钱,根据题意可列出方程()A. 8x+3=7x−4B. x+38=x−47C. 8x−3=7x+4D. x−38=x+4710. 如图,在长方形ABCD 中,AB =6cm ,BC =8cm ,点E 是AB 上的一点,且AE =2BE.点P 从点C 出发,以2cm/s 的速度沿点C −D −A −E 匀速运动,最终到达点E.设点P 运动时间为t s ,若三角形PCE 的面积为18cm 2,则t 的值为( )A. 98或194B. 98或194或274C. 94或6D. 94或6或274二、填空题(本大题共8小题,共24.0分) 11. 比0小3的数是______ . 12. 单项式−4πab 2c 7的次数为______ .13. 用代数式表示:a 的3倍与b 的和的立方为______ .14. 一个几何体的三视图如图所示,则它的体积是______ .(结果保留π)15. 已知直线AB 与直线CD 相交于点O ,EO ⊥CD ,垂足为O.若∠AOC =25°12′,则∠BOE 的度数为______ °.(单位用度表示)16. 钟表上显示6时20分,则此刻时针与分针的夹角的度数为______ °.17. 在数的学习中,我们会对其中一些具有某种特质的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究一种特殊的数−巧数.定义:若一个两位数恰等于它的各位数字之和的4倍,则这个两位数称为巧数.若一个巧数的个位数字比十位数字大3,则这个巧数是______ .18. 如图所示的图形都是由大小相同的黑点按照一定规律所组成的,其中第①个图形中一共有1个黑点,第②个图形中共有5个黑点,第③个图形中一共有13个黑点,…,按此规律排列下去,第n 个图形中黑点的个数为______ .(用含n 的代数式表示)三、解答题(本大题共10小题,共76.0分)19.计算:(1)−12020+(−5)2−|−3|;(2)−19×|1−(−2)3|−(18−23)×24.20.解下列方程:(1)4−(x+3)=2(x−1);(2)2x−14+1=x+36.21.已知A=−a2+5ab+14,B=−4a2+6ab+7,其中|a−3|+(b+2)2=0.(1)a=______ ,b=______ ;(2)求A−(B−2A)的值.22.在如图所示的方格纸中,每个小正方形的顶点称为格点,点A、B、C都在格点上.(1)找一格点D,使得直线CD//AB,画出直线CD;(2)找一格点E,使得直线AE⊥BC于点F,画出直线AE,并注明垂足F;(3)找一格点G,使得直线BG⊥AB,画出直线BG;(4)连接AG,则线段AB、AF、AG的大小关系是______ (用“<”连接).23.如图,已知点D是线段AB上一点,点C是线段AB的中点,若AB=8cm,BD=3cm.(1)求线段CD的长;(2)若点E是直线AB上一点,且BE=13BD,点F是BE的中点,求线段CF的长.24.小明在对关于x的方程x+33−mx−16=−1去分母时,得到了方程2(x+3)−(mx−1)=−1,因而求得的解是x=8,你认为他的答案正确吗?如果不正确,请求出原方程的正确解.25.基本事实:已知过A、B两点可以画一条直线AB,我们得到了一个基本事实______.若平面内有不在同一直线上的3个点,过其中任意两点,一共可以画______ 条直线;类比:如图1,已知∠AOB,在∠AOB的内部画射线OC、OD,则图中共有______ 个角;实践应用:2020年7月1日,沪苏通铁路正式通车,加快了长三角交通一体化建设.沪苏通铁路衔接南通和上海,并在沿途增设张家港、常熟、太仓三个停靠站,如图2,若一动车往返于上海与南通之间,已知各站之间的路程均不相等,则共有______ 种不同的票价.(不考虑座位等级等其它因素)26.新冠病毒疫情初期,口罩供应短缺,某口罩生产厂家接到一批口罩定制任务,要求10天完成.如果安排第一车间单独加工,则正好如期完成任务;如果安排第二车间单独加工,则会延期5天完成.(1)为了尽快完成任务,厂长安排第一车间单独加工5天后,随即安排第二车间加入一起加工,那么该厂家可以提前几天完成任务?(2)已知第一车间一天投入生产的成本是1.2万元,第二车间一天投入生产的成本是0.7万元.现有三种加工方案:方案一:第一车间单独加工;方案二:第二车间单独加工;方案三:两个车间同时加工.如果你是厂长,在以上三种方案中,应选择哪一种方案安排生产,既可以节约成本,又在规定时间内完成这批口罩加工任务?请通过计算说明理由.27.数学实践课上,小明同学将直角三角板AOB的直角顶点O放在直尺EF的边缘,将直角三角板绕着顶点O旋转.(1)若三角板AOB在EF的上方,如图1所示.在旋转过程中,小明发现∠AOE、∠BOF的大小发生了变化,但它们的和不变,即∠AOE+∠BOF=______ °.(2)若OA、OB分别位于EF的上方和下方,如图2所示,则∠AOE、∠BOF之间的上述关系还成立吗?若不成立,则它们之间有怎样的数量关系?请说明你的理由;(3)射线OM、ON分别是∠AOE、∠BOE的角平分线,若三角板AOB始终在EF的上方,则旋转过程中,∠MON的度数是一个定值吗?若是,请求出这个定值;若不是,请说明理由.28.已知数轴上有A、B两点,点A表示的数为−8,且AB=20.(1)点B表示的数为______ ;(2)如图1,若点B在点A的右侧,点P以每秒4个单位的速度从点A出发向右匀速运动.①若点Q同时以每秒2个单位的速度从点B出发向左匀速运动,经过多少秒后,点P与点Q相距1个单位?②若点Q同时以每秒2个单位的速度从点B出发向右匀速运动,经过多少秒后,在点P、B、Q三点中,其中有一点是另外两个点连接所成线段的中点?答案和解析1.【答案】C【解析】解:−2的相反数是2;故选C.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【答案】B【解析】解:5100000用科学记数法表示为5.1×106,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:A、3x与2y不是同类项,所以不能合并,故本选项不合题意;B、5x2−2x2=3x2,故本选项不合题意;C、2a+a=3a,故本选项不合题意;D、4x2y−3x2y=x2y,故本选项符合题意.故选:D.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此判断即可.本题主要考查了合并同类项法则,熟记运算法则是解答本题的关键.【解析】解:A、将x=2代入3x+6=0,左边=12≠右边=0,故本选项不合题意;B、将x=2代入3−2x=0,左边=−1=右边=0,故本选项不合题意;C、将x=2代入−12x=1,左边=−1≠右边=1,故本选项不合题意;D、将x=2代入−14x+12=0,左边=0≠右边=0,故本选项符合题意.故选:D.将x=2代入方程能够使得左右两边相等即可.本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解的概念.5.【答案】B【解析】解:由各个选项中的图形可知,选项B中图形,可以围成一个正方体,故选:B.根据正方体展开图的特点,可以判断各个选项中的图形,哪个可以围成正方体.本题考查展开图折叠成几何体,解答本题的关键是明确题意,利用数形结合的思想解答.6.【答案】C【解析】解:∵3x m+5y2与23x8y n的差是一个单项式,∴3x m+5y2与23x8y n是同类项,∴m+5=8,n=2,解得m=3,n=2,∴−m n=−32=−9.故选:C.根据单项式的差是单项式,可得同类项,根据同类项是字母相同且相同字母的指数也相同,可得m,n的值,再代入所求式子计算即可.本题考查了合并同类项,利用同类项得出m、n的值是解题关键.【解析】解:把x=−3代入2x+a+5b=0,得a+5b=6,∴6−2a−10b=6−2(a+5b)=6−2×6=6−12=−6.故选:A.把x=−3代入方程,得到a+5b=6,再代入所求式子计算即可.本题考查了一元一次方程的解的定义,理解定义是关键.8.【答案】C【解析】解:A.具有公共顶点的两个角不一定是对顶角,故本选项错误;B.A、B两点之间的距离就是线段AB的长,故本选项错误;C.两点之间,线段最短,故本选项正确;D.在同一平面内,不相交的两条直线叫做平行线,故本选项错误;故选:C.依据对顶角、两点的距离,线段的性质,平行线,即可得出结论.本题主要考查了对顶角、两点的距离,线段的性质,平行线,能熟记知识点是解此题的关键.9.【答案】B【解析】解:由题意可得,x+3 8=x−47,故选:B.根据人数是不变的和每人出8钱,还余3钱;每人出7钱,还差4钱,可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出等量关系,列出相应的方程.10.【答案】C【解析】解:如图1,当点P在CD上,即0<t≤3时,∵四边形ABCD是矩形,∴AB=CD=6cm,AD=BC=8cm.∵CP=2t(cm),∴S△PCE=12×2t×8=18,∴t=94;如图2,当点P在BC上,即3<t≤7时,∵AE=2BE,∴AE=23AB=4.∵DP=2t−6,AP=8−(2t−6)=14−2t.∴S△PCE=12×(4+6)×8−12(2t−6)×6−12(14−2t)×4=18,解得:t=6;当点P在AE上,即7<t≤9时,PE=18−2t.∴S△APE=12(18−2t)×8=18,解得:t=274<7(舍去).综上所述,当t=94或6时△APE的面积会等于18.故选:C.分下列三种情况讨论,如图1,当点P在CD上,即0<t≤3时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在BC上,即3<t≤7时,由S△PCE=S四边形AECD−S△PCD−S△PAE建立方程求出其解即可;如图3,当点P在AE上,即7<t≤9时,由S△PCE=12PE⋅BC=18建立方程求出其解即可.本题考查了矩形性质的运用,三角形面积公式的运用,梯形面积公式的运用,动点问题,分类讨论等;解答时要运用分类讨论思想求解,避免漏解.11.【答案】−3【解析】解:比0小3的数是0−3=−3,故答案为:−3.根据题意列出算式,再依据减法法则计算可得.本题主要考查有理数的减法,解题的关键是掌握有理数的减法法则:减去一个数,等于加上这个数的相反数.12.【答案】4【解析】解:∵单项式的次数是单项式中所有字母指数的和,∴单项式−4πab2c的次数为4.7故答案为4.依据单项式的次数是所有字母指数的和可得结论.本题主要考查了单项式的次数的计算,题目简单,主要依据定义计算即可.13.【答案】(3a+b)3【解析】解:(3a+b)3.依据题意中3倍、和、立方等关键词语,确定运算符号,注意是和的立方.本题主要考查了列代数式的方法.依据题意中的关键信息确定运算符号,再理清运算顺序.14.【答案】96π【解析】解:由图可知,这个几何体是圆柱,底面圆的直径是8,圆柱的高是6,则该圆柱体的体积是:π×42×6=96π,故答案为:96π.根据题目中的图形,可以判断该几何体是圆柱,然后根据圆柱的体积公式计算即可.本题考查由三视图判断几何体、圆柱,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】64.8【解析】解:∵EO⊥CD,∴∠EOD=90°.∵∠BOD=∠AOC,∠AOC=25°12′,∴∠BOD=25°12′.∴∠BOE=∠EOD−∠BOD=90°−25°12′=64°48′=64.8°.故答案为64.8.由对顶角相等可以得到∠BOD的度数,EO⊥CD可得∠EOD=90°.用∠EOD−∠BOD,结论可得.本题主要考查了垂线和对顶角的定义的应用以及度分秒的换算,要注意由垂直得直角这一要点.16.【答案】70【解析】解:当钟表上显示6时20分时,分针指着4,时针处于6和7之间,走了6到7之间的1,3由钟表的特点可知,每个大格是30°,如1到2,2到3都是30°,=故钟表上显示6时20分,则此刻时针与分针的夹角的度数为:(6−4)×30°+30°×13 70°,故答案为:70.根据钟表的特点,可以计算出钟表上显示6时20分,则此刻时针与分针的夹角的度数.本题考查钟面角,解答本题的关键是明确钟面角的特点,求出相应的角的度数.17.【答案】36【解析】解:设这个巧数的十位数字为x,则个位数字为x+3,由题意可得,10x+(x+3)=4[x+(x+3)],解得x=3,∴x+3=6,∴这个巧数为36,故答案为:36.根据一个两位数恰等于它的各位数字之和的4倍,则这个两位数称为巧数,可以列出相应的方程,从而可以求得这个巧数.本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出相应的数据.18.【答案】2n2−2n+1【解析】解:∵①1=1,②5=2+1+2,③13=3+2+3+2+3,④25=4+3+4+3+4+3+4,…,∴第n个图的黑点的个数为:n+n−1+n+n−1+⋯+n−1+n,其中有n个n,(n−1)个(n−1).即第n个图的黑点的个数为n2+(n−1)2=2n2−2n+1.故答案为:2n2−2n+1.像①1=1,②5=2+1+2,③13=3+2+3+2+3这样,将图形中的黑点个数与图形的序数相对应列出关系式,可发现第n个图形中黑点的个数与n的关系,整理后即可得出答案.本题考查了图形的变化的规律.逐一写出黑点个数与图形的序数的关系,从而得出规律是解题的关键.19.【答案】解:(1)原式=−1+25−3=21;(2)原式=−19×|1+8|−(18×24−23×24)=−19×9−18×24+23×24=−1−3+16=12.【解析】(1)先计算乘方和绝对值,再计算加减即可;(2)根据有理数的混合运算顺序和运算法则计算即可.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.20.【答案】解:(1)4−(x+3)=2(x−1),去括号得:4−x−3=2x−2,移项得:−x−2x=−2−4+3,合并同类项:−3x=−3,把系数化为1:x=1.(2)2x−14+1=x+36去分母得:3(2x−1)+12=2(x+3),去括号得:6x−3+12=2x+6,移项得:6x−2x=6−12+3,合并同类项得:4x=−3,把系数化为1:x=−34.【解析】利用解一元一次方程方程的一般步骤可以求解.本题主要考查了一元一次方程的解法,解一元一次方程的一般步骤为去分母,去括号,移项,合并同类项,把方程化成ax=b的形式,最后把x的形式化为1,得方程的解x=ba.21.【答案】3 −2【解析】解:(1)∵|a−3|+(b+2)2=0,∴a−3=0,b+2=0,∴a=3,b=−2,故答案为:3,−2;(2)∵A=−a2+5ab+14,B=−4a2+6ab+7,∴A−(B−2A)=A−B+2A=3A−B=3(−a2+5ab+14)−(−4a2+6ab+7)=−3a2+15ab+42+4a2−6ab−7=a2+9ab+35,由(1)知,a=3,b=−2,∴原式=32+9×3×(−2)+35=−10,即A−(B−2A)的值是−10.(1)根据|a−3|+(b+2)2=0,可以得到a、b的值;(2)根据整式的加减法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.本题考查整式的化简求值、非负数的性质,解答本题的关键是明确它们各自的计算方法.22.【答案】AF<AB<AG【解析】解:(1)如图,直线CD即为所求作.(2)如图,直线AE即为所求作.(3)如图,直线BG即为所求作.(4)观察图象可知:AF<AB<AG.故答案为:AF<AB<AG.(1)根据平行线的定义画出图形即可.(2)取格点E,作直线AE交CB于F,直线AE即为所求作.(3)取格点G,作直线BG即可.(4)根据垂线段最短判断即可.本题考查作图−应用与设计作图,垂线段最短,平行线的判定,垂线的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.【答案】解:(1)∵点C是线段AB的中点,AB=8cm,∴BC=12AB=4(cm),∴CD=BC−BD=4−3=1(cm).(2)①当点E在点B的右侧时,如图:由(1)知,CD=1cm,BC=4cm,∴BD=4−1=3(cm),∵BE=13BD,∴BE=1cm,∵点F是BE的中点,∴BF=12BE=12(cm),∴CF=BC+BF=412(cm),②当点E在点B的左侧时,如图:由(1)知,CD=1cm,BC=4cm,∴BD=4−1=3(cm),∵BE=13BD,∴BE=1cm,∵点F是BE的中点,∴BF=12BE=12(cm),∴CF=BC−BF=312(cm).综上,CF的长为412cm或312cm.【解析】(1)根据中点定义,求得BC的长,再由线段的和差计算结果;(2)分两种情况:①当点E在点B的右侧时,②当点E在点B的左侧时,分别根据线段的中点定义计算即可.此题考查的是两点间的距离,掌握线段中点的定义是解决此题关键.24.【答案】解:根据题意,x=8是方程2(x+3)−(mx−1)=−1的解,将x=8代入得22−8m+1=−1,解得:m=3,把m=3代入原方程得x+33−3x−16=−1,去分母,得2(x+3)−(3x−1=−6,去括号,得2x+6−3x+1=−6,移项,合并同类项,得−x=−13,解得x=13.【解析】将x=8代入得2(x+3)−(mx−1)=−1求得m,据此可得原方程,再解方程即可.本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.25.【答案】两点可以画一条直线 3 6 10【解析】解:过两点可以画一条直线;若平面内有不在同一直线上的3个点,过其中任意两个点,一共可以画3条直线;由一个角的有3个,有两个角组成的角有2个,由3个角组成的角有1个,共有3+2+1= 6个角;从面通到各站的有4捉票价:从张家港到常熟、到太仓、到上海有3种票价,从常熟到太仓、到上海有2种票价,从太仓到上海有1种票价,共有4+3+2+1=10(种).分别根据直线、线段以及角的定义解答即可.此题考查的是直线、射线和线段,掌握其概念是解决此题的关键.26.【答案】解:(1)设提前x天完成,那么第一车间的工作时间是(10−x)天,第二车间的工作时间是(10−5−x)天,由题意得:10−x10+10−5−x15=1,解得x=2.答:该厂家可以提前2天完成任务.(2)方案一:1.2×10=12(万);方案二:0.7×15=10.5(万),但不能在规定时间内完成;方案三:1÷(110+115)=6(天),6×(1.2+0.7)=11.4(万);12>11.4,所以选择方案三.【解析】(1)设提前x 天完成,那么第一车间的工作时间是(10−x)天,第二车间的工作时间是(10−5−x)天,再根据两个车间的工作效率分别是110和115,可得方程;(2)分别计算出三种方案的费用,再比较即可得出结论.本题考查一元一次方程的应用,找到等量关系列出方程是解题关键.27.【答案】90【解析】解:(1)∵∠AOE +∠AOB +∠BOF =180°,∴∠AOE +∠BOF =90°;故答案为90;(2)∠AOE −∠BOF =90°,理由如下:∵∠AOE +∠AOF =180°,∠AOF +∠BOF =90°,∴∠AOE −∠BOF =90°;(3)∠MON 的度数是一个定值,理由如下:∵射线OM 、ON 分别是∠AOE 、∠BOE 的角平分线,∴∠EOM =12∠AOE ,∠EON =12∠BOF =12(∠AOE +∠AOB)=12∠AOE +45°, ∴∠MON =∠EON +∠EOM =45°.(1)由平角的性质可求解;(2)由补角和余角的性质可求解;(3)由角平分线的性质和平角的性质可求解.本题考查了平行线的性质,余角和补角,角平分线的性质,灵活运用这些性质解决问题是本题的关键.28.【答案】12【解析】解:(1)∵点A表示的数为−8,∴点A到原点O的距离AO=8,∵AB=20,∴BO=AB−AO=20−8=12,∵点B在原点O的右侧,故点B表示的数为12,故答案为:12.(2)①设经过t秒后,点P与点Q相距1个单位,当点P与点Q未相遇,2t+4t=20−1,6t=19,t=196;当点P与点Q未相遇过后时,2t+4t=20+1,6t=21,t=72.综上分析:t=196或t=72.②设经过t少后其中一点为中点,P=4t−8,B=12,Q=2t+12,当P为中点时,B+Q=2P,12+2t=2(4t−8),t=203;当B为中点时,P+Q=2B,4t−8+2t+12=2×12,t=103;当Q为中点时,P+B=2Q,4t−8+12=2(2t+12),t=0(舍),综上分析:t=203或t=103.(1)根据数轴上两点间的距离公式可得答案;(2)分两种情况:①设经过t秒后,点P与点Q相距1个单位,当点P与点Q未相遇,当点P与点Q未相遇过后时列方程求解即可;②设经过t少后其中一点为中点,分当P 为中点时,当B为中点时,当Q为中点时,三种情况列方程求解即可.此题考查的是一元一次方程的应用,掌握分类讨论法分别求解是解决此题关键.。

人教版2017~2018学年七年级上期末考试数学试题及答案

人教版2017~2018学年七年级上期末考试数学试题及答案

人教版2017~2018学年七年级上期末考试数学试题及答案2017-2018学年度(上)七年级期末质量监测数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.-3的相反数是()A。

3B。

-3C。

0D.无法确定2.下列各组数中,相等的是()A。

(-3)与-3B。

|-3|与-3C。

(-3)与-3D。

|3|与-33.下列说法中正确的个数是()①a一定是正数;②- a一定是负数;③- (- a)一定是正数;④a一定是分数。

A。

0个B。

1个C。

2个D。

3个4.下列图形不是正方体的展开图的是()A。

B。

C。

D。

5.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第7个图案中▲的个数为().A.28B.25C.22D.216.方程2x-1=-5的解是()A.3B.-3C.2D.-27.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心。

据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A。

5×1010千克B。

50×109千克C。

5×109千克D。

0.5×1011千克8.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是()A。

B。

C。

D。

9.下列结论正确的是()A。

直线比射线长B。

一条直线就是一个平角C。

过三点中的任两点一定能作三条直线D。

经过两点有且只有一条直线10.文具店老板以每个144元的价格卖出两个计算器,其中一个赚了20%,另一个亏了20%,则卖这两个计算器总的是()A。

不赚不赔B。

亏12元C。

盈利8元D。

亏损8元二、填空题(本题有6小题,每小题3分,共18分)11.数轴上的点A、B位置如图所示,则线段AB的长度为3.12.单项式- ab的系数是-1;多项式xy+2x+5y-25是次项式2x。

2018-2019学年江苏省苏州市昆山市七年级(上)期末数学试卷(解析版)

2018-2019学年江苏省苏州市昆山市七年级(上)期末数学试卷(解析版)

2018-2019学年江苏省苏州市昆山市七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.-13的相反数是()A. 13B. 3 C. −13D. −32.下列计算正确的是()A. 3a+2b=5abB. 5a2−2a2=3C. 7a+a=7a2D. 2a2b−4a2b=−2a2b3.如果3a7x b y+7和-7a2-4y b2x是同类项,则x,y的值是()A. x=−3,y=2B. x=2,y=−3C. x=−2,y=3D. x=3,y=−24.下列关于多项式2a2b+ab-1的说法中,正确的是()A. 次数是5B. 二次项系数是0C. 最高次项是2a2bD. 常数项是15.下列图形中,线段AD的长表示点A到直线BC距离的是()A. B.C. D.6.若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k的取值为()A. 3B. −3C. −4D. 47.实数a、b在数轴上的位置如图,则化简|a|+|b|的结果为()A. a−bB. a+bC. −a+bD. −a−b8.如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A. B. C. D.9.下列说法中正确的是()A. 过一点有且仅有一条直线与已知直线平行B. 若AC=BC,则点C是线段AB的中点C. 相等的角是对顶角D. 两点之间的所有连线中,线段最短10.如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针沿正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针沿正方形运动,则第2019次相遇在()A. 点AB. 点BC. 点CD. 点D二、填空题(本大题共8小题,共24.0分)11. 比较大小:-23______-34.12. 单项式-7a 3b 2c 的次数是______.13. 已知方程ax +by =10的两个解是{y =0x=−1,{y =5x=1,则a =______,b =______.14. 如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x -y 的值为______.15. 已知x -3y =-3,则5-x +3y 的值是______.16. 如图,已知∠AOB =64°36′,OC 平分∠AOB ,则∠AOC =______°.17. 下午3点30分时,钟面上时针与分针所成的角等于______°.18. 如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,x 的值为______.三、计算题(本大题共2小题,共15.0分)19. 计算:(1)-20+(-14)-(-18)-13(2)(-2)4+(-4)×(12)2-(-1)3(3)(-1)4-16×[(-2)3-32]20. 先化简,再求值:5(3a 2b -ab 2)-4(-ab 2+3a 2b ),其中a 、b 满足|a -12|+(b +3)2=0.四、解答题(本大题共8小题,共61.0分)21. 解下列方程(组):(1)x+12−2−3x3=1(2){5x +3y =252x +7y −3z =193x +2y −z =1822. 已知:已知:A =2a 2+3ab -2a -1,B =-a 2+ab -1.(1)求2A -3B ;(2)若A +2B 的值与a 的取值无关,求b 的值.23. 在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点,已知点A 、B 、C都在格点上.(1)按下列要求画图:过点B 和一格点D 画AC的平行线BD ,过点C 和一格点E 画BC 的垂线CE ,并在图中标出格点D 和E ;(2)求三角形ABC 的面积.24.已知,点C是线段AB的中点,AC=6.点D在直线BD.请画出相应的示意图,并求线AB上,且AD=12段CD的长.25.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?26.直线AB、CD相交于点O,OE平分∠BOD.OF⊥CD,垂足为O,若∠EOF=54°.(1)求∠AOC的度数;(2)作射线OG⊥OE,试求出∠AOG的度数.27.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=______;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON 在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为______(直接写出结果).28.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米,甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.请解答下面问题:(1)B、C两点之间的距离是______米.(2)求甲机器人前3分钟的速度为多少米/分?(3)若前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为与乙相同,求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后甲机器人的速度又恢复为原来出发时的速度,直接写出当t>6时,甲、乙两机器人之间的距离S.(用含t的代数式表示).答案和解析1.【答案】A【解析】解:-的相反数是,故选:A.根据只有符号不同的两个数互为相反数,可得答案.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】D【解析】解:A、3a+2b,无法计算,故此选项错误;B、5a2-2a2=3a2,故此选项错误;C、7a+a=8a,故此选项错误;D、2a2b-4a2b=-2a2b,正确.故选:D.直接利用合并同类项法则分别分析得出答案.此题主要考查了合并同类项,正确掌握运算法则是解题关键.3.【答案】B【解析】解:由同类项的定义,得,解这个方程组,得.故选:B.本题根据同类项的定义,即相同字母的指数相同,可以列出方程组,然后求出方程组的解即可.根据同类项的定义列出方程组,是解本题的关键.4.【答案】C【解析】解:A、多项式2a2b+ab-1的次数是3,故此选项错误;B、多项式2a2b+ab-1的二次项系数是1,故此选项错误;C、多项式2a2b+ab-1的最高次项是2a2b,故此选项正确;D、多项式2a2b+ab-1的常数项是-1,故此选项错误.故选:C.直接利用多项式的相关定义进而分析得出答案.此题主要考查了多项式,正确掌握多项式次数与系数的确定方法是解题关键.5.【答案】D【解析】解:线段AD的长表示点A到直线BC距离的是图D,故选:D.根据点到直线的距离是指垂线段的长度,即可解答.本题考查了点到直线的距离的定义,注意是垂线段的长度,不是垂线段.6.【答案】D【解析】解:解得:,代入y=kx-9得:-1=2k-9,解得:k=4.故选:D.由题意建立关于x,y的方程组,求得x,y的值,再代入y=kx-9中,求得k的值.本题先通过解二元一次方程组,求得后再代入关于k的方程而求解的.7.【答案】C【解析】解:由图可知,a<0,b>0,所以,|a|+|b|=-a+b.故选:C.根据数轴判断出a、b的正负情况,然后去掉绝对值号即可.本题考查了实数与数轴,准确识图判断出a、b的正负情况是解题的关键.8.【答案】A【解析】解:由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面;故选:A.易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.9.【答案】D【解析】解:A、过直线外一点有且仅有一条直线与已知直线平行,故此选项错误;B、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=AB,则点C是线段AB的中点,故此选项错误;C、相等的角是对顶角,说法错误,应是对顶角相等,故此选项错误;D、两点之间的所有连线中,线段最短,说法正确,故此选项正确;故选:D.根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行可判断A的正误;根据中点的性质判断B的正误;根据对顶角的性质判断C的正误;根据线段的性质判断D的正误.此题主要考查了平行公理、对顶的性质、线段的性质、中点,关键是熟练掌握课本基础知识,牢固掌握定理.10.【答案】B【解析】解:由题意可得,第一次相遇在点D,第二次相遇在点C,第三次相遇在点B,第四次相遇在点A,第五次相遇在点D,……,每四次一个循环,∵2019÷4=504…3,∴第2019次相遇在点B,故选:B.根据题意可以得到前几次相遇的地点,从而可以发现其中的规律,进而求得第2019次相遇的地点,本题得以解决.本题考查数字的变化类,解答本题的关键是明确题意,找出题目中的变化规律.11.【答案】>【解析】解:∵|-|==,|-|==,而<,∴->-.故答案为:>.先计算|-|==,|-|==,然后根据负数的绝对值越大,这个数反而越小即可得到它们的关系关系.本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.12.【答案】6【解析】解:单项式-7a3b2c的次数是6,故答案为:6.根据一个单项式中所有字母的指数的和叫做单项式的次数可得答案.此题主要考查了单项式,关键是掌握单项式次数的计算方法.13.【答案】-10 4【解析】解:把和分别代入方程ax+by=10,得,解得.知道了方程的解,可以把这对数值代入方程,得到两个含有未知数a,b的二元一次方程组,从而可以求出a,b的值.主要考查了方程的解的定义和二元一次方程组的解法.解题关键是把方程的解代入原方程,使原方程转化为以系数a和b为未知数的方程,再求解.14.【答案】-3【解析】解:∵“5”与“2x-3”是对面,“x”与“y”是对面,∴2x-3=-5,y=-x,解得x=-1,y=1,∴2x-y=-2-1=-3.故答案为:-3.根据正方体的展开图中相对面不存在公共点可找出5对面的数字,从而可根据相反数的定义求得x的值,进一步求得y的值,最后代入计算即可.本题主要考查的是正方体相对面上的文字,掌握正方体的展开图中相对面不存在公共点是解题的关键.15.【答案】8【解析】解:∵x-3y=-3,∴-x+3y=3,∴5-x+3y=5+3=8.故填:8.由已知x-3y=-3,则-x+3y=3,代入所求式子中即得到.本题考查了代数式求值,根据已知求得代数的部分值,代入到所求代数式求值.16.【答案】32.3【解析】解:∵∠AOB=64°36′,OC平分∠AOB,∴∠AOC=64°36′÷2=32°18′=32.3°;故答案为:32.3.根据角平分线的定义求出∠AOC的度数,再根据度分秒之间的换算即可得出答案.此题考查了角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线;本题也考查了度分秒的换算.17.【答案】75【解析】解;3点30分时,它的时针和分针所成的角是30°×2.5=75°,故答案是:75.根据钟面平均分成12份,可得每份的度数,根据每份的度数成时针与分针相距的份数,可得答案.本题考查了钟面角,每份的度数成时针与分针相距的份数是解题关键.18.【答案】390【解析】解:由题意知,b=19+1=20,a==10,所以x=19×20+10=390,故答案为:390.由题意知右上数字=左下数字+1,左上数字=(左下数字+1)÷2,右下数字=左下数字×右上数字+左上数字,据此解答可得.本题主要考查数字的变化规律,解题的关键是根据题意得出右上数字=左下数字+1,左上数字=(左下数字+1)÷2,右下数字=左下数字×右上数字+左上数字.19.【答案】解:(1)原式=-20-14+18-13=-47+18=-29;(2)原式=16+(-4)×14-(-1) =16-1+1=16;(3)原式=1-16×(-8-9)=1-16×(-17) =1+176=236.【解析】(1)将减法转化为加法,再根据加法法则计算可得;(2)先计算乘方,再计算乘法,并将减法转化为加法,最后计算加减可得; (3)根据有理数的混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.20.【答案】解:原式=15a 2b -5ab 2+4ab 2-12a 2b =3a 2b -ab 2,∵|a -12|+(b +3)2=0,∴a =12,b =-3,则原式=-94-92=-274.【解析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.此题考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)x+12−2−3x 3=1方程两边同乘以6,得3(x +1)-2(2-3x )=6,去括号,得3x +3-4+6x =6,移项及合并同类项,得9x =7,系数化为1,得x =79;(2){5x +3y =25①2x +7y −3z =19②3x +2y −z =18③③×3-②,得 7x -y =35④①+④×3,得 26x =130,解得,x =5,将x =5代入①,得y =0,将x =5,y =0代入③,得z =-3,∴原方程组的解是{x =5y =0z =−3.【解析】(1)根据解一元一次方程组的方法可以解答此方程;(2)根据解三元一次方程组的方法可以解答此方程.本题考查解一元一次方程、解三元一次方程组,熟练掌握加减消元法是解答本题的关键.22.【答案】解:(1)∵A =2a 2+3ab -2a -1,B =-a 2+ab -1,∴2A -3B =2(2a 2+3ab -2a -1)-3(-a 2+ab -1)=4a 2+6ab -4a -2+3a 2-3ab +3=7a 2+3ab -4a +1; (2)∵A =2a 2+3ab -2a -1,B =-a 2+ab -1,∴A +2B =2a 2+3ab -2a -1-2a 2+2ab -2=5ab -2a -3=(5b -2)a -3,由结果与a 的取值无关,得到5b -2=0,解得:b =25.【解析】(1)把A 与B 代入原式,去括号合并即可得到结果;(2)由A+2B 的结果与a 的取值无关确定出b 的值即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)如图,点D ,点E 即为所求;(2)S △ABC =3×4-12×1×3-12×1×3-12×2×4=5. 【解析】(1)根据要求画出线段BD ,线段CE 即可;(2)利用分割法求出△ABC 的面积即可;本题考查作图-应用与设计,平行线的判定和性质,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:∵点C 是线段AB 的中点,AC =6,∴AB =2AC =12,①如图,若点D 在线段AC 上,∵AD =12BD ,∴AD =13AB =4,∴CD =AC -AD =6-4=2.②如图,若点D 在线段AC 的反向延长线上,∵AD =12BD ,∴AD =AB =12,∴CD =AC +AD =6+12=18.综上所述,CD 的长为2或18.【解析】由点C是线段AB的中点,AC=6,可得AB=2AC=12,分两种情况进行讨论:点D在线段AC上,点D在线段AC的反向延长线上,依据线段的和差关系进行计算即可.本题考查了两点间的距离,分类讨论是解题关键,以防遗漏.25.【答案】解:设先安排整理的人员有x人,依题意得:x60+2(x+15)60=1.解得:x=10.答:先安排整理的人员有10人.【解析】等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.解决本题的关键是得到工作量1的等量关系;易错点是得到相应的人数及对应的工作时间.26.【答案】解:(1)∵OF⊥CD,∠EOF=54°,∴∠DOE=90°-54°=36°,又∵OE平分∠BOD,∴∠BOD=2∠DOE=72°,∴∠AOC=72°;(2)如图,若OG在∠AOD内部,则由(1)可得,∠BOE=∠DOE=36°,又∵∠GOE=90°,∴∠AOG=180°-90°-36°=54°;如图,若OG在∠COF内部,则由(1)可得,∠BOE=∠DOE=36°,∴∠AOE=180°-36°=144°,又∵∠GOE=90°,∴∠AOG=360°-90°-144°=126°.综上所述,∠AOG的度数为54°或126°.【解析】(1)依据垂线的定义,即可得到∠DOE的度数,再根据角平分线的定义,即可得到∠BOD的度数,进而得出结论;(2)分两种情况讨论,依据垂线的定义以及角平分线的定义,即可得到∠AOG 的度数.本题主要考查了角平分线的定义以及对顶角的性质,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.27.【答案】90° 4.5秒或40.5秒【解析】解:(1)如图2,∠BOM=90°,OM平分∠CON.理由如下:∵∠BOC=135°,∴∠MOC=135°-90°=45°,而∠MON=45°,∴∠MOC=∠MON;故答案为90°;(2)∠AOM=∠CON.理由如下:如图3,∵∠MON=45°,∴∠AOM=45°-∠AON,∵∠AOC=45°,∴∠NOC=45°-∠AON,∴∠AOM=∠CON;(3)T=×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).故答案为90°;4.5秒或40.5秒.(1)利用旋转的性质可得∠BOM的度数,然后计算∠MOC的度数判断OM是否平分∠CON;(2)利用∠AOM=45°-∠AON和∠NOC=45°-∠AON可判断∠AOM与∠CON之间的数量关系;(3)ON旋转22.5度和202.5度时,ON平分∠AOC,然后利用速度公式计算t 的值.本题考查了角的计算:熟练掌握角平分线的定义和旋转的性质.28.【答案】450【解析】解:(1)由题意可得,B、C两点之间的距离是:50×9=450(米),故答案为:450;(2)设甲机器人前3分钟的速度为a米/分,3a=90+3×50,解得,a=80,答:机器人前3分钟的速度为80米/分;(3)∵前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为与乙相同,∴前4分钟甲机器人的速度为80米/分,在4≤t≤6分钟时,甲的速度为50米/分,设甲乙相遇前相距28米时出发的时间为b分钟,80b+28=90+50b,解得,b=,设甲乙相遇后相距28米时出发的时间为c分钟,80c-28=90+50c,解得,c=,答:两机器人前6分钟内出发分或分时相距28米;(4)∵6分钟后甲机器人的速度又恢复为原来出发时的速度,∴6分钟后甲机器人的速度是80米/分,当t=6时,甲乙两机器人的距离为:[80×4+50×(6-2)]-(90+50×6)=60(米),当甲到达终点C时,t={(90+450)-[80×4+50×(6-2)]}÷80+6=7.5(分),当乙到达终点C时,t=450÷50=9(分),∴当6<t≤7.5时,S=60+(80-50)×(t-6)=30t-120,当7.5<t≤9时,S=450-50×7.5-50(t-7.5)=-50t+450,由上可得,当t>6时,甲、乙两机器人之间的距离S=.(1)根据题目中的数据可以求得B、C两点之间的距离;(2)根据题意,可以得到甲机器人前3分钟的速度;(3)根据题意可知前4分钟甲机器人的速度,在4≤t≤6分钟时,甲的速度,从而可以求得两机器人前6分钟内出发多长时间相距28米;(4)根据题意可以得到当t>6时,甲、乙两机器人之间的距离S.本题考查一次函数的应用、两点间的距离,解答本题的关键是明确题意,利用一次函数的性质解答.。

江苏省苏州市工业园区2023-2024学年七年级下学期期末数学试卷(含详案)

江苏省苏州市工业园区2023-2024学年七年级下学期期末数学试卷(含详案)

2023-2024学年江苏省苏州市工业园区七年级(下)期末数学试卷一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.(2分)下列各式计算正确的是( )A.2a+3a=5a2B.a9÷a3=a3C.a2•a3=a6D.(a3)2=a62.(2分)据报道,华为与中芯国际正计划开发3nm级制程芯片.其中,3nm=0.000000003m,数据0.000000003用科学记数法可以表示为( )A.0.3×10﹣8B.3×10﹣9C.3×10﹣10D.30×10﹣103.(2分)苏州园林中的花窗图案丰富多样,美不胜收.下列花窗图案中可以由一个基本图案经过平移得到的是( )A.四钱纹样式B.拟日纹样式C.梅花纹样式D.海棠纹样式4.(2分)若多项式x2﹣2mx+16是一个完全平方式,则m的值为( )A.8B.±8C.4D.±46.(2分)如图,已知AB=CD.若添加一个条件后,可得△ABC≌△CDA,则在下列条件中,可以添加的是( )A.∠B=∠D B.AD∥BCC.AB∥CD D.AC平分∠BCD7.(2分)被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为( )A.B.C.D.8.(2分)如图,在四边形ABCD中,∠B=∠C=90°,点E、F在边BC上,点P在四边形的内部,且AE⊥PE,AE=PE,∠CFD=∠PFE.若BE=CD=1,CF=2,AB=3,则四边形ABCD的面积为( )A.18B.16C.14D.12二、填空题:本大题共8小题,每小题2分.共16分.把答案直接填在答题卡相应位置上.9.(2分)命题“对顶角相等”的逆命题是 命题(填“真”或“假”).10.(2分)若2x=4y=8,则2x+2y= .11.(2分)已知2x+3y=5,用含x的代数式表示y,则y= .12.(2分)已知x+y=2,且x﹣y>0,则x的取值范围是 .13.(2分)若m+n=1,则m2+2n﹣n2= .14.(2分)已知一个多边形的内角和是外角和的4倍,则这个多边形的边数是 .15.(2分)如图,先将两个全等的直角三角形ABC、DEF重叠在一起,再将三角形DEF沿CA方向平移2cm,AB、EF相交于点G.若BC=8cm,GE=3cm,则阴影部分的面积为 cm2.16.(2分)如图,在四边形ABCD中,AD∥BC,AD=6cm,BD=10cm,BC>8cm.动点P以1cm/s的速度从点A出发沿边AD向点D匀速移动,动点Q以2cm/s的速度从点B出发沿边BC向点C匀速移动,动点M从点B出发沿对角线BD向点D匀速移动,三点同时出发.连接PM、QM,当动点M的速度为 cm/s时,存在某个时刻,使得以P、D、M为顶点的三角形与△QBM全等.三、解答题:本大题共11小题,共68分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.17.(4分)计算:.18.(4分)因式分解:2a 3﹣4a 2b +2ab 2.19.(5分)解不等式组,并求出它的所有整数解的和.20.(5分)求代数式(a +2)(a ﹣2)﹣(a +2)2+(a +2)(a +6)的值,其中a =﹣1.21.(6分)已知关于x 、y 的二元一次方程组.(1)若方程组的解满足x ﹣y =1,求m 的值;(2)若方程组的解满足x +y <0,求m 的取值范围.22.(6分)“学以致用,知行并进”指的是学习不仅仅是为了获取知识,更重要的是将所学知识应用到实际生活中,从而实现知行合一的境界.生活中经常会遇到一些不可直接测量的距离或角度,为了测量出这些距离和角度,项目学习小组进行了如下探究:项目主题自制数学工具,测量生活中的“线”与“角”项目任务项目一:测量锥形容器内部底面内径项目二:测量斜坡的倾斜角度所需材料刻度尺、两根小棒、螺丝钉等正方形板、指针、重锤、3D 打印机等测量方案示意图实施步骤1.用螺丝钉将两根小棒AD 、BC 在它们的中点O 处固定;2.再将两根小棒的A 、B 端分别置于杯1.利用正方形板、指针、重锤等材料,借助3D 打印技术,制作“3D 迷你测坡仪”;2.将“3D 迷你测坡仪”置于斜坡OB 上,特重子内部底面内径的两端;3.用刻度尺测量两根小棒的C 、D 端之间的距离.锤与指针稳定;3.读出指针MC 所对的∠CMD 的度数.测量数据CD =9cm∠CMD =17°项目结论锥形容器内部底面内径AB =9cm斜坡OB 的倾斜角度为17°(1)项目一中,利用了全等三角形的性质.通过证明△AOB ≌△DOC ,就可以得到AB =CD =9cm .判定△AOB ≌△DOC 的方法是 ;A .SAS B .ASA C .AAS D .SSS(2)项目二中,利用了物理中的重力原理与数学中的平行线的性质.如图是简化的测量方案示意图,其中,MC ∥OA ,MD ∥OB ,请你证明:∠CMD =∠O .23.(6分)把如图所示的由16个小正方形组成的图形,用三种不同的方法沿网格线分割成两个全等图形.24.(6分)观察下列等式:①32﹣12=1×8;②52﹣32=2×8;③72﹣52=3×8;…根据上述式子的规律,解答下列问题:(1)第4个等式为  ;(2)写出第n 个等式,并说明其正确性.25.(8分)如图,在△ABC 中,AD 是角平分线,点E 、F 分别在边AC 、BC 上,AD 、BE 相交于点G ,且∠AGB +∠BEF =180°.(1)求证:∠CAD =∠CEF ;(2)若∠BAC=60°,∠C=40°,求∠BFE的度数.26.(8分)2024长三角国际田径钻石赛(上海/苏州)于2024年4月27日19:00在苏州奥体中心体育场举行.本站赛事名将云集,来自全球的近200名顶尖运动员参与了16个项目的激烈角逐.本站赛事门票价格如下:门票类别VIP A区B区C区D区票价(元)88058038018080(1)若购买C区、D区门票共5张,总票价为700元,C区、D区门票各购买了几张?(2)若购买A区、B区门票共5张,总票价不超过2400元,最多购买了几张A区门票?(3)若购买VIP、A区、B区门票共10张,总票价为5500元,可能购买了几张VIP门票?27.(10分)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D.(1)若△ABC的面积S△ABC=20,AB+CD=14,求AB﹣CD的值;(2)点E在边BC上,AE与CD相交于点F,且∠CEF=∠CFE.请你利用无刻度直尺和圆规作出点E;(不写作法,保留作图痕迹)(3)在(2)的条件下,延长AC至点G,连接GE,使GE=BE.若S△ABE=5S△CGE,求证:4BE=5CE.2023-2024学年江苏省苏州市工业园区七年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.(2分)下列各式计算正确的是( )A.2a+3a=5a2B.a9÷a3=a3C.a2•a3=a6D.(a3)2=a6【解答】解:∵2a+3a=5a,∴选项A不符合题意;∵a9÷a3=a6,∴选项B不符合题意;∵a2•a3=a5,∴选项C不符合题意;∵(a3)2=a6,∴选项D符合题意,故选:D.2.(2分)据报道,华为与中芯国际正计划开发3nm级制程芯片.其中,3nm=0.000000003m,数据0.000000003用科学记数法可以表示为( )A.0.3×10﹣8B.3×10﹣9C.3×10﹣10D.30×10﹣10【解答】解:0.000000003=3×10﹣9,故选:B.3.(2分)苏州园林中的花窗图案丰富多样,美不胜收.下列花窗图案中可以由一个基本图案经过平移得到的是( )A.四钱纹样式B.拟日纹样式C.梅花纹样式D.海棠纹样式【解答】解:A、本选项的图案可以看作由“基本图案”经过平移得到;B、本选项的图案可以看作由“基本图案”旋转平移得到;C、本选项的图案不可以看作由“基本图案”经过旋转得到;D、本选项的图案可以看作由“基本图案”经过轴对称得到;故选:A.4.(2分)若多项式x2﹣2mx+16是一个完全平方式,则m的值为( )A.8B.±8C.4D.±4【解答】解:∵多项式x2﹣2mx+16是一个完全平方式,∴﹣2m=±8,解得:m=±4,故选:D.6.(2分)如图,已知AB=CD.若添加一个条件后,可得△ABC≌△CDA,则在下列条件中,可以添加的是( )A.∠B=∠D B.AD∥BCC.AB∥CD D.AC平分∠BCD【解答】解:A、∵AB=CD,AC=AC,∠B=∠D,∴△ABC和△CDA不一定全等,故A不符合题意;B、∵AD∥BC,∴∠DAC=∠ACB,∵AB=CD,AC=AC,∴△ABC≌△CDA(SAS),故B符合题意;C、∵AB∥CD,∴∠BAC=∠ACD,∵AB=CD,AC=AC,∴△ABC和△CDA不一定全等,故C不符合题意;D、∵AC平分∠BCD,∴∠ACB=∠ACD,∵AB=CD,AC=AC,∴△ABC和△CDA不一定全等,故D不符合题意;故选:B.7.(2分)被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为( )A.B.C.D.【解答】解:设每只雀有x两,每只燕有y两,由题意得,.故选:C.8.(2分)如图,在四边形ABCD中,∠B=∠C=90°,点E、F在边BC上,点P在四边形的内部,且AE⊥PE,AE=PE,∠CFD=∠PFE.若BE=CD=1,CF=2,AB=3,则四边形ABCD的面积为( )A.18B.16C.14D.12【解答】解:作PG⊥BC于点G,则∠EGP=∠PGF=90°,∵∠B=∠C=90°,∴∠B+∠C=180°,∠B=∠EGP,∠C=∠PGF,∴AB∥DC,∴四边形ABCD是梯形,∵AE⊥PE,∴∠AEP=90°,∴∠GEP+∠AEB=180°,∵∠BAE+∠ABE=180°,∴∠BAE=∠GEP,在△ABE和△EGP中,,∴△ABE≌△EGP(AAS),∴AB=EG=3,BE=GP,∵BE=CD=1,∴CD=GP,在△CFD和△GFP中,,∴△CFD≌△GFP(AAS),∴CF=GF=2,∴BC=BE+EG+GF+CF=1+3+2+2=8,∴S四边形ABCD=×(3+1)×8=16,故选:B.二、填空题:本大题共8小题,每小题2分.共16分.把答案直接填在答题卡相应位置上.9.(2分)命题“对顶角相等”的逆命题是 假 命题(填“真”或“假”).【解答】解:命题“对顶角相等”的逆命题是相等的角为对顶角,此逆命题为假命题.故答案为假.10.(2分)若2x=4y=8,则2x+2y= 64 .【解答】解:∵2x=4y=8,∴2x=(22)y=8,2x=22y=23,∴x=3,2y=3,∴2x+2y=23+3=26=64,故答案为:64.11.(2分)已知2x+3y=5,用含x的代数式表示y,则y= .【解答】解:2x+3y=5,解得:y=.故答案为:.12.(2分)已知x+y=2,且x﹣y>0,则x的取值范围是 x>1 .【解答】解:∵x+y=2,∴y=2﹣x;∵x﹣y>0,∴x﹣(2﹣x)>0,∴2x﹣2>0,∴2x>2,解得x>1.故答案为:x>1.13.(2分)若m+n=1,则m2+2n﹣n2= 1 .【解答】解:∵m+n=1,∴m2+2n﹣n2=(m+n)(m﹣n)+2n=m﹣n+2n=m+n=1,故答案为:1.14.(2分)已知一个多边形的内角和是外角和的4倍,则这个多边形的边数是 10 .【解答】解:设这个多边形的边数为n,则该多边形的内角和为(n﹣2)×180°,依题意得(n﹣2)×180°=360°×4,解得n=10,∴这个多边形的边数是10.故答案为:1015.(2分)如图,先将两个全等的直角三角形ABC、DEF重叠在一起,再将三角形DEF沿CA方向平移2cm,AB、EF相交于点G.若BC=8cm,GE=3cm,则阴影部分的面积为 13 cm2.【解答】解:由全等三角形的性质可知CF=2cm,EF=BC=8cm,∠DFE=∠C=90°,∴FG=EF﹣GE=8﹣3=5cm.由平移的性质可知CF=2cm,∴S阴影=S直角梯形BCFG=(FG+BC)×CF=×(5+8)×2=13(cm2).故答案为:13.16.(2分)如图,在四边形ABCD中,AD∥BC,AD=6cm,BD=10cm,BC>8cm.动点P以1cm/s的速度从点A出发沿边AD向点D匀速移动,动点Q以2cm/s的速度从点B出发沿边BC向点C匀速移动,动点M从点B出发沿对角线BD向点D匀速移动,三点同时出发.连接PM、QM,当动点M的速度为 0.5或2 cm/s时,存在某个时刻,使得以P、D、M为顶点的三角形与△QBM全等.【解答】解:由题知,设运动的时间为t s,动点M的速度为v cm/s,则PD=(6﹣t)cm,DM=(10﹣vt)cm,BM=vt cm,BQ=2t cm.因为AD∥BC,所以∠ADB=∠DBC.当△DPM≌△BMQ时,DP=BM,DM=BQ,所以6﹣t=vt,10﹣vt=2t,解得t=4,则6﹣4=4v,解得v=0.5.当△DPM≌△BQM时,DP=BQ,DM=BM,所以6﹣t=2t,10﹣vt=vt,解得t=2,所以10﹣2v=2v,解得v=2.5.综上所述,动点M的速度为0.5cm/s或2.5cm/s.故答案为:0.5或2.三、解答题:本大题共11小题,共68分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.17.(4分)计算:.【解答】解:原式=8﹣1+1=1﹣1+8=8.18.(4分)因式分解:2a3﹣4a2b+2ab2.【解答】解:原式=2a(a2﹣2ab+b2)=2a(a﹣b)2.19.(5分)解不等式组,并求出它的所有整数解的和.【解答】解:解不等式3x﹣2≤4得,x≤2,解不等式2﹣得,x>﹣2,所以原不等式组的解集为:﹣2<x≤2,所以此不等式组的所有整数解的和为:﹣1+0+1+2=2.20.(5分)求代数式(a+2)(a﹣2)﹣(a+2)2+(a+2)(a+6)的值,其中a=﹣1.【解答】解:(a+2)(a﹣2)﹣(a+2)2+(a+2)(a+6)=a2﹣4﹣a2﹣4a﹣4+a2+8a+12=a2+4a+4,当a=﹣1时,原式=(﹣1)2+4×(﹣1)+4=1﹣4+4=1.21.(6分)已知关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求m的值;(2)若方程组的解满足x+y<0,求m的取值范围.【解答】解:(1)由题知,两式相加得,4x﹣4y=4+4m,所以x﹣y=1+m.因为x﹣y=1,所以1+m=1,解得m=0.(2)两式相减得,2x+2y=4﹣4m,所以x+y=2﹣2m.因为x+y<0,所以2﹣2m<0,解得m>1.22.(6分)“学以致用,知行并进”指的是学习不仅仅是为了获取知识,更重要的是将所学知识应用到实际生活中,从而实现知行合一的境界.生活中经常会遇到一些不可直接测量的距离或角度,为了测量出这些距离和角度,项目学习小组进行了如下探究:项目主题自制数学工具,测量生活中的“线”与“角”项目任务项目一:测量锥形容器内部底面内径项目二:测量斜坡的倾斜角度所需材料刻度尺、两根小棒、螺丝钉等正方形板、指针、重锤、3D 打印机等测量方案示意图实施步骤1.用螺丝钉将两根小棒AD 、BC 在它们的中点O 处固定;2.再将两根小棒的A 、B 端分别置于杯子内部底面内径的两端;3.用刻度尺测量两根小棒的C 、D 端之间的距离.1.利用正方形板、指针、重锤等材料,借助3D打印技术,制作“3D 迷你测坡仪”;2.将“3D 迷你测坡仪”置于斜坡OB 上,特重锤与指针稳定;3.读出指针MC 所对的∠CMD 的度数.测量数据CD =9cm ∠CMD =17°项目结论锥形容器内部底面内径AB =9cm 斜坡OB 的倾斜角度为17°(1)项目一中,利用了全等三角形的性质.通过证明△AOB ≌△DOC ,就可以得到AB =CD =9cm .判定△AOB ≌△DOC 的方法是 A ;A .SASB .ASAC .AASD .SSS(2)项目二中,利用了物理中的重力原理与数学中的平行线的性质.如图是简化的测量方案示意图,其中,MC ∥OA ,MD ∥OB ,请你证明:∠CMD =∠O .【解答】(1)解:∵O 为AD 与BC 的中点,∴OC =OB ,OD =OA ,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),故选:A;(2)证明:∵MC∥OA,∴∠O=∠OBM,∵MD∥OB,∴∠CMD=∠OBM,∴∠CMD=∠O.23.(6分)把如图所示的由16个小正方形组成的图形,用三种不同的方法沿网格线分割成两个全等图形.【解答】解:分割线如图所示:24.(6分)观察下列等式:①32﹣12=1×8;②52﹣32=2×8;③72﹣52=3×8;…根据上述式子的规律,解答下列问题:(1)第4个等式为 92﹣72=4×8 ;(2)写出第n个等式,并说明其正确性.【解答】解:(1)∵①32﹣12=1×8;②52﹣32=2×8;③72﹣52=3×8;…,∴第④个等式为:92﹣72=4×8,故答案为:92﹣72=4×8;(2)猜想:第n个等式为:(2n+1)2﹣(2n﹣1)2=8n,等式左边=4n2+4n+1﹣4n2+4n﹣1=8n=右边,故猜想成立.25.(8分)如图,在△ABC中,AD是角平分线,点E、F分别在边AC、BC上,AD、BE相交于点G,且∠AGB+∠BEF=180°.(1)求证:∠CAD=∠CEF;(2)若∠BAC=60°,∠C=40°,求∠BFE的度数.【解答】(1)证明:∵∠AGB+∠BEF=180°,∠AGB+∠AGE=180°,∴∠AGE=∠BEF,∴EF∥AD,∴∠CAD=∠CEF;(2)解:∵∠BAC=60°,∠C=40°,∴∠ABC=180°﹣60°﹣40°=80°,∵AD是角平分线,∴∠BAD=∠BAC=30°,∴∠ADB=180°﹣80°﹣30°=70°,∵EF∥AD,∴∠BFE=∠ADB=70°.26.(8分)2024长三角国际田径钻石赛(上海/苏州)于2024年4月27日19:00在苏州奥体中心体育场举行.本站赛事名将云集,来自全球的近200名顶尖运动员参与了16个项目的激烈角逐.本站赛事门票价格如下:门票类别VIP A区B区C区D区票价(元)88058038018080(1)若购买C区、D区门票共5张,总票价为700元,C区、D区门票各购买了几张?(2)若购买A区、B区门票共5张,总票价不超过2400元,最多购买了几张A区门票?(3)若购买VIP、A区、B区门票共10张,总票价为5500元,可能购买了几张VIP门票?【解答】解:(1)设购买x张C区门票,则购买(5﹣x)张D区门票,根据题意得:180x+80(5﹣x)=700,解得:x=3,∴5﹣x=5﹣3=2.答:购买3张C区门票,2张D区门票;(2)设购买y张A区门票,则购买(5﹣y)张B区门票,根据题意得:580y+380(5﹣y)≤2400,解得:y≤,又∵y为正整数,∴y的最大值为2.答:最多购买了2张A区门票;(3)设购买m张VIP门票,n张A区门票,则购买(10﹣m﹣n)张B区门票,根据题意得:880m+580n+380(10﹣m﹣n)=5500,∴n=,又∵m,n,(10﹣m﹣n)均为正整数,∴.答:购买了1张VIP门票.27.(10分)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D.(1)若△ABC的面积S△ABC=20,AB+CD=14,求AB﹣CD的值;(2)点E在边BC上,AE与CD相交于点F,且∠CEF=∠CFE.请你利用无刻度直尺和圆规作出点E;(不写作法,保留作图痕迹)(3)在(2)的条件下,延长AC至点G,连接GE,使GE=BE.若S△ABE=5S△CGE,求证:4BE=5CE.【解答】(1)解:∵S△ABC=•AB•CD=20,∴AB•CD=40,∵AB+CD=14,∴AB﹣CD===6;(2)解:图形如图所示:(3)证明:如图,过点E作EH⊥AB于点H.∵AE平分∠CAB,∴∠CAE=∠HAE,在△AEC和△AEH中,,∴△AEC≌△AEH(AAS),∴EC=EH,AC=AH,在Rt△ECG和Rt△EHB中,,∴Rt△ECG≌Rt△EBH(HL),∵S△ABE=5S△CGE,∴S△ABE=5S△EHB,∴AB=5BH,∴AC=AH=4HB,∴AC:AB=4:5,∵====,∴4BE=5CE.。

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案

2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。

人教部编版七年级数学上册期末测试题 (17)

人教部编版七年级数学上册期末测试题 (17)

2017-2018学年江苏省苏州市太仓市七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣D.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣24.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C. D.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是.13.(3分)已知x,y满足,则3x+4y= .14.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为.16.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有种换法.17.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 度.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E 点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|20.(8分)解方程:(1)7x﹣9=9x﹣7(2)21.(6分)解不等式,并把它的解集在数轴上表示出来.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.24.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加小正方体.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是,∠BOE的补角是.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种西红柿青椒西兰花豆角批发价(元/kg) 3.6 5.4 8 4.8零售价(元/kg) 5.4 8.4 14 7.6请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是(单位长度/秒);点B运动的速度是(单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?2017-2018学年江苏省苏州市太仓市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3分)|﹣2|的值是()A.﹣2 B.2 C.﹣D.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.(3分)下列计算正确的是()A.3a﹣2a=1 B.3a+2a=5a2C.3a+2b=5ab D.3ab﹣2ba=ab【解答】解: A、3a﹣2a=a,此选项错误;B、3a+2a=5a,此选项错误;C、3a与2b不是同类项,不能合并,此选项错误;D、3ab﹣2ba=ab,此选项正确;故选:D.3.(3分)已知是关于x、y的方程4kx﹣3y=﹣1的一个解,则k的值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:∵是关于x、y的方程4kx﹣3y=﹣1的一个解,∴代入得:8k﹣9=﹣1,解得:k=1,故选A.4.(3分)如图,小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短【解答】解:小军同学用剪刀沿虚线将一长方形剪掉一角,发现剩下图形的周长比原长方形的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.5.(3分)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.6.(3分)某测绘装置上一枚指针原来指向南偏西50°(如图),把这枚指针按逆时针方向旋转周,则结果指针的指向()A.南偏东20°B.北偏西80°C.南偏东70°D.北偏西10°【解答】解:∵这枚指针按逆时针方向旋转周,∴按逆时针方向旋转了×360°=120°,∴120°﹣50°=70°,如图旋转后从OA到OB,即把这枚指针按逆时针方向旋转周,则结果指针的指向是南偏东70°,故选:C.7.(3分)今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C. D.【解答】解:由题意得,去年的价格×(1﹣20%)=a,则去年的价格=.故选C.8.(3分)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.ac>bc B.ab>cb C.a+c>b+c D.a+b>c+b【解答】解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.9.(3分)轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.【解答】解:设A港和B港相距x千米,可得方程:.故选A.10.(3分)正整数n小于100,并且满足等式,其中[x]表示不超过x的最大整数,这样的正整数n有()个A.2 B.3 C.12 D.16【解答】解:∵,若x不是整数,则[x]<x,∴2|n,3|n,6|n,即n是6的倍数,∴小于100的这样的正整数有个.故选D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)据最新统计,苏州市常住人口约为1062万人.数据10 620 000用科学记数法可表示为 1.062×107.【解答】解:数据10 620 000用科学记数法可表示为1.062×107,故答案为:1.062×107.12.(3分)如图,A、B、C三点在一条直线上,若CD⊥CE,∠1=23°,则∠2的度数是67°.【解答】解:∵CD⊥CE,∴∠ECD=90°,∵∠ACB=180°,∴∠2+∠1=90°,∵∠1=23°,∴∠2=90°﹣23°=67°,故答案为:67°.13.(3分)已知x,y满足,则3x+4y= 10 .【解答】解:,①×2﹣②得:y=1,把y=1代入①得:x=2,把x=2,y=1代入3x+4y=10,故答案为:1014.(3分)若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是a<3 .【解答】解:由题意得a﹣3<0,解得:a<3,故答案为:a<3.15.(3分)己知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为 1 .【解答】解:2A+B=2(ay﹣1)+(3ay﹣5y﹣1)=2ay﹣2+3ay﹣5y﹣1=5ay﹣5y﹣3=5y(a﹣1)﹣3∴a﹣1=0,∴a=1故答案为:116.(3分)把面值20元的纸币换成1元和5元的两种纸币,则共有 3 种换法.【解答】解:设1元和5元的纸币各x张、y张,根据题意得:x+5y=20,整理得:x=20﹣5y,当x=1,y=15;x=2,y=10;x=3,y=5,则共有3种换法,故答案为:317.(3分)如图,将一张长方形的纸片沿折痕翻折,使点C、D分别落在点M、N的位置,且∠BFM=∠EFM,则∠BFM= 36 度.【解答】解:由折叠的性质可得:∠MFE=∠EFC,∵∠BFM=∠EFM,可设∠BFM=x°,则∠MFE=∠EFC=2x°,∵∠MFB+∠MFE+∠EFC=180°,∴x+2x+2x=180,解得:x=36°,∴∠BFM=36°.故答案为:36.18.(3分)如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D点向左移动4个单位长度至E 点,…,依此类推,经过4035或4036 次移动后该点到原点的距离为2018个单位长度.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8分)计算:(1);(2)(﹣1)2018÷(﹣5)2×+|0.8﹣1|【解答】解:(1)原式=18﹣30﹣8=﹣20;(2)原式=1××+0.2=+=.20.(8分)解方程:(1)7x﹣9=9x﹣7(2)【解答】解:(1)7x﹣9=9x﹣7 7x﹣9x=﹣7+9﹣2x=2x=﹣1;(2)5(x﹣1)=20﹣2(x+2)5x﹣5=20﹣2x﹣45x+2x=20﹣4+57x=21x=3.21.(6分)解不等式,并把它的解集在数轴上表示出来.【解答】解:去分母,得:2(2x﹣1)+15≥3(3x+1),去括号,得:4x+13≥9x+3,移项,得:4x﹣9x≥3﹣13,合并同类项,得:﹣5x≥﹣10,系数化为1,得:x≤2,将解集表示在数轴上如下:.22.(5分)先化简,后求值:,其中|x﹣2|+(y+2)2=0.【解答】解:∵|x﹣2|+(y+2)2=0,∴x=2,y=﹣2,=x﹣x+y2﹣x+y2=﹣x+y2,当x=2,y=﹣2时,原式=﹣2+4=2.23.(6分)己知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.【解答】解:(1)∵∴①﹣②得:2(x+2y)=m+1∵x+2y=2,∴m+1=4,∴m=3,(2)∵a≥m,即a≥3,∴a+1>0,2﹣a<0,∴原式=a+1﹣(a﹣2)=324.(6分)在如图所示的5×5的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)按下列要求画图:①标出格点D,使CD∥AB,并画出直线CD;②标出格点E,使CE⊥AB,并画出直线CE.(2)计算△ABC的面积.【解答】解:(1)如图所示:(2).25.(7分)把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为24 cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加 2 小正方体.【解答】解:(1)如图所示:(2)几何体表面积:2×(5+4+3)=24(平方厘米),故答案为:24;(3)最多可以再添加2个小正方体.故答案为:2.26.(9分)如图,直线AB与CD相交于O.OF是∠BOD的平分线,OE⊥OF.(1)若∠BOE比∠DOF大38°,求∠DOF和∠AOC的度数;(2)试问∠COE与∠BOE之间有怎样的大小关系?请说明理由.(3)∠BOE的余角是∠BOF和∠DOF ,∠BOE的补角是∠AOE和∠DOE .【解答】解:(1)设∠BOF=α,∵OF是∠BOD的平分线,∴∠DOF=∠BOF=α,∵∠BOE比∠DOF大38°,∴∠BOE=38°+∠DOF=38°+α,∵OE⊥OF,∴∠EOF=90°,∴38°+α+α+α=90°,解得:α=26°,∴∠DOF=26°,∠AOC=∠BOD=∠DOF+∠BOF=26°+26°=52°;(2)∠COE=∠BOE,理由是:∵∠COE=180°﹣∠DOE=180°﹣(90°+∠DOF)=90°﹣∠DOF,∵OF是∠BOD的平分线,∴∠DOF=∠BOF,∴∠COE=90°﹣∠BOF,∵OE⊥OF,∴∠EOF=90°,∴∠BOE=90°﹣∠BOF,∴∠COE=∠BOE;(3)∠BOE的余角是∠BOF和∠DOF,∠BOE的补角是∠AOE和∠DOE,故答案为:∠BOF和∠DOF,∠AOE和∠DOE.27.(10分)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:蔬菜品种西红柿青椒西兰花豆角批发价(元/kg) 3.6 5.4 8 4.8零售价(元/kg) 5.4 8.4 14 7.6请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?【解答】解:(1)设批发西红柿xkg,西兰花ykg,由题意得,解得:,故批发西红柿200kg,西兰花100kg,则这两种蔬菜当天全部售完一共能赚:200×1.8+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿akg,由题意得,(5.4﹣3.6)a+(14﹣8)×≥1050,解得:a≤100.答:该经营户最多能批发西红柿100kg.28.(11分)如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).①在直线l上画出A、B两点的位置,并回答:点A运动的速度是 2 (单位长度/秒);点B运动的速度是4 (单位长度/秒).②若点P为数轴上一点,且PA﹣PB=OP,求的值;(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?【解答】解:(1)①画出数轴,如图所示:可得点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);故答案为:2,4;②设点P在数轴上对应的数为x,∵PA﹣PB=OP≥0,∴x≥2,当2≤x≤8时,PA﹣PB=(x+4)﹣(8﹣x)=x+4﹣8+x,即2x﹣4=x,此时x=4;当x>8时,PA﹣PB=(x+4)﹣(x﹣8)=12,此时x=12,则=2或=4;(2)设再经过m秒,可得MN=4(单位长度),若M、N运动的方向相同,要使得MN=4,必为N追击M,∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,解得:m=4或m=8;若M、N运动方向相反,要使得MN=4,必为M、N相向而行,∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,解得:m=或m=,综上,m=4或m=8或m=或m=.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:事件A 必然事件 随机事件(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.1315.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14; (2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16; (3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

人教部编版七年级数学上册期末测试题 (13)

人教部编版七年级数学上册期末测试题 (13)

河南省淅川县大石桥乡2017-2018学年七年级上期末模拟数学试卷一.单选题(共10题;共30分)1.化简的结果是()A. 3B. ﹣3 C. ﹣4 D. 242.“情系玉树,大爱无疆——抗震救灾大型募捐活动”4月20日晚在中央电视台1号演播大厅举行。

据统计,这台募捐晚会共募得善款21.75亿元人民币,约合每秒钟筹集善款16万元。

21.75亿元用科学记数法可以表示为A. 21.75×108B. 2.175×108C. 21.75×109D. 2.175×1093.如图所示的立方体,如果把它展开,可以是下列图形中的()A. B.C. D.4.定义一种运算☆,其规则为a☆b=,根据这个规则,计算2☆3的值是()A. B.C.5 D. 65.规定一种新的运算x⊗y=x﹣y2,则﹣2⊗3等于()A. -11B. -7C. -8D. 256.下列计算正确的是()A. a2•a3=a6B. (x3)2=x6C. 3m+2n=5mnD. y3•y3=y7.计算(-2)×3的结果是()A. -6B.-1 C. 1D. 68.某市一天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A. ﹣10℃B. ﹣6℃ C. 10℃ D. 6℃9.减去﹣3x得x2﹣3x+6的式子为()A. x2+6B. x2+3x+6C. x2﹣6xD. x2﹣6x+610.一组按规律排列的多项式:,,,,…,其中第10个式子是( )A. B. C.D.二.填空题(共8题;共24分)11.观察下面一列数,按其规律在横线上写上适当的数:﹣,,﹣,,﹣,________.12.如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆________ g.13.观察下列算式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…通过观察,用你发现的规律,写出72004的末位数字是________.14.多项式x4﹣x2﹣x﹣1的次数、项数、常数项分别为________.15.猜谜语(打书本中两个几何名称).剩下十分钱________ ;两牛相斗________ .16.小明不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是________17.﹣1 的相反数是________,倒数是________.18.计算:①1+2﹣3﹣4+5+6﹣7﹣8+9+…﹣2012+2013+2014﹣2015﹣2016+2017=________ ;②1﹣22+32﹣42+52﹣…﹣962+972﹣982+992=________三.解答题(共6题;共36分)19.如图,已知A、O、B三点在同一条直线上,OD平分∠AOC,OE平分∠BOC.(1)若∠BOC=62°,求∠DOE的度数(2)若∠BOC=a°,求∠DOE的度数(3)图中是否有互余的角?若有请写出所有互余的角20.若“”是一种新的运算符号,并且规定.例如:,求的值.21.如图,M是线段AC中点,B在线段AC上,且AB=2cm、BC=2AB,求BM长度.22.已知a,b是实数,且有 |a-|+(b+)2,求a,b的值.23.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.24.计算(1)25°34′48″﹣15°26′37″(2)105°18′48″+35.285°.四.综合题(共10分)25.如图,点O是直线AB上一点,射线OA1, OA2均从OA的位置开始绕点O顺时针旋转,OA1旋转的速度为每秒30°,OA2旋转的速度为每秒10°.当OA2旋转6秒后,OA1也开始旋转,当其中一条射线与OB重合时,另一条也停止.设OA1旋转的时间为t秒.(1)用含有t的式子表示∠A1OA=________°,∠A2OA=________°;(2)当t =________,OA1是∠A2OA的角平分线;(3)若∠A1OA2=30°时,求t的值.河南省淅川县大石桥乡2017-2018学年七年级上期末模拟数学试卷参考答案与试题解析一.单选题1.【答案】A【考点】有理数的除法【解析】【解答】解:=(﹣36)÷(﹣12), =36÷12,=3.故选A.【分析】根据有理数的除法运算法则进行计算即可得解.2.【答案】D【考点】科学记数法—表示绝对值较大的数【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】将21.75亿=2175000000用科学记数法表示为2.175×109.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【考点】几何体的展开图【解析】【解答】解:选项A、C、D中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项B中折叠后与原立方体符合,所以正确的是B.故选:B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.同时注意图示中的阴影的位置关系.4.【答案】A【考点】定义新运算【解析】【分析】由a☆b=,可得2☆3=,则可求得答案.【解答】∵a☆b=∴2☆3=故选A.【点评】此题考查了新定义题型.解题的关键是理解题意,根据题意解题.5.【答案】A【考点】有理数的混合运算【解析】【解答】解:∵x⊗y=x﹣y2,∴﹣2⊗ 3=﹣2﹣32=﹣2﹣9=﹣11.故选A.【分析】根据运算“⊗”的规定列出算式即可求出结果.6.【答案】B【考点】同类项、合并同类项,同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】A、a2•a3=a5,故本选项错误;B、(x3)2=x6,故本选项正确;C、3m+2n≠5mn,故本选项错误;D、y3•y3=y6,故本选项错误.故选B.【分析】利用同底数幂的乘法,幂的乘方与合并同类项的知识求解,即可求得答案.注意排除法在解选择题中的应用.7.【答案】A【考点】有理数的乘法【解析】【分析】根据有理数的乘法法则,异号得负可得。

2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷 ( 解析版)

2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷 ( 解析版)

2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷一、选择题(每题2分,共16分)1.(2分)若三角形的两条边的长度是4cm和10cm,则第三条边的长度可能是()A.4 cm B.5 cm C.9 cm D.14 cm2.(2分)下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a63.(2分)下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣44.(2分)已知是二元一次方程2x+my=1的一个解,则m的值为()A.3B.﹣5C.﹣3D.55.(2分)如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,补充下哪一条件后,能应用“SAS”判定△ABC≌△DEF()A.AC=DF B.BE=CF C.∠A=∠D D.∠ACB=∠DFE6.(2分)如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°7.(2分)下列命题:①同旁内角互补;②若|a|=|b|,则a=b;③同角的余角相等;④三角形的一个外角等于两个内角的和.其中是真命题的个数是()A.4个B.3个C.2个D.1个8.(2分)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“”.如记=1+2+3+…+(n﹣1)+n,(x+k)=(x+3)+(x+4)+…+(x+n);已知[(x+k)(x﹣k+1)]=2x2+2x+m,则m的值是()A.﹣40B.﹣8C.24D.8二、填空题:(每题2题,共16分)9.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为.10.(3分)若x n=4,y n=9,则(xy)n=.11.(3分)若关于x的多项式x2+ax+9是完全平方式,则a=.12.(3分)内角和等于外角和2倍的多边形是边形.13.(3分)若a+b=7,ab=12,则a2﹣3ab+b2=.14.(3分)如图,在△ABC中,∠A=50°,若剪去∠A得到四边形BCDE,则∠1+∠2=.15.(3分)如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是4,则四边形CEFD的面积是.16.(3分)如图,在长方形ABCD中,AD=BC=8,BD=10,点E从点D出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,当t=时,△DEG和△BFG全等.三、解答题:17.(6分)计算:(1)﹣12017+(π﹣3)0+()﹣1(2)(﹣a)3•a2+(2a4)2÷a318.(9分)将下列各式分解因式:(1)6x2﹣9xy+3x(2)18a2﹣50(3)(a2+1)2﹣4a219.(3分)解二元一次方程组:20.(5分)先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.21.(8分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)记网格的边长为1,则在平移的过程中线段BC扫过区域的面积为.22.(7分)若关于x,y的二元一次方程组,(1)若x+y=1,求a的值为.(2)若﹣3≤x﹣y≤3,求a的取值范围.(3)在(2)的条件下化简|a|+|a﹣2|.23.(6分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.24.(6分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB交CB于F.(1)求证:CD∥EF;(2)若∠A=70°,求∠FEC的度数.25.(8分)为了参加学校举办的“校长杯”足球联赛,某中学八(1)班学生去商场购买了A品牌足球1个、B品牌足球2个,共花费210元,八(2)班学生购买了品牌A足球3个、B品牌足球1个,共花费230元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)为响应习总书记“足球进校园”的号召,学校使用专项经费1500元全部购买A、B两种品牌的足球供学生使用,那么学校有多少种购买足球的方案?请你帮助学校分别设计出来.26.(10分)已知:Rt△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点P是BC边上的一个动点,(1)如图①,若点P与点D重合,连接AP,则AP与BC的位置关系是;(2)如图②,若点P在线段BD上,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,则CF,BE和EF这三条线段之间的数量关系是;(3)如图③,在(2)的条件下若BE的延长线交直线AD于点M,找出图中与CP相等的线段,并加以证明.(4)如图④,已知BC=4,AD=2,若点P从点B出发沿着BC向点C运动,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,设线段BE的长度为d1,线段CF的长度为d2,试求出点P在运动的过程中d1+d2的最大值.2017-2018学年江苏省苏州市市区学校七年级(下)期末数学试卷参考答案与试题解析一、选择题(每题2分,共16分)1.(2分)若三角形的两条边的长度是4cm和10cm,则第三条边的长度可能是()A.4 cm B.5 cm C.9 cm D.14 cm【分析】据三角形三边关系定理,设第三边长为xcm,则10﹣4<x<10+4,即6<x<14,由此选择符合条件的线段.【解答】解:设第三边长为xcm,由三角形三边关系定理可知,6<x<14,∴x=9cm符合题意.故选:C.【点评】本题考查了三角形三边关系的运用.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.2.(2分)下列计算正确的是()A.a+2a2=3a3B.a8÷a2=a4C.a3•a2=a6D.(a3)2=a6【分析】A、经过分析发现,a与2a2不是同类项,不能合并,本选项错误;B、利用同底数幂的除法法则,底数不变,指数相减,即可计算出结果;C、根据同底数幂的乘法法则,底数不变,指数相加,即可计算出结果;D、根据积的乘方法则,底数不变,指数相乘,即可计算出结果.【解答】解:A、因为a与2a2不是同类项,所以不能合并,故本选项错误;B、a8÷a2=a6,故本选项错误;C、a3•a2=a5,故本选项错误;D、(a3)2=a6,故本选项正确.故选:D.【点评】此题考查了同底数幂的乘法、除法法则,以及积的乘方法则的运用,是一道基础题.3.(2分)下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣4【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.【解答】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.【点评】此题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.(2分)已知是二元一次方程2x+my=1的一个解,则m的值为()A.3B.﹣5C.﹣3D.5【分析】将代入2x+my=1,即可转化为关于m的一元一次方程,解答即可.【解答】解:将代入2x+my=1,得4﹣m=1,解得m=3.故选:A.【点评】此题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.5.(2分)如图,在△ABC和△DEF中,AB=DE,∠B=∠DEF,补充下哪一条件后,能应用“SAS”判定△ABC≌△DEF()A.AC=DF B.BE=CF C.∠A=∠D D.∠ACB=∠DFE【分析】应用(SAS)从∠B的两边是AB、BC,∠E的两边是DE、EF分析,找到需要相等的两边.【解答】解:两边和它们的夹角对应相等的两个三角形全等(SAS).∠B的两边是AB、BC,∠E的两边是DE、EF,而BC=BE+EC、EF=EC+CF,要使BC=EF,则BE=CF.故选:B.【点评】本题考查了三角形全等的条件,判定三角形全等一定要结合图形上的位置关系,从而选择方法.6.(2分)如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°【分析】根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠B=50°,∵∠C=40°,∴∠E=180°﹣∠B﹣∠1=90°,故选:C.【点评】本题考查了三角形内角和定理,平行线的性质的应用,注意:两直线平行,同旁内角互补,题目比较好,难度适中.7.(2分)下列命题:①同旁内角互补;②若|a|=|b|,则a=b;③同角的余角相等;④三角形的一个外角等于两个内角的和.其中是真命题的个数是()A.4个B.3个C.2个D.1个【分析】根据平行线的性质,绝对值、余角、三角形外角的性质判断即可.【解答】解:①两直线平行,同旁内角互补,是假命题;②若|a|=|b|,则a=b或a=﹣b,是假命题;③同角的余角相等,是真命题;④三角形的一个外角等于与它不相邻的两个内角的和,是假命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(2分)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“”.如记=1+2+3+…+(n﹣1)+n,(x+k)=(x+3)+(x+4)+…+(x+n);已知[(x+k)(x﹣k+1)]=2x2+2x+m,则m的值是()A.﹣40B.﹣8C.24D.8【分析】利用题中的新定义化简已知等式左边,确定出m的值即可.【解答】解:根据题意得:(x+2)(x﹣1)+(x+3)(x﹣2)=2x2+2x﹣8=2x2+2x+m,则m=﹣8,故选:B.【点评】此题考查了整式的加减,弄清题中的新定义是解本题的关键.二、填空题:(每题2题,共16分)9.(3分)一种花瓣的花粉颗粒直径约为0.0000065米,将数据0.0000065用科学记数法表示为 6.5×10﹣6.【分析】根据科学记数法和负整数指数的意义求解.【解答】解:0.0000065=6.5×10﹣6.故答案为:6.5×10﹣6.【点评】本题考查了科学记数法﹣表示较小的数,关键是用a×10n(1≤a<10,n为负整数)表示较小的数.10.(3分)若x n=4,y n=9,则(xy)n=36.【分析】先根据积的乘方变形,再根据幂的乘方变形,最后代入求出即可.【解答】解:∵x n=4,y n=9,∴(xy)n=x n•y n=4×9=36.故答案为:36.【点评】本题考查了幂的乘方和积的乘方的应用,用了整体代入思想.11.(3分)若关于x的多项式x2+ax+9是完全平方式,则a=±6.【分析】利用完全平方公式的结构特征判断即可确定出a的值.【解答】解:∵关于x的多项式x2+ax+9是完全平方式,∴a=±6,故答案为:±6【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.12.(3分)内角和等于外角和2倍的多边形是六边形.【分析】设多边形有n条边,则内角和为180°(n﹣2),再根据内角和等于外角和2倍可得方程180(n﹣2)=360×2,再解方程即可.【解答】解:设多边形有n条边,由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:六.【点评】此题主要考查了多边形的内角和和外角和,关键是掌握内角和为180°(n﹣2).13.(3分)若a+b=7,ab=12,则a2﹣3ab+b2=﹣11.【分析】直接利用完全平方公式将原式变形进而计算得出答案.【解答】解:∵a+b=7,ab=12,∴(a+b)2=49,则a2+2ab+b2=49,故a2+b2=49﹣2×12=25,则a2﹣3ab+b2=25﹣3×12=﹣11.故答案为:﹣11.【点评】此题主要考查了完全平方公式,正确记忆完全平方公式:(a±b)2=a2±2ab+b2是解题关键.14.(3分)如图,在△ABC中,∠A=50°,若剪去∠A得到四边形BCDE,则∠1+∠2=230°.【分析】根据三角形内角和为180度可得∠B+∠C的度数,然后再根据四边形内角和为360°可得∠1+∠2的度数.【解答】解:∵△ABC中,∠A=50°,∴∠B+∠C=180°﹣50°=130°,∵∠B+∠C+∠1+∠2=360°,∴∠1+∠2=360°﹣130°=230°.故答案为:230°.【点评】此题主要考查了三角形内角和,关键是掌握三角形内角和为180°.15.(3分)如图,△ABC的中线AD,BE相交于点F.若△ABF的面积是4,则四边形CEFD的面积是4.【分析】根据三角形的重心的性质得到BF=2FE,AF=2FD,根据三角形的面积公式计算即可.【解答】解:∵△ABC的中线AD,BE相交于点F,∴点F是△ABC的重心,∴BF=2FE,AF=2FD,∵△ABF的面积是4,∴△AEF的面积是2,△DBF的面积是2,∴△ABD的面积是6,∴△ABC的面积是12,∴四边形CEFD的面积=12﹣4﹣2﹣2=4,故答案为:4.【点评】本题考查的是重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.16.(3分)如图,在长方形ABCD中,AD=BC=8,BD=10,点E从点D出发,以每秒2个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,当t=或2s时,△DEG和△BFG全等.【分析】分两种情形分别求解即可解决问题;【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC,有两种情形:①DE=BF,BG=DG,∴2t=8﹣t,t=.②当DE=BG,DG=BF时,设DG=y,则有,解得t=2,∴满足条件的t的值为或2s.故答案为或2s.【点评】本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题:17.(6分)计算:(1)﹣12017+(π﹣3)0+()﹣1(2)(﹣a)3•a2+(2a4)2÷a3【分析】(1)原式利用乘方的意义,以及零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用幂的乘方与积的乘方,单项式乘除单项式法则计算即可求出值.【解答】解:(1)原式=﹣1+1+2=2;(2)原式=﹣a5+4a5=3a5.【点评】此题考查了整式的除法,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(9分)将下列各式分解因式:(1)6x2﹣9xy+3x(2)18a2﹣50(3)(a2+1)2﹣4a2【分析】(1)通过提取公因式3x进行因式分解;(2)先提公因式2,然后利用平方差公式进行因式分解;(3)利用平方差公式进行因式分解.【解答】解:(1)原式=3x(2x﹣3y+1);(2)原式=2(3a+5)(3a﹣5);(3)原式=(a+1)2(a﹣1)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.19.(3分)解二元一次方程组:【分析】解此题运用的是代入消元法.【解答】解:由方程②得x=4﹣2y,代入到方程①中得:2(4﹣2y)﹣3y=1,解得y=1,x=2,所以方程组的解为.【点评】此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.20.(5分)先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+6x+9+x2﹣4﹣2x2=6x+5,当x=﹣1时,原式=﹣1×6+5=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.(8分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)记网格的边长为1,则在平移的过程中线段BC扫过区域的面积为28.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用钝角三角形高线的作法得出答案;(4)利用平移的性质结合平行四边形的面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:线段CD即为所求;(3)如图所示:高线AE即为所求;(4)在平移的过程中线段BC扫过区域的面积为:4×7=28.故答案为:28.【点评】此题主要考查了平移变换以及基本作图,正确得出对应点位置是解题关键.22.(7分)若关于x,y的二元一次方程组,(1)若x+y=1,求a的值为.(2)若﹣3≤x﹣y≤3,求a的取值范围.(3)在(2)的条件下化简|a|+|a﹣2|.【分析】(1)两方程相加、再除以3可得x+y=a+,由x+y=1可得关于a的方程,解之可得;(2)两方程相减可得x﹣y=3a﹣3,根据﹣3≤x﹣y≤3可得关于a的不等式组,解之可得;(3)根据绝对值性质去绝对值符号、合并同类项即可得.【解答】解:(1),①+②,得:3x+3y=3a+1,则x+y=a+,∵x+y=1,∴a+=1,解得:a=,故答案为:;(2)①﹣②,得:x﹣y=3a﹣3,∵﹣3≤x﹣y≤3,∴﹣3≤3a﹣3≤3,解得:0≤a≤2;(3)∵0≤a≤2,∴a﹣2≤0,则原式=a+2﹣a=2.【点评】本题主要考查解二元一次方程组和一元一次不等式组的能力,根据题意得出关于a的不等式是解题的关键.23.(6分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.【分析】(1)根据已知利用HL即可判定△BEC≌△DEA;(2)根据第一问的结论,利用全等三角形的对应角相等可得到∠B=∠D,从而不难求得DF⊥BC.【解答】证明:(1)∵BE⊥CD,∴∠BEC=∠DEA=90°,又∵BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.【点评】此题主要考查学生对全等三角形的判定及性质的理解及运用,做题时要注意思考,认真寻找全等三角形全等的条件是解决本题的关键.24.(6分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB交CB于F.(1)求证:CD∥EF;(2)若∠A=70°,求∠FEC的度数.【分析】(1)根据垂直于同一条直线的两直线平行证明;(2)根据直角三角形的性质求出∠ACD,根据角平分线的定义求出∠ACE,结合图形求出∠DCE,根据平行线的性质解答即可.【解答】(1)证明:∵CD⊥AB,EF⊥AB,∴CD∥EF;(2)解:∵CD⊥AB,∴∠ACD=90°﹣70°=20°,∵∠ACB=90°,CE平分∠ACB,∴∠ACE=45°,∴∠DCE=45°﹣20°=25°,∵CD∥EF,∴∠FEC=∠DCE=25°.【点评】本题考查的是平行线的判定和性质、直角三角形的性质,掌握两直线平行、内错角相等、直角三角形的两锐角互余是解题的关键.25.(8分)为了参加学校举办的“校长杯”足球联赛,某中学八(1)班学生去商场购买了A品牌足球1个、B品牌足球2个,共花费210元,八(2)班学生购买了品牌A足球3个、B品牌足球1个,共花费230元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)为响应习总书记“足球进校园”的号召,学校使用专项经费1500元全部购买A、B两种品牌的足球供学生使用,那么学校有多少种购买足球的方案?请你帮助学校分别设计出来.【分析】(1)设购买一个A品牌足球需要x元,一个B品牌足球需要y元,根据“购买A品牌足球1个、B品牌足球2个,共花费210元;购买品牌A足球3个、B品牌足球1个,共花费230元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买A品牌足球m个,购买B品牌足球n个,根据总价=单价×数量,即可得出关于m、n 的二元一次方程,再结合m、n均为非负整数,即可得出各购买方案.【解答】解:(1)设购买一个A品牌足球需要x元,一个B品牌足球需要y元,根据题意得:,解得:.答:购买一个A品牌足球需要50元,一个B品牌足球需要80元.(2)设购买A品牌足球m个,购买B品牌足球n个,根据题意得:50m+80n=1500,∵m、n均为非负整数,∴,,,.答:学校有4种购买足球的方案,方案一:购买A品牌足球30个、B品牌足球0个;方案二:购买A 品牌足球22个、B品牌足球5个;方案三:购买A品牌足球14个、B品牌足球10个;方案四:购买A品牌足球6个、B品牌足球15个.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.26.(10分)已知:Rt△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,点P是BC边上的一个动点,(1)如图①,若点P与点D重合,连接AP,则AP与BC的位置关系是AP⊥BC;(2)如图②,若点P在线段BD上,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,则CF,BE和EF这三条线段之间的数量关系是CF=BE+EF;(3)如图③,在(2)的条件下若BE的延长线交直线AD于点M,找出图中与CP相等的线段,并加以证明.(4)如图④,已知BC=4,AD=2,若点P从点B出发沿着BC向点C运动,过点B作BE⊥AP于点E,过点C作CF⊥AP于点F,设线段BE的长度为d1,线段CF的长度为d2,试求出点P在运动的过程中d1+d2的最大值.【分析】(1)根据等腰三角形的三线合一解答;(2)证明△ABE≌△CAF,根据全等三角形的性质得到BE=AF,AE=CF,结合图形证明;(3)证明△CFP≌△AEM,根据全等三角形的性质证明;(4)根据S △ABC =S △APB +S △APC 得到d 1+d 2=,根据垂线段最短计算即可.【解答】解:(1)AP 与BC 的位置关系是AP ⊥BC , 理由如下:∵AB =AC ,点D 是BC 的中点, ∴AD ⊥BC ,当点P 与点D 重合时,AP ⊥BC , 故答案为:AP ⊥BC ; (2)CF =BE +EF ,理由如下:∵BE ⊥AP ,CF ⊥AP ,∴∠BAE +∠CAP =90°,∠ACF +∠CAP =90°, ∴∠BAE =∠ACF , 在△ABE 和△CAF 中,,∴△ABE ≌△CAF , ∴BE =AF ,AE =CF , ∴CF =AE +AF +EF =BE +EF , 故答案为:CF =BE +EF ; (3)CP =AM ,证明:∵∠BAE =∠ACF , ∴∠EAM =∠FCP , 在△CFP 和△AEM 中,,∴△CFP ≌△AEM , ∴CP =AM ;(4)S △ABC =×BC ×AD =4,由图形可知,S △ABC =S △APB +S △APC =×AP ×BE +×AP ×CF =×AP ×(d 1+d 2),∴d 1+d 2=,当AP ⊥BC 时,AP 最小,此时AP =2,∴d1+d2的最大值为=4.【点评】本题考查的是全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定定理和性质定理、等腰三角形的三线合一是解题的关键.。

2018-2019学年新人教版数学七年级上学期期末试卷(含答案解析)

2018-2019学年新人教版数学七年级上学期期末试卷(含答案解析)

2018-2019学年七年级(上)期末数学试卷一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定4.(3分)如图,几何体的左视图是()A.B.C.D.5.(3分)下列运算结果为正数的是()A .﹣32B .﹣3÷2C .﹣1+2D .0×(﹣2018) 6.(3分)若方程(a ﹣3)x |a |﹣2﹣1=5是关于x 的一元一次方程,则a 的值为( ) A .±2 B .3 C .±3 D .﹣37.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是( ) A .两点确定一条直线B .直线比曲线短C .两点之间直线最短D .两点之间线段最短8.(3分)下列解方程变形正确的是( )A .若5x ﹣6=7,那么5x=7﹣6B .若,那么2(x ﹣1)+3(x +1)=1C .若﹣3x=5,那么x=﹣D .若﹣,那么x=﹣39.(3分)若3a 2+m b 3和(n ﹣2)a 4b 3是同类项,且它们的和为0,则mn 的值是( )A .﹣2B .﹣1C .2D .110.(3分)若x=4是关于x 的方程2x +a=1的解,则a 的值是( )A .﹣4B .﹣7C .7D .﹣911.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB ,则线段AB 盖住的整点个数有( ) A .2018或2019 B .2017或2018 C .2016或2017 D .2019或202012.(2分)已知(b +1)4与|3﹣a |互为相反数,则b a 的值是( )A .﹣3B .3C .﹣1D .113.(2分)若x=2时,代数式ax 4+bx 2+5的值是3,则当x=﹣2时,代数式ax 4+bx 2+7的值为( )A .﹣3B .3C .5D .714.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x 颗,则可得方程为( )A .B .2x +8=3x ﹣12C .D . =15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a ,b (a >b ),则a ﹣b 的值为( )A.6B.8C.9D.1216.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×1020189.9×102017.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣121.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=;若a=4,则b=;②用含a的式子表示b,则b=;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.一、选择题(1-10每小题3分,10-16每小题3分,共42分,)1.(3分)如图,线段AB=BC=CD=DE=1cm,图中所有线段的长度之和为()A.25cm B.20cm C.15cm D.10cm【分析】从图可知长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条,再把它们的长度相加即可.【解答】解:因为长为1厘米的线段共4条,长为2厘米的线段共3条,长为3厘米的线段共2条,长为4厘米的线段仅1条.所以图中所有线段长度之和为:1×4+2×3+3×2+4×1=20(厘米).故选:B.【点评】本题考查了两点间的距离,关键是能够数出1cm,2cm,3cm,4cm的线段的条数,从而求得解.2.(3分)把10°36″用度表示为()A.10.6°B.10.001°C.10.01°D.10.1°【分析】根据1度等于60分,1分等于60秒解答即可.【解答】解:10°36″用度表示为10.01°,故选:C.【点评】考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.3.(3分)如图是甲乙两公司近年销售收入情况的折线统计图,两公司近年的销售收入增长速度较快的是()A.甲公司B.乙公司C.甲乙公司一样快D.不能确定【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2013年的销售收入约为50万元,2017年约为90万元,则从2013~2017年甲公司增长了90﹣50=40万元;乙公司2013年的销售收入约为50万元,2017年约为70万元,则从2013~2017年乙公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选:A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.4.(3分)如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体.故选:C.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.5.(3分)下列运算结果为正数的是()A.﹣32B.﹣3÷2C.﹣1+2D.0×(﹣2018)【分析】根据各个选项中的式子,可以计算出相应的结果,从而可以解答本题.【解答】解:∵﹣32=﹣9,﹣3÷2=﹣,﹣1+2=1,0×(﹣2018)=0,∴选项C中的结果为正数,故选:C.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.(3分)若方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,则a的值为()A.±2B.3C.±3D.﹣3【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵方程(a﹣3)x|a|﹣2﹣1=5是关于x的一元一次方程,∴|a|﹣2=1,a﹣3≠0,解得:a=﹣3.故选:D.【点评】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.(3分)“把弯曲的公路改直,就能缩短路程”,其中蕴含的数学道理是()A.两点确定一条直线B.直线比曲线短C.两点之间直线最短D.两点之间线段最短【分析】根据线段的性质解答即可.【解答】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.故选:D.【点评】本题考查的是线段的性质,即两点之间线段最短.8.(3分)下列解方程变形正确的是()A.若5x﹣6=7,那么5x=7﹣6B.若,那么2(x﹣1)+3(x+1)=1C.若﹣3x=5,那么x=﹣D.若﹣,那么x=﹣3【分析】A、运用移项的法则可以求出结论;B、根据等式的性质2去分母可以得出结论;C、运用等式的性质2化系数为1可以得出结论;D、运用等式的性质2化系数为1可以得出结论;【解答】解:A、∵5x﹣6=7,移项,得5x=7+6,故选项错误;B、∵,去分母,得2(x﹣1)+3(x+1)=6,故选项错误;C、∵﹣3x=5,化系数为1,得x=﹣,故选项错误;D、∵﹣,化系数为1,得x=﹣3,故选项正确.故选:D.【点评】本题考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用.9.(3分)若3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为0,则mn的值是()A.﹣2B.﹣1C.2D.1【分析】由同类项是字母相同且相同字母的指数也相同,可得m的值;根据合并同类项系数相加字母及指数不变,可得n的值;再计算mn,可得答案.【解答】解:由3a2+m b3和(n﹣2)a4b3是同类项,得2+m=4,解得m=2.由它们的和为0,得3a4b3+(n﹣2)a4b3=(n﹣2+3)a4b3=0,解得n=﹣1.mn=﹣2,故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.(3分)若x=4是关于x的方程2x+a=1的解,则a的值是()A.﹣4B.﹣7C.7D.﹣9【分析】把x=4代入已知方程后,列出关于a的新方程,通过解新方程来求a的值.【解答】解:∵x=4是关于x的方程2x+a=1的解,∴2×4+a=1,解得a=﹣7.故选:B.【点评】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.11.(2分)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2018厘米的线段AB,则线段AB盖住的整点个数有()A.2018或2019B.2017或2018C.2016或2017D.2019或2020【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【解答】解:若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点不与整点重合,则1厘米长的线段盖住1个整点.∵2018+1=2019,∴2018厘米的线段AB盖住2018或2019个整点.故选:A.【点评】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.12.(2分)已知(b+1)4与|3﹣a|互为相反数,则b a的值是()A.﹣3B.3C.﹣1D.1【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得(b+1)4+|3﹣a|=0,则3﹣a=0,b+1=0,解得a=3,b=﹣1,则b a=﹣1,故选:C.【点评】本题考查的是非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13.(2分)若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3B.3C.5D.7【分析】将x=2代入ax4+bx2+5=3得16a+4b=﹣2,据此将其代入x=﹣2时ax4+bx2+7=16a+4b+7中计算可得.【解答】解:将x=2代入ax4+bx2+5=3,得:16a+4b+5=3,则16a+4b=﹣2,所以当x=﹣2时,ax4+bx2+7=16a+4b+7=﹣2+7=5,故选:C.【点评】本题主要考查代数式求值,解题的关键是熟练掌握代数式的求值及整体代入思想的运用.14.(2分)将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设有糖果x颗,则可得方程为()A.B.2x+8=3x﹣12C.D.=【分析】设有糖果x颗,根据该幼儿园小朋友的人数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有糖果x颗,根据题意得:=.故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.(2分)如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A.6B.8C.9D.12【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个长方形面积的差.【解答】解:设重叠部分的面积为c,则a﹣b=(a+c)﹣(b+c)=35﹣23=12,故选:D.【点评】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.16.(2分)一组数按图中规律从左到右依次排列,则第2018个图中a﹣b+c的值为()A.4038B.2018C.2019D.0【分析】根据题意可知:a是从1开始到序数的连续整数的和,c是序数与1的和,而b 是a与c的和,据此可得.【解答】解:由图可知,a=1+2+3+ (2018)c=2019,则b=a+c=1+2+3+……+2018+2019,∴a﹣b+c=1+2+3+……+2018﹣(1+2+3+……+2018+2019)+2019=0,故选:D.【点评】本题考查数字和图形的变化类,解题的关键是明确题意,找出数字的变化规律.二、填空题(17~18小题各3分,19小题有两个空,每空2分,共10分)17.(3分)比较大小:1.1×102018>9.9×102017.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1.1×102018=11×102017,由11>9.9,∴1.1×102018>9.9×102017.故答案为:>.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(3分)若点C是线段AB的中点,D是线段BC的中点,BD=3cm,则AD=9cm.【分析】根据题意求出BC,根据线段中点的性质解答即可.【解答】解:∵点D是线段BC的中点,若BD=3cm,∴BC=2BD=2×3=6cm,∵点C是线段AB的中点,∴AC=CB=6cm,∴AD=AC+CD=6+3=9cm,故答案为:9cm.【点评】本题考查的是两点间的距离的计算,掌握线段中点的概念、灵活运用数形结合思想是解题的关键.19.(4分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此下去,利用图中示的规律计算=;=1﹣.【分析】分析数据和图象可知,利用正方形的面积减去最后的一个小长方形的面积来求解面积和即可.=1﹣;=1﹣;【解答】解:故答案为:;1﹣.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律是解答此题的关键.三、解答题(共7小题,满分68分)20.(12分)(1)13+(﹣9)﹣(﹣2)﹣7(2)﹣12018﹣(1﹣0.5)÷×[5﹣(﹣3)2](3)2x+18=﹣3x﹣2(4)=﹣1【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(3)方程移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)原式=13﹣9+2﹣7=15﹣16=﹣1;(2)原式=﹣1﹣×3×(﹣4)=﹣1+6=5;(3)方程移项合并得:5x=﹣20,解得:x=﹣4;(4)方程去分母得:4x﹣2+x﹣5=﹣6,移项合并得:5x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(8分)按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.【分析】(1)在射线CP上延长截取CM=MN=a,ND=b,则CD满足条件;(2)根据几何语言画出对应的几何图形即可.【解答】解:(1)如图1,CD为所作;(2)①如图2,直线AC,线段BC,射线AB为所作;②线段AD为所作.22.(8分)化简求值:5x2y﹣[3xy2+7(x2y﹣xy2)],其中x=﹣1,y=2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=5x2y﹣3xy2﹣7x2y+2xy2=﹣2x2y﹣xy2,当x=﹣1,y=2时,原式=﹣4+4=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(9分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOC的度数.【分析】设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOC=40°.【点评】本题考查了角平分线的定义,要设恰当的未知数,用同一个未知数表示相关的角,根据已知的角列方程进行计算是解此题的关键.24.(10分)列一元一次方程解应用题某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?【分析】根据题意可以列出相应的方程,从而可以求得每件衬衫降价多少元.【解答】解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.25.(11分)探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M 和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b=2;若a=4,则b=﹣2;②用含a的式子表示b,则b=2﹣a;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)26.(10分)某校对九年级学生进行随机抽样调查,被抽到的学生从物理、化学、生物、地理、历史和政治这六科中选出自己最喜欢的科目,将调查数据汇总整理后,绘制了两幅不同的统计图,请你根据图中信息解答下列问题:(1)被抽查的学生共有多少人?求出地理学科所在扇形的圆心角;(2)将折线统计图补充完整;(3)若该校九年级学生约2000人请你估算喜欢物理学科的人数.【分析】(1)根据政治科目的人数及其所占百分比可得总人数,依据地理学科的人数所占的百分比,即可得到其所在扇形的圆心角;(2)总人数乘以历史科目的百分比可得其人数,从而补全折线图;(3)总人数乘以样本中物理科目人数所占比例即可得.【解答】解:(1)由图知把政治作为首选的324人,占全校总人数的百分比为36%,全校总人数为:324÷36%=900人,地理学科所在扇形的圆心角=360°×=18°;答:被抽查的学生共有900人,地理学科所在扇形的圆心角为18°.(2)本次调查中,首选历史科目的人数为900×6%=54人,补全折线图如下:(3)2000×=400,答:估计喜欢物理学科的人数为400人.【点评】此题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.【分析】(1)①根据互为基准变换点的定义可得出a+b=2,代入数据即可得出结论;②根据a+b=2,变换后即可得出结论;(2)设点A表示的数为x,根据点A的运动找出点B,结合互为基准变换点的定义即可得出关于x的一元一次方程,解之即可得出结论;(3)由于点P表示的数为m,根据题意,用含m的代数式分别表示出P1、P2、P3、P4、P5表示的数,从而发现4个一循环的规律,进而得出点P2018表示的数与点P2表示的数相同.【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).【点评】本题考查了规律型中图形的变化类、数轴以及列代数式,根据互为基准变换点的定义找出a+b=2是解题的关键.。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

2019-2020学年苏州市工业园区七年级上册期末数学试卷(有答案)-最新推荐

2019-2020学年苏州市工业园区七年级上册期末数学试卷(有答案)-最新推荐

2019-2020学年江苏省苏州市工业园区七年级(上)期末数学试卷一、选择题:本大题共10小题,每小题2分,共20分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.我国钓鱼岛周围海域面积约为170 000km2,该数据用科学记数法可以表示为()A.0.17×106B.1.7×105C.17×104 D.170×1033.下列各数中的无理数是()A.0.101 001 000 1 B.C.D.π4.下列基本图形中,经过平移、旋转或翻折后,不能..得到右图的是()A.B.C.D.5.下面的四个图形都是由大小相同的正方形组成的,其中能围成正方体的是()A.B.C.D.6.已知点在线段上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.7.某校七年级405名师生外出旅游,租用45座和40座的两种客车,如果45座的客车租用了2辆,那么需租用40座的客车()A.最少8辆B.最多8辆C.最少7辆D.最多7辆8.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元B.27元C.28元D.29元9.在同一平面内,∠AOB=70°,∠BOC=40°,则∠AOC的度数为()A.110°B.30°C.110°或150°D.30°或110°10.若关于x的不等式3x﹣a≤0的正整数解是1、2、3,则a应满足的条件是()A.a=9 B.a≤9 C.9<a≤12 D.9≤a<12二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上. 11.比较大小:﹣0.4 ﹣.12.计算:﹣t﹣t﹣t= .13.若∠α=23°36′,则∠α的补角为°.14.若方程ax﹣1=x+3的解是x=2,则a= .15.10点30分时,钟面上时针与分针所成的角等于度.16.如图,是一个数值转换机的示意图.若输出的结果是6,则输入的数等于.17.若代数式5a﹣3b的值是﹣2,则代数式2(a﹣b)+4(2a﹣b)+3的值等于.18.点A、B、C在同一条数轴上,且点A表示的数为﹣17,点B表示的数为﹣2.若BC=AB,则点C表示的数为.三、解答题:本大题共11小题,共64分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:8﹣23÷(﹣4)×(﹣3+1).20.解方程: x+(x+2)=2.21.解不等式组:.22.已知a=﹣1,b=2,求代数式5(2a2b﹣ab2)﹣4(ab2+3a2b)的值.23.如图,方格纸中每个小正方形的边长都是1,点A、B是方格纸中的两个格点(即小正方形的顶点).(1)请在方格纸中以AB为边作正方形ABCD;(提醒:请用黑色笔再加涂一下所作的线段)(2)正方形ABCD的面积为.24.如图,l是一条笔直的公路,A、B是两个新建小区.为方便居民出行,有关部门准备在公路边增设公交站点,为此需要修建站点到小区的道路.为节约资金,要求修建的道路最短.(1)若增设1个站点C,请在图①中画出站点及所修建的道路;(2)若增设2个站点D、E,请在图②中画出站点D、E及所修建的道路.25.如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭块小正方体.26.某小组计划做一批“中华结”.如果每人做6个,那么比计划多了8个;如果每人做4个,那么比计划少了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.27.已知OA⊥OB,OC为一条射线,OD、OE分别是∠AOC、∠BOC的平分线.(1)如图①,当OC在∠AOB的内部时,∠DOE= °.(2)如图②,当OC在∠AOB的外部时,求∠DOE的度数.28.将若干枚棋子平均分成三堆(每堆至少2枚),分别放在左边、中间、右边,并按如下顺序进行操作:第1次:从右边一堆中拿出2枚棋子放入中间一堆;第2次:从左边一堆中拿出1枚棋子放入中间一堆;第3次:从中间一堆中拿出几枚棋子放入右边一堆,并使右边一堆的棋子数为最初的2倍.(1)操作结束后,若右边一堆比左边一堆多15枚棋子,问共有多少枚棋子?(2)小明认为:无论最初的棋子数为多少,按上述方法完成操作后,中间一堆总是剩下1枚棋子,你同意他的看法吗?请说明理由.29.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.(1)若AC=3,则AB= ;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC BD;(填“=”或“≠”)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.2019-2020学年江苏省苏州市工业园区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题2分,共20分.每小题只有一个选项是正确的,请将正确选项前的字母填在答题卡相应位置上.1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.我国钓鱼岛周围海域面积约为170 000km2,该数据用科学记数法可以表示为()A.0.17×106B.1.7×105C.17×104 D.170×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:170 000km2,该数据用科学记数法可以表示为1.7×105,故选:B.3.下列各数中的无理数是()A.0.101 001 000 1 B.C.D.π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.1010010001,,0. 是有理数,π是无理数,故选:D.4.下列基本图形中,经过平移、旋转或翻折后,不能..得到右图的是()A.B.C.D.【考点】利用旋转设计图案;利用轴对称设计图案;利用平移设计图案.【分析】利用平移和旋转对A进行判断;利用旋转对B进行判断;利用翻折对D进行判断.【解答】解:A、把平移得到,然后把旋转可得到右图;B、把旋转可得到右图;C、把经过平移、旋转或翻折后,都不能得到右图;D、把翻折后可得到右图.故选C.5.下面的四个图形都是由大小相同的正方形组成的,其中能围成正方体的是()A.B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A,C,D折叠后都有一行两个面无法折起来,而且缺少一个面,所以不能折成正方体.故选:B.6.已知点在线段上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.【考点】两点间的距离.【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【解答】解:解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=AB,则点C是线段AB中点.故选C.7.某校七年级405名师生外出旅游,租用45座和40座的两种客车,如果45座的客车租用了2辆,那么需租用40座的客车()A.最少8辆B.最多8辆C.最少7辆D.最多7辆【考点】一元一次方程的应用.【分析】设需租用40座的客车x辆,根据题意可得不等关系:45座的客车座的人数+40座的客车座的人数≥405,根据不等关系列出不等式,再解即可.【解答】解:设需租用40座的客车x辆,由题意得:45×2+40x≥405,解得:x≥7,∵x为整数,∴x最小为8,故选:A.8.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元B.27元C.28元D.29元【考点】一元一次方程的应用.【分析】根据题意,实际售价=进价+利润.九折即标价的90%;可得一元一次的关系式,求解可得答案.【解答】解:设标价是x元,根据题意则有:0.9x=21(1+20%),解可得:x=28,故选C.9.在同一平面内,∠AOB=70°,∠BOC=40°,则∠AOC的度数为()A.110°B.30°C.110°或150°D.30°或110°【考点】角的计算.【分析】分OC在∠AOB内和OC在∠AOB外两种情况考虑,依此画出图形,根据角与角之间结合∠AOB、∠BOC的度数,即可求出∠AOC的度数.【解答】解:当OC在∠AOB内时,如图1所示.∵∠AOB=70°,∠BOC=40°,∴∠AOC=∠AOB﹣∠BOC=30°;当OC在∠AOB外时,如图2所示.∵∠AOB=70°,∠BOC=40°,∴∠AOC=∠AOB+∠BOC=110°.故选D.10.若关于x的不等式3x﹣a≤0的正整数解是1、2、3,则a应满足的条件是()A.a=9 B.a≤9 C.9<a≤12 D.9≤a<12【考点】一元一次不等式的整数解.【分析】解不等式3x﹣a≤0得x≤a,其中,最大的正整数为3,故3≤a<4,从而求解.【解答】解:解不等式3x﹣a≤0,得x≤a,∵不等式的正整数解是1,2,3,∴3≤a<4,解得9≤a<12.故选D.二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卡相应位置上. 11.比较大小:﹣0.4 >﹣.【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣0.4>﹣.故答案为:>.12.计算:﹣t﹣t﹣t= ﹣3t .【考点】合并同类项.【分析】直接利用合并同类项法则化简求出即可.【解答】解:﹣t﹣t﹣t=﹣3t.故答案为:﹣3t.13.若∠α=23°36′,则∠α的补角为156.4°°.【考点】余角和补角;度分秒的换算.【分析】由补角的定义列出算式,然后进行计算即可.【解答】解:∠α的补角=180°﹣∠a=180°﹣23°36′=179°60′﹣23°36′=156°24′.156°24′=156.4°故答案为:156.4°14.若方程ax﹣1=x+3的解是x=2,则a= 3 .【考点】一元一次方程的解.【分析】把x=2代入方程即可得到一个关于a的方程,从而求得a的值.【解答】解:把x=2代入方程,得2a﹣1=2+3,解得a=3.故答案是:3.15.10点30分时,钟面上时针与分针所成的角等于135 度.【考点】钟面角.【分析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.【解答】解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+×30°=135°.故答案为135.16.如图,是一个数值转换机的示意图.若输出的结果是6,则输入的数等于5或﹣7 .【考点】有理数的混合运算.【分析】根据输出的结果是6,可得:输入的数与1的和的绝对值是6或﹣6,据此求出输入的数为多少即可.【解答】解:∵输出的结果是6,∴输入的数与1的和的绝对值是6或﹣6,∵6﹣1=5,﹣6﹣1=﹣7,∴输入的数等于5或﹣7.故答案为:5或﹣7.17.若代数式5a﹣3b的值是﹣2,则代数式2(a﹣b)+4(2a﹣b)+3的值等于﹣4 .【考点】整式的加减—化简求值.【分析】原式去括号整理后,将已知代数式的值代入计算即可求出值.【解答】解:根据题意得:5a﹣3b=﹣2,则原式=2a﹣2b+8a﹣4b=10a﹣6b=2(5a﹣3b)=﹣4,故答案为:﹣418.点A、B、C在同一条数轴上,且点A表示的数为﹣17,点B表示的数为﹣2.若BC=AB,则点C表示的数为﹣7或3 .【考点】数轴.【分析】设点C表示的数为x.由BC=AB列出方程|x+2|=×(﹣2+17),解方程即可求解.【解答】解:设点C表示的数为x.∵点A表示的数为﹣17,点B表示的数为﹣2,且BC=AB,∴|x+2|=×(﹣2+17),解得x=﹣7或3.故答案为:﹣7或3.三、解答题:本大题共11小题,共64分.请将解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:8﹣23÷(﹣4)×(﹣3+1).【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:8﹣23÷(﹣4)×(﹣3+1)=8﹣8÷(﹣4)×(﹣2)=8+2×(﹣2)=8﹣4=420.解方程: x+(x+2)=2.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+2(x+2)=24,去括号得:3x+2x+4=24,移项合并得:5x=20,解得:x=4.21.解不等式组:.【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵由①得:x<2,由②得:x≥﹣1,∴不等式组的解集为﹣1≤x<2.22.已知a=﹣1,b=2,求代数式5(2a2b﹣ab2)﹣4(ab2+3a2b)的值.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=10a2b﹣5ab2﹣4ab2﹣12a2b=﹣2a2b﹣9ab2,当a=﹣1,b=2时,原式=﹣4+36=32.23.如图,方格纸中每个小正方形的边长都是1,点A、B是方格纸中的两个格点(即小正方形的顶点).(1)请在方格纸中以AB为边作正方形ABCD;(提醒:请用黑色笔再加涂一下所作的线段)(2)正方形ABCD的面积为29 .【考点】作图—应用与设计作图.【分析】(1)根据题意画出图形即可;(2)先根据勾股定理求出正方形的边长,再求出其面积即可.【解答】解:(1)如图所示;(2)∵AB==,=×=29.∴S正方形ABCD故答案为:29.24.如图,l是一条笔直的公路,A、B是两个新建小区.为方便居民出行,有关部门准备在公路边增设公交站点,为此需要修建站点到小区的道路.为节约资金,要求修建的道路最短.(1)若增设1个站点C,请在图①中画出站点及所修建的道路;(2)若增设2个站点D、E,请在图②中画出站点D、E及所修建的道路.【考点】作图—应用与设计作图.【分析】(1)根据两点之间线段最短,连接AB与直线l相交即可得解;(2)根据垂线段最短,分别过A、B作直线l的垂线即可得解.【解答】解:(1)如图①,连接AB交直线l与C,则点C就是修建站点的位置;(2)如图②,分别过点A和点B作直线l的垂线,垂足分别为D、E,则D、E就是修建两个站点的位置;.25.如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中画出它的三个视图;(2)若保持主视图和俯视图不变,最多还可以再搭 3 块小正方体.【考点】作图﹣三视图.【分析】(1)根据物体形状即可画出左视图有三列与以及主视图、俯视图都有三列,进而画出图形;(2)可在最左侧前端放两个后面再放一个即可得出答案.【解答】解:(1)如图所示:;(2)保持主视图和俯视图不变,最多还可以再搭3块小正方体.故答案为:3.26.某小组计划做一批“中华结”.如果每人做6个,那么比计划多了8个;如果每人做4个,那么比计划少了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【考点】一元一次方程的应用.【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为x 个,根据加工总个数=单人加工个数×人数结合该小组人数不变找出关于x的一元一次方程,解之即可得出结论.【解答】解:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据题意得: =,解得:x=142.答:这批“中华结”的个数为142个.27.已知OA⊥OB,OC为一条射线,OD、OE分别是∠AOC、∠BOC的平分线.(1)如图①,当OC在∠AOB的内部时,∠DOE= 45 °.(2)如图②,当OC在∠AOB的外部时,求∠DOE的度数.【考点】角平分线的定义.【分析】(1)根据题意画出图形,根据角平行线的定义可知∠COD=∠AOC,∠EOC=∠BOC,然后根据∠EOD=∠COD+∠EOC求解即可;(2)根据题意画出图形,根据角平行线的定义可知∠COD=∠AOC,∠EOC=∠BOC,然后根据∠DOE=∠COD﹣∠COE求解即可.【解答】解:(1)如图①所示:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠COD=∠AOC,∠EOC=∠BOC.∴∠EOD=∠COD+∠EOC=∠AOC+∠BOC=∠BOA==45°;故答案为:45.(2)如图②所示:∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠COD=∠AOC,∠EOC=∠BOC.∠DOE=∠COD﹣∠COE=∠AOC﹣∠BOC=(∠AOC﹣∠BOC)=∠AOB==45°.28.将若干枚棋子平均分成三堆(每堆至少2枚),分别放在左边、中间、右边,并按如下顺序进行操作:第1次:从右边一堆中拿出2枚棋子放入中间一堆;第2次:从左边一堆中拿出1枚棋子放入中间一堆;第3次:从中间一堆中拿出几枚棋子放入右边一堆,并使右边一堆的棋子数为最初的2倍.(1)操作结束后,若右边一堆比左边一堆多15枚棋子,问共有多少枚棋子?(2)小明认为:无论最初的棋子数为多少,按上述方法完成操作后,中间一堆总是剩下1枚棋子,你同意他的看法吗?请说明理由.【考点】一元一次方程的应用.【分析】(1)根据题意,设最初每堆有x枚棋子,根据右边一堆比左边一堆多15枚棋子列方程求解即可.(2)设原来平均每份a枚棋子,则最后右边2a枚棋子,左边(a﹣1)枚棋子,总棋子数还是3a,3a﹣2a﹣(a﹣1)=1,继而即可得出结论.【解答】解:(1)设最初每堆有x枚棋子,依题意列等式:2x﹣(x﹣1)=15,解得:x=14,3x=42.故共有42枚棋子;(2)无论最初的棋子数为多少,最后中间只剩1枚棋子.理由:设原来平均每堆a枚棋子,则最后左边2a枚棋子,右边(a﹣1)枚棋子,总枚棋子数还是3a.3a﹣2a﹣(a﹣1)=1,所以最后中间只剩1枚棋子.29.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.(1)若AC=3,则AB= 3π+3 ;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC = BD;(填“=”或“≠”)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【考点】数轴.【分析】(1)根据线段之间的关系代入解答即可;(2)根据线段的大小比较即可;(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=x,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度;(4)根据圆周率伴侣线段的定义可求D点所表示的数.【解答】解:(1)∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3.故答案为:3π+3;(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=x,BD=y,则BC=πx,AD=πy,∵AB=AC+BC=AD+BD,∴x+πx=y+πy,∴x=y∴AC=BD故答案为:=.(3)由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,x+πx=π+1,解得x=1,∴MN=π+1﹣1﹣1=π﹣1;(4)D点所表示的数是1、π、π++2、π2+2π+1.。

2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析

2017-2018学年人教版数学七年级上期末模拟试卷(1)含答案解析

B.最大的负整数是﹣ 1
C.有理数包括正有理数和负有理数
D.一个有理数的平方总是正数
3.(2017?扬州)若数轴上表示﹣ 1 和 3 的两点分别是点 A 和点 B,则点 A 和点 B
之间的距离是(

A .﹣ 4
B.﹣ 2
C.2
D. 4
4.( 2017?长春) 3 的相反数是(

A .﹣ 3
B.﹣
C.
A .90°B. 120° C. 160° D. 180° 【分析】 因为本题中∠ AOC 始终在变化,因此可以采用 “设而不求 ”的解题技巧进 行求解. 【解答】 解:设∠ AOD=a ,∠ AOC=9°0 +a,∠ BOD=9°0 ﹣a, 所以∠ AOC +∠ BOD=9°0 +a+90°﹣a=180°. 故选 D. 二.填空题(每小题 3 分,共 24 分) 13.(2017?冷水滩区一模)若∠ α补角是∠ α余角的 3 倍,则∠ α= 45° . 【分析】 分别表示出∠ α补角和∠ α余角,然后根据题目所给的等量关系, 列方程 求出∠ α的度数. 【解答】 解:∠ α的补角 =180°﹣ α, ∠α的余角 =90°﹣α, 则有: 180°﹣ α=3(90°﹣α), 解得: α=45°. 故答案为: 45°. 14.(2017?枣庄阴平质检)已知∠ AOB=70°,∠ BOC=20°,OE 为∠ AOB 的平分
25.(12 分)(2017?岳阳) 我市某校组织爱心捐书活动,准备将一批捐赠的书打包
寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的
,结果打了
16 个包还多 40 本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书 一起,刚好又打了 9 个包,那么这批书共有多少本?

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

2017~2018学年度第一学期期末七年级数学试卷(含答案)

2017~2018学年度第一学期期末七年级数学试卷(含答案)

2017~2018学年度第一学期期末中小学学习质量评价·七 年 级 数 学 试 卷·本卷共8大题,计23小题,满分150分,考试时间120分钟.祝你考出好成绩!一、选择题(本题共10小题,每小题4 分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在本大题后的表格内.每一小题,选对得4分,不选、选错或选出的代号超过一个的一律得0分.1.有理数12-的倒数是 A .12B .-2C .2D . 12.计算-2+5的结果是 A .-7B .-3C .3D .73.2016年9月15日22时04分12秒,“天宫二号空间实验室”在酒泉卫星发射中心发射成功。

天宫二号的飞行高度距离地球350千米,350千米用科学记数法表示为( )米.. A .3.5×102 B .3.5×105 C .0.35×104 D .350×1034.下列计算中,正确的是A .235a b ab +=B .--=-+2()2a b a bC .32a a a -+=-D .32a a a -= 5.下列各式结果相等的是 A .2222)--与( B .332233⎛⎫⎪⎝⎭与C .()22----与D .201720171-与(-1)6. 已知x =3是关于x 的方程51312()()x a ---=-的解,则a 的值是 A .2 B .3 C .4D .57.用一副三角板的两块画角,不可能画出的角的度数是 A .15° B .55° C .75° D .135°8.练习本比中芯笔的单价少2元,小刚买了5本练习本和3支中芯笔正好用去14元 如果设中芯笔的单价为x 元,那么下列所列方程正确的是 A.52314()x x -+=B.52314()x x ++=C.53214()x x ++=D.53214()x x +-=相对于点O 的方位可表示为 A .南偏东68°40′方向 B .南偏东69°40′方向 C .南偏东68°20′方向D .南偏东69°10′方向10.如果∠1与∠2互为余角,∠1与∠3互为补角,那么下列结论:①∠3-∠2=90°,②∠3+∠2=270°-2∠1,③∠3-∠1=2∠2,④∠3>∠1+∠2.其中正确的是( ) A. ①②B. ①②③C. ①③④D. ①②③④二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,公园里美丽的草坪上有时出现了一条很不美观的“捷径”,但细想其中也蕴含着一个数学中很重要的“道理”,这个“道理”是; 12.在8:30这一时刻,时钟上时针与分针的夹角为;13.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是 元;14.图1是一个正方体的展开图,该正方体从图2所示的位置依次翻转到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是__________.第11题图第9题图东三、(第15题每小题4分计8分,第16题8分,本大题满分16分)15.计算:(1)112()(7)0.754--+-+; (2)2018231(1)124(2)(1)44-+÷-⨯--⨯-;16.解方程:212136x x ---= .四、(每小题8分,本题满分16分)17.先化简,再求值:222222123()()a b ab a b ab +----,其中2120()a b ++-=.18.如图,已知点M 是线段AB 的中点,点E 将AB 分成AE ∶E B =3∶4的两段,若EM =2cm ,求线段AB 的长度.A B五、(本大题共2小题,每小题10分,满分20分)19.定义一种新运算“☒”,即m ☒n =(m +2)×3-n ,例如2☒3=(2+2)×3-3=9.根据规定解答下列问题:(1)求6☒(-3)的值;(2)通过计算说明6☒(-3)与(-3)☒6的值相等吗?20. 如下图是一组有规律的图案,第1个图案由4个基础图形“ ”组成,第2个图案由7个基础图形组成,……(1(2)试写出第(n 是正整数)个图案是由 个基础图形组成 (3)若第n 个图案共有基础图形2017个,则n 的值是多少? n(1) (2) (3) ……六、(本题满分12分)21.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.七、(本题满分12分)22.如图①,将笔记本活页一角折过去,使角的顶点A落在点A’处,BC为折痕.(1)在图①中,若∠1=30º,求∠A’BD的度数;(2)如果又将活页的另一角斜折过去,使BD边与BA’ 重合,折痕为BE,如图②所示,若∠1=30º,求∠2以及∠CBE的度数;(3)如果在图②中改变∠1的大小,则BA’的位置也随之改变,那么问题(2)中∠CBE的大小是否改变?请说明理由.C八、(本大题题满分14分)23.同学们,我们很熟悉这样的算式:1+2+3+…+n =21n (n +1),其实,数学不仅非常美妙,而且魅力无穷.请你观察、欣赏下列一组等式: ①1×2=13×1×2×3; ②1×2+2×3=13×2×3×4; ③1×2+2×3+3×4=13×3×4×5; ④1×2+2×3+3×4+4×5=13×4×5×6; ……(1)按照上述规律,试写出第⑤个等式的右边:1×2+2×3+3×4+4×5+5×6= ; (2)根据上述规律,写出第n 个等式的右边:1×2+2×3+3×4+…+n ×(n +1)= ; (3)观察类比,并大胆猜想:1×2×3+2×3×4+3×4×5+…+n ×(n +1)×(n +2)= ;(4)根据(2)中的规律计算10×11+11×12+…+98×99(写出计算过程).2017~2018学年度第一学期期末中小学学习质量评价七年级数学参考答案及评分标准一、二、11.两点之间线段最短;12. 75°;13. 320;14. 我.三、15、(1)原式=1312744+-+………………2分=13(127)()44-++………………3分=51+=6………………4分(2)原式=451124(4)()34+⨯⨯--⨯-………………2分=1+64-5…………………3分=60………………………4分说明:方法不唯一,正确即得分.16.解:22126()()x x---=………………3分4226x x--+=………………6分3 x =6x=2……………8分四、17.解:(a2b+2ab2)-2(a2b-1)-2ab2-3= a2b+2ab2-2a2b+2-2ab2-3………………………… 2分=-a2b-1 …………………………4分∵2120()a b++-=,∴21020,()a b+=-=,∴a= -1 ,b=2…………………………6分当a= -1 ,b=2 时,原式= -(-1)2×2-1=―2―1 ……………7分=-3……………………8分18、解:设AB=x cm,则1327,AM x AE x==,…………………………2分由题意得,13227x x-=…………………………4分解得,x=28.所以,A B的长度为28cm. …………………………8分说明:方法不唯一,正确即得分.五、19、解: (1)6☒(-3)=(6+2)×3-(-3)……………………2分=24+3=27……………………5分(2)(-3)☒6=(-3+2)×3-6……………………8分=-9…………………………………….9分所以6☒(-3)与(-3)☒6的值不相等……………………10分20、解:(1)填表格,从左到右依次是:10, 13………………2分(2) (3n+1)…………………………………………………….5分(3)当3n+1=2017时,解得,n=672所以,n的值是672.………………………10分六、21、解:(1)设钢笔的单价为x元,则毛笔的单价为元.由题意得:解得:,则.答:钢笔的单价为21元,毛笔的单价为25元.……………………………..6分设单价为21元的钢笔为y支,所以单价为25元的毛笔则为支.根据题意,得.解得:(钢笔的支数应该是正整数,不符合题意).所以王老师肯定搞错了.……………………………..12分七、22、解:(1)∵∠1=30°,∴∠1=∠ABC=30°,∴∠A’BD=180°-2×30°=120°.……………………………..4分(2)∵∠A’BD=120°,∠2=∠DBE,∴∠2=12∠A’BD=60°,∴∠CBE=∠1+∠2=30°+60°=90°……………………………..8分(3)结论:∠CBE不变.∵∠1=12∠AB A’,∠2=12∠A’BD,∠AB A’+∠A’BD=180°,A B∴∠1+∠2=12∠AB A’+12∠A’BD =12(∠AB A’+∠A’BD )=12×180°=90° 即∠CBE =90°.……………………………..12分 八、 23、解:(1)31×5×6×7 ; ……………………3分 (2)31n (n +1)(n +2) ; ……………………6分 (3)41n (n +1)(n +2)(n +3) ; ……………………10分(4)10×11+11×12+…+98×99=31×98×99×100 - 31×9×10×11 =323070 ……………………14分。

【期末试卷】人教版 2017-2018学年 七年级数学上册 期末模拟题 四(含答案)

【期末试卷】人教版 2017-2018学年 七年级数学上册 期末模拟题 四(含答案)

2017-2018学年七年级数学上册期末模拟题一、选择题:1.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )千米.A.0.34×108B.3.4×106 C.34×106D.3.4×1072.如图是一个正方体,则它的表面展开图可以是()3.一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为( )A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%4.下列方程中,以-2为解的方程是( )A.3x-2=2x B.4x-1=2x+3 C.5x-3=6x-2 D.3x+1=2x-15.计算1-(-2)的正确结果是( )A.-2 B.-1 C.1 D.36.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xy C.3y2﹣2y2=1 D.3x2+2x=5x37.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①.AP=BP;②.AB=2BP;③.AB=2AP;④.AP+PB=AB.A.1个B.2个C.3个D.4个8.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20°B.40°C.50°D.60°9.钟表在3点30分时,它的时针和分针所成的角是()A.75°B.80°C.85°D.90°10.如图,在数轴上有A.B、C、D、E五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE,若A.E两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE的中点最近的整数是()A,-2B.-1 C,0 D,211.2016年4月21日在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1200元,盈利20%,乙种茶叶卖出1200元,亏损20%,则此人在这次交易中是()A.盈利50元B.盈利100元C.亏损150元D.亏损100元12.有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续依次操作下去,问:从数串2,9,7开始操作第一百次以后所产生的那个新数串的所有数之和是()A.2015 B.1036 C.518 D.259二、填空题:13.x,y,z在数轴上的位置如图所示,则化简|x-y|+|z-y|的结果是______.14.18.36°= °′″.15.如图,在自来水株管道AB的两旁有两个住宅小区C,D,现要在住管道上开一个接口P往C,D两小区铺设水管,为节约材料,接口P应开在主管AB的什么位置可以用学过的数学知识来解决这个问题。

1.利用数轴化简绝对值-含解析版本

1.利用数轴化简绝对值-含解析版本

利用数轴化简绝对值1.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|−|a−b|−|c|.2.有理数a、b、c在数轴上的位置如图:(1) 判断正负,用“<”或“>”填空:a−c_______ 0,a+b_______ 0,c−b_______ 0(2) 化简:|b+c|−|a−c|+|c−b|3.如图,ab为数轴上的两个点表示的有理数,化简:|a−b|−|a+b|( )A.−2a B.2a C.2b D.−2b4.实数a,b,c在数轴上的位置如图,化简|b+c|−|b+a|+|a+c|.5.数a,b,c在数轴上的位置如图所示.化简:2|b−a|−|c−b|+|a+b|=________ .6.如图,点a,b在数轴上对应点的位置如图所示,化简式子|a−b|+|a+b|的结果是________.7.已知数a、b、c在数轴上的位置如图所示,化简|a+b|−|c−b|的结果是________ .8.有理数a,b在数轴上的对应点位置如图所示,且|a|=|c|.(1) 用“<”连接这四个数:0,a,b,c(2) 化简:|a+b|−2|a+c|−|b+c|9.有理数a,b,c表示的点在数轴上的位置如下图所示,则|a+c|−|c−b|−2|b+a|= ( )A.3a−b B.−a−b C.a+3b−2c D.a−b−2c10.实数a、b在数轴上的位置如图,则化简|a|+|b|的结果为( )A.a−b B.a+b C.−a+b D.−a−b11.如果a<0,b>0,那么化简|b−a+1|−|a−b|的结果是( )A.1 B.−1 C.−2a+2b D.2a−2b12.有理数abc在数轴上的位置如图所示,则|a+c|+|c−b|−|b+a|=( )13.有理数a、b、c在数轴上的对应点如图所示,化简:|b|−|c+b|+|b−a|=________ .14.若1<a<3,则|1−a|+|3−a|等于( )15.已知a,b,c,在数轴上的对应点如图所示,则|a+b|+|c−a|+|b−c|= ________利用数轴化简绝对值1.【2018年重庆九龙坡区重庆市育才中学七年级上学期期中考试】有理数a、b、c在数轴上的位置如图所示,化简:|a+c|−|a−b|−|c|.【答案】−2a+b【解析】由数轴可得,c<b<0<a,|b|<|a|<|c|.则 |a+c|−|a−b|−|c|=−(a+c)−(a−b)−(−c)=−a−c−a+b+c=−2a+b2.【2018年10月湖南长沙长郡雨花外国语学校七年级上学期月考】有理数a、b、c在数轴上的位置如图:(1) 判断正负,用“<”或“>”填空:a−c________ 0,a+b________ 0,c−b________ 0【答案】<,<,>【解析】a−c<0,a+b<0,c−b>0(2) 化简:|b+c|−|a−c|+|c−b|【答案】a+c【解析】原式=b+c+a−c+c−b=a+c3.【2018年安徽省合肥市庐阳区七年级上学期期中】如图,ab为数轴上的两个点表示的有理数,化简:|a−b|−|a+b|()A.−2aB.2aC.2bD.−2b【答案】C【解析】根据数轴可得a<0<b,原式=(b−a)−(−a−b)=b−a+a+b=2b.故选C.4.【2018年重庆北碚区七年级上学期期末考试】实数a,b,c在数轴上的位置如图,化简|b+c|−|b+a|+|a+c|.【答案】2a【解析】|b+c|−|b+a|+|a+c|=−(b+c)−(−b−a)+(a+c)=−b−c+b+a+a+c=2a5.【2018年10月重庆重庆七十一中学七年级上学期月考(第一次)】数a,b,c在数轴上的位置如图所示.化简:2|b−a|−|c−b|+|a+b|=________ .【答案】3a−2b+c【解析】由数轴可知:c<b<a.b−a<0,c−b<0,a+b>0.原式=−2(b−a)+(c−b)+(a+b)=−2b+2a+c−b+a+b=3a−2b+c故答案为:3a−2b+c.6.【2017年湖南长沙师大附中思沁中学七年级上学期期中考试】如图,点a,b在数轴上对应点的位置如图所示,化简式子|a−b|+|a+b|的结果是________.【答案】−2a【解析】根据数轴有a−b<0,a+b<0所以去掉绝对值的结果为b−a−a−b化简后得结果−2a7.【2017年11月重庆巴南区七年级上学期月考数学试卷(重庆市巴南区七校共同体)】已知数a、b、c在数轴上的位置如图所示,化简|a+b|−|c−b|的结果是________ .【答案】a+c【解析】由数轴上点的位置可得:c<a<0<b,且|a|<|b|.∴a+b>0,c−b<0.则|a+b|−|c−b|=a+b+c−b=a+c.故答案为a+c.8.【2017年湖南长沙湖南师大附中博才实验中学七年级上学期期中考试】有理数a,b在数轴上的对应点位置如图所示,且|a|=|c|.(1) 用“<”连接这四个数:0,a,b,c【答案】b<a<0<c【解析】根据数轴上点的位置判断即可(2) 化简:|a+b|−2|a+c|−|b+c|【答案】−a+c【解析】由图可知:a+b<0,b+c<0,a与c互为相反数,即a+c=0∴原式=−a−b−0−(−b−c)=−a+c9.【2017年湖南省长沙市广益实验中学初一上学期期中考试试卷】有理数a,b,c表示的点在数轴上的位置如下图所示,则|a+c|−|c−b|−2|b+a|= ()A.3a−bB.−a−bC.a+3b−2cD.a−b−2c【答案】C【解析】由图可知,a+c<0,c−b>0,b+a<0则原式=−(a+c)−(c−b)+2(b+a)=−a−c−c+b+2b+2a=a+3b−2c10.【2017-2018学年江苏省苏州市姑苏区七年级(上)数学期末试卷】实数a、b在数轴上的位置如图,则化简|a|+|b|的结果为()A.a−bB.a+bC.−a+bD.−a−b【答案】C【解析】a在原点左侧,所以a<0,b在原点右侧,b>0,则|a|+|b|=−a+b.故选C.11.【2017年湖南长沙湘一芙蓉中学七年级上学期期中考试】如果a<0,b>0,那么化简|b−a+1|−|a−b|的结果是()A.1B.−1C.−2a+2bD.2a−2b【答案】A【解析】由a<0,b>0可知b−a+1>0,a−b<0 ,原式=b−a+1+a−b=112.【2017-2018学年江苏省苏州星海中学七年级(上)期中】有理数abc在数轴上的位置如图所示,则|a+c|+|c−b|−|b+a|=()A.−2bB.0C.2cD.2c−2b【答案】B【解析】原式=−(a+c)+(c−b)−[−(b+a)]=−a−c+c−b+b+a=0故选B.13.【苏州市高新区2016—2017学年度初一第一学期期中试卷】有理数a、b、c在数轴上的对应点如图所示,化简:|b|−|c+b|+|b−a|=________ .【答案】−b+c+a【解析】由数轴可知:c<b<0<a,∴b<0,c+b<0,b−a<0,∴原式=−b+(c+b)−(b−a)=−b+c+b−b+a=−b+c+a.14.若1<a<3,则|1−a|+|3−a|等于()A.a−4B.2C.−2D.4−2a【答案】B【解析】∵1<a<3,∴1−a<0,3−a>0,∴|1−a|+|3−a|=−(1−a)+(3−a)=−1+a+3−a=2.故选B.15.已知a,b,c,在数轴上的对应点如图所示,则|a+b|+|c−a|+|b−c|= ________【答案】−2a【解析】由图可知a+b<0,c−a>0,b−c>0原式=−(a+b)+c−a+b−c=−2a。

2020-2021学年江苏省苏州市七年级(上)期末数学试卷(附答案详解)

2020-2021学年江苏省苏州市七年级(上)期末数学试卷(附答案详解)

2020-2021学年江苏省苏州市七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.−2的相反数是()A. −2B. 2C. −12D. 122.若a>b,则则下列不等式一定成立的是()A. a>b+2B. a+1>b+1C. −a>−bD. |a|>|b|3.下列运算正确的是()A. 5a2−3a2=2B. 2x2+3x2=5x4C. 3a+2b=5abD. 7ab−6ba=ab4.当前,手机移动支付已经成为新型的消费方式,中国正在向无现金社会发展.下表是妈妈元旦当天的微信零钱支付明细:则元旦当天,妈妈微信零钱最终的收支情况是()微信转账−60.00扫二维码付款−105.00微信红包.+88.00便民菜站−23.00A. 收入88元B. 支出100元C. 收入100元D. 支出188元5.下列选项中说法错误的是()A. −a的次数与系数都是1B. 单项式−23ab的系数是−23C. 数字0是单项式D. 多项式x2+xyz2+y2的次数是46.如图,在立定跳远中,体育老师是这样测量运动员成绩的:用一块直角三角板的一边紧贴在起跳线上,另一边与拉直的皮尺重合.这样做的理由是()A. 过一点可以作无数条直线B. 过两点有且只有一条直线C. 两点之间,线段最短D. 直线外一点与直线上各点连接的所有线段中,垂线段最短7.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,可列方程为()A. 8x−3=7x+4B. 8x+3=7x+4C. 8x−3=7x−4D. 8x+3=7x−48.如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()A. 12∠2−∠1 B. 12∠2−32∠1 C. 12(∠2−∠1) D. 13(∠1+∠2)9.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…按照此规律下去,数字“2021”应落在()A. 射线OB上B. 射线OC上C. 射线OD上D. 射线OE上10.已知AB=2a(a>0),下面四个选项中:①AC+BC=2a,②AB=2AC,③AC=BC,④AC=BC=a,能确定点C是线段AB中点的选项个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共24.0分)11.网红和明星直播“带货”,成为当下重要的营销方式,数据显示,今年在淘宝“双十二”期间,全国共有60多个产业带的商家开启了超过一万场直播,直播成交商品超过8100000件.8100000这个数用科学记数法可表示为______.12.若∠α=35°,则∠α的补角为______度.13.已知代数式x−2y的值为5,则代数式14−x+2y的值为______.14.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则化简|a−b|−|c−a|=______.15.不等式4(x−1)<3x−2的正整数解为______ .16.长方体纸盒的展开图如图所示,根据图中表示的数据,可知长方体的体积为______cm3.17.如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC=82°,则∠BOF=______°.18.如图所示,点A,B,C是数轴上的三个点,其中AB=12,如果点P以每秒1个单位的速度从点A出发向右运动,那么经过______秒时,PC=2PB.三、解答题(本大题共10小题,共76.0分)19.计算:(1)8+(−10)+(−2)−(−5);(2)(−2)÷1×(−3)+(−3)3.320.解方程:(1)9−3y=5y+5;(2)2x+13−x−24=1.21.解不等式组:{x−2(x−1)≥1x+13<x+3,并将其解集在数轴上表示出来.22.先化简再求值:4ab−[(a2+5ab−b2)−(a2+3ab−2b2)],其中a、b满足|a+1|+(b−2)2=0.23.在如图所示的方格纸中,A,B,C为3个格点,点C在直线AB外,(1)借助格点,过C点画出AB的垂线m和平行线n;(2)指出(1)中直线m、n的位置关系为______.(3)连接AC和BC,若图中每个最小正方形的边长为1,则三角形ABC的面积是______.24.如图是由一些大小相同的5个小正方体组合成的简单几何体.(1)请在方格纸中用实线画出它的三个视图.(2)保持小正方体的个数不变,只改变小正方体的位置,摆放一个不同于上图的几何体,使得它的俯视图和左视图与你在方格纸中所画的一致,还有______种不同的摆放方法.25.补全下面的解题过程:如图,已知OC是∠AOB内部的一条射线,OD是∠AOB的平分线,∠AOC=2∠BOC,且∠BOC=40°,求∠COD的度数.解:∵∠AOC=2∠BOC,∠BOC=40°,∴∠AOC=______°.∴∠AOB=∠AOC+∠______=______°.∵OD平分∠AOB,∠______=______°.∴∠AOD=12∴∠COD=∠______−∠AOD=20°.26.如图,已知点C在直线AB上,点D、E分别是线段AC、CB的中点.(1)若点C在线段AB上,AC=6,CB=10.则线段DE的长度是______;(2)若点C为线段AB上任意一点,满足AC+CB=a,你能猜想出DE的长度吗?并说明理由.(3)若点C为线段AB外任意一点,AC=m,CB=n,则线段DE的长度是______.27.某学校要举办一次数学文化节活动,要求准备普通口罩、医用口罩、专业口罩三种口罩共1000个(每种口罩都要有),其中医用口罩的单价比普通口罩的单价贵0.2元,买5个医用口罩和8个普通口罩共需要6.2元.(1)问医用口罩和普通口罩的单价分别是多少元?(2)若专业口罩市场上有三个级别,学校只能从中选择一个级别.价格如下表:现在学校用3480元去购买这三种口罩,且普通口罩和专业口罩的数量是相同的,应该选择哪种级别的专业口罩比较合适?购买方案是什么?请说明理由.(3)若要求购买专业口罩的数量是普通口罩的一半,普通口罩和医用口罩单价不变,其中专业口罩单价为a元,在总数量不变的前提之下,无论这三种口罩的数量如何分配,总费用始终不变.求此时a的值和总费用.28.【阅读新知】如图①,射线OC在∠AOB内,图中共有三个角∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角的度数的2倍,则称射线OC是∠AOB的“巧线”.【理解运用】(1)∠AOB的角平分线______这个角的“巧线”;(填“是”或“不是”)(2)若∠AOB=90°,射线OC是∠AOB的“巧线”,则∠AOC的度数是______.【拓展提升】如图②,一副三角板如图所示摆放在量角器上,边PD与量角器0°刻度线重合,边AP 与量角器180°刻度线重合,将三角板ABP绕量角器中心点P以每秒5°的速度顺时针方向旋转,当边PB与0°刻度线重合时停止运动,设三角板ABP的运动时间为t秒.(3)求t何值时,射线PB是∠CPD的“巧线”?(4)若三角板ABP按照原来方向旋转的同时,三角板PCD也绕点P以每秒2°的速度逆时针方向旋转,此时三角板ABP绕点P旋转的速度比原来每秒快了3°.当三角板ABP 停止旋转时,三角板PCD也停止旋转,问:在旋转过程中,是否存在某一时刻t,使三条射线PB、PC、PD中,其中一条恰好是以另两条组成的角的“巧线”?若存在,请直接写出t的值.若不存在,请说明理由.答案和解析1.【答案】B【解析】解:−2的相反数是:−(−2)=2,故选:B.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【答案】B【解析】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.利用不等式的基本性质判断即可.解:A.由a>b不一定能得出a>b+2,故本选项不合题意;B.若a>b,则a+1>b+1,故本选项符合题意;C..若a>b,则−a<−b,故本选项不合题意;D.由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.3.【答案】D【解析】解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.根据合并同类项系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键,注意不是同类项不能合并.4.【答案】B【解析】解:−60−105+88−23=−100,所以元旦当天,妈妈微信零钱最终的收支情况是支出100元.故选:B.根据正数和负数表示相反意义的量,可得答案.本题考查了正数和负数,确定相反意义的量是解题关键.5.【答案】A【解析】解:A、−a的系数为−1、次数为1,原说法错误,此选项符合题意;B、单项式−23ab的系数是−23,原说法正确,此选项不符合题意;C、数字0是单项式,原说法正确,此选项不符合题意;D、多项式x2+xyz2+y2的次数是1+1+2=4,原说法正确,此选项不符合题意;故选:A.根据单项式及其相关的概念、多项数的相关概念逐一判断可得.本题主要考查单项式、多项式,解题的关键是掌握单项式、多项式及有关概念.6.【答案】D【解析】解:他的跳远成绩是垂线段AB的长度.这样做的理由是直线外一点与直线上各点连接的所有线段中,垂线段最短.故选:D.由点到直线的距离的定义及跳远比赛的规则作出分析和判断.本题考查了垂线段最短性质的运用,解答此题的关键是熟练掌握由点到直线的距离的定义及跳远比赛的规则.7.【答案】A【解析】解:由题意可得,设有x人,可列方程为:8x−3=7x+4.故选:A.根据题意可以找出题目中的等量关系,列出相应的方程,就可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.8.【答案】C【解析】解:由图知:∠1+∠2=180°;∴12(∠1+∠2)=90°;∴90°−∠1=12(∠1+∠2)−∠1=12(∠2−∠1).故选:C.由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°;而∠1的余角为90°−∠1,可将上式代入90°−∠1中,即可求得结果.此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.9.【答案】D【解析】解:由题可知,6个数字循环一次,∵2021÷6=336…5,∴2021落在OE上,故选:D.由题可知,6个数字循环一次,再由2021÷6=336…5,即可判断2021的位置.本题考查数字的变化规律,根据题意,找到数字的循环规律是解题的关键.10.【答案】A【解析】解:①AC+BC=2a,如图,∴点C不一定是AB中点;②AB=2AC,如图,点C可能在线段AB外,故不一定;③AC=BC,如图,可能三点不共线,故不一定;④AC=BC=a,如图,点C一定是AB中点,故选:A.先画出图形,再根据线段中点定义判断即可.本题考查了对线段中点定义的应用,注意:如果一个点把一条线段分成相等的两条线段,那么这个点就叫作这条线段的中点.11.【答案】8.1×106【解析】解:8100000=8.1×106.故答案为:8.1×106.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n 比原来的整数位数少1,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.【答案】145【解析】解:180°−35°=145°,则∠α的补角为145°,故答案为:145.根据两个角的和等于180°,则这两个角互补计算即可.本题考查的是余角和补角,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.13.【答案】9【解析】解:∵代数式x−2y的值为5,∴x−2y=5.∴14−x+2y=14−(x−2y)=14−5=9.故答案为:9.将代数式适当变形,利用整体代入的方法解答即可得出结论.本题主要考查了求代数式的值,将代数式适当变形利用整体代入的方法解答是解题的关键.14.【答案】b−c【解析】解:由数轴得,c>0,a<b<0,因而a−b<0,c−a>0,∴|a−b|−|c−a=b−a−c+a=b−c.故答案为:b−c.由数轴可知:c>0,a<b<0,所以可知:a−b<0,c−a>0,根据负数的绝对值是它的相反数,正数的绝对值是它本身可求值.此题考查了整式的加减运算,数轴,以及绝对值的意义,根据数轴提取有用的信息是解本题的关键.15.【答案】1【解析】解:不等式的解集是x<2,故不等式4(x−1)<3x−2的正整数解为1.故答案为:1.首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.16.【答案】192【解析】解:由题意得:长方体的长为8cm.宽为6cm,∴长方体的高=26−6−2×8=4cm,∴长方体的体积=6×8×4=192立方厘米,故答案为:192.根据长方体的平面展开图求出长方体的高,然后再根据长方体的体积公式计算即可.本题考查了列代数式,几何体的展开图,根据题目的已知并结合图形求出长方体的高是解题的关键.17.【答案】28.5【解析】解:∵∠BOD=∠AOC=82°,又∵OE平分∠BOD,∴∠DOE=12∠BOD=12×82°=41°.∴∠COE=180°−∠DOE=180°−41°=139°,∵OF平分∠COE,∴∠EOF=12∠COE=12×139°=69.5°,∴∠BOF=∠EOF−∠BOF=69.5°−41°=28.5°.故答案是:28.5.根据对顶角相等求得∠BOD的度数,然后根据角的平分线的定义求得∠EOD的度数,则∠COE即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOF=∠EOF−∠BOF求解.本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.18.【答案】20或383【解析】解:设经过t秒PC=2PB,由已知,经过t秒,点P在数轴上表示的数是−6+t.∴PC=|−6+t+2|=|t−4|,PB=|−6+t−6|=|t−12|.∵PC=2PB.∴|t−4|=2|t−12|.,解得:t=20或383.故答案为:20或383设经过t秒PC=2PB.由已知,经过t秒,点P在数轴上表示的数是−6+t.根据两点之间距离公式即可求出答案.本题考查一元一次方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.19.【答案】解:(1)原式=8−10−2+5=(8+5)+(−10−2)=13−12=1;(2)原式=−6×(−3)−27=18−27=−9.【解析】(1)减法转化为加法,再进一步计算即可;(2)先计算除法和后面的乘方,再计算乘法,最后计算减法即可.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.20.【答案】解:(1)移项,可得:−3y−5y=5−9,合并同类项,可得:−8y=−4,系数化为1,可得:y=0.5.(2)去分母,可得:4(2x+1)−3(x−2)=12,去括号,可得:8x+4−3x+6=12,移项,可得:8x−3x=12−4−6,合并同类项,可得:5x=2,系数化为1,可得:x=0.4.【解析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.21.【答案】解:由x−2(x−1)≥1,得:x≤1,<x+3,得:x>−4,由x+13则不等式组的解集为−4<x≤1,将解集表示在数轴上如下:【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】解:原式=4ab−(a2+5ab−b2)+(a2+3ab−2b2)=4ab−a2−5ab+b2+a2+3ab−2b2=2ab−b2,∵|a+1|+(b−2)2=0,∴a+1=0,b−2=0,∴a=−1,b=2.∴原式=2×(−1)×2−22=−4−4=−8.【解析】原式去括号合并得到最简结果,根据绝对值和偶次幂的非负性求出a和b的值,再把a与b的值代入计算即可求出值.本题考查了整式的加减−化简求值,涉及去括号法则,同类项的定义,合并同类项法则等知识,熟练掌握运算法则是解本题的关键.本题可先去小括号,也可先去中括号.23.【答案】m⊥n6【解析】解:(1)如图,直线m,直线n即为所求;(2)∵m⊥AB,n//AB,∴m⊥n,故答案为:m⊥n;×4×3=6,(3)S△ABC=12故答案为:6.(1)利用数形结合的思想以及垂线,平行线的定义作出图形即可;(2)利用垂线的判定方法解决问题;(3)根据三角形面积公式求解即可.本题考查作图−应用与设计作图,平行线的判定和性质,三角形的面积等知识,解题的关键是掌握垂线,平行线的定义,属于中考常考题型.24.【答案】2【解析】解:(1)这个组合体的三视图如图所示:(2)重新摆放,使其左视图、俯视图与(1)中的相同,因此摆放的“第2个小正方体”可以在俯视图第一行的三个位置的其中之一,因此还有2种摆放,故答案为:2.(1)根据简单的组合体的三视图的画法,画出相应的图形即可;(2)在俯视图上相应的位置摆放“第2个”,结合左视图进行判断即可.本题考查简单组合体的三视图,掌握视图的定义,掌握简单组合体三视图的画法是解决问题的关键.25.【答案】80BOC120AOB60AOC【解析】解:∵∠AOC=2∠BOC,∠BOC=40°,∴∠AOC=80°,∴∠AOB=∠AOC+∠BOC=120°,∵OD平分∠AOB,∴∠AOD=12∠AOB=60°,∴∠COD=∠AOC−∠AOD=20°,故答案为:80,BOC,120,AOB,60,AOC.根据题目的已知条件先求出∠AOC,进而求出∠AOB,再根据角平分线的定义求出∠AOD 即可解答.本题考查了角的计算,角平分线的定义,根据题目的已知条件并结合图形去分析是解题的关键.26.【答案】812(n−m)或12(m−n)【解析】解:(1)∵点D、E分别是AC、BC的中点,∴DC=12AC=12×6=3,CE=12BC=12×10=5,∴DE=DC+CE=3+5=8,故答案为:8;(2)DE=12a.理由如下:∵点D、E分别是AC、BC的中点,∴DC=12AC,CE=12BC,∴DE=DC+CE=12(AC+CB)=12a;当C在BA的延长线上时,∵点D、E分别是AC、BC的中点,∴DC=12AC,CE=12BC,∴DE=CE−CD=12(BC−AC)=12(n−m);当C在AB的延长线上时,∵点D、E分别是AC、BC的中点,∴DC=12AC,CE=12BC,∴DE=CD−CE=12(AC−BC)=12(m−n),综上,DE=12(n−m)或12(m−n).故答案为:12(n−m)或12(m−n).(1)根据线段中点的定义得到DC=12AC=3,CE=12BC=5,然后利用DE=DC+CE进行计算;(2)根据线段中点的定义得到DC=12AC,CE=12BC,然后利用DE=DC+CE得到答案;(3)分两种情况:当C在BA的延长线上和当C在AB的延长线上,再根据线段中点的定义可得答案.本题考查了两点间的距离,利用线段的和差和线段中点的定义是解题关键.27.【答案】解:(1)设普通口罩单价为x元,医用口罩单价为(x+0.2)元,由题意得:5(x+0.2)+8x=6.2,解得:x=0.4,∴x+0.2=0.6,答:普通口罩单价为0.4元,医用口罩单价为0.6元;(2)设购买普通口罩y个,专业口罩y个,则医用口罩(1000−2y)个,①当选Ⅰ级口罩购买时,则0.4y+0.6(1000−2y)+2y=3480,解得:y=2400>1000,不合题意;②当选Ⅱ级口罩购买时,则0.4y+0.6(1000−2y)+5y=3480,则1000−2y=1000−2×686=−372<0,不合题意,当选Ⅲ级口罩购买时,则0.4y+0.6(1000−2y)+8y=3480,解得:y=400,1000−2y=1000−800=200,符合题意,∴购买普通口罩和专用口罩个400个,医用口罩200个;(3)设购买m个专业口罩,则购买普通口罩2m个,医用口罩(1000−3m)个,总费用为T 元,由题意得:T=0.4×2m+0.6(1000−3m)+am=0.8m+600−1.8m+am=(0.8+a−1.8)m+600,T与m无关,则0.8+a−1.8=0,解得:a=1,T=600,答:此时a的值为1,总费用为600元.【解析】(1)设普通口罩单价为x元,医用口罩单价为(x+0.2)元,根据买5个医用口罩和8个普通口罩共需要6.2元列出方程求解即可;(2)设购买普通口罩y个,专业口罩y个,则医用口罩(1000−2y)个,然后分购买Ⅰ级、Ⅱ级、Ⅲ级口罩的总费用=3480列方程,解方程取符合题意的值即可;(3)设购买m个专业口罩,则购买普通口罩2m个,医用口罩(1000−3m)个,总费用为T 元,由题意列出方程,根据总费用始终不变,求出a和T的值即可.本题考查一元一次方程的应用,关键是找出等量关系列出方程.28.【答案】是30°或45°或60°【解析】解:(1)如图,∵OC是∠AOB的平分线,∴∠AOB=2∠AOC,∴OC是∠AOB的“巧线”,故答案为:是;(2)∵∠AOB=90°,射线OC是∠AOB的“巧线”,∴∠AOC=13∠AOB,即∠AOC=30°,∠AOC=12∠AOB,即∠AOC=45°,∠AOC=23∠AOB,即∠AOC=60°,综上,∠AOC的度数是30°或45°或60°,故答案为:30°或45°或60°;(3)如图,由题意得,0≤t≤27,∠CPB=5t−75°,∠CPD=60°,∵射线PB是∠CPD的“巧线“,∴∠CPB=13∠CPD,即5t−75=20,t=19,∠CPB=12∠CPD,即5t−75=30,t=21,∠CPB=23∠CPD,即5t−75=40,t=23,综上,t的值是19或21或23;(4)由题意得0≤t≤1678,分三种情况:①PC在∠BPD内部,PC是∠BPD的巧线,∠BPC=75−10t,∠BPD=135−10t,故这种情况不存在;②PB在∠CPD内部,PB是∠CPD的巧线,∠BPC=10t−75,∠CPD=60°,∴∠BPC=13∠CPD,10t−75=20,t=9.5,∠BPC=12∠CPD,10t−75=30,t=10.5,∠BPC=23∠CPD,10t−75=40,t=11.5;③PD在∠CPB内部,PD是∠BPC的巧线,∠BPC=10t−75,∠CPD=60°,∴∠CPD=13∠BPC,60=13(10t−75),t=25.5(舍去),第21页,共22页∠CPD=12∠BPC,60=12(10t−75),t=19.5(舍去),∠CPD=23∠BPC,60=23(10t−75),t=16.5;综上,t的值是9.5或10.5或11.5或16.5.(1)根据巧线的定义直接判断即可;(2)分三种情况计算即可;(3)用含t的式子表示∠CPD,再分三种情况计算即可;(4)由(3)的思路分情况解答即可.本题考查角的计算,根据题意列出方程是解题关键.第22页,共22页。

2017-2018学年江苏省苏州市吴中区七年级(上)期中数学试卷(解析版)

2017-2018学年江苏省苏州市吴中区七年级(上)期中数学试卷(解析版)

2017-2018学年江苏省苏州市吴中区七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.(3分)下列各个运算中,结果为负数的是()A.﹣(﹣4)B.|﹣4|C.﹣42 D.(﹣4)22.(3分)地球与月球的平均距离大约为384000km,则这个平均距离用科学记数法表示为()A.384×103km B.3.84×104km C.3.84×105km D.3.84×106km3.(3分)下列各数:0,π,3.141,,其中有理数的个数是()A.3个 B.4个 C.2个 D.1个4.(3分)下列方程中,是一元一次方程的是()A.B.x﹣1=0 C.x2﹣x﹣1=0 D.2(x﹣1)=2x5.(3分)下列各组式子中为同类项的是()A.5x2y与﹣2xy2B.4x与4x2C.﹣3x2y与yx2D.6x3y4与﹣6x3z46.(3分)已知5是关于x的方程3x﹣2a=7的解,则a的值是()A.8 B.12 C.3.5 D.47.(3分)已知|x|=1,y=2,则x﹣y的值为()A.﹣1或﹣3 B.±5 C.1或3 D.±38.(3分)一种商品每件进价为a元,按进价增加20%定出售价,后因库存积压降价,按售价的八折出售,每件亏损()A.0.01a元 B.0.15a元 C.0.25a元 D.0.04a元9.(3分)下列方程变形错误的是()A.由方程,得3x﹣2x+2=6B.由方程,得3(x﹣1)+2x=6C.由方程,得2x﹣1=3﹣6x+3D.由方程,得4x﹣x+1=410.(3分)如图所示,每个正方形由边长为1的小正方形组成:观察图形,在边长为n(n≥1,n为奇数)的正方形中,黑色小正方形的个数为()A.n2B.2n﹣1 C.n2﹣2n+1 D.n2﹣2n二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)﹣2的相反数是.12.(3分)比较大小,用“<”“>”或“=”连接:﹣﹣.13.(3分)数轴上与﹣3距离4个单位长度的点表示的正数是.14.(3分)“x的2倍与y的的和”用代数式表示为.15.(3分)若关于x的多项式3x2+(k﹣1)x﹣1中不含有x的一次项,则k=.16.(3分)3x5y6与﹣x n﹣1y6是同类项,则n=.17.(3分)已知代数式x+3y的值2,则代数式2x+6y+1值是.18.(3分)如图所示的运算程序中,若开始输入的x值为﹣5,我们发现第1次输出的数为﹣2,再将﹣2输入,第2次输出的数为﹣1,如此循环,则第2017次输出的结果为.三、解答题(本大题共l0小题,共76分.解答时应写出文字说明、证明过程或演算步骤.)19.(8分)计算或化简:(1)﹣7+3﹣5+12;(2)﹣23+(2﹣3)﹣2×(﹣1)2017.20.(8分)解下列方程:(1)2(x﹣1)=x+3;(2).21.(5分)先化简,再求值:7x2y﹣[3xy﹣2(xy﹣x2y+1)+xy],其中x=6,y=﹣.22.(5分)已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|2a+1|+(2﹣b)2=0,求A﹣2B的值.23.(6分)当m是何值时,关于x的方程4x﹣2m=3x+1的解是方程2x﹣3=x的解的2倍.24.(7分)若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.25.(8分)已知a是方程3x﹣5=10的解,求代数式3a2﹣[a2﹣2(a﹣a2)+1]的值.26.(9分)苏州市出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按排每千米1.8元收费.(1)某出租车行程为xkm,若x>3km,则该出租车驾驶员收到车费元(用含有x的代数式表示);(2)某出租车驾驶员从公司出发,在东西向的宝带西路上连续接送4批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km).①送完第4批客人后,该出租车驾驶员在公司的边(填“东或西”),距离公司km的位置;②在这过程中该出租车驾驶员共收到车费多少元?27.(10分)在计算1+5+9+13+17+21时,我们发现,从第一个数开始,后面的每个数与它前面的一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们可以用下列公式来求和S,S=(其中n表示这列数的个数,a1表示表示第一个数,a n表示第n个数),所以,1+5+9+13+17+21==66.用上面的知识解答下列问题:吴中区科学技术协会为了扶持高科技产业,准备投资两个符合条件的企业A、B,拟定分别对A、B两个企业投资方案如下:A企业:每年投资一次,第一年投资30万元、以后每年比前一年增加投资1万元;B企业:每半年投资一次,第一个半年投资6万元,以后每半年比前半年增加投资0.5万元.(1)如果投资期限为3年,则A企业共需投资万元,B企业共需投资万元;(2)如果投资期限为n年,则A企业共需投资万元,B企业共需投资万元;(用含有n的代数式表示)(3)吴中区科学技术协会决定对这两个企业累计投资12年,通过计算哪个企业获得的投资比较多?比另一个企业多多少万元?28.(10分)如图:在数轴上点A表示数a,点B表示数b,点C表示数c,a是多项式﹣2x2﹣4x+1的一次项系数,b是最小的正整数,单项式﹣的次数为c.(1)a=,b=,c=;(2)若将数轴在点B处折叠,则点A与点C重合(填“能”或“不能”);(3)点A,B,C开始在数轴上运动,若点C以每秒1个单位长度的速度向右运动,同时,点A和点B分别以每秒3个单位长度和2个单位长度的速度向左运功,t分钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=(用含t的代数式表示);(4)请问:3AB﹣BC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2017-2018学年江苏省苏州市吴中区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.(3分)下列各个运算中,结果为负数的是()A.﹣(﹣4)B.|﹣4|C.﹣42 D.(﹣4)2【解答】解:A、﹣(﹣4)=4,是正数;B、|﹣4|)=4,是正数;C、﹣42=﹣16,是负数;D、(﹣4)2=16,是正数,故选:C.2.(3分)地球与月球的平均距离大约为384000km,则这个平均距离用科学记数法表示为()A.384×103km B.3.84×104km C.3.84×105km D.3.84×106km【解答】解:384000=3.84×105,故选:C.3.(3分)下列各数:0,π,3.141,,其中有理数的个数是()A.3个 B.4个 C.2个 D.1个【解答】解:0,π,3.141,,其中是有理数的有0,3.141,这3个,故选:A.4.(3分)下列方程中,是一元一次方程的是()A.B.x﹣1=0 C.x2﹣x﹣1=0 D.2(x﹣1)=2x【解答】解:A、不是一元一次方程,故此选项错误;B、是一元一次方程,故此选项正确;C、不是一元一次方程,故此选项错误;D、不是一元一次方程,故此选项错误;故选:B.5.(3分)下列各组式子中为同类项的是()A.5x2y与﹣2xy2B.4x与4x2C.﹣3x2y与yx2D.6x3y4与﹣6x3z4【解答】解:A、5x2y与﹣2xy2,不是同类项,故本选项错误;B、4x与4x2,不是同类项,故本选项错误;C、﹣3x2y与yx2是同类项,故本选项正确;D、6x3y4与﹣6x3z4,不是同类项,故本选项错误.故选:C.6.(3分)已知5是关于x的方程3x﹣2a=7的解,则a的值是()A.8 B.12 C.3.5 D.4【解答】解:把x=5代入方程,得15﹣2a=7,解得a=4,故选:D.7.(3分)已知|x|=1,y=2,则x﹣y的值为()A.﹣1或﹣3 B.±5 C.1或3 D.±3【解答】解:∵|x|=1,∴x=±1,∴x﹣y=1﹣2=﹣1,或x﹣y=﹣1﹣2=﹣3.故选:A.8.(3分)一种商品每件进价为a元,按进价增加20%定出售价,后因库存积压降价,按售价的八折出售,每件亏损()A.0.01a元 B.0.15a元 C.0.25a元 D.0.04a元【解答】解:由题意可得,每件亏损为:a﹣a(1+20%)×0.8=a﹣0.96a=0.04a元,故选:D.9.(3分)下列方程变形错误的是()A.由方程,得3x﹣2x+2=6B.由方程,得3(x﹣1)+2x=6C.由方程,得2x﹣1=3﹣6x+3D.由方程,得4x﹣x+1=4【解答】解:A、由方程﹣=1,得3x﹣2x+2=6,正确;B、由方程(x﹣1)+=1,得3(x﹣1)+2x=6,正确;C、由方程=1﹣3(2x﹣1),得2x﹣1=3﹣18x+9,错误;D、由方程x﹣=1,得4x﹣x+1=4,正确,故选:C.10.(3分)如图所示,每个正方形由边长为1的小正方形组成:观察图形,在边长为n(n≥1,n为奇数)的正方形中,黑色小正方形的个数为()A.n2B.2n﹣1 C.n2﹣2n+1 D.n2﹣2n【解答】解:当n=1时,黑色小正方形的个数为1,当n=3时,黑色小正方形的个数为5=2×3﹣1,当n=5时,黑色小正方形的个数为9=2×5﹣1,…∴在边长为n(n≥1,n为奇数)的正方形中,黑色小正方形的个数为2n﹣1,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)﹣2的相反数是2.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.12.(3分)比较大小,用“<”“>”或“=”连接:﹣>﹣.【解答】解:∵|﹣|==,|﹣|==,<,∴﹣>﹣.故答案为:>.13.(3分)数轴上与﹣3距离4个单位长度的点表示的正数是1.【解答】解:设该点表示的数为x,根据题意得:|﹣3﹣x|=4,解得:x=﹣7或x=1.数轴上与﹣3距离4个单位长度的点表示的正数是1,故答案为:1.14.(3分)“x的2倍与y的的和”用代数式表示为2x+y.【解答】解:“x的2倍与y的的和”用代数式表示为2x+y.故答案为:2x+y.15.(3分)若关于x的多项式3x2+(k﹣1)x﹣1中不含有x的一次项,则k=1.【解答】解:∵多项式3x2+(k﹣1)x﹣1中不含有x的一次项,∴k﹣1=0,∴k=1.故答案为1.16.(3分)3x5y6与﹣x n﹣1y6是同类项,则n=6.【解答】解:∵3x5y6与﹣x n﹣1y6是同类项,∴n﹣1=5.解得:n=6.故答案为:6.17.(3分)已知代数式x+3y的值2,则代数式2x+6y+1值是5.【解答】解:∵x+3y=2,∴2x+6y+1=2(x+3y)+1=4+1=5,故答案为5.18.(3分)如图所示的运算程序中,若开始输入的x值为﹣5,我们发现第1次输出的数为﹣2,再将﹣2输入,第2次输出的数为﹣1,如此循环,则第2017次输出的结果为1.【解答】解:若开始输入的x值为﹣5,我们发现第1次输出的数为﹣2,再将﹣2输入,第2次输出的数为﹣1,将﹣1输入,得到结果为2,将2输入得到结果为1,将1输入,得到结果为4,将4输入得到结果为2,依此类推,以1,4,2为循环节循环,∵(2017﹣3)÷3=671…1,∴第2017次输出的结果为1.故答案为:1.三、解答题(本大题共l0小题,共76分.解答时应写出文字说明、证明过程或演算步骤.)19.(8分)计算或化简:(1)﹣7+3﹣5+12;(2)﹣23+(2﹣3)﹣2×(﹣1)2017.【解答】解:(1)原式=﹣12+12+3=3;(2)原式=﹣8﹣1+2=﹣7.20.(8分)解下列方程:(1)2(x﹣1)=x+3;(2).【解答】解:(1)2(x﹣1)=x+32x﹣2=x+3,则2x﹣x=3+2,解得:x=5;(2)=3(3x+5)=2(2x﹣1)9x+15=4x﹣2解得:x=﹣.21.(5分)先化简,再求值:7x2y﹣[3xy﹣2(xy﹣x2y+1)+xy],其中x=6,y=﹣.【解答】解:7x2y﹣[3xy﹣2(xy﹣x2y+1)+xy]=7x2y﹣[3xy﹣2xy+7x2y﹣2+xy]=7x2y﹣3xy+2xy﹣7x2y+2﹣xy=﹣xy+2,当x=6,y=﹣时,原式=﹣×6×(﹣)+2=3.5.22.(5分)已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|2a+1|+(2﹣b)2=0,求A﹣2B的值.【解答】解:(1)∵A=3a2﹣4ab,B=a2+2ab,∴A﹣2B=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab;(2)∵|2a+1|+(2﹣b)2=0,∴a=﹣,b=2,则原式=+8=8.23.(6分)当m是何值时,关于x的方程4x﹣2m=3x+1的解是方程2x﹣3=x的解的2倍.【解答】解:2x﹣3=x解得x=3,由关于x的方程4x﹣2m=3x+1的解是方程2x﹣3=x的解的2倍,得12﹣2m=9+1,解得m=1,当m=1时,关于x的方程4x﹣2m=3x+1的解是方程2x﹣3=x的解的2倍.24.(7分)若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.【解答】解:根据题意得:原式=(﹣+)×(﹣2﹣1.5+1.5﹣6)=(﹣)×(﹣8)=.25.(8分)已知a是方程3x﹣5=10的解,求代数式3a2﹣[a2﹣2(a﹣a2)+1]的值.【解答】解:3x﹣5=10,3x=15,x=5,∴a=5,3a2﹣[a2﹣2(a﹣a2)+1],=3a2﹣(a2﹣2a+2a2+1),=3a2﹣a2+2a﹣2a2﹣1,=2a﹣1,当a=5时,原式=2×5﹣1=9.26.(9分)苏州市出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按排每千米1.8元收费.(1)某出租车行程为xkm,若x>3km,则该出租车驾驶员收到车费(1.8a+4.6)元(用含有x的代数式表示);(2)某出租车驾驶员从公司出发,在东西向的宝带西路上连续接送4批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km).①送完第4批客人后,该出租车驾驶员在公司的西边(填“东或西”),距离公司9km的位置;②在这过程中该出租车驾驶员共收到车费多少元?【解答】解:(1)由题意可得,该出租车驾驶员收到车费为:10+(a﹣3)×1.8=1.8a+4.6,故答案为:(1.8a+4.6);(2)①由题意可得,5+2+(﹣4)+(﹣12)=﹣9,∴送完第4批客人后,该出租车驾驶员在公司的西边,距离公司9km,故答案为:西,9;②由题意可得,在这过程中该出租车驾驶员共收到车费为:1.8×5+4.6+10+1.8×4+4.6+1.8×12+4.6=61.6(元),答:在这过程中该出租车驾驶员共收到车费61.6元.27.(10分)在计算1+5+9+13+17+21时,我们发现,从第一个数开始,后面的每个数与它前面的一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们可以用下列公式来求和S,S=(其中n表示这列数的个数,a1表示表示第一个数,a n表示第n个数),所以,1+5+9+13+17+21==66.用上面的知识解答下列问题:吴中区科学技术协会为了扶持高科技产业,准备投资两个符合条件的企业A、B,拟定分别对A、B两个企业投资方案如下:A企业:每年投资一次,第一年投资30万元、以后每年比前一年增加投资1万元;B企业:每半年投资一次,第一个半年投资6万元,以后每半年比前半年增加投资0.5万元.(1)如果投资期限为3年,则A企业共需投资93万元,B企业共需投资37.5万元;(2)如果投资期限为n年,则A企业共需投资万元,B企业共需投资n(2n+5)万元;(用含有n的代数式表示)(3)吴中区科学技术协会决定对这两个企业累计投资12年,通过计算哪个企业获得的投资比较多?比另一个企业多多少万元?【解答】解:(1)根据题意得:企业A:3年共需投资的总金额为30+(30+1)+(30+2)=93(万元);企业B:3年共需投资的总金额为6+(6+0.5)+(6+1)+(6+1.5)+(6+2)+(6+2.5)=37.5(万元);(2)根据题意得:企业A:n年共需投资的总金额为30n+(1+2+…+n﹣1)=(万元);企业B:n年共需投资的总金额为6n+[0.5+1+…+0.5(2n﹣1)]=n(2n+5)万元;(3)企业A:当n=12时,=426万元,企业B:n(2n+5)=348万元,426﹣348=78(万元)故A企业获得的投资比较多,比另一个企业多78万元.故答案为:93,37.5;,n(2n+5).28.(10分)如图:在数轴上点A表示数a,点B表示数b,点C表示数c,a是多项式﹣2x2﹣4x+1的一次项系数,b是最小的正整数,单项式﹣的次数为c.(1)a=﹣4,b=1,c=6;(2)若将数轴在点B处折叠,则点A与点C能重合(填“能”或“不能”);(3)点A,B,C开始在数轴上运动,若点C以每秒1个单位长度的速度向右运动,同时,点A和点B分别以每秒3个单位长度和2个单位长度的速度向左运功,t分钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=t+5,BC=3t+5(用含t的代数式表示);(4)请问:3AB﹣BC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【解答】解:(1)由题意可知:a=﹣4,b=1,c=6,(2)能重合,由于﹣4与6的中点为1,故将数轴在点B处折叠,则点A与点C能重合;(3)由于点A和点B分别以每秒3个单位长度和2个单位长度的速度向左运功,∴t分钟后,AB=3t+1﹣(﹣4)﹣2t=t+5由于点C以每秒1个单位长度的速度向右运动,∴t分钟后,BC=2t+6﹣1+t=3t+5(4)3AB﹣BC=3(t+5)﹣3t﹣5=3t+15﹣3t﹣5=10∴3AB﹣BC的值不会随着时间t的变化而改变,故答案为:(1)﹣4,1,6;(2)能;(3)t+5,3t+5;。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年江苏省苏州市七年级(上)期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)1.(3分)﹣4的倒数是()A.B.﹣ C.4 D.﹣42.(3分)苏州地铁4号线,2017年上半年通车试运营,主线全程长约为42000m,北起相城区荷塘月色公园,南至吴江同津大道站,共设31站.将42000用科学记数法表示应为()A.0.42×105B.4.2×104C.42×103D.420×1023.(3分)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.4.(3分)下列不是同类项的是()A.﹣ab3与b3a B.12与0 C.2xyz与﹣zyx D.3x2y与﹣6xy25.(3分)实数a、b在数轴上的位置如图,则化简|a|+|b|的结果为()A.a﹣b B.a+b C.﹣a+b D.﹣a﹣b6.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7.(3分)下列说法中正确的是()A.过一点有且仅有一条直线与已知直线平行B.若AC=BC,则点C是线段AB的中点C.相等的角是对顶角D.两点之间的所有连线中,线段最短8.(3分)如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2018次相遇在()A.点A B.点B C.点C D.点D二、填空题:(本大题共10小题,每空2分,共20分)9.(2分)单项式﹣的系数是,次数是.10.(2分)计算33°52′+21°54′=.11.(2分)下列一组数:﹣8,2.6,﹣|﹣3|,﹣π,﹣,0.101001…(每两个1中逐次增加一个0)中,无理数有个.12.(2分)下午3点30分时,钟面上时针与分针所成的角等于°.13.(2分)|x﹣3|+(y+2)2=0,则y x为.14.(2分)若如图的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则a+b=.15.(4分)若a2﹣3b=4,则6b﹣2a2+2018=.16.(2分)关于x的方程7﹣2k=2(x+3)的解为负数,则k的取值范围是.17.(2分)如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF=°.18.(2分)若关于x的不等式2x﹣a≤0的正整数解是1、2、3,则a的取值范围是.三、解答题(本大题共9小题,共56分)19.(6分)计算:(1)(﹣+﹣)×(﹣24);(2)﹣14+2×(﹣3)2﹣5÷×220.(6分)解方程:(1)2(x+3)=5x;(2)2﹣.21.(6分)解下列不等式(组):(1)2(x+3)>4x﹣(x﹣3)(2)22.(4分)先化简,再求值:﹣2x2y﹣3(2xy﹣x2y)+4xy,其中x=﹣1,y=223.(4分)在如图所示的方格纸中,点A、B、C均在格点上.(1)画线段BC,过点A作BC的平行线AD;(2)过点C作AD的垂线,垂足为E;(3)若BC=3,则点B到直线AD的距离为.24.(6分)汽车从甲地到乙地,若每小时行驶45km,则要比原计划延误半小时到达;若每小时行驶50km,则可以比原计划提前半小时到达.求甲、乙两地的路程及原计划的时间.25.(6分)如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求:(1)线段MC的长.(2)AB:BM的值.26.(8分)已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.27.(8分)如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).2017-2018学年江苏省苏州市七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)1.(3分)﹣4的倒数是()A.B.﹣ C.4 D.﹣4【解答】解:﹣4的倒数是﹣.故选:B.2.(3分)苏州地铁4号线,2017年上半年通车试运营,主线全程长约为42000m,北起相城区荷塘月色公园,南至吴江同津大道站,共设31站.将42000用科学记数法表示应为()A.0.42×105B.4.2×104C.42×103D.420×102【解答】解:将42000用科学记数法表示为:4.2×104.故选:B.3.(3分)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.【解答】解:由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面;故选A.4.(3分)下列不是同类项的是()A.﹣ab3与b3a B.12与0 C.2xyz与﹣zyx D.3x2y与﹣6xy2【解答】解:A、所含字母相同且相同字母的指数也相同,故A不符合题意;B、常数也是同类项,故B不符合题意;C、所含字母相同且相同字母的指数也相同,故C不符合题意;D、相同字母的指数不同不是同类项,故D符合题意;故选:D.5.(3分)实数a、b在数轴上的位置如图,则化简|a|+|b|的结果为()A.a﹣b B.a+b C.﹣a+b D.﹣a﹣b【解答】解:由图可知,a<0,b>0,所以,|a|+|b|=﹣a+b.故选C.6.(3分)下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.【解答】解:线段AD的长表示点A到直线BC距离的是图D,故选D.7.(3分)下列说法中正确的是()A.过一点有且仅有一条直线与已知直线平行B.若AC=BC,则点C是线段AB的中点C.相等的角是对顶角D.两点之间的所有连线中,线段最短【解答】解:A、过直线外一点有且仅有一条直线与已知直线平行,故此选项错误;B、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=AB,则点C是线段AB的中点,故此选项错误;C、相等的角是对顶角,说法错误,应是对顶角相等,故此选项错误;D、两点之间的所有连线中,线段最短,说法正确,故此选项正确;故选:D.8.(3分)如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2018次相遇在()A.点A B.点B C.点C D.点D【解答】解:由题意可得,第一次相遇在点D,第二次相遇在点C,第三次相遇在点B,第四次相遇在点A,第五次相遇在点D,……,每四次一个循环,∵2018÷4=504…2,∴第2018次相遇在点C,故选C.二、填空题:(本大题共10小题,每空2分,共20分)9.(2分)单项式﹣的系数是﹣,次数是3.【解答】解:单项式﹣的系数是﹣,次数是3.故答案为:﹣,3.10.(2分)计算33°52′+21°54′=55°46′.【解答】解:33°52′+21°54′=54°106′=55°46′.11.(2分)下列一组数:﹣8,2.6,﹣|﹣3|,﹣π,﹣,0.101001…(每两个1中逐次增加一个0)中,无理数有2个.【解答】解:﹣8,2.6,﹣|﹣3|,﹣是有理数,﹣π,0.101001…(每两个1中逐次增加一个0)是无理数,故答案为:2.12.(2分)下午3点30分时,钟面上时针与分针所成的角等于75°.【解答】解;3点30分时,它的时针和分针所成的角是30°×2.5=75°,故答案是:75.13.(2分)|x﹣3|+(y+2)2=0,则y x为﹣8.【解答】解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以y x=(﹣2)3=﹣8.故答案为:﹣8.14.(2分)若如图的平面展开图折叠成正方体后,相对面上两个数都互为相反数,则a+b=﹣4.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“1”相对,面“b”与面“3”相对,“2”与面“﹣2”相对.因为相对面上两个数都互为相反数,所以a=﹣1,b=﹣3,故a+b=﹣4.15.(4分)若a2﹣3b=4,则6b﹣2a2+2018=2010.【解答】解:当a2﹣3b=4时,原式=﹣2(a2﹣3b)+2018=﹣8+2018=2010故答案为:201016.(2分)关于x的方程7﹣2k=2(x+3)的解为负数,则k的取值范围是k>0.5.【解答】解:解关于x的方程7﹣2k=2(x+3),得:x=,根据题意知<0,解得:k>0.5,故答案为:k>0.5.17.(2分)如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF=45°.【解答】解:∵四边形ABCD是矩形,根据折叠可得∠ABE=∠EBD=∠ABD,∠DBF=∠FBC=∠DBC,∵∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°,∴∠EBD+∠DBF=45°,即∠EBF=45°,故答案为:45°.18.(2分)若关于x的不等式2x﹣a≤0的正整数解是1、2、3,则a的取值范围是6≤a<8.【解答】解:解不等式2x﹣a≤0,得:x≤,∵其正整数解是1、2、3,所以3≤<4,解得6≤a<8,故答案为:6≤a<8三、解答题(本大题共9小题,共56分)19.(6分)计算:(1)(﹣+﹣)×(﹣24);(2)﹣14+2×(﹣3)2﹣5÷×2【解答】解:(1)原式=18﹣4+9=23;(2)原式=﹣1+18﹣20=﹣3.20.(6分)解方程:(1)2(x+3)=5x;(2)2﹣.【解答】解:(1)2(x+3)=5x;2x+6=5x2x﹣5x=﹣6﹣3x=﹣6x=2;(2)2﹣.12﹣2(2x+1)=3(1+x)12﹣4x﹣2=3+3x﹣4x﹣3x=3﹣12+2﹣7x=﹣7x=1.21.(6分)解下列不等式(组):(1)2(x+3)>4x﹣(x﹣3)(2)【解答】解:(1)去括号,得:2x+6>4x﹣x+3,移项,得:2x﹣4x+x>3﹣6,合并同类项,得:﹣x>﹣3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<2.22.(4分)先化简,再求值:﹣2x2y﹣3(2xy﹣x2y)+4xy,其中x=﹣1,y=2【解答】解:原式=﹣2x2y﹣6xy+3x2y+4xy=x2y﹣2xy,当x=﹣1、y=2时,原式=(﹣1)2×2﹣2×(﹣1)×2=2+4=6.23.(4分)在如图所示的方格纸中,点A、B、C均在格点上.(1)画线段BC,过点A作BC的平行线AD;(2)过点C作AD的垂线,垂足为E;(3)若BC=3,则点B到直线AD的距离为3.【解答】解:(1)画段BC,直线AD如图所示;(2)垂线段CE如图所示(3)若BC=3,则点B到直线AD的距离为3.理由:四边形ABCE是正方形,∴AB=BC=3,∴点B到直线AD的距离为3,故答案为3.24.(6分)汽车从甲地到乙地,若每小时行驶45km,则要比原计划延误半小时到达;若每小时行驶50km,则可以比原计划提前半小时到达.求甲、乙两地的路程及原计划的时间.【解答】解:设原计划x小时到达,根据题意得:45(x+0.5)=50(x﹣0.5),解得:x=9.5,∴45(x+0.5)=45×(9.5+0.5)=450.答:甲、乙两地的路程为450千米,原计划用时9.5小时.25.(6分)如图,已知B、C两点把线段AD分成2:4:3的三部分,M是AD的中点,若CD=6,求:(1)线段MC的长.(2)AB:BM的值.【解答】解:(1)由题意可知:AB:BC:CD=2:4:3∴CD=AD∴AD=18,∵M是AD的中点,∴MD=AD=9,∴MC=MD﹣CD=3(2)AB=AD=4,BC=AD=8,∴BM=BC﹣MC=8﹣3=5,∴AB:BM=4:526.(8分)已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.【解答】解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°﹣∠AOC﹣∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×=30°,∴∠AOC=30°,∴∠AOE=30°+90°=120°;(3)如图1,∠EOF=120°﹣90°=30°,或如图2,∠EOF=360°﹣120°﹣90°=150°.故∠EOF的度数是30°或150°.27.(8分)如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=90°;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 4.5秒或40.5秒(直接写出结果).【解答】解:(1)如图2,∠BOM=90°,OM平分∠CON.理由如下:∵∠BOC=135°,∴∠MOC=135°﹣90°=45°,而∠MON=45°,∴∠MOC=∠MON;故答案为90°;(2)∠AOM=∠CON.理由如下:如图3,∵∠MON=45°,∴∠AOM=45°﹣∠AON,∵∠AOC=45°,∴∠NOC=45°﹣∠AON,∴∠AOM=∠CON;(3)T=×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).故答案为90°;4.5秒或40.5秒.。

相关文档
最新文档