matlab工具箱遗传算法使用方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的遗传算法可以使用Matlab自带的遗传算法工具箱,但是要从Matlab2010版本之后才会自带这个工具箱,且调用命令也有变化,分别是gatool和optimtool。GUI界面如下图所示:
1、problem setup and results设置与结果
(1)Solver:求解程序,选择要用的求解程序(遗传算法,遗传算法多目标等)
(2)problem:
1)fitness function适应度函数,求最小,这里的使用度函数要自己编写,书写格式是“@函数名”。
2)number of variable变量数,必须是整数,即,使用这个GUI界面的适应度函数的变量必须是[1*n]的向量,而不能是[m*n]的矩阵。
3)constraints约束
4)linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量
5)linear equalities线性等式,A*x=b形式,其中A是矩阵,b是向量
6)bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量
7)nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式
8)integer variable indices整型变量标记约束,使用该项时Aeq和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码
举例,若是想让第一个、第三个、第五个变量保持是整数的话,则直接在此处填写[1 3 5] 9)run solver and view results求解
use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果
2、population
(1)population type编码类型
1)double vector实数编码,采用双精度。整数规划的种群类型必须是实数编码。
2)bitstring二进制编码。对于生成函数和变异函数,只能选用uniform和custom,对于杂交函数,只能使用scattered singlepoint,twopoint或custom不能使用hybrid function和
nonlinear constraint function
3)custom 自定义
(2)population size:种群大小
(3)creation function:生成函数,产生初始种群
1)constraint dependent:约束相关。无约束时为uniform,有约束时为feasible population 2)uniform:均匀分布
3)feasible population :自适应种群,生成能够满足约束的种群
(4)initial population:初始种群,不指定则使用creation function生成,可以指定少于种群数量的种群,由creation function完成剩余的
(5)initial scores:初始值,如果不指定,则由计算机计算适应度函数作为初始值,对于整型约束不可用,使用向量表示
(6)initial range:初始范围,使用向量矩阵表示,第一行表示范围的下限,第二行表示上限
3、fitness scaling:适应度尺度
rank:等级。将适应度排序,然后编号
proportional:按比例
top:按比例选取种群中最高适应度的个体,这些个体有等比例的机会繁衍,其余的个体被淘汰
shift linear:线性转换
custom:用户定义
4、selection(selection function)依据适应值选择父代
stochastic uniform:随机均匀分布
remainder:残余,取适应值的整数部分进行轮盘赌选择
uniform:不是一个好方法,但是可以用来做测试
shift linear:线性转换
roulette:轮盘赌算法
tournament:联赛选择算法
custom:自定义
5、reproduction复制,决定如何产生子代
elite count:精英数,直接传到下一代的个体数
crossover fraction:杂交概率
6、mutation(mutation function)突变
use constraint dependent 默认,与约束有关,无约束时使用gaussian,有约束时使用adaptive feasible
gaussian :利用高斯分布来选取
uniform:均匀
adaptive feasible:
custom:自定义
7、crossover杂交
scattered:随机生成遗传二进制向量,按0-1杂交
single point:单点杂交,生成一个数字,该数字代表的位置开始两父代基因交换
two point:两点交换
intermediate:媒介,加权平均
heuristic:启发式算法
arithmetic:算术平均
custom:自定义
8、migration迁移
direction方向:forward n-》n+1 ;both 双向
fraction:指定迁移率,以较小数量种群为标准
interval:发生迁移的间隔
9、constraint parameters约束参数,对应于非线性约束求解器
initial penalty:初始罚函数大于等于1
penalty factor:处罚因子大于等于1
10、hybrid function混合函数,指定另外一个最小值函数,在遗传算法结束之后计算,在整数值限制的时候不可用。
none
fminsearch只用于无约束
patternsearch约束与无约束
fminunc无约束
fmincon有约束
11、stopping criteria停止标准
generations到达代数
time limit时间限制
fitness limit适应值限制
stall generations迟滞代数,经过多代适应值没有明显提升
stall time limit 迟滞时间限制,经过限定时间适应值没有明显提升
function tolerance 在迟滞代数内适应度函数值的改变量小于这个值,则停止
nonlinear constraint tolerance 非线性约束容忍值
12、plot function 绘图函数
plot interval 绘图间隔
best fitness最佳适应度值
best individual最佳个体
distance个体间平均距离
expectation期望
genealogy家系
range适应度值最小最大平均值
score diversity每一代分数的柱状图