用户调研中Kano模型的应用-上书房信息咨询

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Kano模型在用户调研中的应用

1、Kano模型简介

1.1 Kano模型起源:满意度的二维模式

著名市场营销学大师、美国西北大学教授菲利普•科特勒说过:满意是指一个人通过对一个产品的可感知的效果与他的期望值相比较后,所形成的愉悦或失望的感觉状态。在竞争日益激烈的当下,用户的满意度直接影响着用户对于企业/产品的忠诚度,进而影响用户的粘性和流失。正因如此,每个公司/产品,都想了解自己客户的满意度状况,从而制定后续的策略和规划。

在传统的观念里,会认为满意的反面就是不满意。然而赫兹伯格(1974)在研究员工满意度时提出了双因素理论(也被称作激励-保健理论),他认为满意与不满意并不是存共同存在一个单一的连续体,而是分开的。即满意和不满意不是二选一的关系,满意的反面是没有满意,而不满意的反面是没有不满意。所以令人满意的因素即使被去除,并不一定会导致员工的不满意。同样的,让人感到不满的因素被去掉,也不一定会导致员工满意。

1.2 Kano模型的二维属性模式

日本教授狩野纪昭(Noriaki Kano)将赫兹伯格的理论引入到产品质量管理中来。在1984年首度提出了Kano模型,横坐标表示某项要素的具备程度,越向右边表示该品质要素的具备程度越高,越向左边,具备程度越低。纵坐标表示顾客或使用者的满意程度,越向上,越满意,越向下,越不满意。利用坐标的相对关系,可以分为五类属性。

魅力属性:用户意想不到的,如果不提供此需求,用户满意度不会降低,但当提供此需求,用户满意度会有很大提升;

期望属性:当提供此需求,用户满意度会提升,当不提供此需求,用户满意度会降低;

必备属性:当优化此需求,用户满意度不会提升,当不提供此需求,用户满意度会大幅

降低;

无差异因素:无论提供或不提供此需求,用户满意度都不会有改变,用户根本不在意;

反向属性:用户根本都没有此需求,提供后用户满意度反而会下降;

2、需求沟通——为什么会用Kano模型

Kano模型很好地贴和了业务的需求,从具备程度和满意程度这两个维度出发,将客户关系管理工具中的功能进行细致有效的区分和排序,帮助我们了解:哪些功能是一定要有,否则会直接影响用户体验的(必备属性、期望属性);哪些功能是没有时不会造成负向影响,拥有时会给用户带来惊喜的(魅力属性);哪些功能是可有可无,具备与否对用户都不会有太多影响的(无差异因素)。

由此决定利用Kano模型,对于客户关系管理工具的功能属性归属进行讨论。接下来将对于Kano模型的问题设置和分析方法的具体操作进行阐述。

3、Kano模型问卷编制——-正、反两面的Kano问题模式

Kano模型设置题目时,对于每一个想要探测的问题,均需要了解以下两个方面:用户对于工具具备该功能时的评价(态度)和工具不具备该功能时的评价(态度)。

例如,在探讨客户关系管理工具“信息管理-购买行为信息”这一功能点时,会分别正向和反向地询问用户对客户关系管理工具是否具备该功能的评价,题目设置如下图: 为了保证用户对问卷中各功能点准确理解,从而保证数据回收质量,我们进行了两个工作。第一,对于每个功能点进行举例说明。对于“客户信息管理-购买行为信息”这一功能点,进行举例“如不同类目下面的历史购买商品”,方便用户清晰、生动地了解此功能内容和使用场景;第二,预访谈3名卖家,请卖家做完问卷后提出自己疑惑的地方,检验功能点的阐述是否可以被卖家理解,对于卖家不能清晰理解的部分加以讨论和完善补充。

另外,由于每个用户对于“我很喜欢”“理所当然”“无所谓”“勉强接受”“我很不喜欢”

的理解不尽相同,因此需要在问卷填写前给出统一解释说明,让用户有一个相对一致的标准,方便填答。

4数据收集&清洗分析

4.1数据收集

调研样本为3-4月有成交的卖家,通过EDM进行问卷投放,共回收5906份数据。

4.2数据清洗

除了严格的清洗程序,Kano问卷中,清楚了全部选择“我很喜欢”和全部选择“我很不喜欢”的数据。经过清洗,得到有效数据4395份。

4.3数据分析

对于Kano模型部分,分析方法主要为“Kano二维属性归类”和“better-worse系数分析”。

4.3.1 Kano二维属性归属分类

若具备这一功能时感觉“很喜欢”,不具备时感受不强烈(“理所当然”/“无所谓”/“勉强接受”),说明这一选项属于锦上添花的“魅力属性”;

若具备时感受不强烈(“理所当然”/“无所谓”/“勉强接受”),但不具备时感受到“很不喜欢”,则属于一定需要的“必备属性”;

若具备时“很喜欢”,不具备时“很不喜欢”,可以称之为“期望属性”,呈一元线性模式;

无论具备还是不具备,感受都不强烈(“理所当然”/“无所谓”/“勉强接受”)的,便是中间部分的“无差异因素”;

若具备时感受偏不满意(“理所当然”/“无所谓”/“勉强接受”/“很不喜欢”),而不具备时感受偏满意(“很喜欢”/“理所当然”/“无所谓”/“勉强接受”),则说明这一因素

的存在和用户的满意度呈反向关系,称做“反向结果”。

除了以上因素外,倘若出现功能具备和不具备情况下,用户都表示“很喜欢”,或者具备和不具备情况下均表示“很不喜欢”,这种矛盾的现象,我们把它叫做“可疑结果”。

每一个功能在6个维度上(魅力属性、期望属性、必备属性、无差异因素、反向属性、可疑结果)上均可能有得分,将相同维度的比例相加后,可得到各个属性维度的占比总和,总和最大的一个属性维度,便是该功能的属性归属。

在对“信息管理-购买行为信息”这一功能进行统计整理时,发现魅力属性的占比总数最高。进而得到,客户关系管理工具中,“信息管理-购买行为信息”功能属于魅力属性。即没有这个功能,卖家不会有强烈负性情绪,但是有了这个功能,会让卖家感受到满意和惊喜。

4.3.2 Better-worse系数分析

除了对于Kano属性归属的探讨,还可以通过对于功能属性归类的百分比,计算出Better-Worse系数,表示某功能可以增加满意或者消除很不喜欢的影响程度。

Better,可以被解读为增加后的满意系数。better的数值通常为正,代表如果提供某种功能属性的话,用户满意度会提升;正值越大,代表用户满意度提升的影响效果越强,上升的也就更快。

Worse,则可以被叫做消除后的不满意系数。其数值通常为负,代表如果不提供某种功能属性的话,用户的满意度会降低;值越负向,代表满意度降低的影响效果越强,下降的越快。

Berger(1993)提出的指标计算公式如下:

增加后的满意系数(better): (魅力属性+期望属性)/(魅力属性+期望属性+必备属性+无差异因素)

消除后的不满意系数(worse): (期望属性+必备属性)/(魅力属性+期望属性+必备属

相关文档
最新文档