空间几何体的体积
空间几何体的体积计算
![空间几何体的体积计算](https://img.taocdn.com/s3/m/4b95715dc4da50e2524de518964bcf84b8d52d57.png)
空间几何体的体积计算在数学中,空间几何体是指具有三维形状的物体,例如立方体、球体、圆柱体等。
计算这些空间几何体的体积是非常重要且常见的数学问题。
本文将介绍如何计算不同几何体的体积,并提供相应的公式和示例。
一、立方体的体积计算立方体是最简单的空间几何体,其形状是六个相等的正方形构成的立体。
计算立方体的体积非常简单,只需要知道一条边的长度即可。
立方体的体积公式为:体积 = 边长 ×边长 ×边长例如,如果一个立方体的边长为4厘米,则其体积为:体积 = 4厘米 × 4厘米 × 4厘米 = 64立方厘米二、球体的体积计算球体是一个完全圆形的立体,其内部的点到圆心的距离都相等。
计算球体的体积需要知道半径的长度。
球体的体积公式为:体积= (4/3) × π × 半径的立方其中,π是一个常数,近似取值为3.14159。
例如,如果一个球体的半径为5厘米,则其体积为:体积 = (4/3) × 3.14159 × 5厘米 × 5厘米 × 5厘米≈ 523.6立方厘米三、圆柱体的体积计算圆柱体是一个由两个平行且相等的圆底面以及连接两个底面的侧面所构成的立体。
计算圆柱体的体积需要知道底面圆的半径和圆柱体的高度。
圆柱体的体积公式为:体积= π × 半径的平方 ×高度例如,如果一个圆柱体的底面圆的半径为3厘米,高度为8厘米,则其体积为:体积 = 3.14159 × 3厘米 × 3厘米 × 8厘米≈ 226.2立方厘米四、正方体的体积计算正方体是六个相等的正方形构成的立体,各边长度相等。
计算正方体的体积只需要知道一条边的长度。
正方体的体积公式和立方体相同:体积 = 边长 ×边长 ×边长例如,如果一个正方体的边长为6厘米,则其体积为:体积 = 6厘米 × 6厘米 × 6厘米 = 216立方厘米五、圆锥体的体积计算圆锥体是一个由一个圆形底面和连接底面与顶点的侧面所构成的立体。
空间几何体表面积和体积公式
![空间几何体表面积和体积公式](https://img.taocdn.com/s3/m/b9d48c264531b90d6c85ec3a87c24028905f8554.png)
空间几何体表面积和体积公式
空间几何体表面积和体积公式如下:
表面积公式:
S = 2 × (a + b + c)
其中,a、b、c分别表示几何体的长、宽、高。
体积公式:
V = a × b × c
其中,a、b、c分别表示几何体的长、宽、高。
还有一些常用的表面积和体积公式:
1. 如果一个几何体只有一个面是正方形或正多边形,那么它的
表面积和体积都可以用一个简单的公式计算:S = 4a,V = a × b。
2. 如果一个几何体的边长为c,那么它的表面积可以表示为:S = 2 × (c + d),其中d表示几何体的长宽比。
体积可以表示为:V = c ×d。
3. 如果一个几何体是正多边形,且每个内角都相等,那么它的表
面积和体积都可以用一个复杂的公式计算:S = (n-2) × 4a,V = (n-2) × a × b。
其中n表示正多边形的边数。
4. 如果一个几何体只有一个面是矩形或圆形,那么它的表面积
和体积都可以用一个简单的公式计算:S = a + b + c,V = π× r ×(a + b + c)。
其中π是圆周率,r表示几何体的半径。
这些公式只是一些基本的几何公式,实际上还有很多更复杂的公
式可以用于计算几何体的性质。
了解这些基本的公式有助于我们更方
便地计算几何体的面积和体积。
空间几何体的体积认识空间几何体的体积计算方法
![空间几何体的体积认识空间几何体的体积计算方法](https://img.taocdn.com/s3/m/7a1a09bbf605cc1755270722192e453611665b5e.png)
空间几何体的体积认识空间几何体的体积计算方法空间几何体的体积认识与计算方法在数学中,空间几何体的体积是指三维物体所占据的空间大小。
体积的计算是几何学中的重要概念,对于建筑、制造业、地理学等领域具有重要意义。
本文将介绍空间几何体的体积认识和计算方法。
一、立方体的体积计算方法立方体是一种拥有六个相等正方形面的空间几何体。
其体积可以使用以下公式进行计算:V = a³其中,V表示立方体的体积,a表示立方体的边长。
通过计算边长的立方,我们可以得到立方体的体积。
二、长方体的体积计算方法长方体是一种拥有六个矩形面的空间几何体。
其体积可以使用以下公式进行计算:V = lwh其中,V表示长方体的体积,l表示长方体的长度,w表示长方体的宽度,h表示长方体的高度。
通过计算长度、宽度和高度的乘积,我们可以得到长方体的体积。
三、圆柱体的体积计算方法圆柱体是一种拥有两个圆形底面和一个侧面的空间几何体。
其体积可以使用以下公式进行计算:V = πr²h其中,V表示圆柱体的体积,π表示圆周率(取近似值3.14),r表示圆柱体底面的半径,h表示圆柱体的高度。
通过计算底面半径的平方乘以高度再乘以π,我们可以得到圆柱体的体积。
四、球体的体积计算方法球体是一种拥有无边界几何形状的空间几何体。
其体积可以使用以下公式进行计算:V = (4/3)πr³其中,V表示球体的体积,π表示圆周率(取近似值3.14),r表示球体的半径。
通过计算半径的立方乘以4再除以3再乘以π,我们可以得到球体的体积。
五、锥体的体积计算方法锥体是一种拥有一个圆形底面和一个尖顶的空间几何体。
其体积可以使用以下公式进行计算:V = (1/3)πr²h其中,V表示锥体的体积,π表示圆周率(取近似值3.14),r表示底面半径,h表示锥体的高度。
通过计算底面半径的平方乘以高度再乘以1/3再乘以π,我们可以得到锥体的体积。
综上所述,通过不同几何体的特点和计算公式,我们可以准确计算出空间几何体的体积。
空间几何体的表面积及体积计算公式
![空间几何体的表面积及体积计算公式](https://img.taocdn.com/s3/m/f1553274a9956bec0975f46527d3240c8447a1b2.png)
空间几何体的表面积及体积计算公式空间几何体是指在三维坐标系中存在的几何图形,包括立方体、圆锥体、圆柱体、球体等等。
对于这些几何体来说,求其表面积和体积是我们在学习空间几何时需要掌握的核心内容。
下面我们将详细介绍各种空间几何体的表面积及体积的计算公式。
一、立方体立方体是一种六个面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为立方体的边长。
二、正方体正方体是一种所有面都是正方形的几何体,其表面积和体积计算公式如下:表面积 = 6 × a²体积 = a³其中,a为正方体的边长。
三、圆锥体圆锥体是一种由一个圆锥顶点和一个底面为圆形的仿射锥面构成的几何体,其表面积和体积计算公式如下:表面积= πr²+πrl体积= 1/3πr²h其中,r为底面圆半径,l为母线长度,h为圆锥体的高。
四、圆柱体圆柱体是一种由平行于固定轴的两个相等且共面的圆面和它们之间的圆柱面所围成的几何体,其表面积和体积计算公式如下:表面积= 2πrh+2πr²体积= πr²h其中,r为底面圆半径,h为圆柱体的高。
五、球体球体是一种由所有到球心的距离等于固定半径的点所组成的几何体,其表面积和体积计算公式如下:表面积= 4πr²体积= 4/3πr³其中,r为球体的半径。
以上就是五种常见空间几何体的表面积及体积计算公式,希望能够对大家在学习空间几何时有所帮助。
同时,我们也需要关注其实际应用,在工程建设和生活中经常会涉及到这些几何体的计算,因此深化这些知识点的学习,将对我们未来的发展产生积极的影响。
空间几何体的体积计算与应用
![空间几何体的体积计算与应用](https://img.taocdn.com/s3/m/907c69e1a48da0116c175f0e7cd184254b351bde.png)
空间几何体的体积计算与应用在几何学中,空间几何体的体积是一个重要的概念。
通过计算空间几何体的体积,我们能够准确地描述和比较不同几何体之间的大小。
本文将介绍几个常见的空间几何体,并探讨它们的体积计算方法及其实际应用。
一、立方体立方体是最简单的空间几何体之一,它的六个面都是正方形。
如果边长为a,则立方体的体积可以通过公式V = a^3来计算。
立方体的体积计算方法非常直观,它常被应用在日常生活中,例如计算容器的容积、物体的体积等。
二、圆柱体圆柱体是一个侧面由两个平行圆底和一个连接两个底的侧面组成的几何体。
圆柱体的体积计算公式为V = πr^2h,其中r表示底面半径,h 表示高度。
圆柱体的体积计算方法广泛应用于工程和建筑领域,例如计算储油罐、管道等容器的容积。
三、圆锥体圆锥体由一个圆锥面和一个底面组成,底面通常是一个圆。
圆锥体的体积计算公式为V = (1/3)πr^2h,其中r表示底面半径,h表示高度。
圆锥体的体积计算方法常见于几何学和物理学中,如计算圆锥形容器的容积,或者计算流体在圆锥形容器中的体积。
四、球体球体是一个内部所有点与球心的距离都相等的空间几何体。
球体的体积计算公式为V = (4/3)πr^3,其中r表示球的半径。
球体的体积计算方法被广泛运用于天文学、地理学和材料科学等领域中,例如计算行星、地球以及微粒等的体积。
五、棱柱体棱柱体是一个顶部和底部都是多边形,并且侧面由若干个平行四边形组成的几何体。
棱柱体的体积计算公式为V = 底面积A × h,其中A 表示底面积,h表示高度。
棱柱体的体积计算方法可以应用于建筑、工程等领域,例如计算建筑物中某一部分的体积。
六、棱锥体棱锥体由一个多边形和一个顶点组成的几何体。
棱锥体的体积计算公式为V = (1/3) ×底面积A × h,其中A表示底面积,h表示高度。
棱锥体的体积计算方法常见于建筑和几何学中,比如计算建筑物的屋顶结构的体积。
空间几何体的表面积及体积公式大全
![空间几何体的表面积及体积公式大全](https://img.taocdn.com/s3/m/20734ec181eb6294dd88d0d233d4b14e85243e22.png)
空间⼏何体的表⾯积及体积公式⼤全空间⼏何体的表⾯积与体积公式⼤全⼀、全(表)⾯积(含侧⾯积) 1、柱体①棱柱②圆柱 2、锥体①棱锥:h c S ‘底棱锥侧21=②圆锥:l c S 底圆锥侧213、台体①棱台:h c c S )(21‘下底上底棱台侧+=②圆台:l c c S )(21下底上底棱台侧+=4、球体①球:r S 24π=球②球冠:略③球缺:略⼆、体积 1、柱体①棱柱②圆柱 2、①棱锥②圆锥3、①棱台②圆台 4、球体①球:rV 334π=球②球冠:略③球缺:略说明:棱锥、棱台计算侧⾯积时使⽤侧⾯的斜⾼h '计算;⽽圆锥、圆台的侧⾯积计算时使⽤母线l 计算。
三、拓展提⾼ 1、祖暅原理:(祖暅:祖冲之的⼉⼦)夹在两个平⾏平⾯间的两个⼏何体,如果它们在任意⾼度上的平⾏截⾯⾯积都相等,那么这两个⼏何体的体积相等。
最早推导出球体体积的祖冲之⽗⼦便是运⽤这个原理实现的。
2、阿基⽶德原理:(圆柱容球)圆柱容球原理:在⼀个⾼和底⾯直径都是r 2的圆柱形容器内装⼀个最⼤的球体,则该球体的全⾯积等于圆柱的侧⾯积,体积等于圆柱体积的32。
分析:圆柱体积:r r h S V r 3222)(ππ=?==圆柱圆柱侧⾯积:r h cS r r 242)2(ππ=?==圆柱侧因此:球体体积:r r V 3334232ππ=?=球球体表⾯积:r S 24π=球通过上述分析,我们可以得到⼀个很重要的关系(如图)+ =即底⾯直径和⾼相等的圆柱体积等于与它等底等⾼的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底⾯中⼼连线的纵切⾯为梯形ABCD 。
延长两侧棱相交于⼀点P 。
设台体上底⾯积为S 上,下底⾯积为S 下⾼为h 。
易知:PDC ?∽PAB ?,设h PE 1=,则h h PF +=1由相似三⾓形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似⽐等于⾯积⽐的算术平⽅根)整理得:SS h S h 上下上-=1⼜因为台体的体积=⼤锥体体积—⼩锥体体积∴h S S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代⼊:SS h S h 上下上-=1得:h S S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(3S S h V 下下上上台++=4、球体体积公式推导分析:将半球平⾏分成相同⾼度的若⼲层(层n ),n 越⼤,每⼀层越近似于圆柱,+∞→n 时,每⼀层都可以看作是⼀个圆柱。
空间几何体的体积计算
![空间几何体的体积计算](https://img.taocdn.com/s3/m/03a05f64492fb4daa58da0116c175f0e7dd11913.png)
空间几何体的体积计算在数学中,空间几何体的计算是一个重要而基础的问题。
了解如何计算不同几何体的体积可以帮助我们在实际应用中解决各种问题。
本文将介绍几种常见空间几何体的体积计算方法。
一、立方体的体积计算立方体是最简单的几何体之一,它的所有边长相等。
计算立方体的体积只需要知道其边长即可。
假设立方体的边长为a,则其体积V等于a的三次方,即 V = a^3。
二、长方体的体积计算长方体是另一种常见的几何体,它具有三个不同的边长。
计算长方体的体积需要知道其长、宽和高。
假设长方体的长、宽、高分别为L、W和H,则其体积V等于长乘以宽乘以高,即 V = L * W * H。
三、球体的体积计算球体是一个完全围绕一个中心点对称的几何体。
计算球体的体积需要知道其半径。
假设球体的半径为r,则其体积V等于四分之三乘以半径的立方,即V = (4/3) * π * r^3,其中π是一个数学常数,约等于3.14159。
四、圆柱体的体积计算圆柱体由一个圆柱面和两个平行于圆柱底面的圆面组成。
计算圆柱体的体积需要知道其底面圆的半径和高度。
假设圆柱底面圆的半径为r,高度为h,则其体积V等于底面圆的面积乘以高度,即V = π * r^2 * h。
五、金字塔的体积计算金字塔是一个尖顶与一个底面为多边形相连的几何体。
计算金字塔的体积需要知道其底面的面积和高度。
假设金字塔的底面积为A,高度为h,则其体积V等于底面积乘以高度再除以3,即 V = A * h / 3。
六、锥体的体积计算锥体是一个尖顶与一个底面为圆形相连的几何体。
计算锥体的体积同样需要知道其底面圆的半径和高度。
假设锥体的底面圆的半径为r,高度为h,则其体积V等于底面圆的面积乘以高度再除以3,即V = π* r^2 * h / 3。
七、圆锥台的体积计算圆锥台是由一个圆锥和一个底面为圆形的圆台相连而成的几何体。
计算圆锥台的体积需要知道底面圆的半径、上底面圆的半径和高度。
假设底面圆的半径为r1,上底面圆的半径为r2,高度为h,则其体积V等于底面圆的面积加上底面圆和上底面圆半径的乘积再乘以高度再除以3,即V = π * (r1^2 + r2^2 + r1 * r2) * h / 3。
空间几何体体积的几种求法
![空间几何体体积的几种求法](https://img.taocdn.com/s3/m/267a653c30b765ce0508763231126edb6f1a76e1.png)
如图所示, OP 在与OM 垂直的平面α上运动,要使投影最大,需使 OP 为ON 在α上的射影,此时 OP ,OM ,ON 三者共面.而 ON 在OM 上的投影为| ON ⋅ OM ||| OM =23,所以 ON 在OP 上的投影为2.所以|a +2b +3c|a 2+b 2+c 2的最大值为2.在构造向量时,可将代数式的平方看作向量的模的平方,将两式的积看作向量的数乘运算,将角看作两个向量的夹角.对于本题,我们根据a +b +c =0,构造向量 OM ⊥ OP ,将问题转化为求 ON 在OP 方向上的投影的绝对值的最值,找出取得最大投影的情形,建立关系式即可解题.四、几何法在解答三元最值问题受阻时,可转换思路,挖掘代数式的几何意义,利用几何法来解题.通常可将ax +by +c 看作一条直线,将ax 2看作一条抛物线,将a 2+b 2看作一个单位圆,据此画出相应的几何图形,研究图形中的点、直线、曲线的位置关系,确定取得最值的情形,即可解题.解:设A (0,0,0),B (1,1,1),可以将|a +2b +3c|a 2+b 2+c2看作是点(1,2,3)到平面ax +by +cz =0的距离,而平面ax +by +cz =0恒过定直线AB ,所以点(1,2,3)到平面ax +by +cz =0的最大距离,即为点(1,2,3)到定直线AB 的距离,由点到直线的距离公式可得|a +2b +3c|a 2+b 2+c 2的最大值为2.解答本题,需灵活运用平面内的点到直线的距离公式d =|ax 0+by 0+c|a 2+b 2,以及空间中点到平面的距离公式d =|ax 0+by 0+cz 0+d|a 2+b 2+c 2.运用几何法解题,同学们需具备较强的观察力和创造性思维能力.相比较而言,判别式法和基本不等式法较为简单,向量法和几何法却是很多同学难以想到的.同学们在解答三元最值问题时,要先考虑运用判别式法和基本不等式法,再考虑向量法和几何法.(作者单位:江苏省如东县马塘中学)求空间几何体的体积问题侧重于考查棱柱、圆柱、圆台、圆锥、棱台、棱锥、球等简单空间几何体的特征及其体积公式.这就要求同学们熟记并灵活运用几个简单空间几何体的性质和体积公式.下面结合实例,介绍空间几何体体积的几种求法.一、直接法当遇到一些简单、常见、规则的空间几何体时,可以采用直接法求解.先观察几何体的结构特征,快速确定几何体的底面和高;然后直接运用棱柱、圆柱、圆台、圆锥、棱台、棱锥、球的体积公式来求其几何体的体积.例1.已知直三棱柱ABC -A 1B 1C 1的侧面AA 1B 1B 为正方形,如图1所示,AB =BC =2,E ,F 分别为AC ,CC 1的中点,BF ⊥A 1B 1,求三棱锥F -EBC 的体积.解:如图1,连接AF ,由题意可知:BF =BC 2+CF 2=5,因为AB ⊥BB 1,BC ⊥AB ,BB 1⋂BC =B ,所以AB ⊥平面BCC 1B 1,所以AB ⊥BF ,所以AF =AB 2+BF 2=3,AC =AF 2-CF 2=22,所以AB 2+BC 2=AC 2,所以AB ⊥BC ,则△ABC 为等腰直角三角形,所以S △BCE =12S △ABC =12×(12×2×2)=1,所以三棱锥F -EBC 的体积V F -EBC =13×S △BCE ×CF =13×1×1=13.要求三棱锥F -EBC 的体积,需根据三棱锥的体积公式V =13Sh ,先求得底面△BCE 的面积以及点F 到底面△BCE 的距离.根据直三棱柱的特征,添加辅助线,即可构造出直角三角形,再利用勾股定理来求得各线段的长,根据三角形的面积公式和三棱锥的体积公式快速求得问题的答案.思路探寻图146二、等积法当无法直接运用体积公式求得三棱锥的体积时,可以采用等体积法,即不改变三棱锥的体积,通过更换三棱锥的底面和顶点,来求得三棱锥的体积.一般地,可以根据题目的条件选择易于求得面积的底面与高,来求三棱锥的体积.例2.如图2所示,已知平面PCBM 为直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2,AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°,求三棱锥P -MAC 的体积.解:设点N 是BC 的中点,如图2,因为∠PCB =90°,PM =1,CN =12BC =1,所以平面PCMN 为正方形,又因为MN ⊥平面ABC ,所以∠AMN =60°,可得AN =3,MN =AN ⋅1tan ∠AMN=1,所以V P -MAC =V A -PCM =V A -MNC =V M -ACN =13×12AC⋅CN sin120°⋅MN要求三棱锥P -MAC 的体积,需求得底面PCM 的面积以及点A 到底面PCM 的距离,但很难求得点A 到底面的距离,而V A -PCM =V A -MNC =V M -ACN ,于是采用等体积法,通过求得三棱锥M -ACN 的体积,从而求得三棱锥P -MAC 的体积.三、割补法当遇到的空间几何体的形状较为复杂时,往往可以将其分割或者补成几个规则的空间几何体,依次求出这几个规则几何体的体积,再将所得结果进行相加减,即可求得复杂空间几何体的体积.例3.如图3所示,在多面体ABCDEF 中,已知ABCD是边长为1的正方形,且△ADE ,△BCF 都是正三角形,EF ∥AB ,EF =2,求该多面体ABCDEF 的体积.解:如图3,分别过A 、B 作EF 的垂线,垂足分别为G 、H ,连接DG,CH ,即可将原几何体分割为两个三棱锥和一个直三棱柱.因为三棱锥的高为12,直三棱柱的高为1,AG取AD 的中点M ,连接MG ,则MG所以S △AGD=12所以该多面体的体积V+2×1312=本题中的图形为不规则几何图形,无法直接求得其体积,于是采用割补法,将其分为两个三棱锥和一个直三棱柱,利用椎体和棱柱的体积公式求出三者的体积,并将其相加,即可得到多面体ABCDEF 的体积.例4.已知三棱锥P -ABC 的四个顶点都在球O 的球面上,且线段PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA,AB 的中点,∠CEF =90。
空间几何体的体积计算
![空间几何体的体积计算](https://img.taocdn.com/s3/m/0a542c2d001ca300a6c30c22590102020740f2fa.png)
空间几何体的体积计算空间几何体是指具有三维特征的几何形状,如立方体、球体、圆柱体等。
计算这些几何体的体积是应用数学中的重要内容之一。
本文将介绍如何计算不同空间几何体的体积,并给出相应的公式和示例。
一、立方体的体积计算公式:立方体是最简单的三维几何体,其体积计算公式为:V = a^3,其中a为立方体的边长。
例如,一个边长为2的立方体的体积计算公式为V = 2^3 = 8。
因此,边长为2的立方体的体积为8。
二、长方体(矩形体)的体积计算公式:长方体是指具有不同长度、宽度和高度的几何体,其体积计算公式为:V = lwh,其中l为长方体的长度,w为宽度,h为高度。
例如,一个长为3、宽为4、高为5的长方体的体积计算公式为V =3 *4 *5 = 60。
因此,长为3、宽为4、高为5的长方体的体积为60。
三、圆柱体的体积计算公式:圆柱体由一个圆和一个高度组成,其体积计算公式为:V = πr^2h,其中r为底面圆的半径,h为圆柱体的高度,π为圆周率,取近似值3.14。
V = 3.14 * 2^2 * 6 = 75.36。
因此,底面圆半径为2、高度为6的圆柱体的体积为75.36。
四、球体的体积计算公式:球体是由所有到球心距离小于等于半径的点组成,其体积计算公式为:V = (4/3)πr^3,其中r为球体的半径,π为圆周率,取近似值3.14。
例如,一个半径为3的球体的体积计算公式为V = (4/3) * 3.14 * 3^3 = 113.04。
因此,半径为3的球体的体积为113.04。
五、金字塔的体积计算公式:金字塔是由一个底面为多边形、侧面为三角形的空间几何体,其体积计算公式为:V = (1/3)Bh,其中B为底面的面积,h为金字塔的高度。
例如,一个底边长为4、高度为5的金字塔的底面积为B = 4^2 = 16,其体积计算公式为V = (1/3) * 16 * 5 = 26.67。
因此,底边长为4、高度为5的金字塔的体积为26.67。
空间几何体的体积 (苏教版)
![空间几何体的体积 (苏教版)](https://img.taocdn.com/s3/m/3cef88e45ef7ba0d4a733b82.png)
4 3 500 (3)∵V 球=3πR = 3 π ∴S 球=4πR2=100π.通]
已知球半径可以利用公式求它的
表面积和体积;反过来,已知体积或表面积也可
以求其半径.
4.若一个球的体积为 4 3π,则它的表面积为________.
4 解析:设球的半径为 r,则 4 3π=3πr3,解得 r= 3. ∴S 球=4πr2=12π.
对柱体而言,高常与侧棱、斜高及其在底面的射影组成
直角三角形,对棱锥而言,求高时,往往要用到线面垂
直的判定方法,因为棱锥的高实际上是顶点向底面作垂 线,垂线段的长度.
1.一圆锥母线长为1,侧面展开图圆心角为240°,则该
圆锥的体积为________.
解析:设圆锥侧面展开图的弧长为 l, 240° ×π×1 4π 则 l= 180° = 3 . 4π 2 设圆锥的底面半径为 r,则 3 =2πr,r=3. π 22 4 4π 5 4 5 2 V=3·3) · 1 -9= 33 · 9= 81 π. ( 4 5 答案: 81 π
s
s
三.台体的体积
上下底面积分别是s/,s,高是h,则
1 V台体= h(s + ss' + s') 3
x s/
s/ s
h
s
想 一 想 ?
上一节中,我们知道正棱柱、正棱 锥、正棱台的侧面积之间有一定的关系。 那么,这里柱体、锥体、台体的体积公 式之间有没有类似的关系? s
V柱体=sh
1 V台体= 3 h(s + ss' + s')
或
V长方体=Sh
这里,S,h分别表示长方体的底面积和高。
学生活动
(1)取一摞书放在桌面上,并改变它们的位 置,观察改变前后的体积是否发生变化?
空间几何体的体积计算
![空间几何体的体积计算](https://img.taocdn.com/s3/m/c1af9e9d6e1aff00bed5b9f3f90f76c660374c55.png)
空间几何体的体积计算在数学中,空间几何体是研究三维空间中的各种几何形状的学科。
计算空间几何体的体积是空间几何的重要内容之一。
本文将介绍一些常见的空间几何体,并详细阐述它们体积的计算方法。
一、直方体直方体是最简单的空间几何体之一,也是最常见的几何体之一。
它有六个面,每个面都是矩形。
直方体的体积计算公式为:体积 = 长 ×宽 ×高。
其中,长、宽和高分别代表直方体的三个边长。
二、正方体正方体是一种立方体,它的六个面都是正方形。
正方体的体积计算公式与直方体相同,即体积 = 边长 ×边长 ×边长。
三、圆柱体圆柱体由一个圆和与该圆共面的平行直线段所围成。
圆柱体的体积计算公式为:体积 = 底面积 ×高。
其中,底面积为圆的面积,高为圆心与平行线段的距离。
四、圆锥体圆锥体由一个圆锥与圆锥顶点外一点相连所形成。
圆锥体的体积计算公式为:体积 = 1/3 ×底面积 ×高。
其中,底面积为圆的面积,高为圆锥的高。
五、球体球体是一个由所有与一个确定点的距离都相等的点构成的几何体。
球体的体积计算公式为:体积= 4/3 × π × 半径的立方。
其中,π为圆周率,半径为球体的半径。
六、棱柱棱柱是由顶面和底面为相同形状的多边形,且侧面为矩形的几何体。
棱柱的体积计算公式为:体积 = 底面积 ×高。
其中,底面积为顶面和底面的面积之和,高为顶面和底面之间的距离。
七、棱锥棱锥是由一个多边形底面和一个顶点连结而成的几何体。
棱锥的体积计算公式为:体积 = 1/3 ×底面积 ×高。
其中,底面积为底面的面积,高为底面到顶点的距离。
八、棱台棱台是由两个平行相似多边形底面和它们之间的侧面连结而成的几何体。
棱台的体积计算公式为:体积 = 1/3 ×(上底面积 + 下底面积 +√(上底面积 ×下底面积))×高。
空间几何体公式总结
![空间几何体公式总结](https://img.taocdn.com/s3/m/16a55d3a00f69e3143323968011ca300a6c3f6bf.png)
空间几何体公式总结一、立方体立方体是一种常见的空间几何体,它具有六个相等的正方形面,每个面都是直角相连。
立方体的体积和表面积可以通过以下公式计算:- 体积公式:V = a^3,其中a代表立方体的边长。
- 表面积公式:S = 6a^2,其中a代表立方体的边长。
二、长方体长方体也是常见的空间几何体,它具有六个面,其中相对的两个面是相等的长方形。
长方体的体积和表面积可以通过以下公式计算:- 体积公式:V = lwh,其中l、w、h分别代表长方体的长度、宽度和高度。
- 表面积公式:S = 2lw + 2lh + 2wh,其中l、w、h分别代表长方体的长度、宽度和高度。
三、圆柱体圆柱体是一个上下底面相等且平行的圆和一个连接两个底面的侧面组成的几何体。
圆柱体的体积和表面积可以通过以下公式计算:- 体积公式:V = πr^2h,其中r代表底面圆的半径,h代表圆柱体的高度。
- 表面积公式:S = 2πrh + 2πr^2,其中r代表底面圆的半径,h代表圆柱体的高度。
四、球体球体是由所有离一个固定点的距离小于或等于固定值的点组成的集合。
球体的体积和表面积可以通过以下公式计算:- 体积公式:V = (4/3)πr^3,其中r代表球体的半径。
- 表面积公式:S = 4πr^2,其中r代表球体的半径。
五、锥体锥体是一个底面为任意多边形,侧面为连接底面顶点与一个固定点的线段的几何体。
锥体的体积和表面积可以通过以下公式计算:- 体积公式:V = (1/3)Bh,其中B代表底面的面积,h代表锥体的高度。
- 表面积公式:S = B + (1/2)Pl,其中B代表底面的面积,P代表底面的周长,l代表侧面的斜高。
六、棱锥棱锥是一个底面为任意多边形,侧面为连接底面顶点与一个固定点的线段的几何体。
棱锥的体积和表面积可以通过以下公式计算:- 体积公式:V = (1/3)Bh,其中B代表底面的面积,h代表棱锥的高度。
- 表面积公式:S = B + Ps,其中B代表底面的面积,P代表底面的周长,s代表棱锥的斜高。
空间几何体的体积知识点总结
![空间几何体的体积知识点总结](https://img.taocdn.com/s3/m/09722a0786c24028915f804d2b160b4e777f8164.png)
空间几何体的体积知识点总结在空间几何中,体积是一个重要的概念。
体积可以简单地理解为一个物体所占据的空间大小。
对于各种几何体,计算其体积的方法是不同的。
在本文中,我们将对几种常见的空间几何体的体积计算进行总结。
一、立方体的体积计算立方体是一种具有六个相等的正方形面的空间几何体。
它的体积计算公式为V = a³,其中a代表立方体的边长。
例如,一个边长为5cm的立方体的体积为V = 5³ = 125cm³。
二、长方体的体积计算长方体也是一种常见的空间几何体,它具有六个矩形面。
长方体的体积计算公式为V = lwh,其中l代表长方体的长度,w代表宽度,h代表高度。
例如,一个长方体的长、宽、高分别为10cm、5cm和3cm,那么它的体积为V = 10 * 5 * 3 = 150cm³。
三、圆柱体的体积计算圆柱体是由一个圆形底面和与底面平行的高相连而成的几何体。
圆柱体的体积计算公式为V = πr²h,其中r代表底面圆的半径,h代表高度。
例如,一个底面半径为2cm,高度为6cm的圆柱体的体积为V = π * 2² * 6 = 24πcm³。
四、球体的体积计算球体是由所有到球心距离不超过球半径的点构成的几何体。
球的体积计算公式为V = (4/3)πr³,其中r代表球的半径。
例如,一个半径为3cm的球体的体积为V = (4/3)π * 3³ = 36πcm³。
五、锥体的体积计算锥体是由一个圆形底面和一个顶点连结底面任意一点的直线段所形成的几何体。
锥体的体积计算公式为V = (1/3)πr²h,其中r代表底面圆的半径,h代表高度。
例如,一个底面半径为4cm,高度为8cm的锥体的体积为V = (1/3)π * 4² * 8 = 128πcm³。
综上所述,不同空间几何体的体积计算方法各不相同。
通过掌握这些计算公式,我们能够准确地计算出各种空间几何体的体积。
第十八讲空间几何体表面积和体积解析版
![第十八讲空间几何体表面积和体积解析版](https://img.taocdn.com/s3/m/ebe78bb86aec0975f46527d3240c844769eaa082.png)
第十八讲:空间几何体的表面积及体积【考点梳理】空间几何体的表面积与体积公式表面积体积=+2S S S 表面积侧底 =Sh V=+S S S 表面积侧底1=Sh 3V =++S S S S 下上表面积侧1=(S +S 3V 下上2=4S R π表面积34=3V R π 【典型题型讲解】考点一:空间几何体的表面积【典例例题】例1.(2022·广东深圳·一模)以边长为2的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( ) A .8π B .4π C .8 D .4【答案】.A【详解】以边长为2的正方形的一边所在直线为旋转轴,旋转一周得到的旋转体为圆柱, 其底面半径r =2,高h =2,故其侧面积为=22228S r h πππ⨯=⨯⨯=. 故选:A例2.(2022·广东韶关·一模)已知圆锥的侧面展开图为一个面积为2π的半圆,则该圆锥的高为( ) AB .1CD 【答案】D【详解】设圆锥的母线长为l ,圆锥的底面半径为r , 由于圆锥底面圆的周长等于扇形的弧长,则21222l r l r ππππ=⎧⎪⎨⨯=⎪⎩,解得221,4r l ==,则圆锥的高h 故选:D.例3.(2022·广东惠州·一模)若一个圆台的侧面展开图是半圆面所在的扇环,且扇环的面积为4π,圆台上、下底面圆的半径分别为1r ,2r (12r r <),则2221r r -=___________.【答案】2【详解】圆台的侧面展开图是半圆面所在的扇环, 所以圆台的母线长为21212π2π22ππr r r r -=-, 圆台的侧面积为()()221221212π2π222π4π2r r r r r r +⨯-=-=, 所以22212r r -=.故答案为:2例4.(2022·广东揭阳·高三期末)已知圆柱的轴截面为正方形,其外接球为球O ,则圆柱的表面积与球O 的表面积之比为( )A .3:4B .1:2C .D .不能确定【答案】A【详解】因为圆柱的轴截面为正方形,设圆柱底面圆的半径为r ,其高2h r =,其外接球的半径R =,则圆柱的表面积2212226S r r r r πππ=⋅+⋅=,球O 的表面积22248S R r ππ==,则圆柱的表面积与球O 的表面积之比为3:4,故选:A .例5.(2022·广东潮州·高三期末)若一个圆锥的侧面积是底面面积的2倍,则该圆锥的母线与其底面所成的角的大小为( ) A .6πB .4π C .3π D .512π 【答案】.C【详解】解:设圆锥的底面半径为R ,母线长为l , 因为圆锥的侧面积是底面积的2倍, 所以22Rl R ππ=, 解得2l R =,设该圆锥的母线与底面所成角α, 则1cos 2R l α==, 所以3πα=.故选:C【方法技巧与总结】熟悉几何体的表面积、体积的基本公式,注意直角等特殊角. 【变式训练】1.(2022·广东东莞·高三期末)已知一个圆锥的底面半径为3,其侧面积为15π,则该圆锥的体积为___________. 【答案】12π【详解】设圆锥的母线长为l , 因为圆锥的底面半径3r =,所以圆锥的侧面积S 3rl l ππ==,依题意可得315l ππ=,解得5l =,所以圆锥的高4h ==,所以该圆锥的体积221113412333V Sh r h πππ==⋅=⨯⨯⨯=.故答案为:12π.2.(2022·广东潮州·高三期末)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,CD ⊥AD ,AB =BD E 从C 点出发,沿外表面经过棱AD 上一点到点B ,则该棱锥的外接球的表面积为_________.【答案】8π 【详解】如图所示:设CD =x ,由题意得:C B '=在C BD '中,由余弦定理得:2222cos135C B C D BD C D BD '''=+-⋅⋅,即2222x x ⎛=+- ⎝⎭,即2480x x +-=,解得2x =或4x =-(舍去), 如图所示:该棱锥的外接球即为长方体的外接球,则外接球的半径为:R所以外接球的表面积为248S R ππ== , 故答案为:8π3.(2021·广东佛山·一模)(多选)如图,已知圆锥OP 的底面半径r =,内切球的球心为1O ,外接球的球心为2O ,则下列说法正确的是( )A .外接球2O 的表面积为16πB .设内切球1O 的半径为1r ,外接球2O 的半径为2r ,则213r r =C .过点P 作平面α截圆锥OPD .设长方体1AC 为圆锥OP 的内接长方体,且该长方体的一个面与圆锥底面重合,则该长方体体积的最大值为89【答案】.AD【详解】因为S rl l π==,解得2l =,即圆锥母线长为2,则高1h =, 设圆锥外接球半径为2r ,如图,则对2AOO 由勾股定理得22222AO AO OO =+,即()2222221,2r r r =+-=,外接球面积为21416S r ππ==,故A 正确;设内切球1O 的半径为11,r O D 垂直于交PA 于点D ,如图,则对222111,PDO PO DO PD =+,即()222111(2r r -=+,解得13r =,故B 项错误;过点P 作平面α截圆锥OP 的截面面积的最大时,如图,因为h r <,故恰好PAC △为等腰直角三角形时取到,点C 在圆锥底面上,12222PACS =⨯⨯=,故C 项错误;设圆锥OP 有一内接长方体,其中一个上顶点为E ,上平面中心为333,O EO r =,如图,则3333,1PO OO ==,当长方形上平面为正方形时,上平面面积最大,长方体体积为()22333121,42V r V r ⎛⎫=⋅=- '⎪⎝⎭,当3r ⎛∈ ⎝时,30,V r ⎫'>∈+∞⎪⎭时,0V '<,故2max18129V ⎛=⋅= ⎝, 故D 正确, 故选:AD4.(2022·广东广州·一模)已知三棱锥-P ABC 的棱AP ,AB ,AC 两两互相垂直,AP AB AC ===以顶点P 为球心,4为半径作一个球,球面与该三棱锥的表面相交得到四段弧,则最长弧的弧长等于___________. 【答案】.43π【详解】由题设,将三棱锥-P ABC 补全为棱长为若2AD AF ==,则4PD PF ==,即,D F 在P 为球心,4为半径的球面上,且O 为底面中心,又2OA =>,4OP =>,所以,面ABC 与球面所成弧是以A 为圆心,2为半径的四分之一圆弧,故弧长为π;面PBC 与与球面所成弧是以P 为圆心,4为半径且圆心角为3π的圆弧,故弧长为43π;面,PBA PCA 与球面所成弧是以P 为圆心,4为半径且圆心角为12π的圆弧,故弧长为3π;所以最长弧的弧长为43π.故答案为:43π. 5.设圆锥底面圆周上两点A 、B 间的距离为2,圆锥顶点到直线AB AB 和圆锥的轴的距离为1,则该圆锥的侧面积为___________.【答案】【解析】设圆锥的顶点为P ,底面圆圆心为点O ,取线段AB 的中点E ,连接OE 、PE 、OA 、OB ,因为PA PB =,OA OB =,则OE AB ⊥,PE AB ⊥,故PE = 因为PO ⊥平面OAB ,OE ⊂平面OAB ,PO OE ∴⊥, 所以,OE 为直线PO 、AB 的公垂线,故1OE =,因为112AE AB ==,OA ∴2PA ==,所以,圆锥PO 2,因此,该圆锥的侧面积为2π=.故答案为:.6.圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面的半径分别为4和5,则该圆台的侧面积为( )A .B .C .D .【答案】C【解析】因为圆台下底面半径为5,球的直径为210R =,所以圆台下底面圆心与球心重合,底面圆的半径为5R =,画出轴截面如图,设圆台上底面圆的半径r ,则4r =所以球心O 到上底面的距离3h =,即圆台的高为3,所以母线长l =所以()12πS r r l =+=侧, 故选:C.考点二:空间几何体体积【典例例题】例1.(2022·广东汕头·高三期末)金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它的体积为( )A B .83C D .163【答案】.C【详解】如图,设底面ABCD 中心为O ,连接,CO EO ,由几何关系知,CO EO =212233V =⨯⨯=.故选:C例2.已知圆柱12O O 的底面半径为1,高为2,AB ,CD 分别为上、下底面圆的直径,AB CD ⊥,则四面体ABCD 的体积为( ) A .13B .23C .1D .43【答案】D【解析】解:如图所示:连接11CO DO ,因为AB CD ⊥,12AB O O ⊥,且122O O CD O ⋂=, 所以AB ⊥平面1CDO , 所以11--=+ABCD A CDO B CDO V V V ,111142223323=⋅=⨯⨯⨯⨯=CDO S AB , 故选:D例3.《九章算术》中将正四棱台体(棱台的上下底面均为正方形)称为方亭.如图,现有一方亭ABCD EFHG -,其中上底面与下底面的面积之比为1:4,方亭的高h EF =,BF =,方亭的四个侧面均为全等的等腰梯形,已知方亭四个侧面的面积之和 )A .24B .643C .563D .16【答案】C【解析】由题意得12EF AB =,设2EF x =,则4AB x =,BF =.过点E 、F 在平面ABFE 内分别作EM AB ⊥,FN AB ⊥,垂足分别为点M 、N ,在等腰梯形ABFE 中,因为//EF AB ,EM AB ⊥,FN AB ⊥,则四边形MNFE 为矩形, 所以,2MN EF x ==,EM FN =,因为AE BF =,EM FN =,90AME BNF ∠=∠=,所以,Rt AME Rt BNF △≌△,所以,2AB EFAM BN x -===,所以,FN ,所以等腰梯形ABFE 的面积为2242x xS +===,得1x =.所以,22EF x ==,44AB x ==,故方亭的体积为(156241633⨯⨯+=.故选:C.【方法技巧与总结】熟记几何体体积公式,能够画出几何体的直观图 【变式训练】1.折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为BC .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22【答案】AC【解析】解:设圆台的上底面半径为r ,下底面半径为R ,则11223,22933r R ππππ=⨯⨯=⨯⨯,解得1,3r R ==.圆台的母线长6l =,圆台的高为h ==A 正确;圆台的体积()22133113π=⨯+⨯+=,则选项B 错误;圆台的上底面积为π,下底面积为9π,侧面积为()13624ππ+⨯=,则圆台的表面积为92434ππππ++=,则C 正确;由前面可知上底面积、下底面积和侧面积之比为1:9:24,则选项D 错误. 故选:AC .2.(2022·广东东莞·高三期末)已知一个圆锥的底面半径为3,其侧面积为15π,则该圆锥的体积为___________. 【答案】12π【详解】设圆锥的母线长为l , 因为圆锥的底面半径3r =,所以圆锥的侧面积S 3rl l ππ==,依题意可得315l ππ=,解得5l =,所以圆锥的高4h ==,所以该圆锥的体积221113412333V Sh r h πππ==⋅=⨯⨯⨯=.故答案为:12π.3.(2022·广东韶关·一模)已知三棱柱111ABC A B C 的侧棱垂直于底面,且所有顶点都在同一个球面上,若12AA AC ==,AB BC ⊥,则此球的体积为__________.【详解】解:设ABC 的外接圆的圆心为D ,半径为r ,球的半径为R ,球心为O , 底面ABC 为直角三角形,故其外接圆圆心D 在斜边中点处,则1r =,又1211A O A D ==,在Rt OCD △中,343R V R π====球.. 4.(2022·广东韶关·一模)已知三棱柱111ABC A B C 的侧棱垂直于底面,且所有顶点都在同一个球面上,若12AA AC ==,AB BC ⊥,则此球的体积为__________.【详解】解:设ABC 的外接圆的圆心为D ,半径为r ,球的半径为R ,球心为O ,底面ABC 为直角三角形,故其外接圆圆心D 在斜边中点处,则1r =,又1211A O A D ==,在Rt OCD △中,343R V R π====球..5.(2022·广东·铁一中学高三期末)已知四面体A BCD -中,AB CD ==AC BD =BC AD ==则其外接球的体积为______.则四面体A BCD -的外接球即为此长方体的外接球, 设长方体的长宽高分别x ,y ,z ,外接球半径为R 则2222225,10,13x y y z x z +=+=+=, 所以2222225,10,13x y y z x z +=+=+=,则222214(2)x y z R ++==,解得R =所以343V R π==.6.(2021·广东佛山·一模)如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且EF 则三棱锥A BEF -的体积为( )A .112 B .14C D .不确定7.(2022·广东潮州·高三期末)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,CD ⊥AD ,AB =BD E 从C 点出发,沿外表面经过棱AD 上一点到点B ,则该棱锥的外接球的表面积为_________.【答案】8π 【详解】如图所示:设CD =x ,由题意得:C B '=在C BD '中,由余弦定理得:2222cos135C B C D BD C D BD '''=+-⋅⋅,即2222x x ⎛=+- ⎝⎭,即2480x x +-=,解得2x =或4x =-(舍去), 如图所示:该棱锥的外接球即为长方体的外接球,则外接球的半径为:R所以外接球的表面积为248S R ππ== , 故答案为:8π8.(2022·广东·铁一中学高三期末)已知四面体A BCD -中,AB CD ==AC BD ==BC AD ==则其外接球的体积为______.【答案】则四面体A BCD -的外接球即为此长方体的外接球, 设长方体的长宽高分别x ,y ,z ,外接球半径为R 则2222225,10,13x y y z x z +=+=+=, 所以2222225,10,13x y y z x z +=+=+=,则222214(2)x y z R ++==,解得2R =,所以343V R π==.9.(2022·广东清远·高三期末)如图,在长方体1111ABCD A B C D -中,12,4AB AD AA ===,P 为1DD 的中点,过PB 的平面α分别与棱11,AA CC 交于点E ,F ,且∥AC α,则平面α截长方体所得上下两部分的体积比值为_________;所得的截面四边形PEBF 的面积为___________.【答案】3 【详解】如图,过点B 作AC 的平行线分别与,DA DC 的延长线交于G ,H ,连接,PG PH ,并分别与11,AA CC 交于E ,F ,因为AC ∥GH ,且AC ⊄平面PGH ,GH 平面PGH所以AC ∥平面PGH , 所以平面PGH 即平面α.因为12,4AB AD AA ===,所以1AE =,所以1(12)222442224,3324-+⨯⨯⨯-==⨯⨯⨯===上下下B ADPE V V V V .因为四边形PEBF 为菱形,且==EF PB所以12=⨯=PEBF S EF PB故答案为:3;【巩固练习】 一、单选题1.已知圆锥的高为1 )A .2B .52CD .3【答案】D【解析】如图ABC 是圆锥的轴截面,由题意母线=BC 1CO =,则1sin 2CBO ∠=<,CBO ∠是锐角, 所以30CBO ∠<,于是得轴截面顶角12090ACB ∠>>, 设截面三角形的顶角为θ,则过此圆锥顶点的截面面积21sin 2S θ=⨯,当两条母线夹角为90θ=时,截面面积为2132S =⨯=为所求面积最大值,故选:D.2.若过圆锥的轴SO 的截面为边长为4的等边三角形,正方体1111ABCD A B C D -的顶点A ,B ,C ,D 在圆锥底面上,1A ,1B ,1C ,1D 在圆锥侧面上,则该正方体的棱长为( ) A.B.C.(2D.(2【答案】C【解析】根据题意过顶点S 和正方体上下两个平面的对角线作轴截面如下所示: 所以4SE SF EF ===,60E F ∠=∠=,所以2EO =,SO 11A ACC 为矩形,设1AA x =,所以11AC AC =,所以11A O =所以111AO SO EO SO =,即111AO SO AA EO SO-=,即22=,解得(2x =. 故选:C.3.已知圆锥的轴截面是等腰直角三角形,且面积为4,则圆锥的体积为( )A .43B .43πC .83D .83π【答案】D【解析】由题设,圆锥的体高、底面半径均为2,所以圆锥的体积为2182233ππ⨯⨯⨯=.故选:D4.通用技术老师指导学生制作统一规格的圆台形容器,用如图所示的圆环沿虚线剪开得到的一个半圆环(其中小圆和大圆的半径分别是1cm 和4cm )制作该容器的侧面,则该圆台形容器的高为( )AB .1cmCD 【答案】D【解析】由已知圆台的侧面展开图为半圆环,不妨设上、下底面圆的半径分别为r ,()R r R <, 则21r π=π⨯,24R π=π⨯,解得12r =,2R =. 所以圆台轴截面为等腰梯形,其上、下底边的长分别为1cm 和4cm ,腰长为3cm , 即1,4,3AD BC AB ===,过点A 作AH BC ⊥,H 为垂足,所以32BH =,AH =, 故选:D .5.已知某圆锥的侧面积为 ) A .2 B .3 C .4 D .6【答案】B【解析】设该圆锥底面圆的半径为r ,则π=,故()223108r r +=,即()()229120r r -+=,解得3r = 故选:B6.正四棱台的上、下底面的边长分别为2、4,侧棱长为2,则其体积为( )A .56BC .D .563【答案】B【解析】如图所示,在正四棱台1111ABCD A B C D -中,点1,O O 分别为上、下底面的中心,连接111,,OA O A OO ,则由题意可知1O O ⊥底面ABCD ,11OA O A ==1A 作11//A E OO 交AO 于点E ,则AE ⊥底面ABCD ,四边形11OEA O为矩形,11OE O A =AE =12AA =,所以11A E O O ==,(221423V =⨯+=故选:B.7.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,增加的水量约为2.65≈)( ) A .931.010m ⨯ B .931.210m ⨯ C .931.410m ⨯ D .931.610m ⨯【答案】C【解析】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V . 棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =+=⨯⨯⨯+⨯+'(()679933320109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C . 二、多选题8.如图,正方体1111ABCD A B C D -棱长为1,P 是1A D 上的一个动点,下列结论中正确的是( )A .BPB .PA PC +C .当P 在直线1AD 上运动时,三棱锥1B ACP -的体积不变D .以点B 1AB C 【答案】BCD【解析】对于A ,当1BP A D ⊥时,BP 最小,由于11A B BD A D ===B ∴到直线1A D 的距离d =A 错误; 对于B ,将平面11DCB A 翻折到平面1ADA 上,如图,连接AC ,与1A D 的交点即为点P ,此时PA PC +取最小值AC ,在三角形ADC 中,135ADC ∠=,cos1352AC ==B 正确; 对于C ,由正方体的性质可得11//A D B C ,1A D ⊄平面1AB C ,1//A D ∴平面1AB C ,P ∴到平面1AB C 的距离为定值,又1AB C S 为定值,则1P AB C V -为定值,即三棱锥1B ACP -的体积不变,故C 正确;对于D ,由于1BD ⊥平面1AB C ,设1BD 与平面1AB C 交于Q 点,113BQ BD ∴==,设以B 1AB C 交线上任一点为G ,2BG ∴=QG ∴=,G ∴在以Q由于1AB C 13=, 故此圆恰好为1AB C 的内切圆,完全落在面1AB C 内,∴交线长为2π=,故D 正确. 故选:BCD.9.如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD 【解析】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅=, ()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅=,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥, 又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D =,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ==,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ===,3EF a =,222EM FM EF +=,则EM FM ⊥,212EFM SEM FM =⋅=,AC =, 则33123A EFM C EFM EFM V V V AC S a --=+=⋅=,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD. 10.折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为BC .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22【答案】AC 【解析】解:设圆台的上底面半径为r ,下底面半径为R ,则11223,22933r R ππππ=⨯⨯=⨯⨯,解得1,3r R ==.圆台的母线长6l =,圆台的高为h ==A 正确;圆台的体积()22133113π=⨯+⨯+=,则选项B 错误; 圆台的上底面积为π,下底面积为9π,侧面积为()13624ππ+⨯=,则圆台的表面积为92434ππππ++=,则C 正确;由前面可知上底面积、下底面积和侧面积之比为1:9:24,则选项D 错误. 故选:AC .。
空间几何体的展开与体积的计算
![空间几何体的展开与体积的计算](https://img.taocdn.com/s3/m/e903db2126d3240c844769eae009581b6bd9bdea.png)
空间几何体的展开与体积的计算在几何学中,空间几何体的展开是指将三维几何体展开为二维平面图形的过程,通过展开,我们可以更好地理解和计算几何体的性质与特征。
同时,计算空间几何体的体积也是我们研究几何体的重要内容。
本文将讨论空间几何体的展开方法和体积计算公式。
一、空间几何体的展开方法1. 立方体的展开立方体是最简单的空间几何体之一,它的六个面都是正方形。
我们可以将立方体沿着某条对角线剪开,然后展开为一个十字型的图形。
在展开的过程中,我们需要根据相邻面的对应关系进行调整,保证展开后的图形是完整的。
2. 圆柱体的展开圆柱体由一个圆面和一个矩形面组成。
为了展开圆柱体,我们需要将圆面剪开,并将其展开为一个矩形。
矩形的长度等于圆的周长,宽度等于圆柱体的高度。
展开后,我们可以根据矩形的面积计算圆柱体的体积。
3. 圆锥体的展开与圆柱体类似,圆锥体也由一个圆面和一个扇形面组成。
我们可以将圆面剪开,并将其展开为一个扇形。
扇形的半径等于圆锥体的斜高(即从顶点到底面的距离),弧长等于圆锥体的底面的周长。
展开后的扇形可以用来计算圆锥体的体积。
二、空间几何体的体积计算公式1. 立方体的体积计算立方体的体积计算很简单,只需要将边长相乘即可。
设立方体的边长为a,则其体积V为V=a³。
2. 圆柱体的体积计算圆柱体的体积计算公式为V=πr²h,其中r为圆柱体的底面半径,h为圆柱体的高度。
3. 圆锥体的体积计算圆锥体的体积计算公式为V=(1/3)πr²h,其中r为圆锥体的底面半径,h为圆锥体的高度。
三、实例分析为了更好地理解展开与体积计算的方法,我们以一个立方体为例进行分析。
假设该立方体的边长为5cm,我们首先将其展开。
展开后的图形为一个十字型,面积等于6个正方形的面积之和,即25cm²* 6 = 150cm²。
接下来,我们计算立方体的体积。
根据前面提到的体积计算公式,立方体的体积为V = 5³ =125cm³。
第二节 空间几何体的表面积与体积
![第二节 空间几何体的表面积与体积](https://img.taocdn.com/s3/m/744a47a6fc0a79563c1ec5da50e2524de518d0f6.png)
第二节 空间几何体的表面积与体积考试要求了解球、棱柱、棱锥、棱台的表面积和体积的计算公式.[知识排查·微点淘金]知识点1 圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱圆锥圆台侧面展 开图侧面积 公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l[微拓展] 圆台、圆柱、圆锥之间的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 知识点2 空间几何体的表面积与体积公式名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底h 锥体(棱锥和圆锥)S 表面积=S 侧+S 底 V =13S 底h台体(棱台和圆台)S 表面积=S 侧+ S 上+S 下 V =13(S 上+S 下+S 上S 下)h 球S =4πR 2V =43πR 3[微拓展]柱体、锥体、台体的体积公式间的联系:V 柱体=Sh ――→S ′=SV 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh . 常用结论 几个与球有关的切、接问题的常用结论(1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.[小试牛刀·自我诊断]1.思维辨析(在括号内打“√”或“×”) (1)锥体的体积等于底面面积与高的乘积.(×) (2)球的体积之比等于半径比的平方.(×) (3)台体的体积可转化为两个锥体的体积之差.(√) (4)已知球O 的半径为R ,其内接正方体的边长为a ,则R =32a .(√) 2.(链接教材必修2 P 27T 1)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cmD .32cm解析:选B.S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2.3.(链接教材必修2P 28A 组T 3)如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体的体积的比为 .解析:设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ·12b ·12c =148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47. 答案:1∶474.(忘记分类讨论)圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为.解析:分两种情况:①以长为6π的边为高时,4π为圆柱底面周长,则2πr=4π,r=2,所以S底=4π,S侧=6π·4π=24π2,S表=2S底+S侧=8π+24π2=8π(3π+1);②以长为4π的边为高时,6π为圆柱底面周长,则2πr=6π,r=3,所以S底=9π,S表=2S底+S侧=18π+24π2=6π(4π+3).答案:6π(4π+3)或8π(3π+1)5.(对组合体不能合理分割)如图所示,由圆柱与圆锥组合而成的几何体的三视图如图所示,则该几何体的表面积为.解析:设圆柱底面半径为r,周长为c,圆锥母线长为l,圆柱高为h.由题中三视图得r=2,c=2πr=4π,h=4,由勾股定理得:l=22+(23)2=4,S表=πr2+ch+12cl=4π+16π+8π=28π.答案:28π一、基础探究点——空间几何体的表(侧)面积(题组练透)1.(2021·新高考卷Ⅰ)已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.22C.4D.4 2解析:选B由题意知圆锥的底面周长为22π.设圆锥的母线长为l,则πl=22π,即l=2 2.故选B.2.如图为某几何体的三视图,则该几何体的表面积是()A.6+4 2B.4+4 2C .6+2 3D .4+2 3解析:选C 由三视图还原几何体知,该几何体为如图所示的三棱锥P -ABC ,其中P A ⊥平面ABC ,AB ⊥AC ,AB =AC =AP =2,故其表面积S =⎝⎛⎭⎫12×2×2×3+12×(22)2×sin 60°=6+2 3.3.如图,一个棱长为4的正方体被挖去一个高为4的正四棱柱后得到图中的几何体,若该几何体的体积为60,则该几何体的表面积为 .解析:设正四棱柱的底面边长为m ,则4(42-m 2)=60,解得m =1,则该几何体的表面积为42×4+(42-12)×2+4×1×4=110.答案:1104.已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为 . 解析:设圆锥的高为h ,母线长为l ,则圆锥的体积V =13×π·62·h =30π,解得h =52.所以l =r 2+h 2=62+⎝⎛⎭⎫522=132,故圆锥的侧面积S =πrl =π·6×132=39π.答案:39π求空间几何体表面积时应注意(1)以三视图为载体的几何体的表面积问题,关键 是分析三视图确定几何体中各元素之间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积问题应注意衔接部分的处理.(3)旋转体的表面积问题应注意其侧面展开图的应用.二、综合探究点——空间几何体的体积(多向思维)[典例剖析]思维点1直接利用公式求体积问题[例1](1)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为.解析:圆台的下底面半径为5,故下底面在外接球的大圆上,如图所示,设球的球心为O,圆台上底面的圆心为O′,则圆台的高OO′=OQ2-O′Q2=52-42=3. 据此可得圆台的体积V=1π×3×(52+5×4+42)=61 π.3答案:61π对于规则几何体的体积问题,可以直接利用公式进行求解. 要注意准确记忆基本体积公式.思维点2割补法求体积问题[例2]《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”(已知1丈为10尺)该锲体的三视图如图所示,则该锲体的体积为()A.12 000立方尺B.11 000立方尺C.10 000立方尺D.9000立方尺解析:由题意,将锲体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:沿上棱两端向底面作垂面,且使垂面与上棱垂直,则将几何体分成两个四棱锥和1个直三棱柱,则三棱柱的体积V 1=12×3×2×2=6,四棱锥的体积V 2=13×1×3×2=2,由三视图可知两个四棱锥大小相等,∴V =V 1+2V 2=10立方丈=10 000立方尺.故选C .答案:C割补法求体积的解题思路首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.思维点3 等积转换法求体积[例3] 如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1ABC 1的体积为( )A .312 B .34 C .612D .64解析:易知三棱锥B 1ABC 1的体积等于三棱锥A -B 1BC 1的体积,又三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 答案:A等积转化法求体积的解题思路选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换.[学会用活]1.如图,长方体ABCD -A 1B 1C 1D 1的体积为36,E 为棱CC 1上的点,且CE =2EC 1,则三棱锥E -BCD 的体积是( )A .3B .4C .6D .12解析:选B 因为S △BCD =12S 四边形ABCD ,CE =23CC 1,VABCD A 1B 1C 1D 1=S 四边形ABCD ·CC 1=36,所以V E BCD =13S △BCD ·CE =13×12S 四边形ABCD ·23CC 1=19×36=4.故选B.2.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π解析:选B 解法一:(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π·32×4+π·32×6×12=63π.故选B.解法二:(估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π·32×10=90π,∴45π<V几何体<90π.观察选项可知只有63π符合.故选B.3.某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C .三、应用探究点——与球有关的切、接问题(多向思维)[典例剖析]思维点1 几何体的外接球问题[例4] 设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为( )A .123B .18 3C .24 3D .54 3解析:由等边△ABC 的面积为93可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.故选B.答案:B [拓展变式][变条件、变结论]若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积.解:将直三棱柱补形为长方体ABEC -A ′B ′E ′C ′(图略),则球O 是长方体ABEC -A ′B ′E ′C ′的外接球,∴体对角线BC ′的长为球O 的直径.因此2R =32+42+122=13,故S 球=4πR 2=169π.处理“相接”问题,要抓住空间几何体“外接”的特点,即球心到多面体的顶点的距离等于球的半径.思维点2 几何体的内切球问题[例5] 已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .解析:解法一:如图,在圆锥的轴截面ABC 中,CD ⊥AB ,BD =1,BC =3,圆O 内切于△ABC ,E 为切点,连接OE ,则OE ⊥B C .在Rt △BCD 中,CD =BC 2-BD 2=2 2.易知BE =BD =1,则CE =2.设圆锥的内切球半径为R ,则OC =22-R ,在Rt △COE 中,OC 2-OE 2=CE 2,即(22-R )2-R 2=4,所以R =22,圆锥内半径最大的球的体积为43πR 3=23π. 解法二:如图,记圆锥的轴截面为△ABC ,其中AC =BC =3,AB =2,CD ⊥AB ,在Rt △BCD 中,CD =BC 2-BD 2=22,则S △ABC =2 2.设△ABC 的内切圆O 的半径为R ,则R =2·S △ABC 3+3+2=22,所以圆锥内半径最大的球的体积为43πR 3=23π. 答案:23π处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.[学会用活]4.长方体ABCD -A 1B 1C 1D 1的长、宽、高分别为2,2,1,其顶点都在球O 的球面上,则球的表面积为 .解析:因为长方体的外接球O 的直径为长方体的体对角线,长方体的长、宽、高分别为2,2,1,所以长方体的外接球O 的直径为4+4+1=3,故长方体的外接球O 的半径为r =32,所以球O 的表面积为S =4πr 2=9π.答案:9π5.已知正四面体P -ABC 的表面积为S 1,此四面体的内切球的表面积为S 2,则S 1S 2= .解析:设正四面体的棱长为a ,则正四面体的表面积为S 1=4×34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 答案:63π限时规范训练 基础夯实练1.(2021·四川乐至中学月考)已知圆锥的轴截面是边长为2的等边三角形,则该圆锥的侧面积为( )A .33π B .2π C .3πD .4π解析:选B 由题意,圆锥的轴截面是边长为2的等边三角形,即圆锥的底面圆的半径为r =1,母线长为l =2,所以该圆锥的侧面积为S =πrl =π·1×2=2π. 故选B.2.在梯形ABCD 中,∠ABC =90°,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为( )A .2π3B .4π3C .5π3D .2π解析:选C 由题意可知旋转后的几何体如图所示,直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为V =V 圆柱-V 圆锥=π·12×2-13·π·12×1=53π,故选C .3.(2021·云南昆明月考)某锥体的三视图如图所示,则该几何体的体积为( )A .2B .533C .433D .233解析:选C 由三视图还原几何体得,原几何体是一个四棱锥E -ABCD ,如图所示,四棱锥的高为3,底面是边长为2的正方形,因此体积为13×2×2×3=433,故选C . 4. 《九章算术》中给出了一个圆锥体积近似计算公式V ≈l 2·h36,其中l 为底面周长,它实际上是将圆锥体积中圆周率近似取为3得到的,那么若圆锥体积近似公式为V ≈l 2·275·h ,则相当于圆周率近似取值为( )A .227B .217C .238D .258解析:选D 设圆锥底面圆的半径为r ,高为h ,则l =2πr ,13πr 2h =275(2πr )2 h ,所以π=258. 故选D.5.(2021·四川石室中学开学考试)某柱体的正视图与侧视图是全等的正方形,俯视图是圆,记该柱体的表面积为S 1,其内切球的表面积为S 2,且S 1=λS 2,则λ=( )A .1B .23C .43D .32解析:选D 由已知可得,此柱体为底面直径与高相等的圆柱,设底面圆的半径为r ,则高为2r ,则S 1=2πr 2+2πr ·(2r )=6πr 2,又此柱体内切球的半径为r ,则S 2=4πr 2, 则λ=S 1S 2=6πr 24πr 2=32,故选D. 6.某几何体的三视图如图所示,则该几何体的体积为( )A .π+43B .2π+4C .3π+4D .4π+43解析:选A 由三视图还原原几何体如图,该几何体为组合体,上半部分为半圆柱,下半部分为正四棱锥,圆柱的底面半径为1,高为2,棱锥的底面边长为2,高为1,∴该几何体的体积为12π·12×2+13×22×1=π+43.故选A .7.若圆锥的内切球与外接球的球心重合,且圆锥内切球的半径为1,则圆锥的表面积为 .解析:因为圆锥的内切球与外接球的球心重合,所以圆锥的轴截面为等边三角形,设其边长为a ,则13×32a =1,a =23,所以圆锥的底面圆半径为3,从而利用圆锥的表面积公式可得S =πrl +πr 2=π·3×23+π·(3)2=9π.答案:9π8.(2021·陕西渭南月考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体称为正八面体,则图中正八面体体积为 .若图中正八面体的各个顶点都在同一个球面上,则此球的体积为 .解析:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的对角线是正方体的棱长2,故正方形的边长等于2,所以该多面体的体积为2×13×(2)2×1=43.由图中几何关系知正八面体的外接球,即正方体的内切球,故半径R =1,所以体积V =43π·13=43π.答案:43 43π9.如图是某个铁质几何体的三视图,其中每个小正方形格子的边长均为1个长度单位,将该铁质几何体熔化,制成一个大铁球,如果在熔制过程中材料没有损耗,则大铁球的表面积 .解析:由三视图知,该铁质几何体是由一个小铁球和一个铁质圆锥体拼接而成,体积之和为43π·13+13π·22×7=323π,设制成的大铁球半径为R ,则43πR 3=323π,解得R =2,故大铁球的表面积为4πR 2=16π.答案:16π综合提升练10.最早的测雨器记载见于南宋数学家秦九韶所著的《数书九章》(1247年).该书第二章为“天时类”,收录了有关降水量计算的四个例子,分别是“天池测雨”“圆罂测雨”“峻积验雪”和“竹器验雪”.其中“天池测雨”法是下雨时用一个圆台形的天池盆收集雨水.已知天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.当盆中积水深九寸(注:1尺=10寸)时,平地降雨量是( )A .9寸B .7寸C .8寸D .3寸解析:选D 由已知天池盆上底面半径是14寸,下底面半径为6寸,高为18寸,由积水深9寸知水面半径为12×(14+6)=10寸,则盆中水的体积为13π·9×(62+102+6×10)=588π(立方寸),所以平地降雨量为588ππ·142=3(寸),故选D.11.(2021·四川成都月考)一块边长为10 cm 的正方形铁片如图所示的阴影部分截下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,则这个正四棱锥的外接球的表面积为( )A .2894πB .28916πC .28948πD .28964π解析:选A 由题设知:底面ABCD 的外接圆半径为r =32,且EO =4,令正四棱锥外接球的半径为R ,且外接球的球心必在直线EO 上,∴(R -EO )2+r 2=R 2,即R =174.∴正四棱锥的外接球的表面积为4πR 2=289π4.故选A .12.(2021·安徽合肥一中模拟)学生到工厂劳动实践,利用3D 打印技术制作一个机械零件模型,该零件模型是由两个相同的正四棱柱镶嵌而成的几何体,其三视图如图所示.这个几何体的体积为( )A .16B .403C .16-423D .163解析:选B 由三视图还原几何体如图所示,两个四棱柱的体积均为V 1=12×2×2×4=8,中间重复的部分为两个小正四棱锥,其体积为2V 2=13×2×2×2=83,故该几何体体积为V =16-83=403,故选B.13.有一个圆锥与一个圆柱的底面半径相等,圆锥的母线长是底面半径的2倍,若圆柱的外接球的表面积是圆锥的侧面积的6倍,则圆柱的高是底面半径的 倍.解析:设圆柱的高为h ,底面半径为r ,圆柱的外接球的半径为R ,则R 2=⎝⎛⎭⎫h 22+r 2. ∵母线长l =2r ,∴圆锥的高为3r ,∴圆锥的侧面积为πrl =2πr 2,∴4πR 2=4π⎣⎡⎦⎤⎝⎛⎭⎫h 22+r 2=6×2πr 2,∴h 24+r 2=3r 2,整理得h 2=8r 2,∴hr =2 2.答案:2 214.某市民广场有一批球形路障球(如图1所示). 现公园管理处响应市民要求,决定将每个路障球改造成方便市民歇脚的立方八面体石凳(如图2所示). 其中立方八面体有24条棱、12个顶点、14个面(6个正方形、8个正三角形),它是将立方体“切”去8个“角”后得到的几何体.经过测量,这批球形路障球每个直径为60 cm ,若每个路障球为改造后所得的立方八面体的外接球,则每个改造后的立方八面体表面积为 cm 2.解析:由题意知,立方八面体表面有8个正三角形,再加上6个小正方形,且正方形边长与正三角形边长相等,路障球为立方八面体的外接球. 设立方八面体的棱长为a ,则外接球直径d =2a 2+2a 2=2a =60,则a =30.立方八面体表面积S =6a 2+8×34a 2=5400+1800 3.答案:5400+1800 315.如图1,在一个正方形S 1S 2S 3S 4内,有一个小正方形和四个全等的等边三角形.将四个等边三角形折起来,使S 1,S 2,S 3,S 4重合于点S ,且折叠后的四棱锥S -ABCD 的外接球的表面积是16 π(如图2),则四棱锥的体积是 .解析:在题图2中,连接AC ,BD 交于点O ,连接OS ,如图,因为SD =SB =CD ,BD =2CD ,所以SD ⊥SB ,故OA =OB =OC =OD =OS ,则O 是正四棱锥外接球的球心,正四棱锥的所有棱都相等,设棱长为x ,则外接球的半径是OA =22x ,所以4π⎝⎛⎭⎫22x 2=16π,x =2 2.因此SO =OA =22x =2.故四棱锥S -ABCD 的体积是13·x 2·SO=13×(22)2×2=163. 答案:163创新应用练16.某同学在参加《通用技术》实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为43的正方体的六个面所截后剩余的部分(球心与正方体的中心重合),若其中一个截面圆的周长为4π,则该球的半径是( )A .2B .4C .26D .4 6解析:选B 设截面圆半径为r ,球的半径为R ,则球心到某一截面的距离为正方体棱长的一半即23,根据截面圆的周长可得4π=2πr ,得r =2,故由题意知R 2=r 2+(23)2,即R 2=22+(23)2=16,所以R =4,故选B.17.(2021·安徽黄山二模)棱长为4的正方体密闭容器内有一个半径为1的小球,小球可在正方体容器内任意运动,则其能到达的空间的体积为( )A .32+22π3B .36+4π3C .44+13π3D .12+12π解析:选A 在正方体的8个顶点处的单位立方体空间内,小球不能到达的空间为8⎣⎡⎦⎤13-18⎝⎛⎭⎫4π3·13=8-4π3,除此之外,在以正方体的棱为一条棱的12个1×1×2的正四棱柱空间内,小球不能到达的空间共为12×⎣⎡⎦⎤1×1×2-14(π·12)×2=24-6π.其他空间小球均能到达.故小球不能到达的空间体积为⎝⎛⎭⎫8-43π+24-6π=32-223 π.∴小球可以经过的空间的体积V =43-⎝⎛⎭⎫12-π4·12×2×12-⎝⎛⎭⎫8-43 π=32+22π3.故选A .。
空间几何体的体积计算
![空间几何体的体积计算](https://img.taocdn.com/s3/m/f68c2c8009a1284ac850ad02de80d4d8d15a01f2.png)
空间几何体的体积计算几何体的体积是指该几何体所包含的三维空间的容量大小。
在空间几何学中,常见的几何体包括立方体、长方体、圆柱体、圆锥体、球体等。
它们的体积计算方法各不相同,下面将分别介绍各种几何体的体积计算方法。
一、立方体的体积计算方法:立方体是由六个全等的正方形相邻而组成的多面体,它的体积计算方法可以使用公式 V = a³,其中 a 表示立方体的边长。
二、长方体的体积计算方法:长方体是由六个矩形相邻而组成的多面体,它的体积计算方法可以使用公式 V = lwh,其中 l、w 和 h 分别表示长方体的长、宽和高。
三、圆柱体的体积计算方法:圆柱体是由两个平行且相等的圆底面以及连接两个底面的侧面组成的几何体,它的体积计算方法可以使用公式V = πr²h,其中 r 表示圆柱底面半径,h 表示圆柱的高。
四、圆锥体的体积计算方法:圆锥体是由一个圆锥底面和连接顶点与底面各点的侧面组成的几何体,它的体积计算方法可以使用公式V = (1/3)πr²h,其中 r 表示底面半径,h 表示圆锥的高。
五、球体的体积计算方法:球体是由所有与某一点的距离小于或等于给定值的点组成的三维几何体,它的体积计算方法可以使用公式V = (4/3)πr³,其中 r 表示球的半径。
以上是常见空间几何体的体积计算方法,根据具体题目,可以选择适当的几何体体积计算公式进行计算。
在实际应用中,可以通过测量几何体的边长、半径或高进行计算,或者根据已知条件应用几何关系进行推导计算。
值得注意的是,在计算几何体体积时,需要保证所采用的单位保持一致。
如果给定的尺寸单位不同,需要进行单位换算,以确保计算结果的正确性。
总结起来,空间几何体的体积计算方法根据几何体的形状和特征而定。
熟练掌握不同几何体的体积计算公式,能够帮助我们更好地理解和应用空间几何学知识,在工程、建筑、物理学等领域中具有重要的应用价值。
空间几何体积计算公式
![空间几何体积计算公式](https://img.taocdn.com/s3/m/5f4c9d0d842458fb770bf78a6529647d2728348a.png)
空间几何体积计算公式空间几何体积计算公式是指用于计算不同几何体的体积的数学公式。
在几何学中,体积是指一个物体所占据的空间大小或容量。
不同的几何体具有不同的形状和结构,因此需要使用特定的公式来计算其体积。
本文将介绍几种常见的空间几何体,并给出相应的计算公式。
一、球体的体积计算公式球体是一种几何体,其形状类似于一个完全圆滑的球。
对于半径为r 的球体,其体积可以使用以下公式来计算:V = (4/3)πr³其中 V 表示球体的体积,π 是一个数学常数,约等于3.14159,r 表示球的半径。
二、长方体的体积计算公式长方体是一种具有长、宽和高三个相互垂直的边的几何体。
对于长方体,其体积可以使用以下公式来计算:V = lwh其中 V 表示长方体的体积,l 表示长方体的长度,w 表示长方体的宽度,h 表示长方体的高度。
三、圆柱体的体积计算公式圆柱体是一种具有两个平行的圆形底面和一个连接两个底面的曲面的几何体。
对于圆柱体,其体积可以使用以下公式来计算:V = πr²h其中 V 表示圆柱体的体积,π 是一个数学常数,约等于3.14159,r 表示圆柱体底面圆的半径,h 表示圆柱体的高度。
四、锥形的体积计算公式锥形是一种具有一个圆形底面和一个连接底面和一个尖顶的曲面的几何体。
对于锥形,其体积可以使用以下公式来计算:V = (1/3)πr²h其中 V 表示锥形的体积,π 是一个数学常数,约等于3.14159,r 表示底面圆的半径,h 表示锥形的高度。
五、棱锥的体积计算公式棱锥是一种具有一个多边形底面和连接底面和一个尖顶的面的几何体。
对于棱锥,其体积的计算公式与其底面的形状有关。
以下是几种常见的棱锥的体积计算公式:1. 正方形棱锥的体积计算公式:V = (1/3)l²h其中 V 表示正方形棱锥的体积,l 表示底面边长,h 表示棱锥的高度。
2. 长方形棱锥的体积计算公式:V = (1/3)lw h其中 V 表示长方形棱锥的体积,l 表示底面长,w 表示底面宽,h 表示棱锥的高度。
空间几何体的体积与面积的全部公式
![空间几何体的体积与面积的全部公式](https://img.taocdn.com/s3/m/a789432d001ca300a6c30c22590102020640f250.png)
空间几何体的体积与面积的全部公式空间几何体的体积与面积的全bai部公式:1、圆柱体(duR为圆柱体上下底圆zhi半径,h为圆柱体高)S=2πdaoR²+2πRhV=πR²h2、圆锥体(r为圆锥体低圆半径,h为其高)S=πR²+πR[(h²+R²)的平方根]V=πR²h/33、正方体(a为边长)S=6a²V=a³4、长方体(a为长,b为宽,c为高)S=2(ab+ac+bc)V=abc 5、棱柱(S为底面积,h为高)V=Sh6、棱锥(S为底面积,h为高)V=Sh/37、棱台(S1和S2分别为上、下底面积,h为高)V=h[S1+S2+(S1S2)^1/2]/38、圆柱(r为底半径,h为高,C为底面周长,S底为底面积,S侧为侧面积,S表为表面积)C=2πr,S底=πr²,S侧=ChS表=Ch+2S底V=S底h=πr²h9、圆台(r为上底半径,R为下底半径,h为高)S= πR²+πrl+πRl+πr²V=πh(R²+Rr+r²)/310、球(r为半径,d为直径)S=4πr²V=4/3πr^3=πd^3/6扩展资料:巧记空间几何体中的面积和体积公式的方法:1. 面积问题:空间几何体的面积主要分为两类:侧面积和表面积,其中的重点是旋转体的侧面积公式。
对于多面体的面积,其各个面都是多边形,这个在小学阶段就研究过了。
其中,只需要记住圆台的侧面积公式就够了。
将圆台侧面打开,是一个扇环,很像一个梯形。
所以圆台的侧面积就按照梯形来进行计算,就很容易理解。
如下图所示:圆台侧面积公式对于圆柱和圆锥的侧面积公式,不需要单独去记忆,只需要将其看成一个特殊的圆台就行了。
圆柱体就是上下底相同的圆台,圆锥体就是上底为0的圆台。
2. 体积问题:按照上面的思路,把柱体和椎体看成一个特殊的台体,因此也只需要记住一个台体的体积公式就可以啦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)VBEC-APD=VC-APEB+VP-ACD =13×12(4+2)×4×4 +13×12×4×4×4=830.
例1. 在四棱锥PABCD中,PD⊥平面ABCD,PD=DC =BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC; (2)求三棱锥PABC的体积. (3)求点A到平面PBC的距离
练习1.如图是一几何体的直观图、正视图、俯视图、侧视 图.
(1)若F为PD的中点,求证:AF⊥面PCD; (2)求几何体BEC-APD的体积.
练习2.(课后练习11)如图,三棱柱
ABC A1B1C1 的侧棱垂直底面,其高
为6 cm,底面三角形边长分别为3 cm, 4 cm,5 cm ,以上、下底面的内切圆为 底面挖去一个圆柱,求剩余部分形成的 几何体的体积.