2021高考物理(江苏专用)一轮试题:专题九 磁场
2021版高考物理一轮复习单元质检九磁场 (4)
单元质检九磁场(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题8分,共64分。
在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。
全部选对的得8分,选对但不全的得4分,有选错的得0分)1.(2019·河南郑州模拟)如图所示,两根无限长导线均通以恒定电流I,两根导线的直线部分和坐标轴非常接近,弯曲部分是以坐标原点O为圆心、半径相同的一段圆弧,规定垂直于纸面向里的方向为磁感应强度的正方向,已知直线部分在原点O处不形成磁场,此时两根导线在坐标原点处的磁感应强度为B,下列四个选项中均有四根同样的、通以恒定电流I的无限长导线,O处磁感应强度也为B的是()2.(2019·江西南昌模拟)奥斯特在研究电流的磁效应实验时,将一根长直导线南北放置在小磁针的正上方,导线不通电时,小磁针在地磁场作用下静止时N极指向北方。
现在导线中通有由南向北的恒定电流I,小磁针转动后再次静止时N极指向()A.北方B.西方C.西偏北方向D.北偏东方向3.(2019·浙江杭州月考)如图所示,用天平测量匀强磁场的磁感应强度,下列各选项所示的载流线圈匝数相同,边长MN相等,将它们分别挂在天平的右臂下方,线圈中通有大小相同的电流,天平处于平衡状态,若磁场发生微小变化,天平最容易失去平衡的是()4.在绝缘圆柱体上a、b两个位置固定有两个金属圆环,当两环通有图示电流时,b处金属圆环受到的安培力为F1;若将b处金属圆环移动位置c,则通有电流为I2的金属圆环受到的安培力为F2。
今保持b处于金属圆环原来位置不变,在位置c再放置一个同样的金属圆环,并通有与a处金属圆环同向、大小为I2的电流,则在a位置的金属圆环受到的安培力()A.大小为|F1-F2|,方向向左B .大小为|F 1-F 2|,方向向右C .大小为|F 1+F 2|,方向向左D .大小为|F 1+F 2|,方向向右5.(2019·福建漳州模拟)不计重力的两个带电粒子1和2经小孔S 垂直于磁场边界,且垂直于磁场方向进入匀强磁场,在磁场中的轨迹如图所示。
2021版高考物理一轮复习单元质检九磁场(含解析)
单元质检九磁场(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题8分,共64分。
在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。
全部选对的得8分,选对但不全的得4分,有选错的得0分)1.(2019·河南郑州模拟)如图所示,两根无限长导线均通以恒定电流I,两根导线的直线部分和坐标轴非常接近,弯曲部分是以坐标原点O为圆心、半径相同的一段圆弧,规定垂直于纸面向里的方向为磁感应强度的正方向,已知直线部分在原点O处不形成磁场,此时两根导线在坐标原点处的磁感应强度为B,下列四个选项中均有四根同样的、通以恒定电流I的无限长导线,O处磁感应强度也为B的是()2.(2019·江西南昌模拟)奥斯特在研究电流的磁效应实验时,将一根长直导线南北放置在小磁针的正上方,导线不通电时,小磁针在地磁场作用下静止时N极指向北方。
现在导线中通有由南向北的恒定电流I,小磁针转动后再次静止时N极指向()A.北方B.西方C.西偏北方向D.北偏东方向3.(2019·浙江杭州月考)如图所示,用天平测量匀强磁场的磁感应强度,下列各选项所示的载流线圈匝数相同,边长MN相等,将它们分别挂在天平的右臂下方,线圈中通有大小相同的电流,天平处于平衡状态,若磁场发生微小变化,天平最容易失去平衡的是()4.在绝缘圆柱体上a、b两个位置固定有两个金属圆环,当两环通有图示电流时,b处金属圆环受到的安培力为F1;若将b处金属圆环移动位置c,则通有电流为I2的金属圆环受到的安培力为F2。
今保持b处于金属圆环原来位置不变,在位置c再放置一个同样的金属圆环,并通有与a处金属圆环同向、大小为I2的电流,则在a位置的金属圆环受到的安培力()A.大小为|F1-F2|,方向向左B .大小为|F 1-F 2|,方向向右C .大小为|F 1+F 2|,方向向左D .大小为|F 1+F 2|,方向向右5.(2019·福建漳州模拟)不计重力的两个带电粒子1和2经小孔S 垂直于磁场边界,且垂直于磁场方向进入匀强磁场,在磁场中的轨迹如图所示。
2021届高考一轮物理:磁场含答案
2021届高考一轮物理:磁场含答案一轮:磁场**一、选择题1、三根在同一平面(纸面)内的长直绝缘导线组成一等边三角形,在导线中通过的电流均为I,方向如图所示。
a、b和c三点分别位于三角形的三个顶角的平分线上,且到相应顶点的距离相等。
将a、b和c处的磁感应强度大小分别记为B 1、B2和B3,下列说法中正确的是( )A.B1=B2<B3B.B1=B2=B3C.a和b处磁场方向垂直于纸面向外,c处磁场方向垂直于纸面向里D.a处磁场方向垂直于纸面向外,b和c处磁场方向垂直于纸面向里2、(多选)如图为通电螺线管。
A为螺线管外一点,B、C两点在螺线管的垂直平分线上,则下列说法正确的是( )A.磁感线最密处为A处,最疏处为B处B.磁感线最密处为B处,最疏处为C处C.小磁针在B处和A处N极都指向左方D.小磁针在B处和C处N极都指向右方3、如图所示,用三条细线悬挂的水平圆形线圈共有n匝,线圈由粗细均匀、单位长度质量为2.5g的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度大小为0.5T,方向与竖直线成30°角,要使三条细线上的张力为零,线圈中通过的电流至少为(g取10 m/s2)( )A.0.1 A B.0.2 A C.0.05 A D.0.01 A4、如图所示,两平行光滑金属导轨固定在绝缘斜面上,导轨间距为L,劲度系数为k的轻质弹簧上端固定,下端与水平直导体棒ab相连,弹簧与导轨平面平行并与ab垂直,直导体棒垂直跨接在两导轨上,空间存在垂直导轨平面斜向上的匀强磁场。
闭合开关S后导体棒中的电流为I,导体棒平衡时,弹簧伸长量为x1;调换图中电源极性,使导体棒中电流反向,导体棒中电流仍为I,导体棒平衡时弹簧伸长量为x2。
忽略回路中电流产生的磁场,则匀强磁场的磁感应强度B的大小为( )A.kIL(x1+x2) B.kIL(x2-x1) C.k2IL(x2+x1) D.k2IL(x2-x1)5、两相邻匀强磁场区域的磁感应强度大小不同、方向平行。
高中物理-(江苏卷)2021高考物理真题
高中物理-(江苏卷)2021高考物理真题1、制备纳米薄膜装置的工作电极可简化为真空中间距为d的两平行极板,如图甲所示,加在极板 A.、B.间的电压作周期性变化,其正向电压为,反向电压为,电压变化的周期为2r,如图乙所示。
在t=0时,极板B.附近的一个电子,质量为m、电荷量为e,受电场作用由静止开始运动。
若整个运动过程中,电子未碰到极板A.,且不考虑重力作用。
(1)若,电子在0—2r时间内不能到达极板A.,求d应满足的条件;(2)若电子在0—2r时间未碰到极板B.,求此运动过程中电子速度随时间t变化的关系;(3)若电子在第N.个周期内的位移为零,求k的值。
2、在游乐节目中,选手需要借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论。
如图所示,他们将选手简化为质量m=60kg的指点,选手抓住绳由静止开始摆动,此事绳与竖直方向夹角=,绳的悬挂点O.距水面的高度为H=3m.不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深。
取中立加速度,,(1)求选手摆到最低点时对绳拉力的大小F.;(2)若绳长l=2m,选手摆到最高点时松手落入手中。
设水碓选手的平均浮力,平均阻力,求选手落入水中的深度;(3)若选手摆到最低点时松手,小明认为绳越长,在浮台上的落点距岸边越远;小阳认为绳越短,落点距岸边越远,请通过推算说明你的观点。
3、(1)研究光电效应电路如图所示,用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K.),钠极板发射出的光电子被阳极A.吸收,在电路中形成光电流。
下列光电流I.与A.\K之间的电压的关系图象中,正确的是.(2)钠金属中的电子吸收光子的能量,从金属表面逸出,这就是光电子。
光电子从金属表面逸出的过程中,其动量的大小_______(选填“增大、“减小”或“不变”),原因是_______。
(3)已知氢原子处在第一、第二激发态的能级分别为-3.4eV和-1.51eV,金属钠的截止频率为Hz,普朗克常量h=Js.请通过计算判断,氢原子从第二激发态跃迁到第一激发态过程中发出的光照射金属钠板,能否发生光电效应。
2021届高考物理一轮复习:磁场训练题含答案
有机物的结构与性质1.(云南省昆明市寻甸一中2020届高三一模)下列化合物的同分异构体数目与38C H O 的同分异构体数目相同的是A .36C HB .48C H C .642C H ClD .512C H【答案】D【解析】【分析】C 3H 8中含有2种化学环境不同的H 原子数目,再利用-OH 原子团替换H 原子,判断属于醇的同分异构体,C 3H 8O 只有一种醚的结构,即甲乙醚,据此分析解答。
【详解】C 3H 8分子中有2种化学环境不同的H 原子,其一羟基代物有2种分别为:CH 3CH 2CH 2OH 和CH 3CH(OH)CH 3,C 3H 8O 只有一种醚的结构,即甲乙醚,故C 3H 8O 的同分异构体数目为3。
A .C 3H 6可以为丙烯和环丙烷,具有2种结构,同分异构体数目不相同,故A 不选;B .C 4H 8可以为1-丁烯、2-丁烯、2-甲基-1-丙烯和环丁烷以及甲基环丙烷等,具有5种同分异构体,同分异构体数目不相同,故B 不选;C .C 6H 4Cl 2可以是由苯环经过二氯取代生成的产物,有邻、间、对三种同分异构体,另外还可以是含有碳碳双键以及三键的物质,故有大于3种同分异构体,同分异构体数目不相同,故C 不选;D .C 5H 12有3种同分异构体,分别为正戊烷、异戊烷和新戊烷,同分异构体数目相同,故D 选;故选D 。
2.(内蒙古自治区阿拉善盟2020届高三一模)止血环酸的结构如下图所示,用于治疗各种出血疾病,在一些牙膏中也含有止血环酸。
下列说法不正确...的是A.该物质的分子式为C8H15NO2B.在光照条件下与Cl2反应生成的一氯代物有4种C.该物质能发生取代反应、置换反应D.止血原理可看做是胶体的聚沉【答案】B【解析】A.由结构简式可知分子式为C8 H15NO2,故A正确;B.烃基含有5种氢,如只取代烃基的H,则在光照条件下与Cl2反应生成的一氯代物有5种,故B错误;C.含有羧基,可发生取代、置换反应(与金属钠等),故C正确;D.含有羧基,在溶液中可电离,可使胶体聚沉,故D正确。
2021届江苏高考物理一轮复习单元检测九 磁场
单元检测九 磁场考生注意: 1.本试卷共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间90分钟,满分100分. 4.请在密封线内作答,保持试卷清洁完整.一、选择题(本题共12个小题,每小题4分,共48分.1~8小题只有一个选项符合要求,选对得4分,选错得0分;9~12小题有多个选项符合要求,全部选对得4分,选对但不全的得2分,有选错的得0分.)1. (2019·黑龙江齐齐哈尔市联谊校期末)如图1所示,两根绝缘轻质弹簧的劲度系数均为k ,竖直静止吊起一根长为L 的匀质水平金属棒AC ,金属棒处在与棒垂直的水平匀强磁场中,当金属棒中通入由A 端流向C 端的电流I 时,两弹簧的伸长量均增加了x .关于该匀强磁场的磁感应强度的大小和方向,下列判断正确的是( )图1A .大小为kxIL ,方向水平向里B .大小为kxIL ,方向水平向外C .大小为2kxIL,方向水平向里D .大小为2kxIL,方向水平向外2. (2019·山东临沂市上学期期末)如图2所示,绝缘粗糙固定斜面处于垂直斜面向上的匀强磁场B 中,通有垂直纸面向里的恒定电流I 的金属细杆水平静止在斜面上.若仅把磁场方向改为竖直向上,则( )图2A .金属杆所受的摩擦力一定变大B .金属杆所受的摩擦力一定变小C .金属杆所受的安培力大小保持不变D .金属杆对斜面的压力保持不变3. (2019·甘肃兰州市第一次诊断)如图3所示,矩形abcd 内存在匀强磁场,ab =2ad ,e 为cd的中点.速率不同的同种带电粒子从a 点沿ab 方向射入磁场,其中从e 点射出的粒子速度为v 1;从c 点射出的粒子速度为v 2,则v 1∶v 2为(不计粒子重力)( )图3A .1∶2B .2∶5C .1∶3D .3∶54. (2019·山东潍坊市二模)中核集团研发的“超导质子回旋加速器”,能够将质子加速至光速的12,促进了我国医疗事业的发展.若用如图4所示的回旋加速器分别加速氕、氘两种静止的原子核,不考虑加速过程中原子核质量的变化,以下判断正确的是( )图4A .氘核射出时的向心加速度大B .氕核获得的最大速度大C .氘核获得的最大动能大D .氕核动能增大,其偏转半径的增量不变5. (2019·山东德州市上学期期末)电磁流量计是一种测量导电液体流量的装置(单位时间内通过某一截面的液体体积,称为流量),其结构如图5所示,上、下两个面M 、N 为导体材料,前后两个面为绝缘材料.流量计的长、宽、高分别为a 、b 、c ,左、右两端开口,在垂直于前、后表面向里的方向加磁感应强度大小为 B 的匀强磁场,某次测量中,与上、下两个面M 、N 相连的电压表示数为 U ,则管道内液体的流量为( )图5A.U B cB.U B b C .UBcD .UBb6.(2020·山东泰安市质检)如图6所示,正方形区域abcd 内存在磁感应强度为B 的匀强磁场,e 是ad 的中点,f 是cd 的中点,如果在a 点沿对角线方向以速率v 射入一带负电的粒子(重力不计),恰好从e 点射出.若磁场方向不变,磁感应强度变为B2,粒子的射入方向不变,速率变为2v .则粒子的射出点位于( )图6A .e 点B .d 点C .df 间D .fc 间7.如图7所示,正三角形的三条边都与圆相切,在圆形区域内有垂直纸面向外的匀强磁场,质子11H 和氦核42He 都从顶点A 沿∠BAC 的角平分线方向射入磁场,质子11H 从C 点离开磁场,氦核42He 从相切点D 离开磁场,不计粒子重力,则质子和氦核的入射速度大小之比为( )图7A .6∶1B .3∶1C .2∶1D .3∶28.(2019·福建南平市第二次综合质检)如图8所示,在边长为L 的正方形区域abcd 内有垂直纸面向里的匀强磁场,有一个质量为m 、带电荷量大小为q 的离子(重力不计),从ad 边的中点O 处以速度v 垂直ad 边界向右射入磁场区域,并从b 点离开磁场.则( )图8A .离子在O 、b 两处的速度相同B .离子在磁场中运动的时间为πm 4qBC .若增大磁感应强度B ,则离子在磁场中的运动时间增大D .若磁感应强度B <4m v5qL,则该离子将从bc 边射出9.(2020·山西临汾市模拟)如图9所示,在竖直平面内放一个光滑绝缘的半圆形轨道,圆心O与轨道左、右最高点a 、c 在同一水平线上,水平方向的匀强磁场与半圆形轨道所在的平面垂直.一个带负电荷的小滑块由静止开始从半圆形轨道的最高点a 滑下,则下列说法中正确的是( )图9A .滑块经过最低点b 时的速度与磁场不存在时相等B .滑块从a 点到最低点b 所用的时间比磁场不存在时短C .滑块经过最低点b 时对轨道的压力与磁场不存在时相等D .滑块能滑到右侧最高点c10. (2019·山东淄博市3月一模)如图10所示,半径为R 的四分之一圆形区域内存在着垂直纸面向里的匀强磁场,过(-2R,0)点垂直x 轴放置一线形粒子发射装置,能在0<y ≤R 的区间内各处沿x 轴正方向同时发射出速度均为v 、带正电的同种粒子,粒子质量为m 、电荷量为q .不计粒子的重力及粒子间的相互作用力.若某时刻粒子被装置发射出后,经过磁场偏转恰好击中y 轴上的同一位置,则下列说法中正确的是( )图10A .粒子击中点距O 点的距离为RB .磁场的磁感应强度为m v qRC .粒子离开磁场时速度方向相同D .粒子从离开发射装置到击中y 轴所用时间t 的范围为2Rv ≤t <(π+2)R 2v11. (2019·山东聊城市二模)如图11所示,圆心角为90°的扇形COD 内存在方向垂直纸面向外的匀强磁场,E 点为半径OD 的中点,现有比荷大小相等的两个带电粒子a 、b ,以不同的速度分别从O 、E 点沿OC 方向射入磁场,粒子a 、b 分别从D 、C 两点射出磁场,不计粒子所受重力及粒子间相互作用,已知sin 37°=0.6,cos 37°=0.8,则下列说法中正确的是( )图11A .粒子a 带负电,粒子b 带正电B .粒子a 、b 在磁场中运动的加速度之比为2∶5C .粒子a 、b 的速度之比为5∶2D .粒子a 、b 在磁场中运动的时间之比为180∶5312.(2019·湖北武汉市四月调研)如图12(a)所示,在半径为R 的虚线区域内存在周期性变化的磁场,其变化规律如图(b)所示.薄挡板MN 两端点恰在圆周上,且MN 所对的圆心角为120°.在t =0时,一质量为m 、电荷量为+q 的带电粒子,以初速度v 从A 点沿直径AOB 射入场区,运动到圆心O 后,做一次半径为R2的完整的圆周运动,再沿直线运动到B 点,在B 点与挡板碰撞后原速率返回(碰撞时间不计,电荷量不变),运动轨迹如图(a)所示.粒子的重力不计,不考虑变化的磁场所产生的电场,下列说法正确的是( )图12A .磁场方向垂直纸面向外B .图(b)中B 0=2m vqRC .图(b)中T 0=(π+1)RvD .若t =0时,质量为m 、电荷量为-q 的带电粒子,以初速度v 从A 点沿AO 入射,偏转、碰撞后,仍可返回A 点二、计算题(本题共4小题,共52分)13. (12分)(2020·湖北宜昌市调研)如图13所示,在倾角为θ的斜面上,固定有间距为l 的平行金属导轨,现在导轨上,垂直导轨放置一质量为m 的金属棒ab ,整个装置处于垂直导轨平面斜向上的匀强磁场中,磁感应强度大小为B ,导轨与电动势为E 、内阻为r 的电源连接,金属棒ab 与导轨间的动摩擦因数为μ,且μ<tan θ,最大静摩擦力等于滑动摩擦力,重力加速度为g ,金属棒和导轨的电阻不计,现闭合开关,发现滑动变阻器接入电路的阻值为0时,金属棒不能静止.图13(1)判断金属棒所受的安培力方向;(2)求使金属棒在导轨上保持静止时滑动变阻器接入电路的最小阻值R 1和最大阻值R 2.14.(12分) (2019·贵州安顺市适应性监测(三))如图14所示,在xOy 平面内的y 轴左侧有沿y 轴负方向的匀强电场,y 轴右侧有垂直纸面向里的匀强磁场,y 轴为匀强电场和匀强磁场的理想边界.一个质量为m 、电荷量为q 的带正电粒子(不计重力)从x 轴上的N 点(-L,0)以速度v 0沿x 轴正方向射出.已知粒子经y 轴的M 点(0,-32L )进入磁场,若粒子离开电场后,y轴左侧的电场立即撤去,粒子最终恰好经过N 点.求:图14(1)粒子进入磁场时的速度大小及方向; (2)匀强磁场的磁感应强度大小.15.(13分) (2019·山东德州市上学期期末)如图15所示,水平放置的平行板电容器上极板带正电,下极板带负电,两极板间存在场强为 E 的匀强电场和垂直纸面向里的磁感应强度大小为B 的匀强磁场.现有大量带电粒子沿中线 OO ′ 射入,所有粒子都恰好沿 OO ′ 做直线运动.若仅将与极板垂直的虚线MN 右侧的磁场去掉,则其中比荷为qm 的粒子恰好自下极板的右边缘P 点离开电容器.已知电容器两极板间的距离为3mEqB2,带电粒子的重力不计.图15(1)求下极板上 N 、P 两点间的距离;(2)若仅将虚线 MN 右侧的电场去掉,保留磁场,另一种比荷的粒子也恰好自P 点离开,求这种粒子的比荷.16. (15分)(2019·河南示范性高中上学期期终)如图16所示,竖直线MN 左侧存在水平向右的匀强电场,右侧存在垂直纸面向外的匀强磁场,其磁感应强度大小B =π×10-2 T ,在P 点竖直下方d=72πm处有一垂直于MN的足够大的挡板.现将一重力不计、比荷qm=1×106 C/kg的正电荷从P点由静止释放,经过Δt=1×10-4s,该电荷以v0=1×104m/s的速度通过MN进入磁场.求:图16(1)P点到MN的距离及匀强电场的电场强度E的大小;(2)电荷打到挡板的位置到MN的距离;(3)电荷从P点出发至运动到挡板所用的时间.答案精析1.D [弹簧伸长量增加,则金属棒所受安培力方向竖直向下,由左手定则可知,磁场的方向水平向外;设金属棒所受安培力的大小为F 安,对金属棒,F 安=BIL =2kx ,解得:B =2kxIL ,故D 正确,A 、B 、C 错误.]2.C [由公式F =BIL 可知,金属杆受到的安培力大小不变,故C 正确;磁场方向改变前:弹力为mg cos θ,摩擦力大小为|mg sin θ-F |,磁场方向改变后:弹力为mg cos θ+F sin θ,摩擦力大小为:|mg sin θ-F cos θ|,所以金属杆对斜面的压力变大,摩擦力的变化不确定,故A 、B 、D 错误.] 3.B[速率不同的同种带电粒子从a 点沿ab 方向射入磁场,从e 点、c 点射出磁场对应的轨迹如图:由几何关系可得:r 1=ad 、(r 2-ad )2+(2ad )2=r 22,则r 2=52ad ,r 1r 2=25.带电粒子在磁场中运动时,洛伦兹力充当向心力,有q v B =m v 2r ,解得:v =qBrm ;则v 1v 2=r 1r 2=25.故B 项正确,A 、C 、D 项错误.]4.B [由q v B =m v 2r 得:v m =qBR m ,则a =v m 2R =B 2q 2R m 2,E km =12m v m 2=B 2q 2R 22m ,氕核的质量较小,两核的带电荷量相同,故选项B 正确,A 、C 错误;由r =m v qB =2mE kqB 可知氕核动能增大,其偏转半径的增量要改变,选项D 错误.] 5.B [最终离子在电场力和洛伦兹力作用下平衡, 有:q v B =q Uc解得:U =v Bc ,液体的流速为:v =UcB ;则流量为:Q =v bc =UB b ,故选B.]6.C[当磁感应强度为B ,粒子速率为v 时,半径R =m vqB;当磁感应强度变为B2,粒子速率变为2v 时,半径R ′=2m v q ·12B =4R如图所示,过a 点作速度v 的垂线,即为粒子在a 点所受洛伦兹力的方向,延长cd 交该垂线于O 点,由题图可知Oa =4R ,Od =ad =2ae =22R <R ′,Of =Od +df =32R >R ′,因此粒子出射点应在df 间.]7.A [设三角形的边长为L ,根据几何关系可以得到磁场圆的半径为R =36L ,质子进入磁场时的运动轨迹如图甲所示 由几何关系可得r 1=R tan 60°=12L氦核进入磁场时的运动轨迹如图乙所示, 由几何关系可得:r 2=R tan 30°=16L粒子在磁场中运动时洛伦兹力提供向心力,即q v B =m v 2r ,可得v =Bqrm ,结合两个粒子的轨迹半径与比荷可求得质子和氦核的入射速度大小之比为6∶1,故A 正确.]8.D [离子在磁场中做匀速圆周运动,在O 、b 两处的速度大小相同,但是方向不同,选项A 错误;离子在磁场中运动的半径满足:R 2=L 2+(R -12L )2,解得R =5L4,则离子在磁场中运动的弧长所对应的圆心角的正弦值为sin θ=0.8,即θ=53°,运动的时间t =θ360°T =53°360°·2πm qB >πm4qB ,选项B 错误;若增大磁感应强度B ,由R =m v qB ,则离子在磁场中运动的半径减小,离子将从ab 边射出,此时离子在磁场中运动对应的弧长减小,则运动时间减小,选项C 错误;若离子从bc 边射出,则R =m v qB >5L 4,即B <4m v5qL,选项D 正确.]9.AD [滑块下滑时受到重力、洛伦兹力、轨道的支持力,洛伦兹力与轨道支持力不做功,只有重力做功,由动能定理可知,滑块经过最低点b 时的速度与磁场不存在时相等,故A 正确;根据能量守恒定律得滑块能滑到右侧最高点c ,故D 正确;滑块在下滑过程中,在任何位置的速度与有没有磁场无关,因此滑块从a 点到最低点所用时间与磁场不存在时相等,故B 错误;滑块到达最低点b 时,若存在磁场,由牛顿第二定律得:F N -mg -q v b B =m v b 2r ,可得:F N =mg +q v b B +m v b 2r ,若磁场不存在,则F N1=mg +m v b 2r ,根据牛顿第三定律,滑块经最低点时对轨道的压力比磁场不存在时大,故C 错误.]10.ABD [由题意,某时刻发出的粒子都击中了y 轴上同一点,因最高点射出的粒子只能击中(0,R ),则粒子击中点距O 点的距离为R ,选项A 正确;从最低点射出的粒子也击中(0,R ),则粒子做匀速圆周运动的半径为R ,由洛伦兹力提供向心力得:q v B =m v 2R ,B =m vqR ,选项B 正确;粒子运动的半径都相同,但是入射点不同,则粒子离开磁场时的速度方向不同,选项C 错误;粒子从最低点射出时运动时间最长,此时粒子在磁场中的偏转角为90°,最长时间为t 1=14T +R v =14×2πR v +R v =π+22v R .从最高点直接射向(0,R )的粒子运动时间最短,则最短的时间为t 2=2Rv ,选项D 正确.] 11.ABD[据题中条件,画出两粒子的轨迹如图:由左手定则可判断粒子a 带负电,粒子b 带正电,故A 项正确;设扇形COD 的半径为R ,据几何关系可得,r a =R 2、(r b -R 2)2+R 2=r b 2,则r a r b =R25R 4=25.据q v B =m v 2r,解得:v =qBrm ,两粒子的比荷相等,则粒子a 、b 的速度之比为2∶5;据q v B =ma ,解得:a =q v B m ,两粒子的比荷相等,则粒子a 、b 在磁场中运动的加速度之比为2∶5,故B 项正确,C 项错误;由图知,粒子a 轨迹的圆心角θa =180°;据sin θb =Rr b =0.8可得,粒子b 轨迹的圆心角θb=53°;据t =θ360°T 、T =2πmqB 可得,粒子a 、b 在磁场中运动的时间之比为180∶53,故D 项正确.]12.BC [根据粒子轨迹,由左手定则可知,磁场方向垂直纸面向里,选项A 错误;由牛顿第二定律:q v B 0=m v 2R 2,解得B 0=2m vqR ,选项B 正确;虚线区域内不加磁场时粒子做匀速直线运动,t 1=R v ,虚线区域内加磁场后粒子做匀速圆周运动,t 2=sv =2π×R 2v =πR v ,磁场变化的周期:T 0=t 1+t 2=(π+1)Rv ,选项C 正确;若t =0时,质量为m 、电荷量为-q 的带电粒子,以初速度v 从A 点沿AO 入射,到达O 点后向下偏转,与板碰撞后,到达B 板,与B 碰撞后向上偏转90°,然后从磁场中飞出,则不能返回A 点,选项D 错误.] 13.(1)平行于斜面向上(2)BEl mg sin θ+μmg cos θ-r BEl mg sin θ-μmg cos θ-r 解析 (1)由左手定则可判断金属棒所受安培力的方向平行于斜面向上(2)金属棒所受安培力F =B E R +r l ,故R =R 1时,F 有最大值F 1,所受的摩擦力为最大静摩擦力,方向平行斜面向下,则由平衡条件得F N1=mg cos θ F 1=mg sin θ+F fmax F fmax =μF N1 又F 1=B ER 1+rl ,联立解得:R 1=BElmg sin θ+μmg cos θ-rR =R 2时,F 有最小值F 2,所受的摩擦力为最大静摩擦力,方向平行斜面向上,同理可得F 2=mg sin θ-μmg cos θ 又F 2=B ER 2+rl联立解得:R 2=BElmg sin θ-μmg cos θ-r .14.(1)2v 0 与x 轴正方向成60°角斜向下 (2)43m v 09Lq解析 (1)粒子在电场中做类平抛运动,有:3L 2=12at 21,L =v 0t 1,设粒子到达M 点的速度大小为v ,方向与x 轴正方向成θ角;轨迹如图: 则有:tan θ=at 1v 0,v =v 0cos θ联立解得:θ=60°,v =2v 0;即粒子进入磁场时的速度大小为2v 0,方向与x 轴正方向成60°角斜向下. (2)设粒子在磁场中做匀速圆周运动的半径为R ,有q v B =m v 2R ,由几何关系有:3L2+L tan θ=2R cos θ, 联立解得B =43m v 09Lq .15.(1)3mE qB 2(2)4q7m解析 (1)粒子自 O 点射入到虚线MN 的过程中做匀速直线运动,qE =q v B 粒子过MN 时的速度大小v =EB仅将MN 右侧磁场去掉,粒子在MN 右侧的匀强电场中做类平抛运动,沿电场方向:3mE 2qB 2=qE2m t 2垂直于电场方向:x =v t由以上各式计算得出下极板上N 、 P 两点间的距离x =3mEqB 2. (2)仅将虚线MN 右侧的电场去掉,粒子在MN 右侧的匀强磁场中做匀速圆周运动,设经过 P 点的粒子的比荷为q ′m ′,其做匀速圆周运动的半径为 R ,由几何关系得:R 2=x 2+(R -3mE 2qB 2)2解得R =7mE4qB 2,又q ′v B =m ′v 2R ,解得:q ′m ′=4q 7m .16.(1)0.5 m 100 N/C (2)32π m (3)143×10-4 s 解析 (1)电荷在电场中做匀加速直线运动,P 点到MN 的距离为x =12v 0Δt解得x =0.5 m 由速度公式v 0=a Δt由牛顿第二定律qE =ma 解得E =100 N/C(2)电荷在磁场中做匀速圆周运动, 由牛顿第二定律可得: q v 0B =m v 02r解得r =1πm运动周期T =2πr v 0=2×10-4 s电荷在电场、磁场中的运动轨迹如图, O 点到挡板的距离为d -3r =12πm 则cos ∠AON =12,即∠AON =60°则A 点到MN 的距离 x AN =r sin 60°=32πm. (3)电荷在电场中运动的总时间:t 1=3Δt =3×10-4 s 电荷在磁场中运动的圆弧所对的圆心角为θ=π+π-π3=53π电荷在磁场中运动的总时间t 2=θ2πT解得t 2=53×10-4 s则电荷从P 点出发至运动到挡板所需的时间为t =t 1+t 2=143×10-4 s.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
步步高高考物理一轮复习(新课标)配套题库:专题9电磁感应中的电路和图象问题
专题九 电磁感应中的电路和图象问题考纲解读 1.能认识电磁感应中的电路结构,并能计算电动势、电压、电流、电功等.2.能由给定的电磁感应过程判断或画出正确的图象或由给定的有关图象分析电磁感应过程,求解相应的物理量.1.[电磁感应中的等效电源和路端电压问题]粗细均匀的电阻丝围成图1所示的线框,置于正方形有界匀强磁场中,磁感应强度为B ,方向垂直线框平面向里,图中ab =bc =2cd =2de =2ef =2fa =2L .现使线框以同样大小的速度v 匀速沿四个不同方向平动进入磁场,并且速度方向始终与线框先进入磁场的那条边垂直,则在通过如图所示位置时,下列说法中正确的是( )图1A .a 、b 两点间的电势差图①中最大B .a 、b 两点间的电势差图②中最大C .回路电流图③中最大D .回路电流图④中最小 答案 A解析 设ab 段电阻为r ,图①中a 、b 两点间的电势差U =3Ir ,图②中a 、b 两点间的电势差U =Ir ,图③中a 、b 两点间的电势差U =Ir2,图④中a 、b 两点间的电势差U =Ir ,所以a 、b 两点间的电势差图①中最大,选项A 正确,B 错误.回路电流图③中最小,其它回路电流相等,选项C 、D 错误.2.[电磁感应电路的计算]如图2所示,匀强磁场磁感应强度B =0.1 T ,金属棒AB 长0.4 m ,与框架宽度相同,电阻为13 Ω,框架电阻不计,电阻R 1=2 Ω,R 2=1 Ω,当金属棒以5m/s 的速度匀速向左运动时,求:图2(1)流过金属棒的感应电流多大?(2)若图中电容器C的电容为0.3 μF,则带电荷量为多少?答案(1)0.2 A(2)4×10-8 C3.[对B-t图象物理意义的理解]一矩形线圈abcd位于一随时间变化的匀强磁场内,磁场方向垂直线圈所在的平面向里(如图3甲所示),磁感应强度B随时间t变化的规律如图乙所示.以I表示线圈中的感应电流(图甲中线圈上箭头方向为电流的正方向),则下列选项中能正确表示线圈中电流I随时间t变化规律的是()图3答案 C解析0~1 s内磁感应强度均匀增大,根据楞次定律和法拉第电磁感应定律可判定,感应电流方向为逆时针方向(为负值)、大小为定值,A、B错误;4 s~5 s内磁感应强度恒定,穿过线圈abcd的磁通量不变化,无感应电流,C正确,D错误.4.[对电磁感应中图象问题的理解]边长为a的闭合金属正三角形框架,左边竖直且与磁场右边界平行,完全处于垂直框架平面向里的匀强磁场中.现把框架匀速水平向右拉出磁场,如图4所示,则下列图象与这一过程相符合的是()图4答案 B解析 该过程中,框架切割磁感线的有效长度等于框架与磁场右边界两交点的间距,根据几何关系有l有效=233x ,所以E 电动势=Bl 有效v =233B v x ∝x ,A 错误,B 正确.框架匀速运动,故F 外力=F 安=B 2l 2有效v R =4B 2x 2v3R∝x 2,C 错误.P外力功率=F 外力v ∝F 外力∝x 2,D 错误.一、电磁感应中的电路问题 1.内电路和外电路(1)切割磁感线的导体或磁通量发生变化的线圈相当于电源.(2)产生电动势的那部分导体或线圈的电阻相当于电源的内阻,其他部分的电阻相当于外电阻.2.电磁感应现象产生的电动势E =Bl v 或E =n ΔΦΔt .3.电磁感应电路问题的分析方法(1)用法拉第电磁感应定律和楞次定律(或右手定则)确定电动势的大小和方向. (2)画出等效电路图.(3)运用闭合电路欧姆定律、串并联电路的性质、电功率、电功计算公式联立求解. 二、电磁感应中的图象问题 1.图象类型(1)随时间变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量. (3)利用给出的图象判断或画出新的图象.考点一 电磁感应中的电路问题 1.电磁感应中的电路问题分类.(1)以部分电路欧姆定律为中心,包括六个基本物理量(电压、电流、电阻、电功、电功率、电热),三条定律(部分电路欧姆定律、电阻定律和焦耳定律),以及若干基本规律(串、并联电路特点等).(2)以闭合电路欧姆定律为中心,讨论电动势概念,闭合电路中的电流、路端电压以及闭合电路中能量的转化. 2.对电磁感应电路的理解(1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做功转化为电能. (2)“电源”两端的电压为路端电压,而不是感应电动势.例1 如图5(a)所示,水平放置的两根平行金属导轨,间距L =0.3 m ,导轨左端连接R =0.6Ω的电阻,区域abcd 内存在垂直于导轨平面B =0.6 T 的匀强磁场,磁场区域宽D =0.2 m .细金属棒A 1和A 2用长为2D =0.4 m 的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直,每根金属棒在导轨间的电阻均为r =0.3 Ω.导轨电阻不计.使金属棒以恒定速度v =1.0 m/s 沿导轨向右穿越磁场.计算从金属棒A 1进入磁场(t =0)到A 2离开磁场的时间内,不同时间段通过电阻R 的电流强度,并在图(b)中画出.图5解析 t 1=Dv =0.2 s在0~t 1时间内,A 1产生的感应电动势E 1=BL v =0.18 V. 其等效电路如图甲所示.甲由图甲知,电路的总电阻R 总=r +rRr +R=0.5 Ω 总电流为I =E 1R 总=0.36 A 通过R 的电流为I R =I3=0.12 AA 1离开磁场(t 1=0.2 s)至A 2刚好进入磁场(t 2=2Dv =0.4 s)的时间内,回路无电流,I R =0, 从A 2进入磁场(t 2=0.4 s)至离开磁场t 3=2D +Dv =0.6 s 的时间内,A 2上的感应电动势为E 2=0.18 V ,其等效电路如图乙所示.乙由图乙知,电路总电阻R 总′=0.5 Ω,总电流I ′=0.36 A ,流过R 的电流I R =0.12 A ,综合以上计算结果,绘制通过R 的电流与时间关系如图所示.答案 见解析解决电磁感应中的电路问题三步曲(1)确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,利用E =Bl v sin θ或E =n ΔΦΔt 求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 突破训练1 法拉第曾提出一种利用河流发电的设想,并进行了实验研究.实验装置的示意图可用图6表示,两块面积均为S 的矩形金属板,平行、正对、竖直地全部浸在河水中,间距为d .水流速度处处相同,大小为v ,方向水平.金属板与水流方向平行.地磁场磁感应强度的竖直分量为B ,水的电阻率为ρ,水面上方有一阻值为R 的电阻通过绝缘导线和电键K 连接到两金属板上,忽略边缘效应,求:图6(1)该发电装置的电动势; (2)通过电阻R 的电流强度; (3)电阻R 消耗的电功率.答案 (1)Bd v (2)Bd v S ρd +SR (3)⎝⎛⎭⎫Bd v S ρd +SR 2R解析 (1)由法拉第电磁感应定律,有E =Bd v (2)两金属板间河水的电阻r =ρdS由闭合电路欧姆定律,有I =Er +R =Bd v S ρd +SR (3)由电功率公式P =I 2R ,得P =⎝ ⎛⎭⎪⎫Bd v S ρd +SR 2R考点二 电磁感应中的图象问题 1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量; (3)根据图象定量计算. 2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键. 3.解决图象问题的一般步骤(1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者是E -t 图象、I -t 图象等;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等. (6)画出图象或判断图象.例2 (2013·山东理综·18)将一段导线绕成图7甲所示的闭合回路,并固定在水平面(纸面)内.回路的ab 边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆环区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B 随时间t 变化的图象如图乙所示.用F 表示ab 边受到的安培力,以水平向右为F 的正方向,能正确反映F 随时间t 变化的图象是( )图7解析 0~T2时间内,回路中产生顺时针方向、大小不变的感应电流,根据左手定则可以判定ab 边所受安培力向左.T2~T 时间内,回路中产生逆时针方向、大小不变的感应电流,根据左手定则可以判定ab 边所受安培力向右,故B 正确. 答案 B1.对图象的认识,应注意以下几方面(1)明确图象所描述的物理意义; (2)必须明确各种“+”、“-”的含义; (3)必须明确斜率的含义;(4)必须建立图象和电磁感应过程之间的对应关系; (5)注意三个相似关系及其各自的物理意义: v ~Δv ~Δv Δt ,B ~ΔB ~ΔB Δt ,Φ~ΔΦ~ΔΦΔtΔv Δt 、ΔB Δt 、ΔΦΔt分别反映了v 、B 、Φ变化的快慢. 2.电磁感应中图象类选择题的两个常见解法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项.(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象作出分析和判断,这未必是最简捷的方法,但却是最有效的方法.突破训练2 如图8所示,一个边长为2L 的等腰直角三角形ABC 区域内,有垂直纸面向里的匀强磁场,其左侧有一个用金属丝制成的边长为L 的正方形线框abcd ,线框以水平速度v 匀速通过整个匀强磁场区域,设电流逆时针方向为正.则在线框通过磁场的过程中,线框中感应电流i 随时间t 变化的规律正确的是( )图8答案 A解析 在0~t (t =Lv )时间内,bc 边进入磁场,有效切割长度不变,根据楞次定律可以判断电流沿逆时针方向,为正值,大小不变;在t ~2t 时间内ad 边进入磁场,bc 边开始穿出磁场,有效切割长度从零开始逐渐增大,感应电动势从零开始逐渐增大,电流从零开始逐渐增大,根据楞次定律可以判断电流沿顺时针方向,为负值;在2t ~3t 时间内ad 边开始穿出磁场,有效切割长度逐渐减小到零,感应电动势逐渐减小到零,电流逐渐减小到零,根据楞次定律可以判断电流沿顺时针方向,为负值,符合题意的图象是A 图.突破训练3 如图9所示,直角三角形ABC 是由同种金属材料制成的线框,线框位于跟有界匀强磁场垂直的平面内.现用外力将线框ABC 匀速向右拉进磁场,至AB 边进入磁场前,设线框中产生的感应电动势为E 、A 、B 两点间的电势差为U 、线框受安培力的合力为F 、回路中消耗的电功率为P ,下列选项中画出的是上述各物理量与图示位移x 的关系图象,则与这一过程相符合的图象是( )图9答案 B42.电磁感应图象与电路综合问题的分析例3 如图10所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与x 轴的关系如图11所示,图线是双曲线(坐标轴是渐近线);顶角θ=45°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终与导轨良好接触.已知t =0时,导体棒位于顶点O 处;导体棒的质量为m =2 kg ;OM 、ON 接触处O 点的接触电阻为R =0.5 Ω,其余电阻不计;回路电动势E 与时间t 的关系如图12所示,图线是过原点的直线.求: (1)t =2 s 时流过导体棒的电流I 2的大小; (2)1 s ~2 s 时间内回路中流过的电荷量q 的大小;(3)导体棒滑动过程中水平外力F (单位:N)与横坐标x (单位:m)的关系式.图10 图11 图12审题与关联解析 (1)根据E -t 图象可知t =2 s 时,回路中电动势E 2=4 V ,所以I 2=E 2R =40.5 A =8A(2)由E -t 图象和I =ER 可判断I -t 图象中的图线也是过原点的直线t =1 s 时,E 1=2 V ,所以I 1=E 1R =20.5 A =4 A则q =I Δt =I 1+I 22Δt =6 C(3)因θ=45°,可知任意t 时刻回路中导体棒有效切割长度L =x再根据B -x 图象中的图线是双曲线特点有:E =BL v =Bx v 且E 与时间成正比,可知导体棒的运动是匀加速直线运动由题图知Bx =1 Tm ,E =2t ,所以v =2t 即棒运动的加速度a =2 m/s 2棒受到的安培力F 安=BIl =BIx =Bx ·Bx v R =B 2x 2v R =B 2x 2·2ax R棒做匀加速运动,由牛顿第二定律得F -F 安=ma 则F =F 安+ma =B 2x 22axR +ma =4x +4答案 (1)8 A (2)6 C (3)F =4x +4高考题组1.(2013·新课标Ⅰ·17)如图13,在水平面(纸面)内有三根相同的均匀金属棒ab 、ac 和MN ,其中ab 、ac 在a 点接触,构成“V ”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN 向右匀速运动,从图示位置开始计时,运动中MN 始终与∠bac 的平分线垂直且和导轨保持良好接触.下列关于回路中电流i 与时间t 的关系图线,可能正确的是( )图13答案 A解析 设∠bac =2θ,MN 以速度v 匀速运动,导体棒单位长度的电阻为R 0.经过时间t ,导体棒的有效切割长度L =2v t tan θ,感应电动势E =BL v =2B v 2t tan θ,回路的总电阻R =(2v t tan θ+2v t cos θ)R 0,回路中电流i =ER =B v (1+1sin θ)R0.故i 与t 无关,是一个定值,选项A 正确.2.(2013·新课标Ⅱ·16)如图14,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d (d >L )的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动,t =0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( )图14答案 D解析 导线框进入磁场的过程中,线框受到向左的安培力作用,根据E =BL v 、I =ER 、F =BIL 得F =B 2L 2vR ,随着v 的减小,安培力F 减小,导线框做加速度逐渐减小的减速运动.整个导线框在磁场中运动时,无感应电流,导线框做匀速运动,导线框离开磁场的过程中,根据F =B 2L 2vR ,导线框做加速度减小的减速运动,所以选项D 正确.模拟题组3.如图15所示,有理想边界的两个匀强磁场,磁感应强度均为B =0.5 T ,两边界间距s =0.1 m ,一边长L =0.2 m 的正方形线框abcd 由粗细均匀的电阻丝围成,总电阻为R =0.4 Ω,现使线框以v =2 m/s 的速度从位置Ⅰ匀速运动到位置Ⅱ,则下列能正确反映整个过程中线框a 、b 两点间的电势差U ab 随时间t 变化的图线是( )图15答案 A解析 ab 边切割磁感线产生的感应电动势为E =BL v =0.2 V ,线框中感应电流为I =ER =0.5 A ,所以在0~5×10-2 s 时间内,a 、b 两点间电势差为U 1=I ×34R =0.15 V ;在5×10-2 s ~10×10-2 s 时间内,ab 两端电势差U 2=E =0.2 V ;在10×10-2 s ~15×10-2 s 时间内,a 、b 两点间电势差为U 1=I ×14R =0.05 V.4.如图16所示,光滑绝缘水平桌面上直立一个单匝正方形导线框ABCD ,导线框的边长为L =0.4 m ,总电阻为R =0.1 Ω.在直角坐标系xOy 第一象限中,有界匀强磁场区域的下边界与x 轴重合,上边界满足曲线方程y =0.2sin10π3x (m),磁感应强度B =0.2 T ,方向垂直纸面向里.导线框在沿x 轴正方向的拉力F 作用下,以速度v =10 m/s 水平向右做匀速直线运动,恰好拉出磁场.图16(1)求导线框AD 两端的最大电压;(2)在图17中画出运动过程中导线框的i -t 图象,并估算磁场区域的面积;图17(3)求导线框在穿越整个磁场的过程中,拉力F 所做的功. 答案 (1)0.3 V (2)见解析图 0.0 385 m 2 (3)0.048 J解析 (1)当导线框AD 边运动到磁场中心线时,AD 边两端的电压最大,如图所示E m =Bl v =0.2×0.2×10 V =0.4 V I m =E mR=4 A U m =I m ·34R =0.3 V(2)BC 边切割磁感线的时间为t 1=0.310 s =0.03 s ,此后的t 2时间内,导线框中无感应电流t 2=0.4-0.310s =0.01 sAD 边切割磁感线的时间t 3=t 1=0.03 s 在整个切割过程中,i -t 图象如图所示由图象可知,每个小方格表示电荷量q =0.000 5 Ct 1时间内,图象与t 轴所围区域共有小方格N =154个(150个~157个均算正确) 故t 1时间内通过导线框某一截面的电荷量 Q =Nq =0.077 C 又Q =I t 1=BS RS =QRB≈0.0 385 m 2(3)在t 1和t 3时间内,通过导线框的电流按正弦规律变化 I =22I m=2 2 A W =I 2R (t 1+t 3)=0.048 J(限时:45分钟)►题组1 对电磁感应中电路问题的考查1.如图1所示,两根相距为l 的平行直导轨ab 、cd .b 、d 间连有一定值电阻R ,导轨电阻可忽略不计.MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向纸面内).现对MN 施力使它沿导轨以速度v 做匀速运动.令U 表示MN 两端电压的大小,则( )图1A .U =12v BlB .U =13v BlC .U =v BlD .U =2v Bl答案 A解析 电路中感应电动势为E =Bl v ,则MN 两端电压大小U =E R +R ·R =12Bl v .2.如图2所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 连接的长度为2a 、电阻为R2的导体棒AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时导体棒AB 两端的电压大小为( )图2A.Ba v 3B.Ba v 6C.2Ba v 3 D .Ba v答案 A解析 摆到竖直位置时,导体棒AB 切割磁感线的瞬时感应电动势E =B ·2a ·(12v )=Ba v .由闭合电路欧姆定律得,U AB =E R 2+R 4·R 4=13Ba v ,故选A.3.如图3所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时( )图3A .电容器两端的电压为零B .电阻两端的电压为BL vC .电容器所带电荷量为CBL vD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2vR答案 C解析 当导线MN 匀速向右运动时,导线MN 产生的感应电动势恒定,稳定后,电容器既不充电也不放电,无电流产生,故电阻两端没有电压,电容器两极板间的电压为U =E =BL v ,所带电荷量Q =CU =CBL v ,故A 、B 错,C 对;MN 匀速运动时,因无电流而不受安培力,故拉力为零,D 错.4.把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下的磁感应强度为B 的匀强磁场中,如图4所示,一长为2a 、电阻等于R 、粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的接触.当金属棒以恒定速度v 向右移动经过环心O 时,求:图4(1)棒上电流的大小和方向及棒两端的电压U MN ; (2)圆环和金属棒上消耗的总热功率.答案 (1)4Ba v 3R ,从N 流向M 2Ba v 3 (2)8B 2a 2v 23R解析 (1)把切割磁感线的金属棒看成一个内阻为R 、电动势为E 的 电源,两个半圆环看成两个并联的相同电阻,画出等效电路图如图所 示.等效电源电动势为E =Bl v =2Ba v 外电路的总电阻为 R 外=R 1R 2R 1+R 2=12R棒上电流大小为I =ER 外+R =2Ba v 12R +R =4Ba v 3R电流方向从N 流向M .根据分压原理,棒两端的电压为U MN =R 外R 外+RE =23Ba v .(2)圆环和金属棒上消耗的总热功率为P =IE =8B 2a 2v 23R.►题组2对电磁感应图象的考查5.如图5所示,一直角三角形金属框,向左匀速地穿过一个方向垂直于纸面向里的匀强磁场,磁场仅限于虚线边界所围的区域内,该区域的形状和大小与金属框完全相同,且金属框的下边与磁场区域的下边界在一条直线上.若取顺时针方向为电流的正方向,则金属框穿过磁场过程的感应电流i随时间t变化的图象是下图中的()图5答案 C解析根据楞次定律,在进磁场的过程中,感应电流的方向为逆时针方向,切割的有效长度随时间线性增大,排除A、B;在出磁场的过程中,感应电流的方向为顺时针方向,切割的有效长度随时间线性减小,排除D,故选项C正确.6.如图6所示,边长为L、总电阻为R的正方形线框abcd放置在光滑水平桌面上,其bc 边紧靠磁感应强度为B、宽度为2L、方向竖直向下的有界匀强磁场的边缘.现使线框以初速度v0匀加速通过磁场,下列图线中能定性反映线框从开始进入到完全离开磁场的过程中,线框中的感应电流(以逆时针方向为正方向)随时间t、位移x变化的图象是()图6答案AD解析因线框中产生的感应电动势随速度的增大而增大,故在线框全部进入磁场前,感应电流一直增大;线框从磁场中穿出时,感应电动势与感应电流仍在增大;完全进入磁场、全部处于磁场中、完全从磁场中通过所需的时间越来越短,结合以上特点可知,感应电流与时间的关系图象正确的是A;因为匀加速过程中,中间位置的速度大于中间时刻的速度,且线框完全进入磁场、全部处于磁场中、完全从磁场中通过所发生的位移相同,故感应电流与位移x的关系图象正确的是D.7.(2013·福建·18)如图7,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气影响,则下列哪一个图象不可能反映线框下落过程中速度v随时间t变化的规律()图7答案 A解析线框在0~t1这段时间内做自由落体运动,v-t图象为过原点的倾斜直线,t2之后线框完全进入磁场区域中,无感应电流,线框不受安培力,只受重力,线框做匀加速直线运动,v -t 图象为倾斜直线.t 1~t 2这段时间线框受到安培力和重力作用,线框的运动类型只有三种,即可能为匀速直线运动、也可能为加速度逐渐减小的加速直线运动,还可能为加速度逐渐减小的减速直线运动,而A 选项中,线框做加速度逐渐增大的减速直线运动是不可能的,故不可能的v -t 图象为A 选项中的图象.8.如图8所示,固定在水平桌面上的光滑金属导轨cd 、eg 处于方向竖直向下的匀强磁场中,金属杆ab 与导轨接触良好.在两根导轨的端点d 、e 之间连接一电阻,其他部分电阻忽略不计.现用一水平向右的外力F 1作用在金属杆ab 上,使金属杆由静止开始向右沿导轨滑动,滑动中杆ab 始终垂直于导轨.金属杆受到的安培力用F 安表示,则关于图中F 1与F 安随时间t 变化的关系图象可能正确的是 ( )图8答案 B解析 设导轨间距为l ,金属杆质量为m ,速度大小为v ,加速度为a ,d 、e 间电阻的阻值为R ,取向右为正方向,根据题意,F 安=B 2l 2v R,F 1-F 安=ma .题图四个选项中,F 安∝t ,说明v ∝t ,a 一定,F 1-F 安的值恒定,比较四个图象,只有B 满足这一要求,所以只有B 可能.9.如图9甲所示,正三角形导线框abc 固定在磁场中,磁场方向与线圈平面垂直,磁感应强度B 随时间变化的关系如图乙所示.t =0时刻磁场方向垂直纸面向里,在0~4 s 时间内,线框ab 边所受安培力F 1随时间t 变化的关系(规定水平向左为力的正方向)可能是下图中的 ( )图9答案 A解析 在0~1 s 时间内,磁场方向垂直纸面向里,磁感应强度均匀减小,线框中产生恒定电动势和恒定电流,根据楞次定律,电流方向为顺时针,所以线框ab 边受力向左,根据F =BIl ,随着B 的减小F 均匀减小.在1 s ~2 s 时间内,磁场方向垂直纸面向外,磁感应强度均匀增大,线框中产生顺时针方向的恒定电流,所以根据左手定则判断出ab 边受力向右,且F 随B 的增大而增大. 同样判断出3 s ~3.5 s 时间内,力F 方向向左,且逐渐减小;3.5 s ~4 s 时间内,力F 方向向右,且逐渐增大.所以选项A 正确.►题组3 对电磁感应中电路与图象综合问题的考查10.如图10甲所示,光滑平行金属导轨MN 、PQ 所在平面与水平面成θ角,M 、P 两端接有阻值为R 的定值电阻.阻值为r 的金属棒ab 垂直导轨放置,其他部分电阻不计.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向上.从t =0时刻开始棒受到一个平行于导轨向上的外力F ,由静止开始沿导轨向上运动,运动过程中棒始终与导轨垂直且接触良好,通过R 的感应电流I 随时间t 变化的图象如图乙所示.下面分别给出了穿过回路abPM 的磁通量Φ、磁通量的变化率ΔΦΔt、棒两端的电势差U ab 和通过金属棒的电荷量q 随时间变化的图象,其中正确的是 ( )图10。
最新-2021版高考物理江苏专用大一轮复习课件:第九章 磁场 基础课1 精品
(2)磁场和电流平行时:F=__0_。
2.安培力的方向
左手定则判断:
(1)伸出左手,让拇指与其余四指__垂__直__,并且都在同一个平面内。
(2)让磁感线从掌心进入,并使四指指向_电__流___方向。
图2
(3)拇指所指的方向就是通电导线在磁场中所受安培力的方向。
1.思考判断
小题速练
(1)磁场中某点磁感应强度的大小,跟放在该点的试探电流元的情况无关。( )
解析 由于圆环带负电荷,故当圆环沿顺时针方向转动时,等效电流的方向为逆时 针,由安培定则可判断环内磁场方向垂直纸面向外,环外磁场方向垂直纸面向内, 磁场中某点的磁场方向即是放在该点的小磁针静止时N极的指向,所以b的N极向纸 外转,a、c的N极向纸里转。B项正确。 答案 B
【例2】 (2017·全国卷Ⅲ,18)如图5,在磁感应强度大小为B0的匀强磁场中,两长直 导线P和Q垂直于纸面固定放置,两者之间的距离为l。在两导线中均通有方向垂直 于纸面向里的电流I时,纸面内与两导线距离均为l的a点处的磁感应强度为零,如果 让P中的电流反向、其他条件不变,则a点处磁感应强度的大小为( )
[高考导航]
考点内容
要求
高考命题实况
2015
2016 2017
高考战报
3年4考
磁场 磁感应强度 磁感线 磁通量 Ⅰ
难度中等或偏难
保B冲A
T4:安培力公
通电直导线和通电线圈周围磁场 的方向 安培力
Ⅰ Ⅱ
式的应用
T15:带电粒
T15:回旋 T15:质 高频考点:①安培力的计算及应用。 加速器 谱仪 ②带电粒子在电磁场中的运动。
【变式训练】 (多选) 电磁轨道炮工作原理如图11所示。待发射弹体可在两平行轨 道之间自由移动,并与轨道保持良好接触。电流I从一条轨道流入,通过导电弹 体后从另一条轨道流回。轨道电流可形成在弹体处垂直于轨道面的磁场(可视为 匀强磁场),磁感应强度的大小与I成正比。通电的弹体在轨道上受到安培力的作 用而高速射出。现欲使弹体的出射速度增加至原来的2倍,理论上可采用的办法 是( )
2021高考物理一轮复习单元评估检测九磁场含解析
单元评估检测(九)(第九章)(45分钟100分)一、选择题(本题共10小题,每小题6分,共60分,1〜6题为单选题,7〜10题为多选题)1.在重复奥斯特电流磁效应的实验时,需要考虑减少地磁场对实验的影响,则以下关于奥斯特实验的说法中正确的是()A.通电直导线竖直放置时,实验效果最好B.通电直导线沿东西方向水平放置时,实验效果最好C.通电直导线沿南北方向水平放置时,实验效果最好D.只要电流足够大,不管通电直导线怎样放置,实验效果都很好【解析】选C。
由于在地球表面小磁针静止时北极指北、南极指南,所以通电直导线沿南北方向水平放置时,电流在小磁针所在位置的磁场方向为东西方向,此时的效果最好。
2.电流天平是一种测量磁场力的装置,如图所示。
两相距很近的通电平行线圈I和II,线圈I固定,线圈II置于天平托盘上。
当两线圈均无电流通过时,天平示数恰好为零。
下列说法正确的是()A.当天平示数为负时,两线圈电流方向相同B.当天平示数为正时,两线圈电流方向相同C.线圈I对线圈II的作用力大于线圈H对线圈I的作用力D.线圈I对线圈II的作用力与托盘对线圈II的作用力是一对相互作用力【解析】选A。
当两线圈电流方向相同时,表现为相互吸引,电流方向相反时,表现为相互排斥,故当天平示数为正时,两者相互排斥,电流方向相反,当天平示数为负时,两者相互吸引,电流方向相同,A正确B错误;线圈I对线圈II的作用力与线圈II对线圈I的作用力是一对相互作用力,等大反向,C错误;静止时,线圈II平衡,线圈I对线圈II的作用力与托盘对线圈H的作用力施力物体不同,受力物体相同,不满足相互作用力的条件,D错误。
【总结提升】本题的原理是两通电直导线间的相互作用规律:两条平行的通电直导线之间会通过磁场发生相互作用。
①电流方向相同时,将会吸引:②电流方向相反时,将会排斥。
3.如图所示,一个不计重力的带电粒子以v。
沿各图的虚线射入场中。
A中I是两条垂直纸平而的长直导线中等大反向的电流,虚线是两条导线连线的中垂线;B中+Q是两个位置固定的等量同种点电荷的电荷量,虚线是两点电荷连线的中垂线;C中I是圆环线圈中的电流,虚线过圆心且垂直圆环平面;D中是正交的匀强电场和匀强磁场,虚线垂直于电场和磁场方向,磁场方向垂直纸面向外。
2021年高考物理一轮复习 高考真题备选题库 第九章 电磁感应
2021年高考物理一轮复习高考真题备选题库第九章电磁感应1. (xx·上海高考)如图,匀强磁场垂直于软导线回路平面,由于磁场发生变化,回路变为圆形。
则该磁场( )A.逐渐增强,方向向外B.逐渐增强,方向向里C.逐渐减弱,方向向外D.逐渐减弱,方向向里解析:选CD 根据楞次定律可知,感应电流的磁场具有阻碍原磁通量变化的作用,回路变成圆形,说明面积在变大,根据增缩减扩的原理可知,线圈中的磁通量无论什么方向,只要减少即会发生此现象,故CD正确。
2.(xx·海南高考)如图,在一水平、固定的闭合导体圆环上方。
有一条形磁铁(N极朝上, S极朝下)由静止开始下落,磁铁从圆环中穿过且不与圆环接触,关于圆环中感应电流的方向(从上向下看),下列说法正确的是( ) A.总是顺时针B.总是逆时针C.先顺时针后逆时针 D.先逆时针后顺时针解析:选C 磁铁从圆环中穿过且不与圆环接触,则导体环中先是向上的磁通量增加,磁铁过中间以后,向上的磁通量减少,根据楞次定律,产生的感应电流先顺时针后逆时针,选项C正确。
3.(xx·全国卷Ⅰ)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化解析:选D 只形成闭合回路,回路中的磁通量不变化,不会产生感应电流,A、B、C错误;给线圈通电或断电瞬间,通过闭合回路的磁通量变化,会产生感应电流,能观察到电流表的变化,D正确。
4.(xx·全国卷)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。
一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。
2021高考物理(江苏专用)一轮课件:专题九 磁场 【KS5U 高考】
3
重力,则粒子在磁场中的运动时间变为 ( )
A. 1 Δt
2
B.2Δt
C. 1Δt
3
D.3Δt
解题导引
解析 粒子沿半径方向进入圆形磁场区域时,一定沿半径方向射出,如图。
粒子在匀强磁场中做匀速圆周运动时,洛仑兹力提供向心力,由qvB=mv2 得
考点二 磁场对运动电荷的作用 一、洛仑兹力、洛仑兹力的方向和大小 1.洛仑兹力:磁场对运动电荷的作用力叫洛仑兹力。 2.洛仑兹力的方向 (1)判定方法:左手定则 掌心——磁感线垂直穿入掌心; 四指——指向正电荷运动的方向或负电荷运动的反方向; 拇指——指向洛仑兹力的方向。 (2)方向特点:F⊥B,F⊥v,即F垂直于B和v所决定的平面。 3.洛仑兹力的大小 (1)v∥B时,洛仑兹力F=① 0 (θ=0°或180°)。 (2)v⊥B时,洛仑兹力F=② qvB (θ=90°)。
2.安培力作用下导体的平衡 通电导体棒在磁场中的平衡问题是一种常见的力学综合模型,该模型一般 由倾斜导轨、导体棒、电源和电阻等组成。这类题目的难点是题图具有 立体性,因此解题时一定要先把立体图转化成平面图,通过受力分析建立各 力的平衡关系,如图所示。
例2 如图所示,水平导轨间距为L=0.5 m,导轨电阻忽略不计;导体棒ab的 质量m=1 kg,电阻R0=0.9 Ω,与导轨接触良好;电源电动势E=10 V,内阻r=0.1 Ω,电阻R=4 Ω;外加匀强磁场的磁感应强度B=5 T,方向垂直于ab,与导轨平 面成夹角α=53°;ab与导轨间的动摩擦因数为μ=0.5(设最大静摩擦力等于滑 动摩擦力),定滑轮摩擦不计,线对ab的拉力为水平方向,重力加速度g=10 m/ s2,ab处于静止状态。已知sin 53°=0.8,cos 53°=0.6。求:
三年高考(20212021)高考物理试题分项版解析专题10磁场(含解析)
专题10 磁场【2021高考真题】1.某空间存在匀强磁场和匀强电场。
一个带电粒子(不计重力)以必然初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是A. 磁场和电场的方向B. 磁场和电场的强弱C. 粒子的电性和电量D. 粒子入射时的速度【来源】2021年全国普通高等学校招生统一考试物理(北京卷)【答案】C点睛:本题考查了带电粒子在复合场中的运动,实际上是考查了速度选择器的相关知识,注意当粒子的速度与磁场不平行时,才会受到洛伦兹力的作用,所以对电场和磁场的方向有要求的。
2.(多选)如图,纸面内有两条彼此垂直的长直绝缘导线L一、L2,L1中的电流方向向左,L2中的电流方向向上;L1的正上方有a、b两点,它们相对于L2对称。
整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B0,方向垂直于纸面向外。
已知a、b两点的磁感应强度大小别离为和,方向也垂直于纸面向外。
则()A. 流经L1的电流在b点产生的磁感应强度大小为B. 流经L1的电流在a点产生的磁感应强度大小为C. 流经L2的电流在b点产生的磁感应强度大小为D. 流经L2的电流在a点产生的磁感应强度大小为【来源】2021年普通高等学校招生全国统一考试物理(全国II卷)【答案】 AC可解得: ;故AC正确;故选AC点睛:磁场强度是矢量,对于此题来讲ab两点的磁场强度是由三个磁场的叠加形成,先按照右手定则判断导线在ab两点产生的磁场方向,在利用矢量叠加来求解即可。
3.(多选)如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。
将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。
下列说法正确的是()A. 开关闭合后的刹时,小磁针的N极朝垂直纸面向里的方向转动B. 开关闭归并维持一段时间后,小磁针的N极指向垂直纸面向里的方向C. 开关闭归并维持一段时间后,小磁针的N极指向垂直纸面向外的方向D. 开关闭归并维持一段时间再断开后的刹时,小磁针的N极朝垂直纸面向外的方向转动【来源】2021年全国普通高等学校招生统一考试物理(新课标I卷)【答案】 AD【解析】本题考查电磁感应、安培定则及其相关的知识点。
2021江苏新高考物理一轮复习讲义:第九章 专题强化九 带电粒子在复合场中运动的实例分析 (含答案)
专题强化九带电粒子在复合场中运动的实例分析专题解读1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现.2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力.针对性的专题训练,可以提高同学们解决难题、压轴题的信心.3.用到的知识有:动力学观点(牛顿运动定律)、运动学观点、能量观点(动能定理、能量守恒定律)、电场的观点(类平抛运动的规律)、磁场的观点(带电粒子在磁场中运动的规律).1.作用测量带电粒子质量和分离同位素的仪器. 2.原理(如图1所示)图1(1)加速电场:qU =12m v 2;(2)偏转磁场:q v B =m v 2r ,l =2r ;由以上两式可得r =1B 2mUq, m =qr 2B 22U ,q m =2U B 2r 2.例1 (2015·江苏卷·15改编)一台质谱仪的工作原理如图2所示,电荷量均为+q 、质量不同的离子飘入电压为U 0的加速电场,其初速度几乎为零.这些离子经加速后通过狭缝O 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场,最后打在底片上.已知放置底片的区域MN =L ,且OM =L .某次测量发现MN 中左侧23区域MQ 损坏,检测不到离子,但右侧13区域QN 仍能正常检测到离子.在适当调节加速电压后,原本打在MQ 的离子即可在QN 检测到.图2(1)求原本打在MN 中点P 的离子质量m ;(2)为使原本打在P 的离子能打在QN 区域,求加速电压U 的调节范围. 答案 (1)9qB 2L 232U 0 (2)100U 081≤U ≤16U 09解析 (1)离子在电场中加速: qU 0=12m v 2在磁场中做匀速圆周运动:q v B =m v 2r解得r =1B2mU 0q打在MN 中点P 的离子半径为r 0=34L ,代入解得m =9qB 2L 232U 0(2)由(1)知,U =16U 0r 29L 2离子打在Q 点时r =56L ,U =100U 081离子打在N 点时r =L ,U =16U 09,则电压的范围100U 081≤U ≤16U 09.变式1(2020·山东济南市模拟)质谱仪可利用电场和磁场将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图3所示,虚线上方有两条半径分别为R和r(R>r)的半圆形边界,分别与虚线相交于A、B、C、D点,圆心均为虚线上的O点,C、D间有一荧光屏.虚线上方区域处在垂直纸面向外的匀强磁场中,磁感应强度大小为B.虚线下方有一电压可调的加速电场,离子源发出的某一正离子由静止开始经电场加速后,从AB的中点垂直进入磁场,离子打在边界上时会被吸收.当加速电压为U时,离子恰能打在荧光屏的中点.不计离子的重力及电、磁场的边缘效应.求:图3(1)离子的比荷;(2)离子在磁场中运动的时间;(3)离子能打在荧光屏上的加速电压范围.答案 (1)8UB 2(R +r )2 (2)πB (R +r )28U (3)U (R +3r )24(R +r )2≤U ′≤U (3R +r )24(R +r )2解析 (1)由题意知,加速电压为U 时,离子在磁场区域做匀速圆周运动的半径r 0=R +r2洛伦兹力提供向心力,q v B =m v 2r 0在电场中加速,有qU =12m v 2解得:q m =8UB 2(R +r )2(2)离子在磁场中运动的周期为T =2πmqB在磁场中运动的时间t =T2解得:t =πB (R +r )28U(3)由(1)中关系,知加速电压和离子轨迹半径之间的关系为U ′=4U(R +r )2r ′2 若离子恰好打在荧光屏上的C 点,轨道半径 r C =R +3r 4U C =U (R +3r )24(R +r )2若离子恰好打在荧光屏上的D 点,轨道半径r D =3R +r 4U D =U (3R +r )24(R +r )2即离子能打在荧光屏上的加速电压范围: U (R +3r )24(R +r )2≤U ′≤U (3R +r )24(R +r )2.1.构造:如图4所示,D 1、D 2是半圆形金属盒,D 形盒处于匀强磁场中,D 形盒的缝隙处接交流电源.图42.原理:交流电周期和粒子做圆周运动的周期相等,使粒子每经过一次D 形盒缝隙,粒子被加速一次. 3.最大动能:由q v m B =m v m 2R 、E km =12m v m 2得E km =q 2B 2R 22m,粒子获得的最大动能由磁感应强度B 和盒半径R 决定,与加速电压无关. 4.总时间:粒子在磁场中运动一个周期,被电场加速两次,每次增加动能qU ,加速次数n =E kmqU ,粒子在磁场中运动的总时间t =n 2T =E km 2qU ·2πm qB =πBR 22U.例2 (2016·江苏卷·15改编)回旋加速器的工作原理如图5甲所示,置于真空中的D 形金属盒半径为R ,两盒间狭缝的间距为d ,磁感应强度为B 的匀强磁场与盒面垂直,被加速粒子的质量为m ,电荷量为+q ,加在狭缝间的交变电压如图乙所示,电压值的大小为U 0.周期T =2πm qB .一束该种粒子在t =0~T2时间内从A 处均匀地飘入狭缝,其初速度视为零.现考虑粒子在狭缝中的运动时间,假设能够出射的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用.求:图5(1)出射粒子的动能E m ;(2)粒子从飘入狭缝至动能达到E m 所需的总时间t 0. 答案 (1)q 2B 2R 22m (2)πBR 2+2BRd 2U 0-πm qB解析 (1)粒子运动半径为R 时 q v B =m v 2R且E m =12m v 2解得E m =q 2B 2R 22m(2)粒子被加速n 次达到动能E m ,则E m =nqU 0粒子在狭缝间做匀加速运动,设n 次经过狭缝的总时间为Δt ,加速度a =qU 0md匀加速直线运动nd =12a ·Δt 2由t 0=(n -1)·T2+Δt ,解得t 0=πBR 2+2BRd 2U 0-πm qB.变式2 (多选)(2019·山东烟台市第一学期期末)如图6所示是回旋加速器的示意图,其核心部分是两个D 形金属盒,分别与高频交流电源连接,两个D 形金属盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两个D 形金属盒处于垂直于盒底的匀强磁场中,下列说法中正确的是( )图6A .加速电压越大,粒子最终射出时获得的动能就越大B .粒子射出时的最大动能与加速电压无关,与D 形金属盒的半径和磁感应强度有关C.若增大加速电压,粒子在金属盒间的加速次数将减少,在回旋加速器中运动的时间将减小D .粒子第5次被加速前、后的轨道半径之比为5∶ 6答案 BC解析 粒子在磁场中做圆周运动,由牛顿第二定律得:q v m B =m v m 2R ,解得:v m =qBR m,则粒子获得的最大动能为:E km =12m v m 2=q 2B 2R 22m,知粒子获得的最大动能与加速电压无关,与D 形金属盒的半径R 和磁感应强度B 有关,故A 错误,B 正确;对粒子,由动能定理得:nqU =q 2B 2R 22m ,加速次数:n =qB 2R 22mU,增大加速电压U ,粒子在金属盒间的加速次数将减少,粒子在回旋加速器中运动的时间:t =n 2T =n πm qB 将减小,故C 正确;对粒子,由动能定理得:nqU =12m v n 2,解得v n =2nqU m ,粒子在磁场中做圆周运动,由牛顿第二定律得:q v n B =m v n 2r n ,解得:r n =1B2nmU q,则粒子第5次被加速前、后的轨道半径之比为:r 4r 5=45,故D 错误.共同特点:当带电粒子(不计重力)在复合场中做匀速直线运动时,q v B =qE .1.速度选择器图7(1)平行板中电场强度E 和磁感应强度B 互相垂直.(如图7)(2)带电粒子能够沿直线匀速通过速度选择器的条件是q v B =qE ,即v =E B. (3)速度选择器只能选择粒子的速度,不能选择粒子的电性、电荷量、质量.(4)速度选择器具有单向性.例3 如图8所示是一速度选择器,当粒子速度满足v 0=E B时,粒子沿图中虚线水平射出;若某一粒子以速度v 射入该速度选择器后,运动轨迹为图中实线,则关于该粒子的说法正确的是( )图8A .粒子射入的速度一定是v >E BB .粒子射入的速度可能是v <E BC .粒子射出时的速度一定大于射入速度D .粒子射出时的速度一定小于射入速度答案 B2.磁流体发电机(1)原理:如图9所示,等离子体喷入磁场,正、负离子在洛伦兹力的作用下发生偏转而聚集在B 、A 板上,产生电势差,它可以把离子的动能通过磁场转化为电能.图9(2)电源正、负极判断:根据左手定则可判断出图中的B 是发电机的正极.(3)电源电动势U :设A 、B 平行金属板的面积为S ,两极板间的距离为l ,磁场磁感应强度为B ,等离子体的电阻率为ρ,喷入气体的速度为v ,板外电阻为R .当正、负离子所受电场力和洛伦兹力平衡时,两极板间达到的最大电势差为U (即电源电动势),则q U l=q v B ,即U =Bl v . (4)电源内阻:r =ρl S. (5)回路电流:I =U r +R. 例4 (2020·福建三明市质检)磁流体发电机的原理如图10所示.将一束等离子体连续以速度v 垂直于磁场方向喷入磁感应强度大小为B 的匀强磁场中,可在相距为d 、面积为S 的两平行金属板间产生电压.现把上、下板和电阻R 连接,上、下板等效为直流电源的两极.等离子体稳定时在两极板间均匀分布,电阻率为ρ.忽略边缘效应及离子的重力,下列说法正确的是( )图10A .上板为正极,a 、b 两端电压U =Bd vB .上板为负极,a 、b 两端电压U =Bd 2v ρS RS +ρdC .上板为正极,a 、b 两端电压U =Bd v RS RS +ρdD .上板为负极,a 、b 两端电压U =Bd v RS Rd +ρS答案 C解析 根据左手定则可知,等离子体射入两极板之间时,正离子偏向a 板,负离子偏向b 板,即上板为正极;稳定时满足U ′dq =Bq v ,解得U ′=Bd v ;根据电阻定律可知两极板间的电阻为r =ρd S ,根据闭合电路欧姆定律:I =U ′R +r ,a 、b 两端电压U =IR ,联立解得U =Bd v RS RS +ρd,故选C.3.电磁流量计(1)流量(Q )的定义:单位时间流过导管某一截面的导电液体的体积.(2)公式:Q =S v ;S 为导管的横截面积,v 是导电液体的流速.(3)导电液体的流速(v )的计算如图11所示,一圆柱形导管直径为d ,用非磁性材料制成,其中有可以导电的液体向右流动.导电液体中的自由电荷(正、负离子)在洛伦兹力作用下发生偏转,使a 、b 间出现电势差,当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差(U )达到最大,由q U d=q v B ,可得v =U Bd.图11(4)流量的表达式:Q=S v=πd24·UBd=πdU4B.(5)电势高低的判断:根据左手定则可得φa>φb.例5 (多选)(2019·江苏扬州市一模)暗访组在某化工厂的排污管末端安装了如图12所示的流量计,测量管由绝缘材料制成,其长为L 、直径为D ,左右两端开口,匀强磁场方向竖直向下,在前后两个内侧面a 、c 固定有金属板作为电极.污水充满管口从左向右流经测量管时,a 、c 两端电压为U ,显示仪器显示污水流量为Q (单位时间内排出的污水体积).则( )图12A .a 侧电势比c 侧电势高B .污水中离子浓度越高,显示仪器的示数将越大C .若污水从右侧流入测量管,显示器显示为负值,将磁场反向则显示为正值D .污水流量Q 与U 成正比,与L 、D 无关答案 AC解析 根据左手定则可知,正离子向a 侧偏转,负离子向c 侧偏转,则a 侧电势比c 侧电势高,选项A 正确;根据q v B =q U D可得U =BD v ,可知显示仪器的示数与污水中离子浓度无关,选项B 错误;若污水从右侧流入测量管,则受磁场力使得正离子偏向c 侧,负离子偏向a 侧,则c 端电势高,显示器显示为负值,将磁场反向,则受磁场力使得正离子偏向a 侧,负离子偏向c 侧,则显示为正值,选项C 正确;污水流量Q =S v =14πD 2·U BD =πDU 4B,则污水流量Q 与U 成正比,与D 有关,与L 无关,选项D 错误.4.霍尔效应的原理和分析(1)定义:高为h 、宽为d 的导体(自由电荷是电子或正电荷)置于匀强磁场B 中,当电流通过导体时,在导体的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.图13(2)电势高低的判断:如图13,导体中的电流I 向右时,根据左手定则可得,若自由电荷是电子,则下表面A ′的电势高.若自由电荷是正电荷,则下表面A ′的电势低.(3)霍尔电压的计算:导体中的自由电荷(电荷量为q )在洛伦兹力作用下偏转,A 、A ′间出现电势差,当自由电荷所受电场力和洛伦兹力平衡时,A 、A ′间的电势差(U )就保持稳定,由q v B =q U h ,I =nq v S ,S =hd ,联立得U =BI nqd =k BI d ,k =1nq称为霍尔系数.例6(多选)(2019·江苏省四星级高中一调)常见的半导体材料分为P型半导体和N型半导体,P型半导体中导电载流子是空穴(看作带正电),N型半导体中导电载流子是电子,利用如图14所示的方法可以判断半导体材料的类型并测得半导体中单位体积内的载流子数.现测得一块横截面为矩形的半导体的宽为b,厚为d,并加有与侧面垂直的匀强磁场B,当通以图示方向电流I时,在半导体上、下表面间用电压表可测得电压为U,载流子的电荷量为e,则下列判断正确的是()图14A .若上表面电势高,则为P 型半导体B .若下表面电势高,则为P 型半导体C .该半导体单位体积内的载流子数为1edbD .该半导体单位体积内的载流子数为BI eUb答案 AD解析 若为P 型半导体,则载流子带正电,由左手定则知载流子向上偏,上表面电势高;若为N 型半导体,则载流子带负电,由左手定则知载流子向上偏,上表面电势低,故A 正确,B 错误;当载流子受到的电场力和洛伦兹力平衡时,即q v B =q U d ,即v =U Bd,由电流微观表达式I =ne v S ,即I =ne ·U Bd ·bd ,解得:n =IB eUb,故C 错误,D 正确.1.(质谱仪)(2019·江苏南京市六校联考)如图15所示为质谱仪测定带电粒子质量的装置示意图.速度选择器(也称滤速器)中场强E 的方向竖直向下,磁感应强度B 1的方向垂直纸面向里,分离器中磁感应强度B 2的方向垂直纸面向外.在S 处有甲、乙、丙、丁四个一价正离子垂直于E 和B 1入射到速度选择器中,若m 甲=m 乙<m 丙=m 丁,v 甲<v 乙=v 丙<v 丁,在不计重力的情况下,则打在P 1、P 2、P 3、P 4四点的离子分别是( )图15A .甲、乙、丙、丁B .甲、丁、乙、丙C .丙、丁、乙、甲D .甲、乙、丁、丙答案 B解析 四个离子中有两个离子通过了速度选择器,因只有速度满足v =E B才能通过速度选择器,所以通过速度选择器进入磁场的离子是乙和丙.由牛顿第二定律得:q v B =m v 2R,解得:R =m v qB,乙的质量小于丙的质量,所以乙的半径小于丙的半径,则乙打在P 3点,丙打在P 4点.甲的速度小于乙的速度,即小于E B,洛伦兹力小于电场力,离子向下偏转,打在P 1点.丁的速度大于丙的速度,即大于E B,洛伦兹力大于电场力,离子向上偏转,打在P 2点.故选B. 2.(回旋加速器)(2019·江苏南京市三模)如图16所示为回旋加速器示意图,利用回旋加速器对21H 粒子进行加速,此时D 形盒中的磁场的磁感应强度大小为B ,D 形盒缝隙间电场变化周期为T ,加速电压为U .忽略相对论效应和粒子在D 形盒缝隙间的运动时间,下列说法正确的是( )图16A .保持B 、U 和T 不变,该回旋加速器可以加速质子B .只增大加速电压U ,21H 粒子获得的最大动能增大C .只增大加速电压U ,21H 粒子在回旋加速器中运动的时间变短D .回旋加速器只能加速带正电的粒子,不能加速带负电的粒子答案 C解析 D 形盒缝隙间电场变化周期T =2πm qB,此加速器对21H 粒子进行加速,所以为了能加速质子,应进行参数调节,改变B 和T ,A 错误;粒子离开回旋加速器的最大速度v =qBr m,所以只增大加速电压U ,21H 粒子获得的最大动能不会增大,B 错误;粒子在回旋加速器回旋一周,增加的动能为2qU ,在回旋加速器中运动时间由回旋次数决定,可得n =qB 2r 24mU,所以粒子运动总时间t =nT =qB 2r 24mU ·2πm qB =πBr 22U,只增大加速电压U ,21H 粒子在回旋加速器中回旋的次数会变小,运动时间会变短,C 正确;回旋加速器既能加速带正电的粒子,也能加速带负电的粒子,D 错误.3.(霍尔元件)(2019·江苏通州、海门、启东三县期末)利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域.如图17是霍尔元件的工作原理示意图,磁感应强度B 垂直于霍尔元件的表面向下,通入图示方向的电流I ,C 、D 两侧面会形成电势差U CD .下列说法中正确的是( )图17A.霍尔元件的上、下表面的距离越大,U CD越大B.若霍尔元件的载流子是自由电子,则电势差U CD<0C.仅增大电流I时,电势差U CD不变D.如果仅将霍尔元件改为电解质溶液,其他条件不变,电势差U CD将变大答案 B解析若载流子为自由电子,根据左手定则,电子向C侧面偏转,C表面带负电,D表面带正电,所以D表面的电势高,即U CD<0,故B正确;载流子在电场力和洛伦兹力作用下处于平衡,设霍尔元件的长、宽、高分别为a、b、c,有q Ub=q v B,I=nq v S=nq v bc,则U=BInqc,霍尔元件上、下表面的距离越大,U CD越小;仅增大电流I时,电势差U CD增大,故A、C 错误;如果仅将霍尔元件改为电解质溶液,其他条件不变,正、负离子都向一个方向偏转,电势差U CD将变小或者变为零,故D错误.4.(电磁流量计)为监测某化工厂的污水排放量,技术人员在该厂的排污管末端安装了如图18所示的长方体流量计.该装置由绝缘材料制成,其长、宽、高分别为a、b、c,左右两端开口.在垂直于上下底面方向加一匀强磁场,前后两个内侧面分别固定有金属板作为电极.污水充满管口从左向右流经该装置时,接在M、N两端间的电压表将显示两个电极间的电压U.若用Q表示污水流量(单位时间内排出的污水体积),下列说法中正确的是()图18A .M 端的电势比N 端的高B .电压表的示数U 与a 和b 均成正比,与c 无关C .电压表的示数U 与污水的流量Q 成正比D .若污水中正、负离子数相同,则电压表的示数为0答案 C解析 根据左手定则知,正离子所受的洛伦兹力方向向里,则向里偏转,N 端带正电,M 端带负电,则M 端的电势比N 端电势低,故A 错误; 最终离子在电场力和洛伦兹力作用下平衡,有:q v B =q U b,解得U =v Bb ,电压表的示数U 与b 成正比,与污水中正、负离子数无关,故B 、D 错误;因v =U Bb ,则流量Q =v bc =Uc B ,因此U =BQ c,所以电压表的示数U 与污水流量Q 成正比,故C 正确.1.在如图1所示的平行板器件中,电场强度E 和磁感应强度B 相互垂直.一带电粒子(重力不计)从左端以速度v 沿虚线射入后做直线运动,则该粒子( )图1A .一定带正电B .速度v =E BC .若速度v >E B,粒子一定不能从板间射出 D .若此粒子从右端沿虚线方向进入,仍做直线运动答案 B解析 粒子带正电和负电均可,选项A 错误;由洛伦兹力等于电场力,可得q v B =qE ,解得速度v =E B ,选项B 正确;若速度v >E B,粒子可能会从板间射出,选项C 错误;若此粒子从右端沿虚线方向进入,所受电场力和洛伦兹力方向相同,不能做直线运动,选项D 错误.2.(多选)(2020·陕西宝鸡市质检)医用回旋加速器的核心部分是两个D 形金属盒,如图2所示,两金属盒置于匀强磁场中,并分别与高频电源相连.现分别加速氘核(21H)和氦核(42He)并通过线束引出加速器.下列说法中正确的是( )图2A .加速两种粒子的高频电源的频率相同B .两种粒子获得的最大动能相同C .两种粒子在D 形盒中运动的周期相同D .增大高频电源的电压可增大粒子的最大动能答案 AC解析 回旋加速器加速粒子时,粒子在磁场中运动的周期应和交流电的周期相同.带电粒子在磁场中运动的周期T =2πm qB ,两粒子的比荷q m相等,所以周期相同,故加速两种粒子的高频电源的频率也相同,A 、C 正确; 根据q v B =m v 2R ,得v =qBR m ,最大动能E k =12m v 2=q 2B 2R 22m,与加速电压无关,两粒子的比荷q m相等,电荷量q 不相等,所以最大动能不等,故B 、D 错误. 3.(多选)如图3所示是磁流体发电机的示意图,两平行金属板P 、Q 之间有一个很强的磁场.一束等离子体(即高温下电离的气体,含有大量正、负带电离子)沿垂直于磁场的方向喷入磁场.把P 、Q 与电阻R 相连接.下列说法正确的是( )图3A .Q 板的电势高于P 板的电势B .R 中有由a 向b 方向的电流C .若只改变磁场强弱,R 中电流保持不变D .若只增大离子入射速度,R 中电流增大答案 BD解析 等离子体进入磁场,根据左手定则,正离子向上偏,打在上极板上,负离子向下偏,打在下极板上,所以上极板带正电,下极板带负电,则P 板的电势高于Q 板的电势,流过电阻R 的电流方向由a 到b ,故A 错误,B 正确;依据电场力等于洛伦兹力,即q U d=q v B ,则有U =Bd v ,再由闭合电路欧姆定律I =U R +r =Bd v R +r,电流与磁感应强度成正比,故C 错误;由上分析可知,若只增大离子的入射速度,R 中电流会增大,故D 正确.4.(多选)利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域.如图4所示是霍尔元件的工作原理示意图,磁感应强度B 垂直于霍尔元件的工作面向下,当元件中通入图示方向的电流I 时,C 、D 两侧面会形成一定的电势差U .下列说法中正确的是( )图4A .若C 侧面电势高于D 侧面,则元件中形成电流的载流子带负电B .若C 侧面电势高于D 侧面,则元件中形成电流的载流子带正电C .在地球南、北极上方测地磁场强弱时,元件工作面竖直放置时U 最大D .在地球赤道上方测地磁场强弱时,元件工作面竖直放置且与地球经线垂直时,U 最大 答案 AD解析 若元件的载流子带负电,由左手定则可知,载流子受到洛伦兹力向D 侧面偏,则C 侧面的电势高于D 侧面的电势,故A 正确;若元件的载流子带正电,由左手定则可知,载流子受到洛伦兹力向D 侧面偏,则D 侧面的电势高于C 侧面的电势,故B 错误;在测地球南、北极上方的地磁场强弱时,因磁场方向竖直,则元件的工作面保持水平时U 最大,故C 错误;地球赤道上方的地磁场方向水平,在测地球赤道上方的地磁场强弱时,元件的工作面应保持竖直,当与地球经线垂直时U 最大,故D 正确.5.(2019·山西临汾市二轮复习模拟)容器A 中装有大量的质量、电荷量不同但均带正电的粒子,粒子从容器下方的小孔S 1不断飘入加速电场(初速度可视为零)做直线运动,通过小孔S 2后从两平行板中央沿垂直电场方向射入偏转电场.粒子通过平行板后沿垂直磁场方向进入磁感应强度为B 、方向垂直纸面向里的匀强磁场区域,最后打在感光片上,如图5所示.已知加速电场中S 1、S 2间的加速电压为U ,偏转电场极板长为L ,两板间距也为L ,板间匀强电场强度E =2U L,方向水平向左(忽略板间外的电场),平行板f 的下端与磁场边界ab 相交于点P ,在边界ab 上实线处固定放置感光片.测得从容器A 中逸出的所有粒子均打在感光片PQ 之间,且Q 距P 的长度为3L ,不考虑粒子所受重力与粒子间的相互作用,求:图5(1)粒子射入磁场时,其速度方向与边界ab 间的夹角;(2)射到感光片Q 处的粒子的比荷(电荷量q 与质量m 之比);(3)粒子在磁场中运动的最短时间.答案 (1)45° (2)U 2L 2B 2 (3)3πBL 216U解析 (1)设质量为m 、电荷量为q 的粒子通过孔S 2的速度为v 0,则:qU =12m v 02 粒子在平行板e 、f 间做类平抛运动:L =v 0t ,v x =qE mt , tan θ=v 0v x联立可得:tan θ=1,则θ=45°,故其速度方向与边界ab 间的夹角为θ=45°.(2)粒子在偏转电场中沿场强方向的位移x =12v x t =L 2,故粒子从e 板下端与水平方向成45°角斜向下射入匀强磁场,如图所示,设质量为m 、电荷量为q 的粒子射入磁场时的速度为v ,做圆周运动的轨道半径为r ,则v =v 02+v x 2=2v 0=2qU m 由几何关系:r 2+r 2=(4L )2则r =22Lq v B =m v 2r ,则r =m v qB联立解得:q m =U 2L 2B 2.(3)设粒子在磁场中运动的时间为t ,偏转角为α,则t =αm qB ,r =m v qB =2BmU q 联立可得:t =αBr 24U因为粒子在磁场中运动的偏转角α=32π,所以粒子打在P 处时间最短,此时半径为r ′, 由几何关系知:r ′2+r ′2=L 2,则r ′=22L 联立可得:t min =32πB L 224U =3πBL 216U.。
2021版一轮复习名师导学物理文档:专题突破(九) 磁场中的“动态问题”和“磁聚焦”问题 Word
姓名,年级:时间:专题突破(九) 磁场中的“动态问题”和“磁聚焦”问题对应学生用书p185一、磁场中的动态圆在本章中,经常会遇到这样两类问题,第一类是同样的粒子从磁场边界(如左边界)上某一点射入匀强磁场中时,磁场右边无限宽广,入射方向不变,但速度大小(或磁场磁感应强度大小)发生改变,根据qvB=错误!可知R=错误!,在v或B发生改变时,半径会发生变化,但由于入射方向不变,根据半径跟速度垂直知粒子轨迹的圆心都落在过入射点与入射速度垂直的直线上,相当于圆心在同一直线上的圆的放缩,如图甲,它们从磁场左边界射出时,速度方向互相平行,在磁场中转过的角度相等.第二类是粒子入射速度大小不变,但方向发生变化,同时磁感应强度不变,可知这种情况下,粒子的轨迹半径不变,圆心位于以入射点为圆心,以轨迹半径为半径的半圆上,相当于一个固定大小的轨迹圆绕着入射点在旋转,如图乙.1 如图,边长ab=1.5L、bc=3L的矩形区域内存在着垂直于区域平面向里的匀强磁场,在ad边中点O处有一粒子源,可在区域平面内沿各方向发射速度大小相等的同种带电粒子.已知沿Od方向射入的粒子在磁场中运动的轨道半径为L,且经时间t0从边界cd离开磁场.不计粒子的重力和粒子间的相互作用,下列说法正确的是()A.粒子带负电B.粒子可能从c点射出C.粒子在磁场中做匀速圆周运动的周期为4tD.粒子在磁场中运动的最长时间为2t[解析]粒子运动轨迹如下图所示:根据左手定则可知粒子带正电,故A不符合题意;当粒子轨迹与dc相切时,设切点与d点距离为x,由几何关系得x2+错误!错误!=L2,解得x=错误!L<1。
5L,则粒子不会达到c点,故B不符合题意;设沿Od方向射入的粒子轨迹对应的圆心角为θ,sinθ=错误!,解得θ=60°。
根据题意得错误!T=t0,解得T=6t0,故C不符合题意;由几何关系可以得到,在磁场中运动的时间最长,如下图所示,Ob=错误!=错误!L,设此时轨迹的圆心角为α,由几何关系得sin 错误!=错误!,解得α=120°,则运动时间为t=错误!T=2t0,故D符合题意.[答案] D2 (多选)如图所示,等腰直角三角形abc区域内(包含边界)有垂直纸面向外的匀强磁场,磁感应强度的大小为B,在bc的中点O处有一粒子源,可沿与ba平行的方向发射大量速率不同的同种粒子,这些粒子带负电,质量为m,电荷量为q,已知这些粒子都能从ab边离开abc区域,ab=2l,不考虑粒子的重力及粒子间的相互作用.关于这些粒子,下列说法正确的是()A.速度的最大值为错误!B.速度的最小值为错误!C.在磁场中运动的最短时间为错误!D.在磁场中运动的最长时间为错误![解析] 粒子从ab边离开磁场时的临界运动轨迹如图所示:由几何知识可知:r1=错误!,以及错误!+[2L-(r2-L)]cos 45°=r2,解得:r2=错误!l,粒子在磁场中做圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:qvB=m错误!,解得:v=错误!,故粒子的最大速度为v max=错误!=错误!,最小速度v min=错误!=错误!,故A正确,B错误.由粒子从ab边离开磁场区域的临界运动轨迹可知,粒子转过的最大圆心角:θmax=180°,最小圆心角:θmin〉45°,粒子做圆周运动的周期:T=错误!,则粒子在磁场中运动的最短时间t min=错误!T〉错误!;最长时间t max=错误!T=错误!;故C错误,D正确.[答案]AD二、磁聚焦、磁发散问题一束带电粒子以平行相等的初速度垂直射入圆形匀强磁场,若粒子的轨迹半径等于磁场圆的半径,这些粒子会经过与初速度方向平行的磁场圆切线的一个切点,如图甲带负电的粒子“聚焦”于A点,若速度大小相等的一束带正电粒子从圆形匀强磁场边界上同一点沿不同方向垂直射入圆形匀强磁场,若粒子的轨迹半径等于圆形磁场的半径,所有粒子会平行地离开磁场且与磁场圆在该点的切线平行,如图乙(磁发散).3 如图所示,O′PQ是关于y轴对称的四分之一圆,在PQNM区域有均匀辐向电场,PQ与MN间的电压为U。
江苏专版2021高考物理一轮复习第八章磁场
江苏专版2021高考物理一轮复习第八章磁场第八章磁场第1节磁场的描述\uuuu磁场对电流的影响(1)磁场中某点磁感应强度的大小,跟放在该点的试探电流元的情况无关。
(√)(2)磁场中某点磁感应强度的方向,跟放在该点的试探电流元所受磁场力的方向一致。
(×)(3)当放置在垂直磁场中的线圈面积减小时,通过线圈的磁通量可能会增加。
(√) (4)小磁针的N极所指示的方向就是磁场的方向。
在同一张图片中,磁感应线越密集,磁场越强。
(√)(6)将通电导线放入磁场中,若不受安培力,说明该处磁感应强度为零。
(×)(7)安培力可能做正功,也可能做负功。
(√)1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针偏转,这被称为电流的磁效应。
1突破点(一)磁感应强度的理解1.理解磁感应强度的三点注意事项(1)磁感应强度由磁场本身决定,因此根据定义公式B=不能认为B与f成正比,与IL成反比。
(2)测量磁感应强度时小段通电导线必须垂直磁场放入,如果平行磁场放入,则所受安培力为零,但不能说该点的磁感应强度为零。
(3)磁感应强度是一个矢量,其方向是放入其中的小磁针的N极的力方向,也是小磁针自由旋转静止时N极的方向。
2.磁感应强度b与电场强度e的比较Fil物理意义定义公式磁感应强度B描述磁场强度E描述电场强度FB的物理量=(L垂直于B)il磁感应线的切线方向,小磁针N极的受力方向(静止时N极指向的方向)由磁场决定,与电流元件无关,组合磁感应强度等于每个磁场的磁感应强度矢量,Fe=q为电场线的切线方向,电场的叠加由电场决定,电场与试验电荷无关。
电场强度等于每个电场的电场强度矢量和地磁场的特征(1)在地理两极附近磁场最强,赤道处磁场最弱。
(2)地磁场的北极在地理南极附近,地磁场的南极在地理北极附近。
(3)在赤道平面(地磁场的中性面)附近,距离地球表面相等的各点,地磁场的强弱程度相同,且方向水平。
[练习所有问题]下列关于磁场或电场的说法正确的是________。
word版2021年高考江苏卷物理试题全解全析
2021年普通高等学校统一招生考试理科综合(江苏卷)物理试题解析一、单项选择题:本题共5小题,每小题3分,共计15分。
每小题只有一个....选项符合题意。
1.如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中。
在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B 。
在此过程中,线圈中产生的感应电动势为A .22Ba t∆ B .22nBa t ∆ C .2nBa t ∆ D .22nBa t ∆ 1.【答案】B【考点】法拉第电磁感应定律【解析】当磁场增强时线圈中产生感生电动势:212B B E n n S n a t t t ∆ϕ∆∆∆∆,B 项正确 (2021年 江苏卷)2.已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为A .3. 5 km/ sB .5. 0 km/ sC .17. 7 km/ sD .35. 2 km/ s2.【答案】A 【考点】第一宇宙速度 万有引力 牛顿第二定律 【解析】 航天器在星球表面飞行的速度即其第一宇宙速度22GMmmv R R 解得GM v R所以R v M v M R 火火地地地火117.9/ 3.5/55v v km s km s 火地 A 项正确(2021年 江苏卷)3.远距离输电的原理图如图所示,升压变压器原、副线圈的匝数分别为n 1、n 2,电压分别为U 1、U 2,电流分别为I 1、I 2,输电线上的电阻为R 。
变压器为理想变压器,则下列关系式中正确的是 A .1122I n I n = B .22U I R= C .2112I U I R = D .1122I U I U =3.【答案】D【考点】远程输电 变压器 【解析】根据变压器的变压原理1221I n I n ,A 项错误;2R U I R ,因为R U U >,B 项错误;11U I 为电路输入的总功率,22R I 为电线上损耗的功率,2112U R I I >,C 项错误,D 项正确。
历年(2021-2023)全国高考物理真题分项(磁场)汇编(附答案)
历年(2021-2023)全国高考物理真题分项(磁场)汇编磁现象和安培力.左半部分垂直纸面向外,右半部分垂直纸面向里C.2BIl),直导线MN被两等长且平行的绝缘轻绳悬挂于水平轴所在区域存在方向垂直指向OO′的磁场,与OO′距离相等位置的磁感应强度大小相等且不随时间变化,其截面图如图(b)所示。
导线通以电流I,静止后,悬线偏离竖直方向的夹角为θ。
下列说法正确的是()A.当导线静止在图(a)右侧位置时,导线中电流方向由N指向MB.电流I增大,静止后,导线对悬线的拉力不变C.tanθ与电流I成正比D.sinθ与电流I成正比4.(2022·浙江·统考高考真题)利用如图所示装置探究匀强磁场中影响通电导线受力的因素,导线垂直匀强磁场方向放置。
先保持导线通电部分的长度L不变,改变电流I的大小,然后保持电流I不变,改变导线通电部分的长度L,得到导线受到的安培力F分别与I和L的关系图象,则正确的是( )A.B.C.D.p的软导线两端固定,固定点的距离为2L,导线通有电流5.(2021·江苏·高考真题)在光滑桌面上将长为LI,处于磁感应强度大小为B、方向竖直向下的匀强磁场中,导线中的张力为( )A .BILB .2BILC .BIL pD .2BILp 6.(2021·广东·高考真题)截面为正方形的绝缘弹性长管中心有一固定长直导线,长管外表面固定着对称分布的四根平行长直导线,若中心直导线通入电流1I ,四根平行直导线均通入电流2I ,12I I ?,电流方向如图所示,下列截面图中可能正确表示通电后长管发生形变的是( )A .B .C .D .7.(2021·全国·高考真题)两足够长直导线均折成直角,按图示方式放置在同一平面内,EO 与'O Q 在一条直线上,'PO 与OF 在一条直线上,两导线相互绝缘,通有相等的电流I ,电流方向如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题九磁场备考篇【考情探究】课标解读考情分析备考指导考点内容磁场、安培力1.认识磁场。
了解磁感应强度,会用磁感线描述磁场。
2.知道磁通量。
3.认识安培力。
能判断安培力的方向,会计算安培力的大小。
由近几年考情分析可见,本专题主要考查带电粒子在磁场和复合场中的运动,常以现代科技中使用的仪器为背景,如质谱仪、回旋加速器等。
一般每年考两道题,一道为选择题,一道为计算题,计算题多为压轴题,难度较大。
对考生的分析推理能力,特别是对应用数学知识解决物理问题的能力有较高要求,主要考查考生的科学推理和模型建构素养。
复习过程中,首先要打牢基础,然后针对高考命题规律,熟练掌握高考的热点问题,如带电粒子在有界磁场中的运动、带电粒子在复合场中的运动、电磁场知识在现代科技中的应用等。
从思想方法和能力培养上,重点是培养应用数学方法解决物理问题的思想,学会找临界状态,由临界条件分析解决问题等等。
磁场对运动电荷的作用1.认识洛仑兹力。
能判断洛仑兹力的方向,会计算洛仑兹力的大小。
2.能用洛仑兹力分析带电粒子在匀强磁场中的圆周运动带电粒子在复合场中的运动了解带电粒子在匀强磁场中的偏转及其应用。
【真题探秘】基础篇【基础集训】考点一磁场、安培力1.关于磁感应强度,下列说法中错误的是()A.磁感应强度是描述磁场强弱的物理量,是矢量B.磁感应强度的方向跟产生磁场的电流方向有关C.一通电导线在磁场中某处所受安培力大,该处的磁感应强度就大D.磁感线的切线方向表示磁场的方向,疏密表示磁感应强度的大小1.答案C2.(2019江苏苏州高二月考,3)如图所示,三根通电长直导线P、Q、R互相平行,通过正三角形的三个顶点,三条导线通入大小相等,方向垂直纸面向里的电流。
通电直导线产生磁场的磁感应强度B=kI/r,I为通电导线的电流大小,r为距通电导线的垂直距离,k为常数。
则R受到的安培力的方向是()A.垂直于R,指向y轴负方向B.垂直于R,指向y轴正方向C.垂直于R,指向x轴正方向D.垂直于R,指向x轴负方向2.答案A考点二磁场对运动电荷的作用3.如图是阴极射线管的示意图,阴极射线管的两个电极接到高压电源上时,阴极会发射电子。
电子在电场中沿直线飞向阳极形成电子束。
将条形磁铁的磁极靠近阴极射线管时,电子束发生偏转;将条形磁铁撤去,电子束不再发生偏转。
上述实验现象能说明()A.电子束周围存在电场B.电流是电荷定向运动形成的C.磁场对静止电荷没有力的作用D.磁场对运动电荷有力的作用3.答案D4.电子以速度v0垂直进入磁感应强度为B的匀强磁场中,则()A.磁场对电子的作用力可能做功B.磁场对电子的作用力始终不变C.电子的动能始终不变D.电子的动量始终不变4.答案C考点三带电粒子在复合场中的运动5.(2020届江苏镇江月考,5)如图所示,真空中有沿水平方向垂直于纸面向里的匀强磁场,磁感应强度为B,还有方向竖直向上的匀强电场,场强为E,三个带电液滴(可视为质点)甲、乙、丙带有等量同种电荷。
已知甲静止,乙水平向左匀速运动,丙水平向右匀速运动。
则下列说法正确的是()A.三个液滴都带负电B.丙质量最大,甲质量次之,乙质量最小C.若仅撤去磁场,甲可能做匀加速直线运动D.若仅撤去电场,乙和丙可能做匀速圆周运动6.(2020届江苏徐州月考,4)带正电的甲、乙、丙三个粒子(不计重力)分别以速度v甲、v乙、v丙垂直射入电场和磁场相互垂直的复合场中,其轨迹如图所示,则下列说法正确的是()A.v甲>v乙>v丙B.v甲<v乙<v丙C.甲的速度可能变大D.丙的速度不一定变大6.答案A综合篇【综合集训】拓展一磁感应强度、安培力1.(2020届江苏无锡阶段检测,3)如图所示,两根平行长直导线相距2l,通有大小相等、方向相同的恒定电流。
a、b、c是两导线所在平面内的三点,左侧导线与它们的距离分别l2、l和3l。
关于这三点处的磁感应强度,下列说法中正确的是()A.a处的磁感应强度大小比c处的大B.b、c两处的磁感应强度大小相等C.a、c两处的磁感应强度方向相同D.b处的磁感应强度不为零1.答案A2.(2020届江苏常州月考,4)长为L的通电直导线放在倾角为θ的光滑斜面上,并处在磁感应强度为B的匀强磁场中,如图所示,当B方向垂直斜面向上,电流为I1时导体处于平衡状态;当B方向改为竖直向上,电流为I2时导体处于平衡状态。
则电流大小比值I1I2为()A.sinθB.1sinθC.cosθ D.1cosθ拓展二洛仑兹力、带电粒子在匀强磁场中的运动3.(2019江苏溧水调研,4,3分)如图所示为洛仑兹力演示仪的结构图。
励磁线圈产生的匀强磁场方向垂直纸面向外,电子束由电子枪产生,其速度方向与磁场方向垂直。
电子速度的大小和磁场强弱可分别由电子枪的加速电压和通过励磁线圈的电流来调节。
下列说法正确的是()A.仅增大励磁线圈中电流,电子束径迹的半径变大B.仅提高电子枪加速电压,电子束径迹的半径变大C.仅增大励磁线圈中电流,电子做圆周运动的周期将变大D.仅提高电子枪加速电压,电子做圆周运动的周期将变大3.答案B4.(2019江苏南通、扬州等七市三调,2)如图所示,水平虚线MN上方有匀强磁场,磁场方向垂直于纸面向里。
大量带正电的相同粒子,以相同的速率沿位于纸面内水平向右到竖直向上(90°范围内)的各个方向,由小孔O射入磁场区域,做半径为R的圆周运动。
不计粒子重力和粒子间相互作用,下列图中阴影部分表示带电粒子可能经过的区域,其中正确的是()4.答案B5.(2020届江苏新海高中学情调研,5)在直角坐标系xOy的第一象限内,存在一垂直于xOy平面、磁感应强度大小为2T的匀强磁场,如图所示,一带电粒子(重力不计)在x轴上的A点沿着y轴正方向以大小为2m/s的速度射入第一象限,并从y轴上的B点穿出。
已知A、B两点的坐标分别为(8m,0),(0,4m),则该粒子的比荷为()A.0.1C/kgB.0.2C/kgC.0.3C/kgD.0.4C/kg 5. 答案 B应用篇应用一 安培力作用下导体的运动及平衡问题分析【应用集训】1.(2019课标Ⅰ,17,6分)如图,等边三角形线框LMN 由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M 、N 与直流电源两端相接。
已知导体棒MN 受到的安培力大小为F,则线框LMN 受到的安培力的大小为( )A.2FB.1.5FC.0.5FD.0 答案 B2.(2017课标Ⅰ,19,6分)(多选)如图,三根相互平行的固定长直导线L 1、L 2和L 3两两等距,均通有电流I,L 1中电流方向与L 2中的相同,与L 3中的相反。
下列说法正确的是( )A.L 1所受磁场作用力的方向与L 2、L 3所在平面垂直B.L 3所受磁场作用力的方向与L 1、L 2所在平面垂直C.L 1、L 2和L 3单位长度所受的磁场作用力大小之比为1∶1∶√3D.L 1、L 2和L 3单位长度所受的磁场作用力大小之比为√3∶√3∶1 答案 BC应用二 带电粒子在有界匀强磁场中做匀速圆周运动问题的分析【应用集训】1.(2019课标Ⅱ,17,6分)如图,边长为l 的正方形abcd 内存在匀强磁场,磁感应强度大小为B 、方向垂直于纸面(abcd 所在平面)向外。
ab 边中点有一电子发射源O,可向磁场内沿垂直于ab 边的方向发射电子。
已知电子的比荷为k 。
则从a 、d 两点射出的电子的速度大小分别为( )A.14kBl,√54kBlB.14kBl,54kBl C.12kBl,√54kBlD.12kBl,54kBl答案 B2.(2017课标Ⅱ,18,6分)如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点。
大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同方向射入磁场。
若粒子射入速率为v 1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v2,相应的出射点分布在三分之一圆周上。
不计重力及带电粒子之间的相互作用。
则v2∶v1为()A.√3∶2B.√2∶1C.√3∶1D.3∶√2答案C应用三电磁场知识在现代科技中的应用【应用集训】1.(2018江苏泰州月考,6)(多选)回旋加速器在科学研究中得到了广泛应用,其原理如图所示,D1和D2是两个中空的半圆形金属盒,置于与盒面垂直的匀强磁场中,它们接在电压为U、周期为T的交流电源上,位于D2圆心处的质子源A能不断产生质子(初速度可以忽略),它们在两盒之间被电场加速,当质子被加速到最大动能E k后,再将它们引出,忽略质子在电场中的运动时间,则下列说法中正确的是()A.若只增大交变电压U,则质子的最大动能E k会变大B.若只增大交变电压U,则质子在回旋加速器中运行时间会变短C.若只将交变电压的周期变为2T,仍可用此装置加速质子D.质子第n次被加速前后的轨道半径之比为√n-1∶√n答案BD2.(2018江苏苏锡常镇四市联考,9)(多选)电动自行车是一种应用广泛的交通工具,其速度控制是通过转动右把手实现的,这种转动把手称“霍尔转把”,属于传感器非接触控制。
转把内部有永久磁铁和霍尔器件等,截面如图甲。
永久磁铁的左右两侧分别为N、S极,开启电源时,在霍尔器件的上、下面之间加一定的电压,形成电流,如图乙。
随着转把的转动,其内部的永久磁铁也跟着转动,霍尔器件能输出控制车速的霍尔电压,已知电压与车速的关系如图丙。
以下关于“霍尔转把”的叙述正确的是()A.为提高控制的灵敏度,可改变永久磁铁的上、下端分别为N、S极B.按图甲顺时针转动电动车的右把手(手柄转套),车速将变快C.图乙中从霍尔器件的前、后表面输出控制车速的霍尔电压D.若霍尔器件的上、下面之间所加电压正负极对调,将影响车速控制答案BC应用四带电粒子在复合场中的运动【应用集训】1.(2018江苏盐城摸底,6)如图所示,在一竖直平面内,y轴左侧有一水平向右的匀强电场E1和一垂直纸面向里的匀强磁场B,y轴右侧有一竖直方向的匀强电场E2,一电荷量为q(电性未知)、质量为m的微粒从x轴上A点以一定初速度与水平方向成θ=37°角沿直线经P点运动到图中C点,其中m、q、B均已知,重力加速度为g,则()A.微粒一定带负电B.匀强电场E2可能竖直向下、也可能竖直向上C.两电场强度之比E1E2=4 3D.微粒的初速度为v=5mg4Bq答案D2.(2018课标Ⅲ,24,12分)如图,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直。
已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l。