介质对声波的吸收和吸声材料及吸声结构1 - 副本 - 副本
6.1吸声评价方法吸声材料与吸声结构54页PPT
0.04
0.05
0.07
涂漆砖
0.01
0.01
0.02
0.02
0.02
0.03
混凝土块
0.36
0.44
0.31
0.29
0.39
0.25
涂漆混凝土块 0.10
0.05
0.06
0.07
0.09
0.08
混凝土
0.01
0.01
0.02
0.02
0.02
0.02
木料
0.15
0.11
0.10
0.07
0.06
0.07
吸声降噪效果预估
• 降噪量
• Prof. Sheng Meiping • Northwestern Polytechnical University
吸声材料与吸声结构
• Prof. Sheng Meiping • Northwestern Polytechnical University
吸声材料(一般为多孔性材料)
10
0.59 0.38 0.18 0.05 0.04 0.08
0
0.04 0.11 0.20 0.21 0.60 0.68
5
0.29 0.77 0.73 0.68 0.81 0.83
0
0.06 0.12 0.20 0.21 0.60 0.68
3
0.28 0.40 0.33 0.32 0.37 0.26
• Prof. Sheng Meiping • Northwestern Polytechnical University
容重对吸声性能的影响
• 材料的容重是指吸声材料加工成型后单位体积的重量。有 时,也用空隙率来描述。材料的容重或空隙率不同,对吸 声材料的吸声系数和频率特性有明显影响。一般情况下, 密实、容重大的材料,其低频吸声性能好,高频吸声性能 较差;相反,松软、容重小的材料,其低频吸声性能差, 而高频吸声性能较好。
2020年一级注册建筑师《建筑物理》考点:吸声材料与吸声结构
【导语】为了⽅便考⽣及时有效的备考,今天为您精⼼整理了2020年⼀级注册建筑师《建筑物理》考点:吸声材料与吸声结构,希望⼤家进⾏针对性的复习。
如想获取更多注册建筑师考试的模拟题及备考资料,请关注的更新。
2020年⼀级注册建筑师《建筑物理》考点:吸声材料与吸声结构 ⼀、多孔吸声材料 (⼀)材料 玻璃棉,超细玻璃棉,岩棉,矿棉(散状、毡⽚),泡沫塑料,多孔吸声砖等。
海绵、加⽓混凝⼟、聚苯板内部⽓泡是单个闭合的,互不连通,其吸声系数⽐多孔吸声材料⼩得多,是很好的保温材料,但不是多孔吸声材料;拉⽑⽔泥墙⾯表⾯粗糙不平,但没有空隙,吸声很差,不是吸声材料。
其起伏不平的尺度和声波波长相⽐较⼩,不能起扩散反射的作⽤,所以它不是⼀种声学处理,只是⼀种饰⾯做法。
(⼆)吸收频率 中频,⾼频,背后有空⽓层能吸收低频。
(三)影响因素 1.空⽓流阻。
材料两边静压差和空⽓流动速度之⽐称为单位⾯积流阻。
2.孔隙率。
70%~80%。
通常测出材料的厚度,表观密度。
超细玻璃棉表观密度为20~25kg/m3,矿棉120kg/m3。
3.厚度。
厚度增加,中、低频范围吸声系数增加。
⼀般超细玻璃棉厚5~15cm,矿渣棉厚5~10cm。
4.背后条件。
后边留空⽓层与填充同样材料效果近似,使中低频(尤其是对低频)吸声系数增加。
背后空⽓层厚度⼀般为10~20cm。
5.吸收频率。
⼀般⽤5cm厚,吸收中、⾼频。
材料吸声系数可以⽤驻波管法测声波垂直⼊射时的吸声系数,⽤混响室法测⽆规⼊射时的吸声系数。
(四)罩⾯材料 ⾦属、窗纱、纺织品、厚度<0.05mm的塑料薄膜、穿孔率>20%的穿孔板。
⼆、空腔共振吸声结构 (⼀)材料 赫(亥)姆霍兹共振器和穿孔的胶合板,⽯棉⽔泥板,⽯膏板,硬质纤维板,⾦属板。
(⼆)共振频率 (三)穿孔板共振频率 (四)吸收频率 中频,板后放多孔吸声材料能吸收中⾼频,其共振频率向低频转移。
板后有⼤空腔(如吊顶)能增加低频吸收。
声学第四讲吸声材料与吸声结构
声学第四讲吸声材料与吸声结构在声学中,吸声材料和吸声结构被广泛应用于消除噪音和改善声学环境。
吸声材料是一种能够吸收声波的材料,而吸声结构则是由吸声材料构成的一种结构。
本文将详细介绍吸声材料和吸声结构的原理、分类及其在实际应用中的应用情况。
一、吸声材料的原理和分类吸声材料的吸声原理是通过材料的吸声机制将声波的能量转化为其他形式的能量,从而减少声波的反射和传播。
吸声材料的吸声机制通常有以下几种:1.完全弹性反射吸声:利用材料的吸声面来实现声波的全反射,并分散或吸收声波能量。
2.摩擦吸声:通过材料的内聚力和材料表面的摩擦来消耗声波的能量。
3.多次散射吸声:利用材料内部结构的复杂性,使声波在材料中进行多次反射和散射,从而减少声波的反射。
根据吸声材料的基本原理和性质,可以将吸声材料分为以下几类:1.多孔吸声材料:多孔吸声材料是一种由孔隙空间构成的材料,其中孔隙可以是连通的或不连通的。
当声波进入多孔吸声材料时,会在孔隙中进行多次散射和漫反射,从而吸收声波能量。
常见的多孔吸声材料包括岩棉、玻璃纤维、聚酯纤维等。
2.薄膜吸声材料:薄膜吸声材料是一种表面覆盖或悬挂在墙面或天花板上的薄膜材料,其一般由一层透声性好的薄膜和一层吸声材料构成。
当声波到达薄膜吸声材料时,会在其表面上进行反射和散射,并被吸声材料吸收。
薄膜吸声材料常用于音乐厅、影院等场所的声学处理。
3.共振吸声材料:共振吸声材料是一种利用共振效应来吸收声波能量的材料。
这种材料的共振频率与声波的频率相匹配,从而达到最大的吸声效果。
共振吸声材料常用于低频声波的吸收,例如船舶、飞机等的隔音处理。
二、吸声结构的原理和应用吸声结构由吸声材料构成,并在实际应用中形成具有吸声效果的结构。
吸声结构的设计和构造直接影响着整个声学环境的吸声效果。
1.吸声板:吸声板是一种常见的吸声结构,由多孔吸声材料构成,并通常具有一定的厚度。
吸声板可以根据声学要求进行设计和排列,以达到吸收特定频率范围内的声波。
常用的吸声材料和吸声结构
常用的吸声材料和吸声结构一、吸声材料和吸声结构在没有进行声学处理的房间里,人们听到的声音,除了由声源直接通过空气传来的直达声之外,还有由房间的墙面、顶棚、地面以及其它设备经多次反射而来的反射声,即混响声(reverberant sound)。
由于混响声的叠加作用,往往能使声音强度提高10多分贝。
如在房间的内壁及空间装设吸声结构,则当声波投射到这些结构表面后,部分声能即被吸收,这样就能使反射声减少,总的声音强度也就降低。
这种利用吸声材料和吸声结构来降低室内噪声的降噪技术,称为吸声(sound absorption)。
1.吸声材料材料的吸声性能常用吸声系数(absorption coefficient)来表示。
声波入射到材料表面时,被材料吸收的声能与入射声能之比称为吸声系数,用α表示。
一般材料的吸声系数在0.01~1.00之间。
其值愈大,表明材料的吸声效果愈好。
材料的吸声系数大小与材料的物理性质、声波频率及声波入射角度等有关。
通常把吸声系数α>0.2的材料,称为吸声材料(absorptive material)。
吸声材料不仅是吸声减噪必用的材料,而且也是制造隔声罩、阻性消声器或阻抗复合式消声器所不可缺少的。
多孔吸声材料的吸声效果较好,是应用最普遍的吸声材料。
它分纤维型、泡沫型和颗粒型三种类型。
纤维型多孔吸声材料有玻璃纤维、矿渣棉、毛毡、苷蔗纤维、木丝板等。
泡沫型吸声材料有聚氨基甲醋酸泡沫塑料等。
颗粒型吸声材料有膨胀珍珠岩和微孔吸声砖等。
表10-2如前所述,多孔吸声材料对于高频声有较好的吸声能力,但对低频声的吸声能力较差。
为了解决低频声的吸收问题,在实践中人们利用共振原理制成了一些吸声结构(absorptive structure)。
常用的吸声结构有薄板共振吸声结构、穿孔板共振吸声结构和微穿孔板吸声结构。
(1)薄板共振吸声结构。
把不穿孔的薄板(如金属板、胶合板、塑料板等)周边固定在框架上,背后留有一定厚度的空气层,这就构成了薄板共振吸声结构。
工程材料之吸声材料
工程材料之吸声材料吸声材料是指在一定程度上吸收由空气传递的声波能量的材料,广泛应用在音乐厅、影剧院、大会堂、语音室等的内部墙面、地面、天棚等部位。
适当采用吸声材料,能改善声波在室内传播的质量,获得良好的音响效果。
一、材料的吸声原理声音是由于物体的振动引起的,物体振动迫使临近的空气跟着振动而成为声波,并在空气介质中向四周传播。
声音在传播过程中,一部分由于声能随着距离的增大而扩散,另一部分则因空气分子的吸收而减弱。
声能的这种减弱现象,在室外空旷处尤为明显,但在室内,这种现象就不太明显,而主要是靠室内的墙壁、顶棚和地板等材料表面对声能的吸收来使声音减弱。
当声波遇到材料表面时,一部分被反射,一部分穿透材料,其余部分则被材料吸收。
材料的吸声性能除了与材料本身性质、厚度及材料的表面特征有关外,还与声音的频率及声音的入射方向有关。
为了全面反映材料的吸声性能,通常采用125Hz、250Hz、500Hz、1000Hz、2000Hz和4000Hz6个频率的吸声系数表示材料吸声的频率特征。
任何材料均能不同程度地吸收声音,通常把6个频率的平均吸声系数大于0.2的材料,称为吸声材料。
二、建筑上常用的吸声材料1.无机材料石膏板、水泥蛭石板、石膏砂浆(掺水泥玻璃纤维)水泥膨胀珍珠岩板、水泥砂浆、砖(清水墙面)2.有机材料软木板、木丝板、三合板、穿孔五合板、木花板、木质纤维板三、吸声材料的类型及其结构形式1.多孔性吸声材料多孔性吸声材料是比较常用的一种吸声材料,具有良好的中高频吸声性能。
多孔性吸声材料具有大量内外连通的微孔和连续的气泡,通气性良好。
当声波入射到材料表面时,声波很快地顺着微孔进入材料的内部,引起孔隙内的空气震动,由于摩擦、空气黏滞阻力和材料内部的热传导作用,使相当一部分声能转化为热能而被吸收。
多孔材料吸声的先决条件是声波易进入微孔,不仅在材料内部,在材料表面上也应当是多孔的。
材料的吸声性能与材料的表观密度和内部构造有关。
第三讲 吸声材料和吸声结构.ppt
第三讲 吸声材料和吸声结构第一节 吸声材料和吸声结构概述一.定义:吸声材料和吸声结构,广泛地应用于音质设计和噪声控制中。
对建筑师来说,把材料和结构的声学特性和其他建筑特性如力学性能、耐火性、吸湿性、外观等结合起来综合考虑,是非常重要的。
通常把材料和结构分成吸声的、或隔声的、或反射的,一方面是按材料分别具有较大的吸声、或较小的透射、或较大的反射,另一方面是按照使用时主要考虑的功能是吸声、或隔声、或反射。
但三种材料和结构没有严格的界限和定义。
吸声材料:材料本身具有吸声特性。
如玻璃棉、岩棉等纤维或多孔材料。
吸声结构:材料本身可以不具有吸声特性,但材料经打孔、开缝等简单的机械加工和表面处理,制成某种结构而产生吸声。
如穿孔FC 板、穿孔铝板吊顶等。
在建筑声环境的设计中,需要综合考虑材料的使用,包括吸声性能以及装饰性、强度、防火、吸湿、加工等多方面,根据具体的使用条件和环境综合分析比较。
二.作用吸声材料最早应用于对听闻音乐和语言有较高要求的建筑物中,如音乐厅,剧院,播音室等,随着人们对居住建筑和工作的声环境质量的要求的提高,吸声材料在一般建筑中也得到了广泛的应用。
三.分类:吸声材料和吸声结构的的种类很多,根据材料的不同,可以分为以下几类吸声材料(结构)多孔吸声材料共振吸声结构特殊吸声结构纤维状吸声材料颗粒状吸声材料泡沫状吸声材料薄板共振结构亥姆霍兹共振吸声器穿孔吸声结构薄膜共振结构吸声尖劈空间吸声体第二节多孔吸声材料一.吸声原理多孔吸声材料中有许多连通的间隙或气泡,声波入射时,声波产生的振动引起小孔或间隙的空气运动,由于与孔壁或纤维表面摩擦和空气的粘滞阻力,一部分声能转变为热能,使声波衰减;其次,小孔中空气与孔壁之间还不断发生热交换,也使声能衰减。
二.吸声特性主要吸收中、高频声三.多孔性吸声材料必须具备以下几个条件:(1)材料内部应有大量的微孔或间隙,而且孔隙应尽量细小且分布均匀;(2)材料内部的微孔必须是向外敞开的,也就是说必须通过材料的表面,使得声波能够从材料表面容易地进入到材料的内部;(3)材料内部的微孔一般是相互连通的,而不是封闭的。
《吸声结构》课件
结构设计要点
确定吸声性能目标
根据应用场景和要求,确定吸声性能的目标值,如吸声系数、吸 声频带等。
考虑声学原理
了解声波传播和吸声原理,合理利用共振、干涉、衍射等声学现 象,提高吸声性能。
优化结构形式
根据声源特性和空间条件,选择合适的吸声结构形式,如多孔材 料、亥姆霍兹共鸣器等。
材料选择与搭配
选择高内阻材料
内阻是影响吸声性能的关键因素,选择高内阻材料可以提高吸声性 能。
材料搭配与组合
根据不同频段和性能要求,合理搭配使用不同材料,实现宽频带或 特定频段的优异吸声效果。
材料加工与处理
对材料进行适当的加工和处理,如打孔、涂覆等,以改善其吸声性能 。
结构设计实例
体育馆吸声设计
针对体育馆内的高频噪声,采用 穿孔板、空腔和多孔材料等结构
《吸声结构》PPT课件
目录 CONTENTS
• 吸声结构概述 • 吸声结构的原理 • 吸声结构设计 • 吸声结构的性能评价 • 吸声结构的发展趋势与展望
01
吸声结构概述
吸声结构的定义
吸声结构是一种能够吸收、减弱声音 传播的结构,通过材料或结构的特定 设计,将声能转化为其他形式的能量 ,从而达到降低或消除声音的目的。
吸声结构通常由吸声材料或吸声结构 体组成,这些材料或结构体具有多孔 、纤维、薄膜或共振等特性,能够有 效地吸收和散射声波。
吸声结构的应用领域
建筑行业
声学实验室
在建筑物的墙面、天花板、地面等部 位使用吸声材料或吸声结构,可以有 效地吸收室内噪音,提高居住和工作 环境的质量。
在声学实验室中,吸声结构被广泛应 用于声音的吸收、隔离和测量,以确 保实验结果的准确性和可靠性。
吸声量
第四章吸声降噪
第四章吸声降噪第一节吸声原理及表征材料吸声的量一、吸声原理●吸声或声吸收:声波通过介质或入射到介质分界面上时声能的减少过程。
●当介质为空气,声波在空气中传播时,由于空气质点振动所产生的摩擦作用,声能转化为热能的损耗所引起的声波随传播距离增加而逐渐衰减的现象,称为空气吸收。
●当介质分界面为材料表面时,部分声能被吸收,可称为材料吸声。
●材料的吸声是由于黏滞性、热传导性和分子吸收而转变为热能。
●首先是黏滞性和内摩擦的作用,由于声波传播时,质点振动速度各处不同,存在着速度梯度,使相邻质点间产生相互作用的黏滞力或内摩擦力,对质点运动起阻碍作用,从而使声能不断转化为热能。
●其次是热传导效应,由于声波传播时介质质点疏密程度各处不同,因此介质温度也各处不同,存在温度梯度,从而相邻质点间产生了热量传递,使声能不断转化为热能。
●按吸声机理的不同:吸声体可分为多孔性吸声材料和共振吸声结构。
●其中多孔性材料在工程中应用最广泛。
●多孔材料包括纤维类、泡沫类和颗粒类。
●以纤维类材料为例,最常见的有离心玻璃棉、矿渣棉、化纤棉、木丝板等;●泡沫类材料以泡沫塑料、海棉乳胶、泡沫橡胶等居多;●颗粒类材料则以膨胀珍珠岩、多孔陶土砖、蛭石混凝土等居多。
●共振吸声结构可以分为薄板共振吸声结构,薄板穿孔共振吸声结构等。
●从材料和共振结构的吸声性能来讲,多孔材料以吸收中高频噪声声能为主,共振吸声结构对低频有吸声峰值。
●利用吸声材料吸收声能,降低室内噪声,是噪声控制工程中的措施之一。
●人们在室内所接收到的噪声,包括声源直接通过空气传来的直达声以及室内各壁面反射回来的混响声。
●在车间里听到的机器噪声,远比安装在室外的机器噪声高,主要是由于车间内存在混响声。
●许多工程实践证明,一般车间采取吸声降噪措施,可取得5~8dB的降噪量,如果车间原来吸性能很差,吸声材料布置合理,甚至可降低噪声8~12dB。
透射声能吸收声能2E 反射声能入射声能3E 1E 0E图1 材料吸声示意图二、 表征材料吸声性能的量吸声系数可衡量材料吸声性能的大小,010321E E E E E -=+=α2E -被吸收的声能;3E -透射声能;0E -入射声能;1E -反射声能。
吸声,消音原理以及材料
材料选用
吸声原理
吸声系数
多孔性吸声材料
共振吸声结构
单个共振器
柔顺材料简介
吸声机理
影响吸声材料性能的因素
材料选用
吸声原理
Байду номын сангаас吸声系数
多孔性吸声材料
共振吸声结构
单个共振器 柔顺材料展开 简介
拼音:xi sheng cai liao 英文:sound-absorbing material 吸声材料在应用方式上,通常采用共振吸声结构或渐变过渡层结构。为了提高材料的内损耗,一般在材料中混入含有大量气泡的填料或增加金属微珠等。在换能器阵的各阵元之间的隔声去耦、换能器背面的吸声块、充液换能器腔室内壁和构件的消声覆盖处理、消声水槽的内壁吸声贴面等结构上,经常利用吸声材料改善其声学性能。
材料选用
选用吸声材料,首先应从吸声特性方面来确定合乎要求的材料,同时还要结合防火、防潮、防蛀、强度、外观、建筑内部装修等要求,综合考虑进行选择。
吸声原理
声音源于物体的振动,它引起邻近空气的振动而形成声波,并在空气介质中向四周传播。 当声音传入构件材料表面时,声能一部分被反射,一部分穿透材料,还有一部由于构件材料的振动或声音在其中传播时与周围介质摩擦,由声能转化成热能,声能被损耗,即通常所说声音被材料吸收。
多孔性吸声材料
这类材料的物理结构特征是材料内部有大量的、互相贯通的、向外敞开的微孔,即材料具有一定的透气性。工程上广泛使用的有纤维材料和灰泥材料两大类。前者包括玻璃棉和矿渣棉或以此类材料为主要原料制成的各种吸声板材或吸声构件等;后者包括微孔砖和颗粒性矿渣吸声砖等。 吸声机理和频谱特性 多孔吸声材料的吸声机理是当声波入射到多孔材料时,引起孔隙中的空气振动。由于摩擦和空气的粘滞阻力,使一部分声能转变成热能;此外,孔隙中的空气与孔壁、纤维之间的热传导,也会引起热损失,使声能衰减。 多孔材料的吸声系数随声频率的增高而增大,吸声频谱曲线由低频向高频逐步升高,并出现不同程度的起伏,随着频率的升高,起伏幅度逐步缩小,趋向一个缓慢变化的数值。 影响多孔材料吸声性能的因素 影响多孔材料吸声性能的参数主要有:①流阻,它是在稳定的气流状态下,吸声材料中的压力梯度与气流线速度之比。当厚度不大时,低流阻材料的低频吸声系数很小,在中、高频段,吸声频谱曲线以比较大的斜率上升,高频的吸声性能比较好。增大材料的流阻,中、低频吸声系数有所提高;继续加大材料的流阻,材料从高频段到中频段的吸声系数将明显下降,此时,吸声性能变劣。所以,对一定厚度的多孔材料,有一个相应适宜的流阻值,过高和过低的流阻值,都无法使材料具有良好的吸声性能。②孔隙率,指材料中连通的孔隙体积与材料总体积之比,多孔吸声材料的孔隙率一般在70%以上,多数达90%。③结构因数,材料中间隙的排列是杂乱无章的,但在理论上往往采用毛细管沿厚度方向纵向排列的模型,所以,对具体的多孔材料必须引进结构因数加以修正。多孔材料结构因数,一般在2~10之间,也有高达20~25的。在低频范围内,结构因数基本不起作用,这是因为在这个 金字塔型吸声材料
第3章 吸声材料与吸声结构
伊莱克斯电器公司消声室
吸声尖劈
全消声室 (6个面)
三、吸声帘幕
具有多孔吸声材料的吸声特性。幕布离墙面、窗 玻璃有一定距离,如多孔材料背后设空腔。
空腔
打褶
四、可变吸声结构
多功能厅和录音室音质设计中,为取得可变 声学环境,常用可调吸声结构,以达到改变吸声 量目的。
又称可调混响结构
可变吸声结构
多孔 吸声 材料
吸声降噪
平板空间 吸声体
吸声降噪
大穿孔率 穿孔FC板 吸声结构
大穿孔率 穿孔FC板 吸声结构吸声降噪源自阻燃织物 面吸声结构
二、分类——根据吸声机理分
1、阻性吸声材料 ——材料本身具有吸声特性。如玻璃棉、羊毛棉、岩棉纤 维或多孔吸声材料。
2、吸声结构 ——材料本身不具有吸声特性,但材料制成某种结构可吸 声。如穿孔板吸声结构、薄膜、薄板吸声结构。
一、赫姆霍兹共振器
——最简单 1、构造特征——形状有点像饮料瓶
一个封闭空腔,通过一个短管与 外界相通。
剖面图
2、吸声原理 类似暖水瓶声共振,外部空间与内部腔体通过窄瓶颈连接。 ——声波入射时,共振频率处,颈部空气(象一个质量 块)和内部空气(象一个弹簧)间产生剧烈共振克服摩擦力 而消耗声能。
单个
多个并联——穿孔板
6mm厚穿孔FC板,穿孔率2% 后空50mm填50mm厚超细玻 璃棉600×1200
穿孔槽木吸声板(木条穿孔吸 声板,帕特板),穿孔率15%
穿孔槽木吸声板(木条穿孔吸 声板,帕特板),穿孔率1%
125Hz 0.50
0.75 0.20 0.65
250Hz 0.60
0.80 0.30 0.50
吸声系数a 500Hz 1000Hz
介质对声波的吸收和吸声材料及吸声结构
第七章介质对声波的吸收和吸声材料及吸声结构7-1概述(1)声衰减是指声波在介质中传播的过程中声强逐渐减少的现象。
产生声衰减的原因:1)波阵面扩张(几何衰减);2)介质的声吸收(物理衰减);3)不均匀介质中声波的散射;(2)介质对声波的吸收,是声波在非理想介质中传播的过程中,声波的机械能量转化为热能或其它形式能量的现象。
(3)本章第一部分内容:介质对声波的吸收,要点:1)描述介质声吸收的方法;2)介质声吸收的机理;3)海水中声吸收的一般规律;(4)本章第二部分内容:吸声材料及吸声结构,要点:1)描述界面吸声性能的参数:界面吸声系数;2)不同吸声材料的吸声机理和吸声系数的计算;3)水声工程常用的吸声结构;7-2描述介质声吸收的方法定义,谐合平面声波在介质中传播,x1,x2是沿传播方向的两点,(x1), (x2)分别是声波在捲和x2处的幅值;贝y:-In(—凹)(单位:Nepere/m)称作介质的声吸收系数。
(单位:奈培/米) x? —'j ( X?)介质的声吸收系数反映了介质对声波的吸收程度;是平面声波在介质中传播单位距离,幅度相对变化的自然对数值。
有时也用‘波长声吸收’表示介质的声吸收程度:n(凹)(单位:奈培/波长)(7-1)(兀’)水声学中一般定义:—1—10Ig(-I^Xk))(单位:dB/m)(7-2)x2- x1I (x2)或波长声吸收:10lg(I(xJ )(单位:分贝/波长)(7-3心’)分析:如果,在声吸收系数为:•的介质中有谐合平面声波传播;且x=0处声压幅值是p0;则介质中声场可表示为:p(x,t) = P o e申e j(= P o e j(t脸jx)= p°e j( (了-令其中,k*=(k-j〉),称为声波在介质中的复波数。
!可见,介质中的复波数「=戈-j ot可表示介质的声吸收。
k*的实部为介质中声波的波数,虚部为介质的声吸收系数。
又,k —I 二k* 二k-j: = J= c*-「k「c(「j );称为介质的复波速。
五大类吸声材料及吸声结构简介
五大类吸声材料及吸声结构简介1、多孔吸声材料(1)多孔吸声材料的类型包括:有机纤维材料、麻棉毛毡、无机纤维材料、玻璃棉、岩棉、矿棉,脲醛泡沫塑料,氨基甲酸脂泡沫塑料等。
聚氯乙烯和聚苯乙烯泡沫塑料不属于多孔材料,用于防震,隔热材料较适宜。
(2)构造特征:材料内部应有大量的微孔和间隙,而且这些微孔应尽可能细小并在材料内部是均匀分布的。
材料内部的微孔应该是互相贯通的,而不是密闭的,单独的气泡和密闭间隙不起吸声作用。
微孔向外敞开,使声波易于进入微孔内。
(3)吸声特性主要是高频,影响吸声性能的因素主要是材料的流阻,孔隙,结构因素、厚度、容重、背后条件的影响。
a.材料厚度的影响任何一种多孔材料的吸声系数,一般随着厚度的增加而提高其低频的吸声效果,而对高频影响不大。
但材料厚度增加到一定程度后,吸声效果的提高就不明显了,所以为了提高材料的吸声性能而无限制地增加厚度是不适宜的。
常用的多孔材料的厚度为:玻璃棉,矿棉50—150mm毛毡4---5mm泡沫塑料25—50mmb.材料容重的影响改变材料的容重可以间接控制材料内部微空尺寸。
一般来讲,多孔材料容重的适当增加,意味着微孔的减少,能使低频吸声效果有所提高,但高频吸声性能却可能下降。
合理选择吸声材料的容重对求得最佳的吸声效果是十分重要的,容重过大或过小都会对多孔材料的吸声性能产生不利的影响。
c.背后空气层的影响多空材料背后有无空气层,对于吸声特性有重要影响。
大部分纤维板状多孔材料都是周边固定在龙骨上,离墙50—150mm距离安装。
材料空气层的作用相当于增加了材料的厚度,所以它的吸声特性随着空气层厚度增加而提高,当材料离墙面安装的距离(既空气层的厚度)等于1/4波长的奇数倍时,可获得最大的吸声系数;当空气层的厚度等于1/2波长的整数倍时,吸声系数最小。
d.材料表面装饰处理的影响大多数吸声材料在使用时常常需要进行表面装饰处理.常见的方法有:表面钻孔开槽,粉刷油漆,利用织布,穿孔板和塑料薄膜等。
吸声09第7章资料
Lpr
LW
10 lg 4 R
R—房间常数,Sa/(1-a)
3.室内声压级的计算
c.总声场:
Lp
LW
10 lg
Q
4r 2
4 R
混响半径
当直达声与混响声的声能相等时的距离称为临界半径。
Q 4
4r 2 R
rc 0.14 QR
Q=1时的混响半径称为混响半径。
多孔性吸声材料(针对高频噪声控制)
几种多孔性吸声材 料
吸声材料构造特性
材料的孔隙率要高,一般在70%以上, 多数达到90%左右;
孔隙应该尽可能细小,且均匀分布; 微孔应该是相互贯通,而不是封闭的; 微孔要向外敞开,使声波易于进入微孔
内部。
材料特征:
内部有许多小孔,并与材料表面相通, 具有通气性。
环境噪声控制
Chapter 7 吸声
吸声是噪声污染控制的一种重要手段
在噪声污染控制工程设计中,常利用吸 声材料吸收声能量来降低室内噪声。
吸声与吸声材料的概念
吸声: 声波通过媒质或入射到媒质分解面上时声能的
减少过程,称为吸声或声吸收。 材料吸声: 当媒质的分界面为材料表面时,部分声能被吸
主要种类 常用材料实例
使用情况
有机 动物纤维:毛毡
价格昂贵,使用较少。
纤维
材料
纤 无机
维 材
纤维
料 材料
植物纤维:麻绒、海草、椰子丝 玻璃纤维:中粗棉、超细棉、玻璃棉毡 矿渣棉:散棉、矿棉毡
防火、防潮性能差,原料来源广,便 宜。
吸声性能好,保温隔热,耐潮,但松 散纤维易污染环境或 难以加工成制品。
吸声性能好,不燃、耐腐蚀,易断成 碎末,污染环境施工扎手。
介质对声波的吸收和吸声材料及吸声结构1 - 副本 - 副本.doc
介质对声波的吸收和吸声材料及吸声结构1 - 副本 - 副本第7章介质对声波的吸收和吸声材料及吸声结构声音在介质中传播时会有衰减现象,传播过程中由于波阵面的扩张,引起能量空间扩散,以致声波振幅随距离增加而衰减,称这种衰减为几何衰减,又如由于介质中粒子的散射作用,使得沿原来传播方向的声波能量减少,致使声波振幅随传播距离的增加也有明显衰减。
这里无论是几何衰减还是散射引起的衰减,对传播的声能都没有消耗作用。
显然,这是由于所研究的声波传播规律是建立在理想介质运动规律基础上的缘故。
理想介质只作完全的弹性形变,形变过程为绝热,介质内没有阻尼作用,所以声波在传播过程中没有使声能变为其他能量形式的消耗作用。
实际上,声音即使是在均匀的自由介质中传播,由于介质本身对声能的吸收作用,也产生声波沿传播方向衰减的现象。
如平面波传播时,也表现出振幅衰减的现象。
此外,声波在含有散射体的介质中传播时,由于散射体相对介质的运动及散射体的形变,也使部分声能变为热能形式而损耗,结果表现出更为明显的衰减现象。
这些衰减是由于声能转换为其他形式能量引起的,统称为物理衰减。
本章主要讨论均匀介质对声波能量吸收的现象和产生吸收的原因。
此外,还介绍一些有关吸声材料和吸声结构的知识,因为吸声技术在声学和水声学的技术应用方面以及声学测量方面具有越来越明显的重要性。
7.1介质的声吸收7.1.1描述介质声吸收的方法声吸收是指声波在媒质中传播或在界面反射过程中,能量减少的现象。
造成声吸收的原因主要是媒质的粘滞性、热传导性和分子弛豫过程,使有规的声运动能量不可逆的转变为无规的热运动能量。
谐和平面声波在介质中传播,是沿传播方向的两点,分别是声波在处的幅值;则称作介质的声吸收系数(单位:奈培/米)。
介质的声吸收系数反映了介质对声波的吸收程度,是平面声波在介质中传播单位距离,幅度相对变化的自然对数值。
有时也用‘波长声吸收系数’表示介质的声吸收程度,公式如式(7-1)所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章 介质对声波的吸收和吸声材料及吸声结构声音在介质中传播时会有衰减现象,传播过程中由于波阵面的扩张,引起能量空间扩散,以致声波振幅随距离增加而衰减,称这种衰减为几何衰减,又如由于介质中粒子的散射作用,使得沿原来传播方向的声波能量减少,致使声波振幅随传播距离的增加也有明显衰减。
这里无论是几何衰减还是散射引起的衰减,对传播的声能都没有消耗作用。
显然,这是由于所研究的声波传播规律是建立在理想介质运动规律基础上的缘故。
理想介质只作完全的弹性形变,形变过程为绝热,介质内没有阻尼作用,所以声波在传播过程中没有使声能变为其他能量形式的消耗作用。
实际上,声音即使是在均匀的自由介质中传播,由于介质本身对声能的吸收作用,也产生声波沿传播方向衰减的现象。
如平面波传播时,也表现出振幅衰减的现象。
此外,声波在含有散射体的介质中传播时,由于散射体相对介质的运动及散射体的形变,也使部分声能变为热能形式而损耗,结果表现出更为明显的衰减现象。
这些衰减是由于声能转换为其他形式能量引起的,统称为物理衰减。
本章主要讨论均匀介质对声波能量吸收的现象和产生吸收的原因。
此外,还介绍一些有关吸声材料和吸声结构的知识,因为吸声技术在声学和水声学的技术应用方面以及声学测量方面具有越来越明显的重要性。
7.1 介质的声吸收7.1.1 描述介质声吸收的方法声吸收是指声波在媒质中传播或在界面反射过程中,能量减少的现象。
造成声吸收的原因主要是媒质的粘滞性、热传导性和分子弛豫过程,使有规的声运动能量不可逆的转变为无规的热运动能量。
谐和平面声波在介质中传播,12,x x 是沿传播方向的两点,12(),()x x ξξ分别是声波在12,x x 处的幅值;则1212()1ln()()x x x x ξαξ=-称作介质的声吸收系数(单位:奈培/米)。
介质的声吸收系数反映了介质对声波的吸收程度,是平面声波在介质中传播单位距离,幅度相对变化的自然对数值。
有时也用…波长声吸收系数‟表示介质的声吸收程度,公式如式(7-1)所示。
/))()(ln(11波长)(单位:奈培λξξλα+=x x (7-1)而在水声学中,则用式(7-2)定义介质的声吸收系数。
1212()110lg() ()I x x x I x α'=- (单位:dB/m ) (7-2) 此时,波长声吸收系数表示为:11()10lg()()I x I x λαλ'=+ (单位:dB/λ) (7-3) 如果,在声吸收系数为α的介质中有谐和平面声波传播,且x=0处声压幅值是0p ,则介质中声场可表示为:*()()00(())()00(,) x j t kx j t kx j xj t k j x j t k x p x t p e e p e p e p e αωωαωαω---+---==== (7-4)其中,*()k k j α=-称为声波在介质中的复波数。
可见,介质中的复波数*k j c ωα=-可表示介质的声吸收。
复波数*k 的实部为介质中声波的波数,虚部为介质的声吸收系数。
又因为k c ω=,因此,复波数**k k j c ωα=-=,由此可知,介质的复声速可表示为:**c k k j ωωα==- (7-5)当k α时,式(7-5)可化为*2(1)()(1)()()1()c j k j k c c j k j k j kk αωααααα++==≈+-++ (7-6) 式(7-6)称为介质的复波速。
可见,介质中的复波速*(1)c c j k α=+也可表示介质的声吸收。
7.1.2 介质声吸收的机理均匀介质对声波的吸收作用,通常分为三类。
即粘滞性吸收、热传导吸收以及内分子过程吸收。
前两种吸收的机理,早在上个世纪由Stokes 和Kirchhoff 作了理论阐明和计算。
这些工作对声吸收的机理研究起了重要作用,由此理论计算的吸收通常称为古典吸收。
随着测量技术的提高以及声学应用和理论工作的发展,提出了介质声吸收的内分子能量传输的弛豫过程理论,把介质对声波吸收理论推进到了一个新阶段。
它不仅使古典吸收和实际测量结果的不一致得到理论上的修正,同时发展了声学研究物质结构的新理论和新方法,特别是用于有机溶液和多相物质的分子结构的研究。
从而使声学研究开拓了一个新的领域——分子声学。
7.1.2.1 介质的粘滞性吸收声波在传播过程中引起介质形变,介质中形变引起内应力变化,此应力与应变成正比。
实际流体介质具有粘滞性,由介质粘滞性所产生的应力表现为介质内“摩擦力”作用。
因此当声波在实际介质中传播时,由于粘滞性作用使部分声能转变为热能而消耗,从而表现出声波强度随距离衰减的现象。
这种衰减在声学中称为介质的粘滞性吸收,它是均匀介质中声衰减的主要原因之一。
对于平面声波的传播问题,单位面积上的粘滞力可表示成与速度梯度成正比的关系,如式(7-7)所示。
u T xη∂=∂ (7-7) 式中的比例系数η称为粘滞系数。
通常它由两部分组成,一部分是切变粘滞系数η',另一部分是容变粘滞系数η''。
且粘滞系数表示为34ηηη'''=+。
因此对于粘滞流体介质在运动方程中还需计及粘滞应力的部分,它等于 u p T xη∂'=-=-∂ (7-8) 则粘滞流体介质中的波动方程可化为2230222s K t x x tξξξρη∂∂∂=+∂∂∂∂ (7-9) 对于简谐声波,其函数形式为1(,)()j t x t x e ωξξ=,则式(7-9)可化为222110122()s K j K x x ξξρωξωη∂∂-=+=∂∂ (7-10) 因此有2*112k x ξξ∂-=∂,其中*k =称为复波数,可表示为 *k j c ηωα=- (7-11)为计算粘滞介质中声波的传播速度以及介质的吸收系数,令()(1)(1)s s s s K K j K j K j H K ηωηωω=+=+=+ (7-12)由复波数*k 和式(7-12)可得 222022220221121s s c K H H c K H ηηωρωαωωρωωαω⎫-=⎪+⎪⎬⎪=⎪+⎭ (7-13)当粘滞力与弹性力相比为很小时,即1H K ωηω=时,解(7-13)式可得c == (7-14)2233004()223c c ηωηωαηηρρ'''==+ (7-15) 其中s β为流体的压缩系数。
由式(7-15)可知,介质的粘滞声吸收系数与频率的平方成正比,与声速的三次方成反比。
7.1.2.2 介质的热传导声吸收系数因为声波传播过程基本上是绝热的,当媒质中有声波通过时,媒质产生压缩和膨胀的交替变化,压缩区温度升高,膨胀区温度降低。
这时相邻的压缩和膨胀区之间形成温度梯度,引起热传导。
这个过程是不可逆的,因此产生声能的耗散,称为热传导吸收。
理论计算表明,介质的热传导声吸收系数为23011()2h v pc C C ωαχρ=- (7-16) 其中:χ为介质的热传导系数,v C 为介质的等容比热,p C 为介质的等压比热。
由式(7-16)可知,介质的热传导声吸收系数也与频率的平方成正比,与声速的三次方成反比。
7.1.2.3 古典声吸收理论在考虑了介质的粘滞和热传导效应后,总的声吸收系数可用下式表示230411()()23v p c C C ωαηηχρ⎡⎤'''=++-⎢⎥⎢⎥⎣⎦(7-17) 这就是斯托克斯-克希霍夫公式,即古典声吸收理论的介质声吸收系数。
古典声吸收(包括粘滞吸收和热传导吸收)的理论计算和实验测量的结果对比,只对某些单原子的惰性气体,如氩、氦、氮等吻合较好,对于多原子气体,相差很大,而对于液体,结果更不佳。
对于绝大多数的液体,其吸收系数的测量值都比理论计算值高,只有一些单原子的液化气体,如液态氩、氧、氮、氢等,以及水银等的数值吻合较好。
由古典声吸收理论计算一般介质的声吸收系数结果可知,声吸收系数与频率的平方成正比,粘滞性声吸收系数大于热传导声吸收系数,并且粘滞性吸收系数与热传导声吸收系数是同一数量级的。
以常见介质:空气,海水,淡水的声吸收系数为例,分析古典声吸收理论计算值与实际测量值的差别,结果如下:图7.1 空气、海水以及淡水吸收系数曲线7.1.2.4 分子弛豫引起的声吸收 由图7.1可知,实验测量实际介质的声吸收结果与古典声吸收计算值有较大差别,主要表现在:实际介质的声吸收值大于古典声吸收计算值;在某些频段上实际介质的声吸收值不与频率的平方成比例。
为了描述这个差别,定义了“超吸收”的概念。
所谓“超吸收”是指实际介质的声吸收超出古典声吸收理论计算值的那部分声吸收。
由于古典声吸收理论所考虑的声吸收是介质“质团”运动引起的,而实际介质是由分子构成,即,大量的分子构成“质团”,正是古典声吸收理论对介质模型的简化,没有考虑到介质微观结构-分子的“运动”,因而不会预计还会有另一类吸声机制——弛豫声吸收。
“超吸收”是介质的弛豫声吸收引起的,表明古典声吸收理论的介质模型不完善。
介质在每一个状态下,分子的各个“能态”的分子数目是一定的,达到统计平衡态,声波作用下改变了介质状态,各个“能态”的分子数目随之变化,向新的统计平衡态转移。
完成两个平衡态之间转移的时间为弛豫时间;记i τ。
这里“能态”是一个宽泛的概念,它有许多表现形式:如,分子的动能,分子的化学能,分子的结构能等等。
弛豫时间i τ对介质宏观物理量的影响表现为:一定质量的介质中压强p 与体积V 的变化之间存时间差,声波过程在P-V 图上表现为包围一块“面积”的闭曲线。
该面积就是一个周期内介质吸收的声波能量。
弛豫声吸收是声波作用下介质分子的弛豫过程引起的声吸收。
能引起介质声吸收的“弛豫过程”的种类有分子热弛豫、分子结构弛豫和化学弛豫。
分子热弛豫是最早提出的一种弛豫吸收机制。
一般发生于多原子分子的气体中。
其实质是,由于分子的相互碰撞,使外自由度(指分子平动自由度)和内自由度(分子的振动和转动自由度)之间发生能量的重新分配。
当媒质静止时,可用压强、温度、密度等物理参量描述这一平衡状态。
此时分子的内外自由度能量也应具有一定的平衡分配。
当声波通过时,媒质发生压缩和膨胀过程,媒质的物理参量及其相应的平衡状态也将随声波过程而发生简谐变化。
而任何状态的变化都伴有内外自由度能量的重新分配,并向一个具有新的平衡能量分配状态过渡。
然而建立一个新的平衡分配需要一段有限的时间。
这样的过程称为弛豫过程,建立新的平衡状态所需要的时间称为弛豫时间。
这种过程伴随着热力学熵的增加。
由此导致有规的声能向无规的热转化,即声波的弛豫吸收。
当声波通过会产生可逆化学反应的媒质时,也会发生与上述热弛豫类似的化学反应平衡的破坏,并产生弛豫过程。