线路保护(距离保护、光纤电流差动)

合集下载

光伏线路保护方案

光伏线路保护方案

光伏线路保护方案线路保护应以保证电网可靠性为原则,兼顾分布式光伏运行方式,采取有效保护方案。

(1)分布式光伏以10kV电压等级接入系统时,并网点应配置线路保护、电压保护、频率保护、防孤岛保护等保护。

10kV专用线路或存在整定配合困难或全线有速动要求的10kV线路应配置光纤电流差动保护。

其他10kV分布式光伏并网线路,系统侧和分布式光伏侧可配置三段式电流保护、零序过流、重合闸,必要时采用方向元件。

(2)10kV线路在系统侧配置1套线路过流保护或距离保护,光伏电站侧须配置线路保护。

(3)对具备2台及以上升压变压器的升压变电站或汇集站,10kV线路可配置1套纵联电流差动保护,采用过流保护作为其后备保护。

(4)分布式光伏以0.4(0.22)kV电压等级接入公共电网时,并网点的断路器应具备短路瞬时、长延时保护功能和分励脱扣、欠压脱扣功能,并应配置剩余电流保护装置。

母线保护若光伏电站侧为线变组接线,经升压变后直接输出,不配置母线保护。

分布式光伏系统设有母线时,可不设专用母线保护,发生故障时可由母线有源连接元件的后备保护切除故障。

如后备保护时限不能满足稳定要求,可相应配置保护装置,快速切除母线故障2.3.2.1.4 系统侧保护校验及完善(1)分布式光伏接入配电网后,应对分布式光伏送出线路相邻线路现有保护进行校验,当不满足要求时,应调整保护配置。

(2)分布式光伏接入配电网后,应校验相邻线路的开关和电流互感器是否满足最大短路电流情况要求。

(3)应对系统侧变电站或开关站侧的母线保护进行校验,若不能满足要求时,则变电站或开关站侧应配置保护装置,快速切除母线故障。

2.3.2.1.5防孤岛保护分布式光伏发电系统应具备快速监测孤岛且立即断开与电网连接的能力,防孤岛保护动作时间不大于2s,防孤岛保护应与电网侧线路保护重合闸、安全自动装置动作时间相配合。

线路保护调试方法

线路保护调试方法

线路保护调试流程—模数变换系统检验
线路保护调试流程—开入量 开出量检查
保护压板及重合闸方式 开入量:在端子排上用依次短接;查看保护开
入量或打印 开出量:模拟故障或异常状态检查开出接点
线路保护调试流程—定值检验
整定值的整定及检验是指将装置各有关元件的 动作值及动作时间按照定值通知单进行整定后 的试验; 该项试验在屏柜上每一元件检查完毕 之后才可进行。
线路保护的调试方法—距离保护调试
短路电压计算公式: 摸拟单相接地故障电压:UФ=m1+K0IФZZD 摸拟相间短路故障电压:UФФ=m2IФZZD
ZZD 为距离I II、III段阻抗定值;K0为零序补偿系数
m=0 95 时,距离元件动作;
m=105 时,距离元件不动作; 07倍测动作时间; 反方向检查不动
总结
保护功能 定值、动作时间检验
利用微机型继电保护测试仪模拟各种类型故障; 测试各项保护的动作值及动作时间是否满足定 值整定要求; 对各项保护的测试应分别进行, 即将高频、距离、零序分别与重合闸配合检验, 不用的保护压板应退出。每完成一项检验后, 须仔细记录测试数据及装置动作信号,打印生 预热5分钟;调整零漂时;应断开装置与测试仪或 标准源的电气连接,确保装置交流端子上无任何输入
幅值特性及相位特性检验线性度 将保护装置电流回路端子IA IB、IC、3I0顺极性串联, 分别通入0 1IN、02IN、1IN、5IN;将保护装置电压 回路端子UA、UB、UC、UX同极性并联,分别通入 1V、5V、30V、577V、70V; (不同检验,所做内容 不一样) 采样同时也是检查试验接线的正确性
220kV及以上线路保护都配有主保护及后备保 护;且双主双备。
线路保护的简介

线路保护

线路保护
所以从逻辑上来说,双CPU组成了逻辑‘与’的关系,起动元件和故障判断 元件同时动作,保护才能出口跳闸,这样提高了装置的可靠性。
Ia、Ib Ic、I0 Ua、Ub Uc、UL
TEST HELP
低通 滤波
A/D
DSP 光端机
CPLD
光隔
外部 开入
电源 液晶显示
低通 滤波
A/D
CPU
出口 继电器
QDJ
打印
在具有远方起动的高频闭锁式保护中要设置断路器三 跳停信回路
(1)在发生区内故障时:一侧断路器先跳闸,如果不立即停信, 由于无操作电流,发信机将发生连续的高频信号,对侧收信 机也收到连续的高频信号,则闭锁保护出口,不能跳闸。
(2)当手动或自动重合于永久性故障时:由于对侧没有合闸, 于是经远方起动回路,发出高频连续波,使先合闸的一侧被 闭锁,保护拒动。为了保证在上述情况下两侧装置可靠动作, 必须设置断路器三跳停信回路。
2) 易于获得各种附加功能(如事故记录、事故追忆、故 障录波、故障测距等);
3.)保护动作特性和性能得到改善(引入新理论、新算法、 新技术。如承受过渡电阻能力的改善、区分振荡与故障能力的提 高、降低衰减非周期分量的影响、故障分量保护、自适应保护、 状态预测、小波变换应用、模糊控制、神经网络应用等)。
2. 基本要求
选择性
保护装置动作时仅将故障元件从电力系统中 切除,使停电范围尽可能缩小,以保证系统 中无故障部分继续运行。
快速性
尽快将故障设备从系统中切除,提高系统 稳定性,减轻故障设备和线路的损坏程度, 缩小故障波及范围。
灵敏性
指保护装置在其保护范围内发生故障或不正 常运行时的反应能力。
可靠性
在规定的保护范围内发生故障,保护装置应 可靠动作,而在任何不应动作的情况下,保 护装置不应误动。

关于T接线路保护配置问题的阐述

关于T接线路保护配置问题的阐述

关于T接线路保护配置问题的阐述摘要:从110kV T接线路入手,分析T接线路对保护配置的影响,结合绍兴电网结构特点及中纺变,立新变和双梅变改造具体情况阐述了T接线路保护配置问题的解决。

关键词:T接线路光纤电流差动保护短路故障随着社会经济的迅猛发展,使用户对供电的需求量大量增加。

由于供电半径和供电走廊等的限制,同时为了节省设备投资,为保证供电,就近T接引出线路或降压变压器,这在35kV、110kV系统中越来越多见,导致了许多三端甚至四端线路。

这些线路最长的为30km,最短的为几百米。

这种现状,使得传统的中低压保护配置产生较大困难。

为解决上述问题,设计院对110kV中立1109线保护配置进行设计。

1 T接线路对保护配置的影响1.1 对单侧供电的电源线路的影响对无T接的供电线路,电源侧距离保护第一段(零秒动作)只能保护线路全长的80%。

而对T接线路来说,电源侧保护第一段定值应按照同时躲开本线路末端和躲过T接支路末端故障整定。

若T接点距电源侧保护越近,保护第一段定值就越小,零秒速动保护本线路的范围就越短;若按线路全长的80%整定,则电源侧I段保护将伸入至分支变压器内部,当变压器发生内部故障时,线路距离保护I段与变压器差动保护同时动作,失去了保护的选择性。

目前线路全线保护一般为保护第二段,其动作时间为0.4~1s之间,不能做到全线速切故障。

由此引起的常见现象是:当系统上有故障时,电网供电质量急剧下降,导致电网上一些对供电质量要求高的用户不能正常供电。

1.2 对双侧供电的电源线路的影响双侧供电的线路,两侧都要分别装设一套带方向的三段式电流保护,其方向元件的电压应接入高一电压级回路,且很容易受系统运行方式改变、变压器投停的影响。

其次,对于T接线上电厂线路,电厂内的保护时间因受电网时间级差紧张的影响而很难配置。

2 电流差动保护的优点传统的电流保护和距离保护等,由于只利用线路一侧的电气量变化,作为保护装置的动作判据,不能达到全线瞬时切除故障的要求。

线路保护

线路保护

IⅠ
× 。 。 IⅠ2
区 外 故 障 障 故 内 区
IⅠ
× 。 。 IⅠ2
IⅡ
I 。Ⅱ2 。 × ×
K1
IⅡ
Hale Waihona Puke 。IⅡ2 。 × ×光纤电流差动保护通过光纤电缆传输继电保护需要的模拟量信号和开关量 信号。正常运行时,通过光缆将线路对侧的电流幅值和相位传送到本侧,与 本侧的电流幅值和相位进行比较。线路正常输送负荷的情况下,两侧的电流 幅值相等,相位互差1800 。保护中的差电流为0,保护装置不动作。当被保 护线路发生区内故障时,两侧的电流相位相差00,两侧保护瞬时跳开本侧开 关。区外故障时,两侧电流的相位与正常运行时相同,相差1800。两侧电流 的幅值则因为故障电流的大小不同而不等。特别是当区外故障电流较大时, 由于两侧CT的特性差异,会造成电流差动保护中的不平衡电流增加,差流增 大,导致保护误动。为此,光纤电流差动保护具有比率制动特性,可有效的 保证区外故障时保护不会误动。
2.主要功能和技术要求 (1)保护装置的起动逻辑由反映突变量的零序和负序元件构成。突变量元件起动后 开放保护装置的动作出口回路,正常运行和系统振荡时不会起动,受外界影响小,抗 干扰能力较强。此外,反映零序和负序突变量的元件在线路故障时起动速度快,有助 于缩短保护固有动作时间,达到快速切除故障的目的。 (2)对闭锁式纵联保护,要求起动元件(零序、负序或正序电流突变量元件)在故 障初始须快速起动发信,故障切除后,起动元件的返回应稍带有一定的延时。原因是 保证在区外故障切除后,保证方向元件首先返回,闭锁信号再返回。 (3)无论是闭锁式还是允许式纵联保护,都应设置外部保护(如母差、失灵)跳闸 停信或发信回路。对闭锁式纵联保护当母差、失灵等保护动作跳开本线路开关时,应 同时发出停信信号,使本侧发信机停信,以便让对侧保护跳闸。对允许式纵联保护, 当母差或失灵保护动作时,应同时发出发信信号,也是为了使对侧保护动作跳闸。这 是因为考虑到,当母差或失灵保护动作跳本线路开关,而开关失灵、跳不开时,让对 侧开关跳闸,以达到切断故障电流的目的。 (4)对纵联方向保护装置,应设置PT断线闭锁元件。对后备距离保护,还应设置振 荡闭锁,系统发生振荡时,闭锁距离保护的一、二段。 (5)载波通道是纵联保护传输信号的重要途径,线路正常运行时,应有对载波通道 进行长期监视的手段,对专用载波通道,每天均应进行通道对试,以保证通道的完好。 对复用载波通道,应设置与跳闸脉冲频率不同的监频信号,当通道异常时,发出报警 信号。

110KV线路主保护有哪些

110KV线路主保护有哪些

110KV线路主保护有哪些
主保护是距离保护(接地距离、相间距离),如果线路很短,定值难以整定,一般会考虑采用光纤电流差动保护作为线路的主保护。

后备保护一般为零序过流保护
1 过电流
2 过电压和欠电压保护
3 气体保护
4 接地保护
110KV线路一般配有三段式接地距离保护、三段式相间距离保护和三段式零序保护,外加自动重合闸装置。

1、主保护为差动保护差动速断[硬+软]
比率差动[硬+软]
2、高后备保护复压过流Ⅰ段[硬]
复压过流Ⅱ段[硬]
复压过流Ⅲ段[硬+软]
零序过流Ⅰ段
零序过流Ⅱ段
零序选跳
间隙保护
启动冷风[硬]
闭锁调压[硬]
3、低后备保护复压过流Ⅰ段[硬]
复压过流Ⅱ段[硬+软]
限时速断[硬]
充电保护[硬]
4、非电量保护
冷控失电\三相不一致\本体重瓦斯\有载重瓦斯\绕组过温\压力释放\压力突变\本体轻瓦斯信号\有载轻瓦斯信号\本体油位异常信号\有载油位异常信号\油温高\信号\绕组温高信号气体继电器
油面温度计
绕组温度计
压力释放阀
压力突发继电器
油位计
在线色谱监测装置
对于强油的还有油流继电器等等。

RCS931线路保护装置讲义

RCS931线路保护装置讲义

纵联保护概述
• 反应一侧电气量变化的保护的缺陷 • 通道类型 • 高频信号的性质
反应一侧电气量变化的保护的缺陷
M
ES
TA
1
N
F1 TA
TA F2
2
3
• 反应M侧电气量(电流、电压)变化的保护无法区分本 线路末端( F1)点和相邻线路始端( F2)点的短路。为保 证 F2点短路M侧保护的选择性,其瞬时动作的第Ⅰ段按 躲 F2 (F1)点短路整定。所以反应一侧电气量变化的保 护的缺陷是不能瞬时切除本线路全长范围内的短路。
M
ES
F√ F-×
N
F× F√ F-√ F-×
P
F
ER
F√ F-×
低 起动元件

F
F
T1
80
&
2
&
3
≥1
&
4
&
5
6
&
1
&
7
FX
SX
T2
80
f f
跳闸
闭锁式纵联方向保护发跳闸命令的条件
• ① 高定值起动元件动作。只有高定值起动元件动作后
程序才进入故障计算程序,方向元件及各个逻辑功能才
开始计算判断,保护才可能跳闸。因此可以说只有高定
通道类型
• 微波通道。
信号频率是3000~30000MHz。这种频率在通 信上属于微波频段范围,所以把这种纵联保护称 做微波保护。微波通道有较宽的频带可以传送多 路信号,采用脉冲编码调制(PCM)方式可以 进一步提高通信容量,所以可利用来构成分相式 的纵联保护。微波通道与输电线路没有联系,输 电线路的故障不影响信号的传输,可用于传送各 种信号(闭锁、允许、跳闸)。微波频率的信号 可以无线传输也可以有线传输。无线传输要在可 视距离内传输,所以要建高的微波铁塔。当传输 距离超过40~60KM时还需加设微波中继站。有 时微波站在变电站外,增加了维护困难。

110kV线路差动保护异常分析及故障排除

110kV线路差动保护异常分析及故障排除

110kV线路差动保护异常分析及故障排除山东华聚能源公司济东新村电厂进行110kV线路综自改造,电厂与济宁二号煤矿110kV变电所之间的110kV线路装设有光纤电流差动全线速动保护,该保护有差动保护、距离保护、零序保护等功能。

设备投用后出现差动保护异常,本文对差动保护装置的原理、二次回路、互感器原理等方面做细致分析,得出二次接线部分造成差动保护异常的根本原因,从生产运行方面进行排除故障。

标签:110kV线路;差动保护;向量引言供电系统保护选择性不好的问题通过光纤纵联差动保护能很好地解决,国内高压及超高压电力系统的线路保护广泛应用,所以它是电厂、变电站的110kV 电力线路主保护的主要选择。

济东新村电厂与济宁二号煤矿110kV变电所之间的110kV线路保护装置具备光纤电流差动全线速动保护,该保护具有分相电流差动、相间、接地距离保护、零序保护等功能。

该保护具备分相电流差动、相间、接地距离保护、零序保护等功能。

差动保护是利用基尔霍夫的ΣI=0电流定理工作的,光纤分相电流差动保护借助于线路的光纤通道,实时向对侧传递采样数据,同时接收对侧的采样数据,按相进行差动电流计算。

在正常运行及区外故障情况下,流过两侧断路器的电流方向相反、大小相等,差动电流为零,保护不动作;区内故障时,两侧的断路器都向故障点提供短路电流,被保护线路的流进与流出电流不相等,差动电流不等于零,出现差动电流大于保护装置的整定值时,保护线路两侧的断路器跳开从而实现保护动作。

二、110kV线路差动原理及数据分析差动保护装置采用南瑞RCS-943AU,其中电流差动继电器由三部分组成:变化量相差动继电器,稳态相差动继电器和零序差动继电器。

1、变化量相差动继电器为工频变化量差动电流,即为两侧电流变化量矢量和的幅值。

为工频变化量制动电流;即为两侧电流变化量矢量差的幅值。

IH为“差动电流高定值”(整定值)和4倍实测电容电流的大值;实测电容电流由正常运行时的差流获得。

220kV线路保护配置及运行方式

220kV线路保护配置及运行方式

220kV线路保护配置及运行方式概况220kV踏九线线路保护装置由两套独立的、配置相同保护功能的保护装置组成。

两套装置配置了光纤差动保护、零序保护、距离保护。

两套装置都带有重合闸功能,其中2号保护装置单相重合闸启用。

光纤差动保护输电线路保护采用光纤通道后由于通信容量很大所以往往做成分相式的电流纵差保护。

输电线路分相电流纵差保护本身有选相功能,哪一相纵差保护动作那一相就是故障相。

输电线路两侧的电流信号通过编码成码流形式然后转换成光的信号经光纤输出。

传送的信号可以是包含了幅值和相位信息在内的该侧电流的瞬时值,保护装置收到输入的光信号后先转换成电信号再与本侧的电流信号构成纵差保护。

纵联电流差动继电器的原理I CD312K=0.75K=0.6I0dzIdzI f许继差动特性四方差动特性本装置差动保护由故障分量差动、稳态量差动及零序差动保护组成。

差动保护采用每周波96点采样,由于高采样率,差动保护可以进行短窗相量算法实现快速动作,使典型动作时间小于20ms。

故障分量差动保护灵敏度高,不受负荷电流的影响,具有很强的耐过渡电阻能力,对于大多数故障都能快速出口;稳态量差动及零序差动则作为故障分量差动保护的补充。

比例制动特性动作方程如下:..I M I IN CDset(3). I . . .M I K I IN MN (4)***************************************************************************** 讲解例子IdES M IMINNERTA TAKr(a) 系统图IqdIr(b) 动作特性ESM II NMNERESM II NMNTA TAIKTA TAIK(c)内部短路(d)外部短路图2-29 纵联电流差动保护原理设流过两侧保护的电流I M 、I N 以母线流向被保护的线路方向规定为其正方向,如图中箭头方向所示。

以两侧电流的相量和作为继电器的动作电流I d ,I d I M I N 。

线路保护原理与配置

线路保护原理与配置

4.220kV及以上保护双重化配置原则的要 求
①每套完整、独立的保护装置应能处理可能发生的所有类型 的故障。两套保护之间不应有任何电气联系,当一套保护退出 时不影响另一套保护的运行。
②两套保护的电流回路应分别取自电流互感器互相独立的绕 组,并合理分配电流互感器二次绕组,避免可能出现的保护死 区。
③两套保护的跳闸回路应与断路器的两个跳圈分别一一对应。
110kVLFP-941线路保护装置压板
交流电压断线时发“DX”信号的同时,将距离保护退出运行,同时将 零序方向过流保护的方向元件退出,即将零序四段方向过流保护改为无方向 性跳闸方式。同时投入经延时的相电流过流保护(受投距离压板影响 ),若 将“投距离”压板解除,则此PT断线下的相电流保护不起作用。
三 、不同电压等级线路保护的配置
110kV线路保护装置
装置的正面面板布置如下:
(2)指示灯定义如下: “运行”灯为绿色,装置正常运行时点亮。 “TV断线”灯为 黄色,当发生电压回路断线时点亮。“充电”灯为黄色,当重 合闸充电完成时点亮。 “跳闸”、 “重合闸”灯为红色,当保护动作出口点亮,在 “信号复归”后熄灭。 “跳位”灯为红色,“合位”灯为绿色,指示当前开关位置。
继电保护装置基本要求
1、对继电保护性能的要求
继电保护装置应满足选择性、可靠性、灵敏性和
速动性的要求。 2、继电保护“四统一”原则:统一技术标准;统一原 理接线;统一符号;统一端子排布置。 3、继电保护“六统一”原则:统一技术标准;统一原 理接线;统一符号;统一端子排布置;统一定值单格 式;统一故障报告格式。
RCS900系列保护装置上电后,正常运行时液晶屏幕显示主 画面,格式如下:
保护动作时液晶显示说明:本装置能存储128次动作报告,24次故障录 波报告,当保护动作时,液晶屏幕自动显示最新一次保护动作报告,当一次 动作报告中有多个动作元件时,所有动作元件及测距结果将滚屏显示。

线路光纤差动保护(RCS-931)概要

线路光纤差动保护(RCS-931)概要

电流纵差保护的主要问题(3)
(3)弱电侧电流纵差保护存在的问题 • 当有一侧是弱电源侧或无电源侧,在线路内部 短路时,无电源侧起动元件可能不起动。例如 无电源侧变压器中性点不接地,短路前线路空 载,短路后由于既无电流突变量又无零序电流, 起动元件不动作。起动元件不动作,程序在正 常运行程序。此时无电源侧差动继电器没有进 行计算,不会向对侧发允许信号。导致电源侧 电流纵差保护拒动。
‘长期有差流’信号



满足下述条件发‘长期有差流’信号: ① 差流元件动作; ②差流元件的动作相(只有一个差流元件动作,它涉及的 那一相)或动作相间(有两个差流元件动作,它们涉及的两 相)的电压大于0.6倍的额定电压; ③ 满足上两条件达10秒钟。 第一个条件证明有差动电流(动作电流),第二个条件证 明系统没有短路。于是经延时发告警信号。需要指出,在TA 断线或装置内的某相电流数据采样通道故障时都可满足上述 条件。故发的是‘长期有差流’信号。 当TA断线时无论是断线侧还是未断线侧,在主程序中如果有 压差流元件动作,10秒后都可发出‘长期有差流’的告警信 号。 当装置发出‘长期有差流’信号后根据定值单中的‘TA断 线闭锁差动’控制字的情况对电流差动保护进行不同处理: 当该控制字为“1”时,闭锁差动保护,当该控制字为“0”时, 不闭锁差动保护但将差动继电器的起动电流抬高到‘TA断线 差流定值’。显然该定值应大于线路两侧母线发生短路后的 最大短路电流,才能避免这种情况下差动继电器的误动。
N
电容电流补偿

对于较长的输电线路,电容电流较大,为提高经大过 渡电阻故障时的灵敏度,需对每相差动电流进行电容 电流补偿。电容电流补偿量由下式计算而得:
U M U M 0 U M 0 U N U N 0 U N 0 2X 2 X 2 X 2 X C1 C0 C1 C0

继电保护基础知识

继电保护基础知识

输电线纵联保护
二、高频保护
二)、通道的工作方式及高频信号的应用 1、高频通道的工作方式: 长期发信方式:正常运行时,始终收发信(经常有高频电 流) 故障时发信方式:正常运行时,收发信机不工作。当系统 故障时,发信机由启动元件启动通道中才有高频电流 (经常无高频电流) 2.高频信号的分类及应用 按高频信号的应用分三类:跳闸信号、允许信号、闭锁信 号
概述
三、对继电保护的基本要求
3、灵敏性:
指在规定的保护范围内,对故障情况的反应能力。
满足灵敏性要求的保护装置应在区内故障时,不论 短路点的位置与短路的类型如何,都能灵敏地正确 地反应出来。
概述
三、对继电保护的基本要求
4、可靠性:
指发生了属于它该动作的故障,它能可靠动作,即
不发生拒绝动作(拒动);而在不该动作时,它能 可靠不动,即不发生错误动作(简称误动)。
概述
二、继电保护的基本原理、构成与分类
5)按保护所起的作用分:主保护、后备保护、辅助保护;
① 主保护:以最快速度有选择地切除被保护设备和线路故障的保护 ② 后备保护:主保护或断路器拒动时用来切除故障的保护。分为远 后备和近后备保护两种。 ③ 辅助保护:为补充主保护和后备保护的性能或当主保护和后备保 护退出运行而增设的简单保护
输电线纵联保护
二、高频保护 定义:以输电线载波通道作为通信通道的纵联保 护。高频保护就是将线路两端的电流相位(或 功率方向)转化为高频信号,然后利用输电线 路本身构成一高频(载波)电流的通道,将此 信号送至对端,进行比较。 分类:按照工作原理分两大类,方向高频保护和 相差高频保护。 方向高频保护:比较被保护线路两侧的功率方向。 相差高频保护:比较被保护线路两侧的电流相位。
继电保护基础知识

光纤差动线路保护讲义

光纤差动线路保护讲义

天王沟电站线路保护讲课讲义一、我站线路保护配置1.RCS-943 包括以分相电流差动和零序电流差动为主体的快速主保护,由三段相间和接地距离保护、四段零序方向过电流保护构成的全套后备保护;装置配有三相一次重合闸功能、过负荷告警功能;二、线路保护简介1.光纤纵差保护首先,光纤的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在的二次侧的电流继电器包括零序电流中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关;即使是微机保护装置,其原理也是这样的;但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同;的通道一般有以下几种类型:以下几点作为了解,我站为第3种1.电力线载波,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号;2.微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输;3.光纤纵联保护,简称光纤保护,利用光纤光缆作为通道;4.导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障;2.线路距离保护我站线路距离保护分为接地距离、相间距离保护接地距离:以保护安装处故障相对地电压为测量电压、以带有零序电流补偿的故障相电流为测量电流的方式,就能够正确地反应各种接地故障的故障距离,所以它称为接地距离保护接线方式;相间距离:以保护安装处两故障相相间电压为测量电压、以两故障相电流之差为测量电流的方式称为相间距离保护接线方式;是反应故障点至保护安装地点之间的距离或阻抗;并根据距离的远近而确定动作时间的一种保护装置;该装置的主要元件为距离阻抗继电器,它可根据其端子上所加的电压和电流测知保护安装处至短路点间的阻抗值,此阻抗称为继电器的测量阻抗;当短路点距保护安装处近时,其测量阻抗小,动作时间短;当短路点距保护安装处远时,其测量阻抗增大,动作时间增长,这样就保证了保护有选择性地切除故障线路;用电压与电流的比值即阻抗构成的继电保护,又称阻抗保护,阻抗元件的阻抗值是接入该元件的电压与电流的比值:U/I=Z,也就是短路点至保护安装处的阻抗值;因线路的阻抗值与距离成正比,所以叫或阻抗保护;距离保护分的动作行为反映保护安装处到短路点距离的远近;与电流保护和电压保护相比,距离保护的性能受系统运行方式的影响较小;距离保护保护范围讲解:一般距离保护为Ⅲ断式距离保护,第一段保护范围为线路全长85%,二段保护范围位前面与一段重合,后面为剩余线路的20%,三段保护范围为线路全长的120%;一般情况下,距离保护装置由以下4种元件组成;①起动元件:在发生故障的瞬间起动整套保护,并可作为距离保护的第Ⅲ段;起动元件常取用过电流继电器或低阻抗继电器;②方向元件:保证保护动作的方向性,防止反方向故障时保护误动作;方向元件可取用单独的功率方向继电器,也可取用功率方向继电器与距离元件结合构成方向阻抗继电器;③距离元件:距离保护装置的核心部分;它的作用是量测短路点至保护安装处的距离;一般采用阻抗继电器;④时限元件:配合短路点的远近得到所需的时限特性,以保证保护动作的选择性;一般采用时间继电器;3.保护装置面板操作说明根据说明书在实际设备上进行讲解,主要讲解日常操作。

线路保护(距离保护、光纤电流差动)

线路保护(距离保护、光纤电流差动)
排故前提:电流电压回路接线正确
四、检验中常见故障及处理 交流回路故障
交流回路故障现象及处理(电流回路)
1、测试仪显示电流回路开路,装置采样无该相电流值。 分析处理:使用万用表检查或者直接拆线检查是否有绝缘包扎
2、测试仪未显示电流回路开路,装置采样无该相电流值或者 电流值比加入值小。
分析处理:紧固装置交流插件,或者检查该相电流回路是否有短接
2、装置采样无该相电压值 分析处理:紧固装置交流插件,或者检查该相电压回路是否有虚接
3、装置采样显示B、C两相电压对调 分析处理:检查B、C两相电压回路接线是否对调
4、装置采样三相电压相位存在漂移的现象 分析处理:电压回路N被虚接。
四、检验中常见故障及处理 开入回路故障
开入回路检查方法 建议逐一投入压板及开入信号,检查装置开入变位情况
一、距离保护原理 三段距离保护
距离Ⅰ段、Ⅱ段和Ⅲ段之间的配合原则,基本上与电流保 护相似。
一、距离保护原理 三段距离保护
注意:距离保护的Ⅰ段保护范围通常选择为被保护线路 全长的80%~85%
原因:距离保护第1段的动作时限为保护装置本身的固有动作 时间,为了和相邻的下一线路的距离保护第1段有选择性的配 合,两者的保护范围不能有重叠的部分。否则,本线路第1段 的保护范围会延伸到下一线路,造成无选择性动作。 再者,保护定值计算用的线路参数有误差,电压互感器和电流 互感器的测量也有误差。考虑最不利的情况,这些误差为正值 相加。如果第1段的保护范围为被保护线路的全长,就不可避 免地要延伸到下一线路。此时,若下一线路出口故障,则相邻 的两条线路的第1段会同时动作,造成无选择性地切断故障。 除上弊,第1段保护范围通常取被保护线路全长的80%~85%。
2BZmZmZs et2ZmZs et

光纤差动

光纤差动

首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在CT(电流互感器)的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。

即使是微机保护装置,其原理也是这样的。

★★★但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。

纵联保护的通道一般有以下几种类型:1.电力线载波纵联保护,也就是常说的高频保护;2.微波纵联保护,简称微波保护;3.光纤纵联保护,简称光纤保护;4.导引线纵联保护,简称导引线保护。

至于对光纤通道的具体要求,我没有找到详细的答案,我认为有以下几点应该做到:1.由于采用PCM光纤或光缆作为通道,主要是要求线路两侧的数据实现主、从方式严格同步;2.当保护装置运行时,必须成对使用,即两侧都运行;3.进行整定时,线路两侧必须一侧整定为主机,另一侧整定为从机;4.光纤接口的技术指标必须满足要求,例如单模光纤、多模光纤的发送功率,接收灵敏度,抗干扰性能,等等指标。

750kV输电线路具有传输容量大、输送距离远、经济效益好的特点,但同时也存在线路分布电容大、故障时高频分量丰富、直流分周期分量衰减缓慢的影响保护工作的因素。

文章分析了750kV输电线路的电容电流、暂态过程对线路电流差动保护以及距离保护的影响,并对线路保护的动模试验以及实际系统的人工接地试验中线路保护的动作情况进行了介绍。

关键词:继电保护;动模试验;人工接地由于特高压输电线路具有传输容量大、输送距离远、经济效益好的特点,我国目前正在进行特高压输电系统的研究。

于2005年9月在西北建成的750kV输电线路即是其中的一部分。

与500kV超高压输电线路相比,750kV输电线路的输送容量更大、线路距离更长、系统短路容量更大,因而对线路继电保护的要求也就更高。

110kV保护原理讲解

110kV保护原理讲解
整定原则:按躲过线路末端故障整定 ; 2、距离Ⅱ段
动作时限和起动值要与相邻下一条线路保护的I段或II段 相配合; 整定原则:1、与相邻线路的距离I段配合;
2、按躲过线路末端变压器低压母线短路整定;
110kV线路保护原理
3、距离保护Ⅲ段
作为Ⅰ、Ⅱ段的近后备保护又作相邻下一线路距离保护和 断路器拒动时的远后备保护。
110kV线路保护原理
我场光纤纵差保护简介
自对侧线路来的尾纤(单模四芯光缆)到光纤配线架,然 后两根光纤跳线至保护装置4X,通道A RX(接受),及通 道A TX(发送)。 注:RX、TX光纤不能插反。插反后对 侧数据接受中断,我场数据无法发送。
110kV线路保护原理
2、距离保护
距离保护就是指反应保护安装处至故障点的距离,并根据 这一距离的远近而确定动作时限的一种保护装置。实际上 是测量保护安装处至故障点之间的阻抗大小,故有时又称 阻抗保护。短路点越靠近保护安装处,其测量阻抗就越小, 则保护的时限就越短,反之,短路点越远,其测量阻抗就 越大,则保护动作的时限就越长。这样,保证了保护有选 择性的切除故障线路。
110kV线路保护原理
如果差动元件确定了该故障是区内故障并且也出现了 应当跳闸的指令,这时就不仅要使线路本侧的断路器 跳开,还要使用光纤通道向该线路的对侧传达故障发 生的信号,从而使得对侧的断路器能够在最短的时间 内跳闸。
光纤电流差动保护借助于通信通道双向传输电流数据, 供两侧保护实时计算。
110kV线路保护原理
光纤纵差是将两侧的电气量先转换成数字信号后,再通过 光纤进行双侧通讯,对两侧的电气量进行比较。
如果线路处于正常工作状态或者是出现了区外故障现 象,工作线路两侧的电流相位便是相反的,这个时候 两侧线路的差电流也会保持在零;但是如果线路产生 了区内故障,工作线路两侧的差电流便不会再保持在 零,当电流的数据与差动保护装置所表现出来的动作 特性方程相一致时,保护装置就会自行出现跳闸指示 使相应设备在最短的时间内将故障排除,使设备恢复 正常的工作状态。

线路光纤差动保护说明书

线路光纤差动保护说明书
定值缺损或丢失。 8、 先进可靠的振荡闭锁功能,保证距离保护在系统振荡加区外故障时能可靠闭
锁,而在振荡加区内故障时能可靠切除故障。 9、 单元自带蜂鸣器件,故障告警。 10、后台通信方式灵活,配有 RS-485 接口和以太网。 11、与 COMTRADE 兼容的故障录波。 12、 具备打印功能,可以打印定值和跳闸报告等装置信息。
信道类型: 数字光纤或数字微波(可多次转接) 接口标准: 64kbit/s G.703 同向数字接口
-4-
第 3 章 保护原理
3.1 启动元件
(1)“负序零序”启动元件 (I2 + KI0 )t > (I2 + KI0 )t−T + Iset
式中: Iset 为固定阀值,可整定。在两相和单相短路接地时的 I2 较两相短路时要 小。因此, 在启动元件中增加了 KI0 分量以保证在接地故障时的灵敏度,这里 K 可整 定。
第 1 章 概述
1.1 应用范围
DSA8343 为由 TI 公司的 DSP 浮点芯片和 ARM9 实现的输电线路保护装置,适 用于 220KV 及以下不分相跳闸输电线路的主保护和后备保护。
1.2 保护配置
DSA8343 包括以两段相电流纵差和零序电流纵差为主体的快速主保护,由突变 量距离元件构成快速 I 段保护,由四段式相间距离、接地距离、四段零序方向过流和 零序反时限过流构成全套后备保护。装置配有三相自动重合闸功能,可由保护控制 字选择检同期、检无压或者不检方式。
2.8 绝缘耐压
绝缘试验:符合国标 GB/T 14598.3-93 6.0 的规定; 冲击电压试验:符合国标 GB/T 14598.3-93 8.0 的规定;
2.9 输出接点容量
信号接点容量:

线路各保护的原理及保护范围介绍

线路各保护的原理及保护范围介绍
二、线路的保护种类:
中海油新能源玉门风电场
1、线路的保护有主保护和后备 保护
主保护一般有两种:纵差保护和 三段式电流保护,而在超高压系统中 现在主要采用高频保护。 后备保护主要有距离保护、零序 保护和方向保护等。
中海油新能源玉门风电场
1.1纵联保护
利用通道,将线路一侧电气量的信息 传输到另一侧去,进行信息交换,通过比 较线路两侧电气量的大小和相位差值来确 定故障的位置,这种保护称为输电线路的 纵联保护
第三段为定时限过电流保护,动 作时限为tAⅢ=tBⅡ+△t,保护范围是 线路XL—1及XL—2的全部 三段式电流保护的特点: • 电流速断和限时电流速断作为本 线路的主保护,故障可在0.5s 以内 的时间予以切除 • 以过电流保护作为本线路和相邻 线路的后备保护,在主保护或断路 器拒动时跳闸。
中海油新能源玉门风电场
中海油新能源玉门风电场
三、线路的保护原理:
1、过电流保护方向性
K1
当K1点短路,保护1、2动作,断开 QF1和QF2,接在A、B、C、D母线上的 用户,仍然由A侧电源和D侧电源分别供 电,提高了对用户供电可靠性。
中海油新能源玉门风电场
K1
K2
对过电流保护,当在K1点短路时,要求
t 2 > t3 。
中海油新能源玉门风电场
1.2、为什么要配置纵联保护 仅反映线路一侧的电气量的保护, 如距离保护、零序保护等,不可能区 分本线末端和对侧母线(或相邻线始 端)的故障。 为了保证选择性,距离保护I段只 能保线路全长的70%~80%,这是距离 保护的局限性。为了满足电网稳定运 行的。
中海油新能源玉门风电场
当K2点短路时,要求
t3 > t 2
中海油新能源玉门风电场

光纤差动保护通信及保护原理简介

光纤差动保护通信及保护原理简介

报文间超时
报文 dt1
空闲
报文 dt2
空闲
报文 … …
报文 dtn
空闲
同步时前后两报文间的时间间隔dtn应保持恒定,若Δdtn >门槛,“报文间超时”+1
通道自环时时钟方式的设定
保护 机房 通信 机房 通信 机房 保护 机房
RCS -931
MUX -64B
PCM 交换机
PC
内部时钟 发时钟 内部时钟 发时钟

RCS-900 系列纵联 差动保护 64Kb/s 收时钟

RCS-900 系列纵联 差动保护
收时钟


内时钟(主─主)方式
时钟方式
图3.5.3 外时钟(从─从)方式
时钟方式
• 若通过64Kb/s同向接口复接PCM通信设备,必须采 用外部时钟方式,即两侧装置的发送时钟工作在“从 ─从”方式。数据发送时钟和接收时钟为同一时钟 源,均是从接收数据码流中提取,否则会产生周期 性的滑码现象。若两侧采用SDH通信网络设备时, 两侧的通信设备不必进行通信时钟设定。若两侧采 用PDH准同步通信设备时,还得对两侧的PDH通信设 备进行通信时钟设定。即把一侧的通信时钟设为主 时钟(内时钟),另一侧通信时钟设为从时钟,否 则会因为PDH的速率适配,而产生周期性的数据丢 失(或重复)问题。
远跳、远传1、远传2
} }
差动保护特点
• 差动保护采用两侧差动继电器交换允许 信号的方式,安全性高。装置异常或TA 断线,本侧的起动元件和差动继电器可 能动作,但对侧不会向本侧发允许信 号,从而保证差动保护不会误动
差动保护特点
• 变化量差动继电器,由于只反映故障分量, 不反映负荷电流,因此灵敏度高,动作速度 快。 • 零差保护引入了低制动系数、经电容电流补 偿的稳态相差动选相元件,灵敏度高,在长 线经高阻接地时也能选相跳闸; • 所有差动继电器的制动系数均为0.75,并采 用了浮动的制动门槛,抗TA饱和能力强

输电线路光纤电流差动保护原理及校验

输电线路光纤电流差动保护原理及校验

输电线路光纤电流差动保护原理及校验摘要:本文分析输电线路光纤差动保护的基本原理;并以永丰变220kV早颜永线三侧线路光纤差动保护RCS-931ATMV为例,深入分析了该装置的光纤电流差动保护的构成特性及其校验方法。

1引言近年来随着计算机技术及光纤通信技术的迅速发展,110kV及以上电压等级线路保护的快速主保护也在发生变化,逐步由原来的纵联高频保护和距离保护过渡到以光纤差动保护作为全线速动保护的发展阶段。

本文结合工作实际,分析输电线路光纤电流差动保护的基本原理,并以220kV早颜永线为例,分析探讨娄底局第一套三侧线路光纤差动保护装置RCS-931ATMV的构成原理及校验方法。

2输电线路光纤纵联电流差动保护原理输电线路两端的电流信号,通过采样、编码、光电信号转换、光纤传输到对端,保护装置接收到对端传过来的光信号转换成电信号再与本端电流信号构成纵联电流差动保护。

基于光纤通信容量很大的优点,输电线路纵联保护采用光纤通道后,所以往往做成分相式的光纤纵联电流差动保护。

输电线路分相电流差动保护具有良好的选相功能,哪一相电流差动保护动作那一相就是故障相,从而为220kV及以上电压等级的线路保护分相跳闸提供了高可靠性的判据。

输电线路光纤纵联电流差动保护的基本原理可结合图1来分析。

如图所示流过保护两端的电流相量IM、IN,如图1中箭头所示以母线流向被保护线路的方向为正方向,虚线部分表示短路故障情况下的故障电流IK。

以两端电流的相量和的幅值作为作为差动电流Id,如式2,稳态相差动继电器稳态相差动继电器的动作特性根据差动电流与制动电流的倍数关系分成二段特性动作方式。

I段相差动制动系数较大为瞬动段,针对严重故障下的保护。

首先介绍I段相差动继电器动作方程:IQ为电流差动启动定值。

其动作特性范围可描述为如图3中线段1和线段2之间的部分区域。

当满足上述稳态Ⅱ段相差动动作条件时,稳态Ⅱ段相差动继电器经25ms延时动作。

3,零序差动继电器对于经高电阻接地故障时,由于短路电流比较小,故采用零序差动继电器具有较高的灵敏度,由零序差动继电器动作,通过低比率制动系数的稳态差动元件选相,构成零序差动继电器,经过45ms延时动作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K
Z1 Z2 Z0
U U
输电线路上该相的压降是该相上的正序、负序、和零序压降之和
U UK I1Z1 I2Z2 I0Z0 I0Z1 I0Z1
UK (I1 I2 I0 )Z1 3I0 Z03Z1Z1 Z1 UK (I K3I0 )Z1
K——零序电流补偿系数。 UK ——短路点的该相电压。 (I K3I 0)Z1 ——输电线路上该相从短路点到保护安装处的压降。
1、电力线载波通道 2、微波通道 3、光纤通道(OPGW) 4、导引线通道
(三)高频通道的性质
高频信号 &
就地保护信号
跳闸
二、纵联保护 概述
高频信号 ≥1
就地保护信号
跳闸
闭锁信号
高频信号 就地保护信号 &
跳闸
允许信号
跳闸信号
1、闭锁信号。一般通道采用相—地制 耦合通道。 2、允许信号。一般通道采用相—相制 耦合通道。
二、纵联保护 光纤电流差动保护
(一)定义
光纤纵联差动保护:输电线路纵联保护采用光纤通道将输电 线路两端的电流信号通过编码流形式然后转换成光的信号经 光纤传送到对端,保护装置收到对端传来的光信号先转换成 电信号再与本端的电信号构成纵差保护。
光纤纵联差动保护的方向:以母线流向保护 线路方向为正
(二)光纤差动保护原理
2A D c
2B D c
2AZmZmZsetZset
2BZmZmZset2ZmZset
动作9 方 0 程 ArZ gmZ m Zset27转 0 换为幅:值方 12Z程 set为 Zm12Zset
C
B
D
C BA D BAA90 argC
D
arg
C
270
D
一、距离保护原理 幅值与相位比较间关系
一 距离保护原理 二 纵联保护 三 线路保护调试 四 检验中常见故障及处理
线路保护
一、距离保护原理 距离保护的理论基础:
欧姆定律
IU R
——电路中通过的电流与它两端的电压成正比, 与它的电阻成反比。
Z&
U& I&
——阻抗测量
一、距离保护原理 距离保护安装处电压计算公式
ES M Z
I1 I 2 I 0
M TA
TA
N
TA
TA P ER
1
23
4
二、纵联保护 概述
(二)通道类型
纵联保护既然是反应两端电气量变化的保护,那就一定要把对端 电气量变化的信息告诉本端,同样也应把本端电气量变化的信息 告诉对端,以便每侧都能综合比较两端电气量变化的信息做出是 否要发跳闸命令的决定。这样就要涉及的通信的问题。目前使用 的通道类型有下列几种:
U m 是保护安装处的电压,也叫极化电压 U op 是阻抗继电器的工作电压
Es F3 M
F1
F2 N
ER
ES F3 UM
F1
UOP F2
ER
一、距离保护原理 方向阻抗继电器
jX
Z set
Zm
动作 9 方 0A程 rZm gZse t 27 0 Zm
以灵敏角和Zset为直径作圆
R
方向与幅值9换 0算 Ar关 gC系 270 D
一、距离保护原理 距离保护安装处电压计算公式
ES M Z
I1 I 2 I 0
K
Z1 Z2 Z0
U U
保护安装处相间电压的计算公式为:
UUKI Z1
UK ——短路点的相间电压。 I ——两相电流差 I Z 1 ——输电线路上从短路点到保护安装处的两相压降之差。
一、距离保护原理 阻抗继电器动作原理
UOP UMIMZset
α4
tgα=1/8
α3
α1
α2
动作方程:
一、距离保护原理 方向性多边形阻抗继电器
X mtg15 Rm Rset X m ctg60
Rm tg15
Xm
X set
Rm tg
方向判别的动作方程为:
15 arg Ur 90 15 Ir
一、距离保护原理 距离保护的组成
真正构成一套距离保护至少包含以下几个部分:起动元件、阻抗测量元件、 电压闭锁元件、振荡闭锁元件、时限元件、出口执行元件。
一 距离保护原理 二 纵联保护 三 线路保护调试 四 检验中常见故障及处理
线路保护
二、纵联保护 概述
(一)反应输电线路一端电气量变化的保护缺陷
电流、电压、零序电流和距离保护都是反应输电线路一端电气量 变化的保护,这种反应一端电气量变化的保护从原理上讲都区分 不开本线路末端和相邻线路始端的短路。
Es
二、纵联保护 光纤电流差动保护
区外故障示意图
Es M
TA
N
TA
ER
1 IM
2 IN
区外故障时,一侧电流由母线流向线路,为正值,另一侧电流由线路 流向母线,为负值,两电流大小相同,方向相反,所以差动电流为零, 差流元件不动作。凡是穿越性的电流不产生动作电流,只产生制动电 流。制动电流是穿越性电流的2倍。
• 动作电流(差动电流)为:
Id IMIN
Id
• 制动电流为:
Ir IM IN
I cdset
• 差流元件基本动作方程:
{ Id Icdset
Id 0.75Ir
二、纵联保护 光纤电流差动保护
0.75
Ir
区内故障示意图
Es M
TA
1
二、纵联保护 光纤电流差动保护
N
TA
ER
2
区内故障时,两侧实际短路电流都是由母线流向线路,和参考方向 一致,都是正值,差动电流就很大Id >>Ir ,满足差动方程,差流 元件动作。凡是在线路内部有流出的电流,都成为动作电流。
A
2A D C
2B DC
D
C B
一、距离保护原理 偏移特性阻抗继电器
Z set
Za
动作方程
90ArZ gmZset270 ZmZA
90 ArU gmImZset270 UmImZA
以灵敏角yZset为直径作圆
一、距离保护原理 方向性多边形阻抗继电器
为了减小过渡电阻对阻抗保护的 影响,各边都采用了倾斜角,特 性如图所示。
一、距离保护原理 三段距离保护
距离Ⅰ段、Ⅱ段和Ⅲ段之间的配合原则,基本上与电流保 护相似。
一、距离保护原理 三段距离保护
注意:距离保护的Ⅰ段保护范围通常选择为被保护线路 全长的80%~85%
原因:距离保护第1段的动作时限为保护装置本身的固有动作 时间,为了和相邻的下一线路的距离保护第1段有选择性的配 合,两者的保护范围不能有重叠的部分。否则,本线路第1段 的保护范围会延伸到下一线路,造成无选择性动作。 再者,保护定值计算用的线路参数有误差,电压互感器和电流 互感器的测量也有误差。考虑最不利的情况,这些误差为正值 相加。如果第1段的保护范围为被保护线路的全长,就不可避 免地要延伸到下一线路。此时,若下一线路出口故障,则相邻 的两条线路的第1段会同时动作,造成无选择性地切断故障。 除上弊,第1段保护范围通常取被保护线路全长的80%~85%。
相关文档
最新文档