圆的周长和面积奥数训练及详解
圆的周长和面积综合习题精选(含问题详解)
圆的周长和面积综合习题精选(含问题详解)本文档精选几道关于圆的周长和面积的综合题,并提供详细的问题解答。
以下是几道题及解答:题一一个圆的半径是5cm,请计算该圆的周长和面积。
解答:设圆的半径为r,则根据圆的定义,周长C = 2πr, 面积A = πr^2。
代入半径r = 5cm,我们可以计算得到:周长C = 2π × 5 = 10π cm,面积A = π × 5^2 = 25π cm^2。
因此,该圆的周长为10π cm,面积为25π cm^2。
题二一个圆的周长为18π cm,请计算该圆的半径和面积。
解答:设圆的半径为r,则根据圆的定义,周长C = 2πr, 面积A = πr^2。
代入周长C = 18π cm,我们可以解方程得到:2πr = 18π,r = 18π / (2π) = 9 cm。
所以,该圆的半径为9 cm。
将半径r = 9 cm代入面积公式,我们可以计算得到:面积A = π × 9^2 = 81π cm^2。
因此,该圆的半径为9 cm,面积为81π cm^2。
题三一个圆的面积为100π cm^2,请计算该圆的半径和周长。
解答:设圆的半径为r,则根据圆的定义,周长C = 2πr, 面积A = πr^2。
代入面积A = 100π cm^2,我们可以解方程得到:πr^2 = 100π,r^2 = 100,r = 10 cm。
所以,该圆的半径为10 cm。
将半径r = 10 cm代入周长公式,我们可以计算得到:周长C = 2π × 10 = 20π cm。
因此,该圆的半径为10 cm,周长为20π cm。
以上是几道关于圆的周长和面积的综合习题及解答。
希望对您有帮助!。
圆的周长和面积奥数训练及详解精编版
第5题第6题第7题2BE=厘米,其中,圆弧 BD 的圆心是a 厘米, C 点•那么,图中阴影部分的正方形,边长是).=3面积等于 ___________ 平方厘米(取n ----------------------5 .如图,ABCD 是111I ■!2平方厘米.厘最新资料推荐圆的周长和面积(1)一•填空题(共11小题) 1. ( 2011 ?温江区)边长是 10厘米的正方形和直径是10厘米的半圆组成如图所示,其中 P 点是半圆的中点,点Q 是正方形一边的中点,则阴影部分的面积为 _______________ 平方厘米.(取n =3.14)第1题 第2题 第3题 第4题2. ( 2013?广州模拟)如图是一个边长为 4厘米的正方形,则阴影部分的面积 ____________ 平方厘 米.—3. ___________________________________________________________________________________如图,ABCD 是边长为10厘米的正方形,且AB 是半圆的直径,则阴影部分的面积是 __________________ 平方厘米.(n ____________ 取3.14)4. 如图是半径为6厘米的半圆,让这个半圆绕 A 点按顺时针方向旋转 30°,此时B 点移动到B '米的圆如右图摆放,其中四边形OABC是正方形,图中阴影部分的面积是 6 .两个半径为题11•如图,阴影部分的面积是第10题平方厘米. -------------------第11平方_________ 7•如右图,正方形DEOF在四分之一圆中,如果圆的半径为1厘米,那么,阴影部分的面积是 _n厘米.(取3.14 .)厘米,那么阴影部分是等腰直角三角形,D是半圆周的中点,AB=BC=108 .如图,ABC (n的值取3.14)的面积是________ n取3.14 •如图,其中AB=10厘米,C点是半圆的中点. 那么,阴影部分的面积是方厘米.(9 ____ BC是半圆的直径•已知平方厘米. --------阴影部分①的第9题最新资料推荐以C为圆心,CA为半径画二•解答题(共7小题)613 •求下列各图中阴影部分的周长. (1 )图1中,两个小半圆的半径均为3厘米.圆弧和两个以正方形边长为直径的 3圆弧,已知正方形边中,正方形内有一个以正方形的边长为半径的3 ()图长为4厘米.(4)图4中,在半径为4厘米的圆内有两个半径为4厘米的圆长是8米•求绳被狗拉紧时,狗运动后所围成的总面积.(2)图2中,四边形为平行四边形圆弧形对的圆心角为 60°,半径为6厘米.114 2 弧.14•下面是由一个平行四边形和一个半圆形组成的图形,已知半圆的半径是 10厘米,计算图中阴影部分的面积. [_'15 •如图,有一只狗被缚在一建筑物的墙角上,这个建筑物是边长都等于 6米的等边三角形,绳S最新资料推荐为半径作圆弧,再分别以 ABAB 、AC 为直径乐清市)左图正方形边长为( A 为圆心边长18.15•如图所示,正方形 ABCD ,等腰三角形 ADE ,及半圆CAE ,若AB=2厘米,则阴影部分的............................................. 最新资料推荐 ....................................参考答案与试题解析一•填空题(共11小题)21.解解:正方形和半圆的面积之和:10X 10+3.14 X ( 10+ 2)- 2,=100+39.25=139.25 (平方厘米),三角形PAB 的答: 面积是:10X 15 + 2=75 (平方厘米),三角形PBQ 的面积是5 X 5 +142012?2厘米.以顶点作半圆弧•求阴影部分面积.17.如图三角形ABC 是直角三角形,阴影部分①的面积比阴影部分②的面积小 14.88平方厘米,直径AB 长8厘米,BC 长多少厘米?2=12.5 (平方厘米),则阴影部分的面积是:139.25 - 75 - 12.5=51.75 (平方厘米);答:阴影部分的面积是51.75平方厘米.故答案为:51.75.点评:此题考查了三角形、正方形和圆的面积公式的综合应用;连接BP,找岀这两个白色三角形的高,求岀空白部分的面积是解决本题的关键.丄244 4 22.解22 解:如图,4X 4 X +3.14 x()+ 2=4 X 4X +3.14 X 2 - 2=4+6.28=10.28 (平方厘米),答答:阴影部分的面积10.2平方厘米;故答案为10.22解3 . - 2=39.25 (平方厘米)2 ),解:连接BE,如图:半圆面积:3.14 X(10 + 2答:三角形ABE面积:10+ 2+ 2=25 (平方厘米),月牙面积:(39.25 - 25)+ 2=7.125 (平方厘米),阴影面积:25 - 7.125=17.875 (平方厘米)•故答案为:17.875 .4.解解:S阴影=S扇形ABB'+S半圆ADB' - S半圆ADB',又S半圆ACB=S半圆ADB',答:所以S阴影=S扇形ABB'.扇形部分应该半径为6 X 2=12 (厘米),'36037.68.即:==37.68 (平方厘米)•故答案为:5. 解22222 =0.45a (平方厘米).-)a=a+a解:-(a+X 3a+a X a答:22答:图中阴影部分的面J 1积等于0.45a平方厘米•故答案为:0.45a . 2 2 46. 解2解:阴影部分的面积是:X 3.14 X 2-X 2XX 2,=3.14 - 2=1.14 (平方厘米),答:2丄住丄答:阴影部分的面积是 1.14平方厘米•故答案为:1.14 . - ■■-7. 解2解:如图,正方形的面积=对角线X对角线X =1 X 1 X =(平方厘米)四分之一圆的面积=丄gXn r 答: { j12 .(平方厘米)故填0.285=0.785 (平方厘米)阴影部分的面积=0.785 - =0.285= X 3.14 X 1工解.8 的面积,半圆BDE梯形ABEF的面积+ (10+ 2)=25 (平方厘米),SAFDB=解:因为S A AFD=X 10 X 答:4 十2. = n r=2)+ 2=(平方厘米),半圆BDE的面积=梯形ABEF的面25 75积(10+ 2+10 )X (10+ 阴影部分的面积=AFDB的面积-三角形AFD的面积,=(n)-25,+=32.125 (平方厘米).丄答:阴影部分的面积是32.125平方厘米•故答案为:32.125 . :; 11 1'9.解2解: 3.14 X 10—10X + 2, = X 3.14 X 100 —10 X 5+ 2, =39.25 —25, =14.25 (平方厘米);答:(晋r 答:阴影部分的面积是14.25 (平方厘米)•故答案为:14.25 .BC 的长度为 x 厘米,X 20 X x -3.14 X* 2=16 10x - 3.14 X 100 + 2=16 ,答:10x - 314 - 2=16,10x - 157=16 ,x=17.3 ;答:BC 的长度是17.3厘米•故答案为:17.3厘米.X 3.14 X 2 -2 X 2- 2, =3.14 - 2, =1.14 (平方厘米); 答:1.14平方厘米.故答案为: 1.14 .最新资料推荐二•解答题(共7小题)2解12. , 2=100 (平方厘米)2 X 10AC ** 2=AB X OC * 2=10 X 解:三角形 ABC 的面积为:&」,157 - 100)X 200- 100) =157-(X 所(厘米).2=9.42 (厘米);阴影部分周长:18.84+9.42 X*小半圆的圆弧长: 2O平方厘米10 X 2X 10=100 (平方厘米)X .解解:根据图可 360- 60=300答:,(度)小扇形的圆心角为: 180 - 60=120Ijjx JTX 护+"棊 XHX 护二 56 兀亦 34方米•答:狗运动后所围成的总面积为 法•点评:14为AC 圆弧,再分别以 AB 、AB 厘米•以顶点 201216 . ( ?乐清市)左图正方形边长为2A 为圆110 .解二解:10x=173 ,11.解2解:答:阴影部分的面积是4所以2答:2=200 ,由上面计算可得: 以阴影部分的面积是:-57 , =100 (平方厘米), 圆弧长:2 2=37.68 AC=100 X3.14 X 10X 10 + 2-( 3.14平方厘米. 答:阴影部分的面积是 100=157.13 2=18.84 (厘米);(X 3.14 X 3+3)+解答: 解:(1)大半圆的60°X 3.14 X 3 讣 1'(厘米);(厘米);平行四边形周长:6X 4=24 X ( 2)圆弧长:2 X 3.146 X=6.21 14 4(厘米);x 4 X =6.28 ( 3) 一个以正方形的边长为半6.28+24=30.28 1径的圆弧长:2X 3.14访.(厘米);阴影部分周长:6.28+12.56=18.84 (厘米)圆弧长:两个以 正方形边长为直径的 3.14 X 4=12.56 . X 4=25.12 (厘米)3.14 ( 4)阴影部分周长:2 X 解:如图,14 •解倍,高是半圆半径的三2答:把半圆内的阴影部分从左边割下补到左边,阴影部分(厘米阴影部分周长 即成为一个底为半圆半径的 角形,;答:图中阴影部分的面积是100 知:15 (度),大扇形的圆心角为:,故总面积为:(平方米) 175.84平此题考查如何求扇形的面积,还要注意圆心角度数的求4解答:2 x 2 - 2,2解:3.14 X 2X- ,=3.14 - =1.1 (平方厘米答:阴影部分的面积 1.1平方厘米.此题主要考查了正方形的性质以及旋转的性质, 难度适中,关键是将所求的阴影部分的面积转化为与圆和点评:AB 长8①17•如图三角形 ABC 是直角三角形,阴影部分的面积比阴影部分组合图形的面积.:考点 平面图形的认识与计算.:专题加上空白部分的面积是三角形阴影部 分②加上空白部分的面积是半圆的面积,分析: 从图中可以看岀阴影部分① 14.88ABC 的面积小的面积•又已知①的面积比②的面积小14.88平方厘米,故半圆面积比三角形ABC 即为三角形的面积,再根据三角形的面积公式解答即可. 14.88平方厘米.求岀半圆面积,再加上2解答:28-2)-(解:半圆面积为3.14 X =25.12 (平方厘米),ABC 的面积为:25.12+14.88=40 (平方厘米)•三角形.8=10 (厘米)2BC 的长为:40 X- 10厘米•长答:BC 此题考查了学生 三角形以及圆的面积公式及其应用,同时考查了学生观察图形的能力. 点评:厘米,则阴影部分的面积是多少平方ADE ,等腰三角形,及半圆CAE ,若AB=2 18.如图所示,心边长 为半径作 直径作半圆弧•求阴影部分面积.考点:组合图形的面积. 压轴题;平面图形的认识与计算.转、平移到、个小弓形的面积相等,将如图所示,作出辅助线,则:专题的位置,则阴影、经过旋分析:4①②③④5最新资料推荐乙的面积-三角形 ABC 的面积,代入数据即可求解. =部分的面积以正方形的边长为半径的正方形的面积有关的图形的面积.厘平方厘米,直径②的面积小14.88米,BC 长多少厘米?正方形ABCD厘米?:组合图形的面积. 考点平面图形的认识与计算.:专题然后,以及圆弧移补到以及圆弧把原图分析:ADEAEADCAC 那么阴影部分的面积就是正方形的面积的一半,再进一步解答.6............................................. 最新资料推荐.....................................解:解答:;X 22=4 (平方厘米)正方形的面积:(平方厘米)• 2=2阴影部分的面积:4 +平方厘米.答:阴影部分的面积是2分析图形,根据图形特点进行割补,寻求问题突破点.点评:7。
奥数圆的周长和面积
例:计算阴影部分的周长。
练一绦:计制月费于琦的周长,(,甲位「里米,例:现有两根圆木।横截面直径都是E分米।如果把它们用铁丝捆在一起, 两端各超一圈(接头不计),那之叵性卷多长的铁丝?求右图阴矍部分的周长;每个圆的半径都是E座外)例:求木图外圆的周长C 0(单位:介米)C©练一练:求右图阴导部介的周长。
例,如右图,已知正方先面积至EU三万厘米,求同的面积.络一练;二用右图口佐急剖分的向祖是对。
平E;里米,豆园的宜和ffl:已知右图中阴影部分的面积是如平方厘米।求圆环的面积0球一厘,右图口工行匹辿无::附面租是1QQ三内厘米,米明制部三、书面和舛有一个半圆形零件,周长是因.56厘米,求这个半是形零件的面一练一练;如右图,一个扇形的圆心角是90. ।它的周长是L4.照理米,求它的面积瓶一稣,L亘俎充邓小馆而和,1皇后:J里例;求出右图中正方形面积与圆的面积比c箫一练;石图圆多面租品91L干;:方云:那二正上出多百根品多少?如只王.6另体面引品平工月米,那么圆的面积是多少?I制:图中杷CD是边长为4米的正方形,分别以AB、EC、Oj、他为直径画半{圆,求这四举半圆孤所围成的阴影部分的面积。
练一练;图中三角形ABC是边长为6厘米的正三角形,求阴影部分的面积.例;计算阴影部郑的面积。
*~4L求下面各个图形中阴置言盼的面积(单位二厘米)2 .求下面各个图形中阴影言盼的面积(里位二厘米)朝工,计算下面图形中阴影部分的面积(单位:厘米,正方形边长外2、计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)朝4如图所示?三角形ABC 是直角三角形,AC 长4厘米,EC 长2厘米。
以AC.BC 为直径画半SL 两个半周的交点在AB 边上口求图中阴骂部分的面积口/C1IHZ 0在图中,正方形的边长是⑷厘米,求图中阴影部分的面积口,求右面各图形中阴舞部分的面积(单位二厘2、求右面各图形中阴膏部分的面积(单位二厘朝5h 求下面各图形中阴的E 分的面积(单位二厘米)在图的扇形中F正方形的面积是前平方厘米。
奥数习题:圆的周长和面积
圆的周长和面积教材解读:1、一条线段绕着它固定的一端在平面内旋转一周,它的另一端在平面内画出一条封闭的曲线,这条封闭的曲线就是圆。
2、画圆时,固定的一点叫做圆心,从圆心到圆上任意一点的线段叫做圆的半径,在同一个圆中,所有的半径都相等地,通过圆心,并且两端在圆上的线段叫做直径,在同一个圆中,所有的直径都相等,且等于半径的2倍,圆心决定圆的位置,半径决定圆的大小。
3、任意一个圆,它的周长除以直径的商总是一个固定的数,这个数叫做圆周率。
如果用C表示圆周的长度,d表示这个圆的直径,r表示它的半径,π表示圆周率,就有cdπ=或2crπ=圆的周长:2C rπ=或,C dπ=圆的面积:S=2rπ4、圆的周长和面积计算的基本方法是仔细观察,发现特点,找出内在的联系,常常通过以图形割补,旋转、平移、等积变形的方法加以解决,需要精巧的构思和恰当的设计,把形象思维和抽象思维结合起来。
学法点拨:圆的面积计算是求与圆有关的图形面积,解决这类问题的方法常用是割补法,对于组合图形来说,一般先求整体面积,再求重叠面积,然后求部分面积。
有时也采用平移、旋转⋅⋅⋅⋅⋅⋅等方法进行计算。
典型例题精选:圆的周长和面积典例与实践:例1、三角形ABC是直角三角形,AB是半圆的直径,阴影部分①的面积比阴影部分②的面积小28平方厘米;AB长40厘米,BC长多少厘米?例2、如图所示,以B 、C 为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是多少少厘米?例3、如下图,等腰直角三角形内有一半圆,圆心在斜边上,与两条直角边都相切,若阴影部分的面积为2平方厘米,等腰直角三角形的面积为多少?例4、图中扇形的半径OA=OB=6厘米,45AOB ∠= ,AC 垂直OB 于以,那么图中阴影部分的面积是多少平方厘米?( 3.14π=)例5、在下图中(单位:厘米),三角形为直角三角形,以它的三条边为直径画三个半圆,则两个阴影部分面积的和是多少平方厘米?。
奥数圆形周长阴影面积试题及解析讲解
奥数圆形周长阴影面积试题及解析1、如图,正方形边长为1,正方形的4个顶点和4条边分别为4个圆的圆心和半径,求阴影部分面积.(π取3.14)5、如图,边长为12厘米的正五边形,分别以正五边形的5个顶点为圆心,12厘米为半径作圆弧,请问:中间阴影部分的周长是多少?(π 3.14 )6、下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?7、如图,已知扇形BAC 的面积是半圆ADB 面积的34倍,则角CAB 的度数是________. DCBA8、在4×7的方格纸板上面有如阴影所示的”6”字,阴影边缘是线段或圆弧.问阴影面积占纸板面积的几分之几?10、求下图中阴影部分的面积:11、右上图中每个小圆的半径是1厘米,阴影部分的面积是_______平方厘米.(π=3.14)12、如右图,矩形ABCD 中,AB =6厘米,BC =4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半CB=4厘米,求阴影部分的面积13、如下图,等腰直角三角形ABC 的腰为10厘米;以A 为圆心,EF 为圆弧,组成扇形AEF ;阴影部分甲与乙的面积相等。
求扇形所在的圆面积。
14、如下图,AB 与CD 是两条垂直的直径,圆O 的半径为15厘米,16、如图,大圆半径为小圆的直径,已知图中阴影部分面积为,空白部分面积为,那么这两个部分的面积之比是多少?(圆周率取)17、一块圆形稀有金属板平分给甲、乙二人.但此金属板事先已被两条互相垂直的弦切割成如图所示尺寸的四块.现甲取②、③两块,乙取①、④两块.如果这种金属板每平方厘米价值1000元,问:甲应偿付给乙多少元?20、如图所示,正方形ABCD 的边长为4,求阴影部分的周长和面积.、如下图所示,是半圆的直径,是圆心,,是的中点,是弦的中点.若是上一点,半圆的面积等于19、如图所示,是一边长为的正方形,是的中点,而是的中点.以为圆心、半径为的四分之一圆的圆弧交于,以为圆心、半径为的四分之一圆的圆弧交于点,若图中和两块面积之差为(其中、为正整数),请问之值为何?21、在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.(圆周率取3.14 )22、如图所示,以B、C为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是()厘米.(保留两位小数)23、如图,用边长为20厘米的正方形铁皮为材料制作一种零件(阴影部分),求制作这种零件的材料的利用率。
六上(人教版) 第五单元 圆的奥数题(附答案)
第五单元圆板块一圆的认识【例题1】有一个圆形铁版,没有标明圆心,你能找出它的直径吗?【练习1】1.为什么下水井盖是圆形的?2.如果没有圆规,你能画出一个圆吗?你能想出几种方法?【例题2】数学中的图形是变化无穷的,如果把下面的两个图形各截一次,能拼成正方形吗?【练习2】请你试着用圆规和直尺画一画下面的图形。
板块二圆的周长【例题1】已知AB=120米,BC=60米,如图,从点A到点C有2条不同的路线①和②,请你判断哪条路线最短。
①A B C②【练习1】1.有一个圆形花坛,直径为20米,一只小蜜蜂沿着花坛外周飞了一圈,请问它飞了多少米?如果小蜜蜂沿着图中的虚线,飞一个“8”字,路线构成过花坛圆心的两个小圆,那么这次它飞了多少米?(π取3.14)2.半径分别为1、2、3、4厘米的四个圆的周长之和是多少厘米?(π取3.14)【例题2】直径均为1分米的4根管子被一根金属带紧紧地捆在一起,如图,试求金属带的长度。
(接头处忽略不计)【练习2】有7根半径是5厘米的钢管,用一根绳子把它们紧紧地捆成一捆,如图所示,求绳子的长度。
(接头忽略不计)板块三圆的面积【例题1】已知阴影部分的面积是20平方厘米,圆的面积是多少?【练习1】右图中正方形的面积是2平方厘米,圆的面积是多少平方厘米?【例题2】如图,在一块面积为28.26平方厘米的圆形铝板中,裁出了7个同样大小的圆铝板。
问:余下的边角料的总面积是多少平方厘米?(π取3.14【练习2】如图,在一块面积为12.56平方厘米的圆形纸板中,裁出了2个同样大小的圆纸板。
问:余下的纸板的总面积是多少平方厘米?(π取3.14)【例题3】如图,图中的三角形都是等腰直角三角形,求各图中阴影部分的面积。
【练习3】1.图中的4个圆的圆心恰好是正方形的4个顶点,如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?2.求下图中阴影部分的面积。
(单位:厘米)【例题4】图中正方形的边长是4厘米,圆形的半径是1厘米。
六年级圆的周长奥数题
六年级圆的周长奥数题一、基础题型1. 一个圆的半径是3厘米,它的周长是多少厘米?- 解析:根据圆的周长公式C = 2π r(其中C表示周长,π通常取3.14,r为半径)。
当r = 3厘米时,C=2×3.14×3 = 18.84厘米。
2. 已知圆的直径是8分米,求这个圆的周长。
- 解析:因为圆的周长C=π d(d是直径),当d = 8分米时,C = 3.14×8=25.12分米。
3. 一个圆的半径扩大到原来的2倍,它的周长扩大到原来的几倍?- 解析:设原来圆的半径为r,则原来的周长C_1 = 2π r。
半径扩大2倍后变为2r,此时周长C_2=2π×(2r) = 4π r。
C_2div C_1=(4π r)div(2π r)=2,所以它的周长扩大到原来的2倍。
4. 有一个圆形花坛,半径是5米,在它的周围铺一条宽1米的小路,求小路的外沿周长是多少米?- 解析:小路的外沿半径为5 + 1=6米。
根据圆的周长公式C = 2π r,当r = 6米时,C=2×3.14×6 = 37.68米。
5. 一个半圆的直径是10厘米,求这个半圆的弧长(周长的一半)。
- 解析:圆的周长C=π d,半圆的弧长为(1)/(2)π d。
当d = 10厘米时,弧长=(1)/(2)×3.14×10 = 15.7厘米。
二、组合图形中的圆周长问题6. 正方形的边长为10厘米,在正方形内画一个最大的圆,求这个圆的周长。
- 解析:正方形内最大的圆的直径等于正方形的边长,即d = 10厘米。
根据圆的周长公式C=π d,C = 3.14×10 = 30.4厘米。
7. 长方形的长是12厘米,宽是8厘米,在长方形内画一个最大的半圆,求这个半圆的弧长。
- 解析:因为长方形的长是12厘米,宽是8厘米,所以这个半圆的直径最大为12厘米。
半圆的弧长=(1)/(2)π d=(1)/(2)×3.14×12 = 18.84厘米。
奥数圆形周长阴影面积试题及解析
奥数圆形周长阴影面积试题及解析1、如图,正方形边长为1,正方形的4个顶点和4条边分别为4个圆的圆心和半径,求阴影部分面积.(π取3.14)4、如图,边长为3的两个正方形BDKE、正方形DCFK并排放置,以BC为边向内侧作等边三角形,分别以B、C为圆心,BK、CK为半径画弧.求阴影部分面积.(π 3.14=)AK FED CB5、如图,边长为12厘米的正五边形,分别以正五边形的5个顶点为圆心,12厘米为半径作圆弧,请问:中间阴影部分的周长是多少?(π 3.14=)6、下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?7、如图,已知扇形BAC 的面积是半圆ADB 面积的34倍,则角CAB 的度数是________. DCBA8、在4×7的方格纸板上面有如阴影所示的”6”字,阴影边缘是线段或圆弧.问阴影面积占纸板面积的几分之几?9、先做一个边长为2cm的等边三角形,再以三个顶点为圆心,2cm为半径作弧,形成曲边三角形(如左图).再准备两个这样的图形,把一个固定住(右图中的阴影),另一个围绕着它滚动,如右图那样,从顶点相接的状态下开始滚动.请问此图形滚动时经过的面积是多少平方厘米?(π 3.14=)CBA22210、求下图中阴影部分的面积:11、右上图中每个小圆的半径是1厘米,阴影部分的面积是_______平方厘米.(π=3.14)12、如右图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积13、如下图,等腰直角三角形ABC的腰为10厘米;以A为圆心,EF为圆弧,组成扇形AEF;阴影部分甲与乙的面积相等。
求扇形所在的圆面积。
14、如下图,AB与CD是两条垂直的直径,圆O的半径为15厘米,15、在一个边长为2厘米的正方形内,分别以它的三条边为直径向内作三个半圆,则图中阴影部分的面积为平方厘米.16、如图,大圆半径为小圆的直径,已知图中阴影部分面积为,空白部分面积为,那么这两个部分的面积之比是多少?(圆周率取)17、一块圆形稀有金属板平分给甲、乙二人.但此金属板事先已被两条互相垂直的弦切割成如图所示尺寸的四块.现甲取②、③两块,乙取①、④两块.如果这种金属板每平方厘米价值1000元,问:甲应偿付给乙多少元?18、如下图所示,是半圆的直径,是圆心,,是的中点,是弦的中点.若是上一点,半圆的面积等于12平方厘米,则图中阴影部分的面积是平方厘米.19、如图所示,是一边长为的正方形,是的中点,而是的中点.以为圆心、半径为的四分之一圆的圆弧交于,以为圆心、半径为的四分之一圆的圆弧交于点,若图中和两块面积之差为(其中、为正整数),请问之值为何?20、如图所示,正方形ABCD 的边长为4,求阴影部分的周长和面积.21、在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.(圆周率取3.14 )22、如图所示,以B、C为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是()厘米.(保留两位小数)23、如图,用边长为20厘米的正方形铁皮为材料制作一种零件(阴影部分),求制作这种零件的材料的利用率。
小学奥数圆的周长与面积
第11讲圆的周长与面积(一)之五兆芳芳创作例1:右图中大圆的周长与大圆中四个小圆周长的和相比,谁大?思路阐发:设大圆的直径为D,四个小圆的直径为d1,d2,d3,d4,则有D=d1+d2+d3+d4.大圆的周长=πD,四个小圆周长的和=πd1+πd2+πd3+πd4=π(d1+d2+d3+d4),显然两周长相等.解:两圆周长相等.例2:求右图中阴影部分的周长.思路阐发:阴影部分周长包含三个部分:半圆的直径(扇形的一条半径);二是半圆的弧长;三是圆心角为30°的扇形的弧长.解:半圆的弧长:3.14×30÷2=47.1(厘米)扇形的弧长:2×3.14×30÷12=15.7(厘米)阴影部分周长:47.1+15.7+30=92.8(厘米)例3:如右图,已知正方形的面积是60平方厘米,求圆的面积.思路阐发:圆的面积公式是S=πr²,但这里不克不及求出半径.我们可以将r²看作一个整体,就可以求出圆的面积.解:3.14×(60÷4)=47.1(平方厘米)例4:右图中,三个圆的面积都是200平方分米,求阴影部分面积.思路阐发:首先三个圆的半径相等,而阴影部分拼起来正好是一个半圆.(三角形内角和为180°)解:200÷2=100(平方分米)例5:下图中,圆的半径为6厘米,求阴影部分面积.思路阐发:将左图沿水平直径折叠,使阴影部分拼分解两个三角形,如图(a).再将图(a)带阴影的三角形绕长方形AB边中点O逆时针标的目的旋转90°,于是两个带阴影的三角形就拼分解了一个正方形,如图(b).解:S=6×6=36(平方厘米)例6:求右图中阴影部分的面积.(单位:厘米)思路阐发:连结点A与圆心O.阴影部分的面积可用扇形ABO的面积减去△ABO的面积求得.阴影部分的面积还可以用半圆的面积先减去扇形AOC的面积,再减去△ABO的面积求得.解法一:12÷2=6(厘米)3.14×6²×(180-30×2)÷360-6×5.2÷2=22.08(平方厘米)解法二:3.14×6²÷2-3.14×6²×60÷360-6×5.2÷2=22.08(平方厘米)例7:如图是由正方形和半圆形组成的图形.其中P点为半圆周的中点,Q点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)思路阐发:过P做AD平行线,交AB于O点,P为半圆周的中点,所以O为AB中点.有.作业:1.图中的等边三角形边长10厘米,求阴影部分周长.2.右图中有A、B、C三个圆,已知C圆的半径是1厘米,求A、B两个圆的周长相差几厘米?3.求图中阴影部分的周长.(单位:厘米)4.如右图,在正方形ABCD中,BD=20厘米,另外C又在以A为圆心的圆周上.求阴影部分的面积.5.如图,正方形面积是90平方厘米,求阴影部分面积. 6.如下图,已知AD=BD=3厘米,求阴影部分面积.7.如上图半圆内有一个直角三角形ABC,AB长3厘米,AC长4厘米,求阴影部分面积.(AB²+AC²=BC²)8.右图中,圆O的直径为8厘米,求阴影部分面积.9.如右图,圆的直径AB=6厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30°,求阴影部分面积.1.2.2*3.14*1=6.28(厘米)3.4.114平方厘米5.6.7.8.9.[2×2-3.14×(2÷2)²]×2=1.72(平方厘米)。
二年级奥数(圆形)-附答案
二年级奥数(圆形)-附答案题目一:计算圆的周长问题:一个圆形的周长是16厘米,求该圆的半径和面积。
答案:根据圆的周长公式可知,周长等于2πr(其中r为圆的半径),所以可以得到以下方程式:16 = 2πr求解上述方程式,解得r = 8/π 厘米。
接着,我们可以使用圆的面积公式计算圆的面积。
根据公式,圆的面积等于πr²,将半径代入计算可得:面积= π * (8/π)² = 64/π 平方厘米。
所以该圆的半径为8/π 厘米,面积为64/π 平方厘米。
题目二:计算扇形的面积问题:一个扇形的半径为10米,弧长为5米,求该扇形的面积。
答案:扇形的面积可以通过使用扇形面积公式来计算。
根据公式,扇形的面积等于弧长除以圆的周长乘以圆的面积。
首先,我们需要计算圆的周长,可以使用圆的周长公式计算:周长= 2πr = 2π * 10 = 20π 米。
然后,我们可以计算扇形的面积,将已知的半径和弧长代入公式:面积= (5 / 20π) * π * 10² = 10 平方米。
所以该扇形的面积为 10 平方米。
题目三:计算圆环的面积问题:一个圆环的外半径为12厘米,内半径为8厘米,求该圆环的面积。
答案:圆环的面积可以通过使用圆环面积公式来计算。
根据公式,圆环的面积等于外圆面积减去内圆面积。
首先,我们可以计算外圆的面积和内圆的面积,使用圆的面积公式:外圆面积= π * (12²) = 144π 平方厘米。
内圆面积= π * (8²) = 64π 平方厘米。
然后,我们可以计算圆环的面积,将已知的外圆面积和内圆面积相减:面积= 144π - 64π = 80π 平方厘米。
所以该圆环的面积为80π 平方厘米。
以上是二年级奥数圆形相关问题的答案。
希望对您有帮助!。
小学圆的面积奥数题100道及答案(完整版)
小学圆的面积奥数题100道及答案(完整版)题目1一个圆的半径是3 厘米,它的面积是多少平方厘米?答案:圆的面积= π×半径×半径,即3.14×3×3 = 28.26(平方厘米)题目2圆的直径是8 分米,求面积。
答案:半径= 8÷2 = 4 分米,面积= 3.14×4×4 = 50.24(平方分米)题目3一个圆的周长是18.84 米,求其面积。
答案:周长= 2×π×半径,所以半径= 18.84÷(2×3.14)= 3 米,面积= 3.14×3×3 = 28.26(平方米)题目4圆的面积是12.56 平方厘米,求半径。
答案:3.14×半径×半径= 12.56,半径×半径= 4,半径= 2 厘米题目5直径为10 厘米的圆,面积比半径为6 厘米的圆的面积小多少?答案:直径10 厘米的圆半径为5 厘米,面积为 3.14×5×5 = 78.5 平方厘米;半径6 厘米的圆面积为3.14×6×6 = 113.04 平方厘米,小113.04 - 78.5 = 34.54 平方厘米题目6一个圆的半径扩大3 倍,面积扩大多少倍?答案:原来面积= π×半径×半径,半径扩大3 倍后,面积= π×(3×半径)×(3×半径)= 9×π×半径×半径,面积扩大9 倍题目7两个圆的半径分别是2 厘米和3 厘米,它们面积的和是多少?答案:面积分别为3.14×2×2 = 12.56 平方厘米,3.14×3×3 = 28.26 平方厘米,和为12.56 + 28.26 = 40.82 平方厘米题目8一个圆的面积是50.24 平方分米,在里面画一个最大的正方形,正方形的面积是多少?答案:圆的半径= √(50.24÷3.14)= 4 分米,正方形的对角线是圆的直径为8 分米,正方形面积= 对角线×对角线÷2 = 8×8÷2 = 32 平方分米题目9圆的半径由4 厘米增加到6 厘米,面积增加了多少平方厘米?答案:原来面积= 3.14×4×4 = 50.24 平方厘米,新面积= 3.14×6×6 = 113.04 平方厘米,增加了113.04 - 50.24 = 62.8 平方厘米题目10在一个边长为8 厘米的正方形中画一个最大的圆,圆的面积是多少?答案:圆的直径= 8 厘米,半径= 4 厘米,面积= 3.14×4×4 = 50.24 平方厘米题目11已知圆的面积是28.26 平方米,求周长。
圆的周长与面积(奥数)
圆的周少取里积之阳早格格创做
例1:估计阳影部分的周少.
练一练:估计阳影部分的周少.(单位:厘米)例2:现有二根圆木,横截里曲径皆是2分米,如果把它们用铁丝捆正在所有,
二端各捆一圈(交头没有计),那么应准备多
少的铁丝?
练一练:供左图阳影部分的周少(每个圆的
半径皆是2厘米).
例3:供左图中圆的周少.(单位:分米)
练一练:供左图阳影部分的周少.
例4:如左图,已知正圆形里积是60仄圆厘米,供圆的里积.
练一练:已知左图中阳影部分的里积是300仄圆厘米,供圆的里积.
例5:已知左图中阳影部分的里积是40仄圆厘米,供圆环的里积.练一练:左图中仄止四边形的里积是100仄圆厘米,供阳影部分的里积.
例6:有一个半圆形整件,周少是20.56厘米,供那个半圆形整件的里积.
练一练:如左图,一个扇形的圆心角是90°,它的周少是,供它的里积.
例7:图中ABCD是边少为4米的正圆形,分别
以AB、BC、CD、AD为曲径绘半圆,供那四个半圆弧所围成的阳影部分的里积.
练一练:图中三角形ABC是边少为6厘米的正三角形,供阳影部分的里积.
例8:估计阳影部分的里积.
练一练:估计阳影部分的里积.(单位:厘米)
例9:供出左图中正圆形里积取圆的里积比.
练一练:左图圆的里积是942仄圆分米,那么正圆形的里积是几?如果正圆形的里积是360仄圆厘米,那么圆的里积
是几?。
六年级奥数 第十一讲 圆的周长和面积
一、例题详解。
1、若一个圆的半径扩大2倍,直径扩大( )倍,周长扩大( )倍,面积扩大( )倍。
2、若圆的半径增加1㎝,周长增加( )㎝,若圆的周长增加π㎝,则圆的直径增加( )㎝。
3、半圆周长20.56厘米,半径是( )厘米。
4、把底面半径6㎝的两个瓶子捆在一起,接头长10㎝,需多长绳子?5、正形内画一个最大的圆,圆面积28.26平方分米,则正方形面积( )。
6、在边长3厘米的正方形三角形建筑物的A点,拴一只羊,绳长4厘米,其它地方是草地,求羊能吃到的面积。
二、当堂测试。
1、把半径分成5㎝和3㎝,两个半径如图位置,求阴影的周长。
2、圆周长是小圆的32 倍,面积和是260平方米,小圆面积是( ) 3、直径4㎝的圆,若半径增加4㎝,周长增加( )㎝,面积增加( )平方厘米4、一直钟表分针长3㎝,从中午12时到下午2时20分,分针的尖端所走的路程是( )厘米。
5、甲圆半径等于乙圆直径,甲和乙半径比( : ),乙周长是甲的( )。
6、一个圆形水池,周长314厘米,扩建后半径增加1厘米,面积增加多少?7、从长50㎝,宽30㎝的长方形中剪一个最大的半圆,求半圆周长。
8、小圆周长是大圆周长的14 ,面积差是20.98平方厘米,小圆面积是( )。
9、把7个底面半径4㎝的瓶子困在一起,捆一四周要多长绳子?10、甲乙两圆面积差20平方厘米,甲圆周长是乙圆周长的119 倍,甲圆周长面积( )平方厘米。
11、半圆的周长20.56厘米,它的面积多大?12、把一个圆剪成拼成一个近似长方形后,长方形周长16.56厘米,这个圆面积多大?13、圆的半径扩大2倍后,面积增加37.68平方分米,原来面积( )平方分米14、面积20平方分米正方形内做一个最大的圆,圆面积( )平方分米,在面积314平方分米圆内做一个最大的正方形,面积( )平方分米。
15、 长120厘米,宽90厘米,长方形铁片中剪直径30厘米圆片,最多剪几个16、把21.98㎝铁丝截成3段,分别围成3个大小不等的圆,已知3个圆直径比1:2:4。
奥数圆形周长阴影面积试题及解析
奥数圆形周长阴影面积试题及解析1、正方形边长为1,4个圆的圆心和半径分别为正方形的4个顶点和4条边。
求阴影部分面积。
2、三个圆的半径都为5cm,两两相交于圆心。
求阴影部分面积。
3、正方形ABCD,且FA=AD=DE=1。
求阴影部分面积。
4、边长为3的两个正方形BDKE、DCFK并排放置,以BC为边向内侧作等边三角形,分别以B、C为圆心,BK、CK为半径画弧。
求阴影部分面积。
5、边长为12厘米的正五边形,以正五边形的5个顶点为圆心,12厘米为半径作圆弧。
求中间阴影部分的周长。
6、每一个小正方形的面积是1平方厘米,求格线部分的面积。
7、扇形BAC的面积是半圆ADB面积的4/3倍,求角CAB的度数。
8、在4×7的方格纸板上,阴影部分是“6”字,阴影边缘是线段或圆弧。
求阴影面积占纸板面积的比例。
9、边长为2cm的等边三角形,以三个顶点为圆心,2cm为半径作弧,形成曲边三角形。
固定一个图形,另一个围绕着它滚动,从顶点相接的状态下开始滚动。
求此图形滚动时经过的面积。
10、求图中阴影部分的面积。
11、右上图中每个小圆的半径是1厘米,求阴影部分的面积。
12、矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半径CB=4厘米。
求阴影部分的面积。
13、等腰直角三角形ABC的腰为10厘米,以A为圆心,形AEF。
求扇形所在的圆面积,使得阴影部分甲与乙的面积相等。
14、AB与CD是两条垂直的直径,圆O的半径为15厘米。
求阴影部分面积与圆O的面积之比。
15、边长为2厘米的正方形内,以三条边为直径向内作三个半圆。
求图中阴影部分的面积。
16、大圆半径为小圆的直径,阴影部分面积为。
求这两个部分的面积之比。
12、解析:13、解析:14、解析:15、解析:16、解析:17、解析:一块圆形稀有金属板被两条互相垂直的弦切割成如图所示尺寸的四块,甲取②、③两块,乙取①、④两块。
如果这种金属板每平方厘米价值1000元,则甲应偿付给乙的金额为:(①+④-②-③)×1000元。
小学奥数 圆的周长和面积
第七章圆的周长和面积
一、典型例题
1、一个半径10米的圆形花坛,它的占地面积是多少?在它的一周围一圈篱笆,篱笆长多少米?
思路点拨:圆的面积公式:S=πr2,圆的周长公式:C=2πr,根据公式可以做出来。
解答:
S=π102C=2πr
=3.14×100 =2×3.14×10
=314(平方米) =62.8(米)
答:它的占地面积是314平方米,篱笆长62.8米。
二、知识运用
1、一根长5米的绳子系着一只羊,栓在草地中央的树桩上,羊吃草的面积最多是多少平方米?
2、一种麦田的自动旋转喷灌器的射程是10米,它能喷灌的面积多少平方米?
3、求右图阴影部分面积:(单位:厘米)
4、一元硬币的半径是1.2厘米,求它的周长和面积。
5、用一块边长6分米的正方形纸剪一个最大的圆,圆的面积是多少?
6、用26米长的篱笆围成一个圆形苗圃,篱笆接头处用去0.88米。
苗圃的面积多少?
7、在长6分米,宽4分米的长方形中画一个最大的圆,圆的周长和面积各是多少?
8、求各图的周长和面积:(单位:米)。
圆的周长与面积(奥数)(精编文档).doc
【最新整理,下载后即可编辑】
圆的周长与面积
例1:计算阴影部分的周长。
练一练:计算阴影部分的周长。
(单位:厘米)
例2:现有两根圆木,横截面直径都是2分米,如果把它们用铁丝捆在一起,
两端各捆一圈(接头不计),那么应准备多长的
铁丝?
练一练:求右图阴影部分的周长(每个圆的半径都是2厘米)。
例3:求右图外圆的周长。
(单位:分米)
练一练:求右图阴影部分的周长。
例4:如右图,已知正方形面积是60平方厘米,求圆的面积。
练一练:已知右图中阴影部分的面积是300平方厘米,求圆的面积。
例5:已知右图中阴影部分的面积是40平方厘米,求圆环的面积。
练一练:右图中平行四边形的面积是100平方厘米,求阴影部分的面积。
例6:有一个半圆形零件,周长是20.56厘米,求这个半圆形零件的面积。
练一练:如右图,一个扇形的圆心角是90°,它的周长是14.28厘米,求它的面积。
例7:图中ABCD是边长为4米的正方形,分别以AB、BC、CD、AD 为直径画半圆,求这四个半圆弧所围成的阴影部分的
面积。
练一练:图中三角形ABC是边长为6厘米的正三角形,求阴影部分的面积。
例8:计算阴影部分的面积。
练一练:计算阴影部分的面积。
(单位:厘米)
例9:求出右图中正方形面积与圆的面积比。
练一练:右图圆的面积是942平方分米,那么正方形的面积是多少?如果正方形的面积是360平方厘米,那么圆的面积是
多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的周长和面积(1)
一.填空题(共11小题)
1.(2011•温江区)边长是10厘米的正方形和直径是10厘米的半圆组成如图所示,其中P点是半圆的中点,点Q 是正方形一边的中点,则阴影部分的面积为_________平方厘米.(取π=3.14)
第1题第2题第3题第4题2.(2013•广州模拟)如图是一个边长为4厘米的正方形,则阴影部分的面积是_________平方厘米.
3.如图,ABCD是边长为10厘米的正方形,且AB是半圆的直径,则阴影部分的面积是______平方厘米.(π取3.14)
4.如图是半径为6厘米的半圆,让这个半圆绕A点按顺时针方向旋转30°,此时B点移动到B′点,则阴影部分的面积是_________平方厘米.
第5题第6题第7题第8题
5.如图,ABCD是正方形,边长是a厘米,BE=厘米,其中,圆弧BD的圆心是C点.那么,图中阴影部分的面积等于________平方厘米(取π=3).
6.两个半径为2厘米的圆如右图摆放,其中四边形OABC是正方形,图中阴影部分的面积是___平方厘米.
7.如右图,正方形DEOF在四分之一圆中,如果圆的半径为1厘米,那么,阴影部分的面积是_________平方厘米.(π取3.14.)
8.如图,ABC是等腰直角三角形,D是半圆周的中点,BC是半圆的直径.已知AB=BC=10厘米,那么阴影部分的面积是_________平方厘米.(π的值取3.14)
9.如图,其中AB=10厘米,C点是半圆的中点.那么,阴影部分的面积是_________平方厘米.(π取3.14)
10.如图,以直角三角形的直角边长20厘米为直径画一个半圆,阴影部分①的面积比②的面积小16平方厘米.BC= _________.
第9题第10题第11题
11.如图,阴影部分的面积是_________平方厘米.
二.解答题(共7小题)
12.(2012•中山模拟)如图是一个圆心为O,半径是10厘米的圆.以C为圆心,CA为半径画一圆弧,求阴影部分的面积.
13.求下列各图中阴影部分的周长.
(1)图1中,两个小半圆的半径均为3厘米.
(2)图2中,四边形为平行四边形圆弧形对的圆心角为60°,半径为6厘米.
(3)图3中,正方形内有一个以正方形的边长为半径的圆弧和两个以正方形边长为直径的圆弧,已知正方形边
长为4厘米.
(4)图4中,在半径为4厘米的圆内有两个半径为4厘米的圆弧.
14.下面是由一个平行四边形和一个半圆形组成的图形,已知半圆的半径是10厘米,计算图中阴影部分的面积.
15.如图,有一只狗被缚在一建筑物的墙角上,这个建筑物是边长都等于6米的等边三角形,绳长是8米.求绳被狗拉紧时,狗运动后所围成的总面积.
(2012•乐清市)左图正方形边长为2厘米.以顶点A为圆心边长AB为半径作圆弧,再分别以AB、AC为直径作半圆弧.求阴影部分面积.
17.如图三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小14.88平方厘米,直径AB长8厘米,BC长多少厘米?
18.
15.如图所示,正方形ABCD,等腰三角形ADE,及半圆CAE,若AB=2厘米,则阴影部分的面积是多少平方厘米?
参考答案与试题解析
×+3.14)×
=
××﹣(a﹣
××××
×=1×(平方厘米)四分之一圆的面积=
=0.285
AFD=
2=
+π
3.14×÷×
厘米,××
×
×
×=6.28
)一个以正方形的边长为半径的×=6.28
圆弧长:
(平方米)
16.(2012•乐清市)左图正方形边长为2厘米.以顶点A为圆心边长AB为半径作圆弧,再分别以AB、AC为直径作半圆弧.求阴影部分面积.
以正方形的边长为半径的
×﹣
17.如图三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小14.88平方厘米,直径AB长8厘米,BC长多少厘米?
18.如图所示,正方形ABCD,等腰三角形ADE,及半圆CAE,若AB=2厘米,则阴影部分的面积是多少平方厘米?。