材料力学(资料例题)
材料力学例题
![材料力学例题](https://img.taocdn.com/s3/m/b927f220a32d7375a4178019.png)
0.75m 1m
A
D 1.5m
B
F
横梁BC为刚杆,自重Q=2KN,力P=10KN可在横 梁BC上自由移动。AB杆的许用应力为[σ]=100MP a,设计AB杆的横截面面积。如果AB杆采用直径 为10毫米的细丝,需要几根?
P C
30°
B
• [例] 长为 L=2m 的圆杆受均布力偶 m=20Nm/m 的作用,如图,若杆的内外径之比为 =0.8 ,
例题 空心圆杆AB和CD杆焊接成整体结构,受力如图.AB杆的外径 D=140mm,内外 径之比α= d/D=0.8,材料的许用应力[] = 160MPa。试用第三强度理论校核AB杆的 强度。 解:(1)外力分析 将力向AB杆的B截面形心简化得
10kN
0.8m A
B D
F 25kN
M e 15 1 . 4 10 0 . 6 15 kN m
G=80GPa ,许用剪应力 []=30MPa,试设计杆
的外径;若[]=2º /m ,试校核此杆的刚度,并
求右端面转角。
[例题] 某传动轴设计要求转速n = 500 r / min,输入功率P1 = 500 马力, 输出功率分别 P2 = 200马力及 P3 = 300马力,已 知:G=80GPa ,[ ]=70M Pa,[ ]=1º /m ,试确定: ①AB 段直径 d1和 BC 段直径 d2 ? ②若全轴选同一直径,应为多少? ③主动轮与从动轮如何安排,轴的受力合理? P2 A 500 B 400 P3 C
y Me A x B l/2 F1
F2
D F2 D M e C ( F1 F 2 ) 2 2 20 F2 kN 3 F 20kN
轴产生扭转和垂直纵向对称面内的平 面弯曲
材料力学求形心位置例题
![材料力学求形心位置例题](https://img.taocdn.com/s3/m/2341e97682c4bb4cf7ec4afe04a1b0717ed5b364.png)
材料力学求形心位置例题对于一个物体,定位其形心位置是物体力学中的基本问题之一。
形心位置是一个物体整体平衡的位置,也可以被认为是物体质量的重心。
通过求解形心位置,可以帮助我们更好地理解物体的平衡状态和运动性质。
下面我们来看一个求解形心位置的例题。
例题:一个均匀的长方形板有边长为a和b,其质量密度为ρ。
求解板的形心位置。
解答:为了求解板的形心位置,我们需要用到物体的质量和质量元的概念。
质量(m)可以通过物体的质量密度(ρ)和物体体积(V)相乘得到,即m = ρV。
对于一个均匀的长方形板,可以将其看作无数个宽度微小但高度为b的质量元叠加而成。
首先,我们将长方形板沿着宽度(b)方向进行切割,得到宽度为Δx的无数个矩形质量元。
然后,对于每个质量元,我们需要确定其质量(dm)和距离形心位置的距离(x)。
由于板的质量密度为ρ,那么每个矩形质量元的质量(dm)可以表示为dm = ρΔx。
而每个质量元距离形心位置的距离(x)可以表示为x = Δx/2。
然后,我们可以将质量元质量(dm)和距离形心位置的距离(x)相乘,然后将所有的质量元的乘积累加起来得到形心位置的坐标。
形心位置的x坐标可以表示为x_cm = Σ(dm*x) / Σ(dm)。
而形心位置的y坐标则与矩形板的宽度(b)无关,即y_cm = 0。
接下来,我们将上面的表达式代入求解。
解得,形心位置的x坐标为x_cm = (b/2) * (a/3) = ab/6。
因此,长方形板的形心位置为(ab/6, 0)。
通过求解形心位置,我们可以得到长方形板的形心位置坐标。
这个结果说明,在一个均匀的长方形板上,形心位置位于长方形的重心位置,且形心位置的x坐标与长方形的长和宽有关,y坐标为0。
在实际问题中,求解形心位置对于分析物体的平衡和运动至关重要。
对于复杂的物体形状,求解形心位置可能需要更加复杂的数学方法,但其基本原理是相同的。
形心位置的求解是物体力学中的一个基础知识点,对于学习物理学的人来说具有重要意义。
材料力学考试典型题目
![材料力学考试典型题目](https://img.taocdn.com/s3/m/0b25a580a0116c175e0e4809.png)
2
(4)
Fx 2 EIw Flx C1 (3) 2 2 3 Flx Fx EIw C 1x C 2 2 6 边界条件 x 0, w 0
x 0, w 0
(4)
将边界条件代入(3)(4)两式中,可得 C1 0 梁的转角方程和挠曲线方程分别为
C2 0
ql 2 q 3 EIw x x C 4 6
ql 3 q 4 EIw x x Cx D 12 24
边界条件x=0 和 x=l时, w
0
x
q
wmax B
梁的转角方程和挠曲线方程 A 分别为
A
l
B
q 2 3 3 (6lx 4 x l ) 24 EI qx w (2lx 2 x 3 l 3 ) 24 EI
FN 3 l3 -4 1.58 10 m uB ΔlCD Δl BC -0.3mm EA3
-4
Δl AD Δl AB Δl BC ΔlCD -0.47 10 mm
例题5 图示等直杆,已知直径d=40mm,a=400mm,材料的剪切弹性
模量G=80GPa,DB=1°. 试求:
x= l , M = 0
M 0
+
Mb l
梁上集中力偶作用处左、右两侧
FRA
A a
M
FRB
C b l B
横截面上的弯矩值(图)发生突变,其
突变值等于集中力偶矩的数值.此处 剪力图没有变化.
M /l
+ +
Mb l
Ma l
例题1 图示一抗弯刚度为 EI 的悬臂梁, 在自由端受一集中力 F 作用.试求梁的挠曲线方程和转角方程, 并确定其最大挠度 wmax 和最大转角 max w
习题课材料力学资料
![习题课材料力学资料](https://img.taocdn.com/s3/m/0c97d2fd4028915f804dc2e8.png)
解:(1)横截面上剪应力分布为:
(2)将四分之一截面上的力系向O点简化
p.48
例题
例题
(3) Ro与x轴之间的夹角
(4)将Ro和Mo进一步简化为一合力R,即将Ro平移
31.钻头简化成直径为20mm的圆截面杆,在头部受均布阻抗扭矩m 的作用,许用剪应力为[τ]=70MPa。(1).求许可的Me;(2).若 G=80GPa,求上、下两端的相对扭转角。
截面2-2 (2)画扭矩图
(c) (1)用截面法求内力
p.38
例题
例题
截面1-1
截面2-2 截面3-3 截面4-4 (2)画扭矩图
p.39
例题
例题
25.发电量为1500kW的水轮机主轴如图示。D=550mm,d=300mm ,正常转速n=250r/min。材料的许用剪应力[τ]=500MPa。试校核水 轮机主轴的强度。
21.图示螺钉受拉力P作用,已知材料的剪切 许用应力[]与拉伸许用应力[]的关系为[]= 0.6[],试求螺钉直径d与钉头高度h的合理 比值。
p.30
例题
例题
解:(1) 螺钉的剪切面面积
(2)剪切强度条件
(3)拉伸强度条件
(4)由已知条件 故
p.31
例题
例题
22.木榫接头如图所示。a=b=120mm,h=350mm,c=45mm, P=40kN。试求接头的剪切和挤压应力。
解:(1) 外力扭矩
(2)内力扭矩
p.46
例题
例题
(3)计算AB段的直径d1和BC段的直径d2
强度条件
刚度条件
故取
p.47
例题
例题
(4)若AB和BC两段选用同一直径,则取d1=d2=84.6mm
材料力学例题及
![材料力学例题及](https://img.taocdn.com/s3/m/6461db9fdd88d0d233d46a93.png)
材料的许可切应力[t]=30MPa
切变模量G=80GPa
许可扭角[q]=0.3°/m
试按强度条件和刚度条件设计轴径d
解:根据强度条件式(4-6)得出:
再根据刚度条件式(4-9b )得出:
两个直径中应选其中较大者
即实心轴直径不应小于117mm
画内力图
以水平轴x表示杆的截面位置
以垂直x的坐标轴表示截面的轴力
按选定的比例尺画出轴力图
如图2-5(d)所示
由此图可知数值最大的轴力发生在BC段内
解题指导:利用截面法求轴力时,在切开的截面上总是设出正轴力N
然后由SX=0求出轴力N
如N 得正说明是正轴力(拉力)
如得负则说明是负轴力(压力)
等于-12.74kNm
仿此可得出MT2=-8.92kNm
MT3=-10kNm
(3) 画扭矩图
以横坐标表示截面位置
以纵坐标表示扭矩
按选定的比例尺作出AB、BC、CD三段轴的扭矩图
因为在每一段内扭矩为常数
故扭矩图由三段水平线组成
如图4-5(c)
最大的扭矩7.64kNm发生在中间段
本人精心整理的文档,文档来自网络
本人仅收藏整理
如有错误
还请自己查证!
材料力学例题及解题指导
(第二章至第六章)
第二章 拉伸、压缩与剪切
例2-1 试画出图a直杆的轴力图
解:此直杆在A、B、C、D点承受轴向外力
图中只示出1、2、8三个铆钉沿负y方向的剪力F/8
力偶Fl在每一铆钉中也引起剪力
假设剪力方向与该铆钉中心至C的连线正交
材料力学考试题及答案
![材料力学考试题及答案](https://img.taocdn.com/s3/m/6d0d2abed05abe23482fb4daa58da0116c171fa5.png)
材料力学考试题及答案一、选择题(每题2分,共10分)1. 材料力学中,下列哪项不是应力的分类?A. 正应力B. 剪应力C. 拉应力D. 扭应力答案:C2. 材料力学中,下列哪项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 硬度答案:D3. 在拉伸试验中,下列哪项是正确的?A. 弹性模量是应力与应变的比值B. 屈服强度是材料开始发生塑性变形的应力C. 抗拉强度是材料在拉伸过程中的最大应力D. 所有选项都是正确的答案:D4. 根据胡克定律,下列哪项描述是错误的?A. 弹性范围内,应力与应变成正比B. 弹性模量是比例极限C. 应力是单位面积上的力D. 应变是单位长度的变形量答案:B5. 材料力学中,下列哪项不是材料的失效形式?A. 屈服B. 断裂C. 疲劳D. 腐蚀答案:D二、填空题(每空1分,共10分)1. 材料在受到拉伸力作用时,其内部产生的应力称为________。
答案:正应力2. 材料在受到剪切力作用时,其内部产生的应力称为________。
答案:剪应力3. 材料力学中,材料在外力作用下发生形变,当外力去除后,材料能够恢复原状的性质称为________。
答案:弹性4. 材料力学中,材料在外力作用下发生形变,当外力去除后,材料不能恢复原状的性质称为________。
答案:塑性5. 材料力学中,材料在外力作用下发生形变,当外力去除后,材料部分恢复原状的性质称为________。
答案:韧性三、简答题(每题5分,共20分)1. 简述材料力学中应力和应变的关系。
答案:材料力学中,应力和应变的关系可以通过胡克定律来描述,即在弹性范围内,应力与应变成正比,比例系数即为弹性模量。
2. 描述材料力学中材料的屈服现象。
答案:材料力学中,屈服现象指的是材料在受到外力作用时,从弹性变形过渡到塑性变形的临界点,此时材料的应力不再随着应变的增加而增加。
3. 解释材料力学中的疲劳破坏。
答案:材料力学中的疲劳破坏是指材料在循环加载下,即使应力水平低于材料的静态强度极限,也会在经过一定循环次数后发生破坏的现象。
材料力学例题
![材料力学例题](https://img.taocdn.com/s3/m/8ad0638b680203d8ce2f243f.png)
B
DC
1
3
2
A
B
DC
1
3
2
A
1 32
A
Δl1
Δl3
F
A'
A'
变形几何方程为 Δl1 Δl3 cos
物理方程为
Δl1
FN1l1 EA1
Δl3
FN3l cos
E3 A3
(3)补充方程
FN1
FN 3
EA E3 A3
cos2
(4)联立平衡方程与补充方程求解 B
DC
FN1 FN2
FN1 cos FN2 cos FN3 F 0
d
[] = 60MPa ,许用挤压应力为 [bs]= 200MPa .试校核销钉的
强度.
F
B
A
d1
d d1
F
解: (1)销钉受力如图b所示
F
剪切面
F
d
F
F
2
2
挤压面
d
B
A
d1
d d1
F
(2)校核剪切强度
剪切面
F
由截面法得两个面上的剪力
FS
F 2
d
剪切面积为 A d 2
4
FS 51MPa
3
2
1
l
a
a
B
C
A
F
解:(1) 平衡方程
Fx 0 Fx 0 l
3 a
2 a
1
Fy 0
B
C
A
FN1 FN2 FN3 F 0
MB 0
F FN3
FN2
FN1
3 a
2 a
1
工程力学材料力学-知识点-及典型例题
![工程力学材料力学-知识点-及典型例题](https://img.taocdn.com/s3/m/9fdecb7a0812a21614791711cc7931b765ce7baf.png)
作出图中AB杆的受力图。
A处固定铰支座B处可动铰支座作出图中AB、AC杆及整体的受力图。
B、C光滑面约束A处铰链约束DE柔性约束作图示物系中各物体及整体的受力图。
AB杆:二力杆E处固定端C处铰链约束(1)运动效应:力使物体的机械运动状态发生变化的效应。
(2)变形效应:力使物体的形状发生和尺寸改变的效应。
3、力的三要素:力的大小、方向、作用点。
4、力的表示方法:(1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!)(2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。
5、约束的概念:对物体的运动起限制作用的装置。
6、约束力(约束反力):约束作用于被约束物体上的力。
约束力的方向总是与约束所能限制的运动方向相反。
约束力的作用点,在约束与被约束物体的接处7、主动力:使物体产生运动或运动趋势的力。
作用于被约束物体上的除约束力以外的其它力。
8、柔性约束:如绳索、链条、胶带等。
(1)约束的特点:只能限制物体原柔索伸长方向的运动。
(2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。
()9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。
(1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。
被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。
(2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。
()10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。
约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。
()11、固定铰支座(1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。
(2)约束反力的特点:固定铰支座的约束反力同中间铰的一样,也是方向未定的一个力;用一对正交的力来表示,指向假定。
()12、可动铰支座(1)约束的构造特点把固定铰支座的底部安放若干滚子,并与支撑连接则构成活动铰链支座约束,又称锟轴支座。
材料力学典型例题与详解(经典题目)
![材料力学典型例题与详解(经典题目)](https://img.taocdn.com/s3/m/7474caa75acfa1c7ab00cc16.png)
所以石柱体积为
V3
=
G ρ
=
[σ ]A(l) − ρ
F
= 1×106 Pa ×1.45 m 2 −1000 ×103 N = 18 m3 25 ×103 N/m3
三种情况下所需石料的体积比值为 24∶19.7∶18,或 1.33∶1.09∶1。 讨论:计算结果表明,采用等强度石柱时最节省材料,这是因为这种设计使得各截面的正应 力均达到许用应力,使材料得到充分利用。 3 滑轮结构如图,AB 杆为钢材,截面为圆形,直径 d = 20 mm ,许用应力 [σ ] = 160 MPa ,BC 杆为木材,截面为方形,边长 a = 60 mm ,许用应力 [σ c ] = 12 MPa 。试计算此结构的许用载
= 1.14 m 2
A
2=
F+ρ [σ ] −
A1 l1 ρ l2
=
1000 ×103 N + 25 ×103 N/m3 ×1.14 m 2 × 5 m 1×106 N/m 2 − 25×103 N/m3 × 5 m
= 1.31 m 2
A
3=
F
+ ρA1l1 + ρA2l2 [σ ] − ρ l3
= 1000 ×103 N + 25 ×103 N/m3 ×1.14 m 2 × 5 m + 25×103 N/m3 ×1.31 m 2 × 5 m = 1.49m 2 1×106 N/m 2 − 25 ×103 N/m3 × 5 m
解:1、计算 1-1 截面轴力:从 1-1 截面将杆截成两段,研究上半段。设截面上轴力为 FN1 ,
为压力(见图 b),则 FN1 应与该杆段所受外力平衡。杆段所受外力为杆段的自重,大
材料力学试题及答案
![材料力学试题及答案](https://img.taocdn.com/s3/m/15b9a346580102020740be1e650e52ea5518ce8e.png)
材料力学试题及答案一、选择题(每题5分,共25分)1. 下列哪个选项是材料力学的基本假设之一?A. 材料是各向同性的B. 材料是各向异性的C. 材料是均匀的D. 材料是线弹性的答案:A2. 在材料力学中,下列哪个公式表示杆件的正应力?A. σ = F/AB. τ = F/AC. σ = F/LD. τ = F/L答案:A3. 当材料受到轴向拉伸时,下列哪个选项是正确的?A. 拉伸变形越大,材料的强度越高B. 拉伸变形越小,材料的强度越高C. 拉伸变形与材料的强度无关D. 拉伸变形与材料的强度成正比答案:B4. 下列哪种材料在拉伸过程中容易发生断裂?A. 钢材B. 铸铁C. 铝合金D. 塑料答案:B5. 下列哪个选项表示材料的泊松比?A. μ = E/GB. μ = G/EC. μ = σ/εD. μ = ε/σ答案:C二、填空题(每题10分,共30分)6. 材料力学研究的是材料在______作用下的力学性能。
答案:外力7. 材料的强度分为______强度和______强度。
答案:屈服强度、断裂强度8. 材料在受到轴向拉伸时,横截面上的正应力公式为______。
答案:σ = F/A三、计算题(每题25分,共50分)9. 一根直径为10mm的圆钢杆,受到轴向拉伸力F=20kN 的作用,求杆件横截面上的正应力。
解:已知:d = 10mm,F = 20kNA = π(d/2)^2 = π(10/2)^2 = 78.5mm^2σ = F/A = 20kN / 78.5mm^2 = 255.8N/mm^2答案:杆件横截面上的正应力为255.8N/mm^2。
10. 一根长度为1m的杆件,受到轴向拉伸力F=10kN的作用,已知材料的弹性模量E=200GPa,泊松比μ=0.3,求杆件的伸长量。
解:已知:L = 1m,F = 10kN,E = 200GPa,μ = 0.3ε = F/(EA) = 10kN / (200GPa × π(10mm)^2) =0.025δ = εL = 0.025 × 1000mm = 25mm答案:杆件的伸长量为25mm。
材料力学典型题(试题大类)
![材料力学典型题(试题大类)](https://img.taocdn.com/s3/m/bd16f71189eb172dec63b717.png)
材料力学8-3. 图示起重架的最大起吊重量(包括行走小车等)为P=40kN,横梁AC由两根No18槽钢组成,材料为Q235钢,许用应力[ ]=120MPa。
试校核梁的强度。
P30o 3.5m ABCz解:(1)受力分析当小车行走至横梁中间时最危险,此时梁AC 的受力为由平衡方程求得kN Y kN X kN S 20 64.34 40===(2)作梁的弯矩图和轴力图此时横梁发生压弯变形,D 截面为危险截面,kNm M kN N 35 64.34max ==(3)由型钢表查得 No.18工字钢23299.29 152cm A cm W y ==(4)强度校核][05.112122max maxmax σσσ MPa W M A N y c =+==故梁AC 满足强度要求。
8-5. 单臂液压机架及其立柱的横截面尺寸如图所示。
P=1600kN ,材料的许用应力[σ]=160MPa 。
试校核立柱的强度(关于立柱横截面几何性质的计算可参看附录A 例A-8)。
P P900140027603800I1400 890y c 5016 1616截面I-IABCD A C PXY SD —— 35KNm+ 34.64KN解:(1)内力分析截开立柱横截面Ⅰ-由静力平衡方程可得kNm y P M kN P N c 2256 1600=⨯===所以立柱发生压弯变形。
(2)计算截面几何性质4102109.2 99448mm I mm A z ⨯==(3)计算最大正应力立柱左侧MPa ANI My Z C t 7.55max =+=σ 立柱右侧[]MPaMPa MPaANI M Z c 1607.552.53890max max ==∴=+⨯-=σσσ (4)结论:力柱满足强度要求。
8-6. 材料为灰铸铁的压力机架如图所示,铸铁许用拉应力为[σt]=30MPa ,许用压应力为[σc]=80MPa 。
试校核框架立柱的强度。
50100202020z 1 z 2y 截面I-I60IP=12kNP2002760II NP900My c解:(1)计算截面几何性质4124879050 5.59 4200mm I mm z mm A y ===(2)内力分析作截面Ⅰ-Ⅰ,取上半部分由静力平衡方程可得Nm z P M kN P N 2886)200( 122=+===所以立柱发生拉弯变形。
工程力学材料力学_知识点_及典型例题
![工程力学材料力学_知识点_及典型例题](https://img.taocdn.com/s3/m/ad91b243852458fb770b5657.png)
说明:一、二强度理论适用于脆断破坏,三、四强度理论适用于塑性破坏。上述四个强度理论的强度条件中,不等式右面部分就是相应的强度理论所对应的相当应力。
5、应力状态分类
(1)、只有一个主应力不为零的应力状态,称为单向应力状态。也称为简单应力状态。
(2)、两个主应力不为零的应力状态,称为二向应力状态。
(3)、三个主应力全不为零的应力状态,称为三向应力状态。
单向应力状态和二向应力状态又称为平面应力状态。
二向应力状态和三向应力状态又称为复杂应力状态。
6、平面应力状态任一斜截面上正应力和切应力公式为:
11、轴向拉压杆横截面上正应力的计算公式:
12、极限应力(σu):材料失效时的应力。
塑性材料的极限应力是屈服极限(σs);脆性材料的极限应力是强度极限(σb)。
13、许用应力[σ]:保证构件安全工作,材料许可承担的最大应力。
其中:n---安全系数
14、安全系数:为保证构件具有一定安全贮备而选取的一个大于1的系数。安全系数越大构件越安全,但越不经济。
知识点:
1、剪切的受力特点:构件受到一对大小相等、方向相反、作用线相隔很近的平行力作用。
2、剪切的变形特点:沿平行两力作用线之间的面发生相对错动。发生相对错动的面称为剪切面。
剪切变形是工程实际中常见的一种基本变形。常出现于联接件中,如:铆钉联接、螺栓联接、销钉联接、键联接、榫头联接等等。
材料力学试题及答案
![材料力学试题及答案](https://img.taocdn.com/s3/m/e38c7b456fdb6f1aff00bed5b9f3f90f77c64d44.png)
材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是基本力学性质?A. 弹性B. 塑性C. 脆性D. 磁性答案:D2. 根据胡克定律,弹簧的伸长量与所受力的关系是:A. 正比B. 反比C. 无关D. 非线性关系答案:A3. 材料的屈服强度是指:A. 材料开始发生永久变形的应力B. 材料发生断裂的应力C. 材料开始发生弹性变形的应力D. 材料达到最大应力点的应力答案:A4. 材料力学中,应力的定义为:A. 材料单位面积上承受的力B. 材料单位长度上承受的力C. 材料单位体积上承受的力D. 材料单位质量上承受的力答案:A5. 材料的泊松比是描述材料在受力时的:A. 弹性变形能力B. 塑性变形能力C. 横向变形与纵向变形的关系D. 断裂韧性答案:C6. 材料的疲劳寿命与下列哪个因素无关?A. 应力水平B. 材料的疲劳极限C. 温度D. 材料的弹性模量答案:D7. 在材料力学中,剪切应力与正应力的区别在于:A. 作用方向B. 作用面积C. 材料的破坏形式D. 材料的应力-应变曲线答案:A8. 材料的硬度通常通过什么测试来测量?A. 拉伸测试B. 压缩测试C. 冲击测试D. 硬度测试答案:D9. 材料的屈服现象通常发生在:A. 弹性阶段B. 塑性阶段C. 断裂阶段D. 疲劳阶段答案:B10. 材料的疲劳破坏通常发生在:A. 材料表面B. 材料内部C. 材料的接合处D. 材料的任何位置答案:A二、简答题(每题10分,共30分)1. 简述材料力学中材料的弹性模量和剪切模量的区别。
答:弹性模量是描述材料在单轴拉伸或压缩时,应力与应变比值的物理量,反映了材料抵抗变形的能力。
剪切模量则是描述材料在剪切状态下,剪切应力与剪切应变的比值,反映了材料抵抗剪切变形的能力。
2. 解释什么是材料的疲劳破坏,并简述其形成过程。
答:材料的疲劳破坏是指在反复加载和卸载的过程中,即使应力水平低于材料的屈服强度,材料也会逐渐发生损伤并最终导致断裂。
材料力学资料例题
![材料力学资料例题](https://img.taocdn.com/s3/m/19bc7931c1c708a1294a44c5.png)
材料力学(资料例题)材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。
刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
(一)连续性假设——假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。
这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。
(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。
按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体)。
(三)各向同性假设——沿各个方向均具有相同力学性能。
具有该性质的材料,称为各向同性材料。
综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。
三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力。
外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等。
当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况。
(完整版)材料力学习题集(有答案)汇总
![(完整版)材料力学习题集(有答案)汇总](https://img.taocdn.com/s3/m/8c43adcc3b3567ec102d8a9c.png)
一、 是非题
2.1使杆件产生轴向拉压变形的外力必须是一对沿杆件轴线的集中力。 ( )
2.2轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。 ( )
2.3内力是指物体受力后其内部产生的相互作用力。 ( )
2.4同一截面上, σ 必定大小相等,方向相同。 ( )
答:
扭转
1.一直径为 的实心轴,另一内径为d,外径为D,内外径之比为 的空心轴,若两轴横截面上的扭矩和最大切应力均分别相等,则两轴的横截面面积之比 有四种答案:
(A) ;(B) ;(C) ;(D) 。
2.圆轴扭转时满足平衡条件,但切应力超过比例极限,有下述四种结论:
(A) (B) (C) (D)
切应力互等定理:成立不成立不成立成立
1.图示木接头,水平杆与斜杆成 角,其挤压面积为 为
(A) ;(B) ;
(C) ;(D) 。
答:C
2.图示铆钉连接,铆钉的挤压应力 有如下四个答案
(A) ;(B) ;
(C) ;(D) 。
答:B
3.切应力互等定理是由单元体
(A)静力平衡关系导出的;(B)几何关系导出的;
(C)物理关系导出的;(D)强度条件导出的。
(A) ; (B) ; (C) ; (D) 。
2.对于没有明显屈服阶段的塑性材料,通常以 表示屈服极限。其定义有以下四个结论,正确的是哪一个?
(A)产生2%的塑性应变所对应的应力值作为屈服极限;
(B)产生0.02%的塑性应变所对应的应力值作为屈服极限;
(C)产生0.2%的塑性应变所对应的应力值作为屈服极限;
(A)外径和壁厚都增大;(B)外径和壁厚都减小;
(C)外径减小,壁厚增大;(D)外径增大,壁厚减小。
材料力学经典例题
![材料力学经典例题](https://img.taocdn.com/s3/m/b89bed21482fb4daa58d4bc6.png)
Ip R
称为抗扭截面 系数(模量 模量), 系数 模量 , 单位: 单位:mm3。
Nm mm
3
MT = W p
=10 MPa
3
五、Ip和Wp公式
π D4
32
工程上采用空心截面构件:提高强度, 工程上采用空心截面构件:提高强度,节约 材料, 材料,重量轻 结构轻便,应用广泛。 结构轻便,应用广泛。
Ip =
例题2.4 例题2.4 油缸盖与缸体采用6个螺栓连接。已知油缸内径 油缸盖与缸体采用6个螺栓连接。 D=350mm,油压p=1MPa 螺栓许用应力[σ]=40MPa p=1MPa。 [σ]=40MPa, D=350mm,油压p=1MPa。螺栓许用应力[σ]=40MPa, 求螺栓的内径。 求螺栓的内径。 解: 油缸盖受到的力 F = D 2 p
目录
FN 1 = 2 F1 ≤ [σ ] A1
失效、 §2.7 失效、安全因数和强度计算
3、根据水平杆的强度,求许可载荷 根据水平杆的强度, 查表得水平杆AB的面积为A2=2×12.74cm2 =2×
FN 2 = − FN 1 cos α = − 3F
FN 2 = 3F2 ≤ [σ ] A2
FN 1
(kN·m) )
MT
2. 校核强度
MT1 10×103 ×16 ×103 = 50.9MPa< [τ] (τmax )1 = W = π×1003 p1
MT2 3×103 ×16 τmax ) 2 = = ×103 = 70.7 MPa > [τ] ( Wp2 π×603
MT1 180 10×103 ×32 180 ⋅ = ⋅ = 0.7 o m <[θ] θ1 = GIp1 π 80×109 ×π×1004 ×10−12 π MT2 180 3×103 ×32 3 180 ⋅ = ×10 ⋅ = 1.7 o m >[θ] θ2 = GIp2 π 80×π×604 π
材料力学(5)
![材料力学(5)](https://img.taocdn.com/s3/m/fdc78384ec3a87c24028c4c9.png)
A
Iz
∫ ∫∫ z dydz = ∫ y dA = ∫∫ z dydz
2 2 2 A
则分别定义为图形对 y 轴和 z 轴的惯性矩(也称为 二次矩) 惯性矩性质: 惯性矩性质:当一个平面图形是由若干个简单图 形组成时,可以先算出每一个简单图形对某一轴 的惯性矩,然后求其总和,即等于整个图形对同 一轴的惯性矩。
z o y x
5-1 梁纯弯曲时的正应力
正应力计算公式的使用条件和范围
正应力公式是在纯弯曲情况下导出的。但是按弹性力 学理论与工程实践表明:在有些情况下,横力弯曲的 正应力分布规律与纯弯曲的完全相同;在有些情况下 虽略有差异,但是当梁跨度与截面高度之比大于5时, 误差是非常小的。所以,该公式应用于横力弯曲的正 应力计算有足够的精度,完全可以应用于横力弯曲时 的正应力计算。 对于具有纵向对称截面的梁,包括不对称于中性轴的 截面(即无横向对称面,如T字型截面),正应力公式 都可以使用。 正应力公式不适用于非对称弯曲的情况。 当梁的材料不服从胡克定律时,正应力公式不适用。 正应力公式只适用于直梁。但可近似地用于曲率半径 较梁高大得多的曲梁。对变截面梁也可近似地应用。
平行移轴公式:截面对任一轴的惯性矩, 平行移轴公式 等于它对平行于该轴的形心轴的惯性矩, 加上截面面积与两轴间距离平方的乘积。
5-2 惯性矩计算
T字型截面对其形心轴(z轴)的惯性矩为:
I z = I zI + I zII
y
矩形Ⅰ和矩形Ⅱ对 z 轴的惯性矩 可以通过平行移轴公式写成如下形式:
z1
a
b
E
5-1 梁纯弯曲时的正应力
(三)静力学关系(续3)
Mz = ∫A yσdA = ML(e)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学(资料例题)材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。
为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。
【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。
【内容讲解】一、基本概念强度——构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形。
刚度——构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。
稳定性——构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。
杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。
由连续性假设可知,内力是作用在切开面截面上的连续分布力。
称连续分布内力。
将连续分布内力向横截面的形心C简化,得主矢与主矩。
为了分析内力,沿截面轴线建立轴,在所切横截面内建立轴和轴,并将主矢与主矩沿x、y、z三轴分解,得内力分量,以及内力偶矩分量。
这些内力及内力偶矩分量与作用在保留杆段上的部分外力,形成平衡力系,并由相应的平衡方程,建立内力与部分外力间的关系,或由部分外力确定内力。
内力分量及内力偶矩分量,统称为内力分量。
(三)应力正应力与剪应力为了描述内力的分布情况,引入内力分布集度即应力的概念。
平均应力在截面m—m上任一点K的周围取一微面积△A,设作用于该面积上的内力为△P,则△A内的平均应力:单元体(微体)围绕某点(如K).切取一无限小的六面体,称为单元体(或微体)。
为全面研究一点处在不同方位的截面上的应力(称为一点的应力状态)而切取的研究对象之一。
四、轴向拉伸与压缩的力学模型轴向拉伸与压缩是杆件受力或变形的一种最基本的形式。
受力特征作用于等直杆两端的外力或其合力的作用线沿杆件的轴线,一对大小相等、矢向相反。
变形特征受力后杆件沿其轴向方向均匀伸长(缩短)即杆件任意两横截面沿杆件轴向方向产生相对的平行移动。
拉压杆以轴向拉压为主要变形的杆件,称为拉压杆或轴向受力杆。
作用线沿杆件轴向的载荷,称为轴向载荷五、轴力轴力图㈠轴力拉压杆横截面上的内力,其作用线必是与杆轴重合,称为轴力。
用N_表示。
是拉压杆横截面上唯一的内力分量。
轴力N符号规定拉力为正,压力为负。
根据截面法和轴力N正负号规定,可得计算拉压杆轴力N的法则:横截面上的轴力N,在数值上等于该截面的左侧(或右侧)杆上所有轴向外力的代数和。
无论左侧或右侧杆上,方向背离截面的轴向外力均取正值:反之则取负值。
(二)轴力图表示沿杆件轴向各横截面上轴力变化规律的图线。
称为轴力图或N图。
以x轴为横坐标平行于杆轴线,表示横截面位置,以N轴为纵坐标,表示相应截面上的轴力值。
六、拉压杆横截上、斜截面上的应力(一) 拉压杆横截上的应力(二)拉压杆斜截面上的应力由拉压杆横截面上的应力均匀分布,可推断斜截面上的应力,也为均匀分布,且其方向必与杆轴平行。
斜截面上剪应力符号规定:将截面外法线,沿顺时方向旋转900,与该方向同向的剪应力为正。
七、材料拉压时力学性能强度条件㈠破坏(失效)许用应力由于脆性材料均匀性较差,且断裂又是突然发生的,其达到极限应力时的危险性要比塑性材料大的多,因此,在普通荷载作用下,比大,一般取 =1.5~2.0;对脆性材料规定取 =2.5~3.0,甚至更大。
㈡强度条件利用上述条件,可解决以下三类问题。
1.校核强度_当已知拉压杆所受外力,截面尺寸和许用应力,通过比较工作应力与许用应力大小,以判断该杆在所受外力作用下能否安全工作。
2.选择截面尺寸若已知拉压杆所受外力和许用应力,由强度条件确定该杆所需截面面积。
对于等截面拉压杆,其所需横截面面积为3.确定承载能力若已知拉压杆截面尺寸和许用应力,由强度条件可以确定该杆所能承受的最大轴力,其值为八、轴向拉压变形轴向拉压应变能当杆件承受轴向载荷后,其轴向与横向尺寸均发生变化,杆件沿轴向方向的变形称为轴向变形或纵向变形;垂直于轴向方向的变形称为横向变形。
与此同时,杆件因变形而贮存的能量,称为应变能。
(一)轴向变形与胡克定律试验表明:轴向拉伸时,轴向伸长,横向尺寸减小;轴向压缩时,轴向缩短,横向尺寸增大,即横向线应变与轴向线应变恒为异号。
且在比例极限内,横向线应变与轴向线应变成正比。
比例系数用表示,称为泊松比。
它是一个常数,其值随材料而异,由试验测定。
材料的弹性模量E、泊松比v与剪变模量G之间存在如下关系:当已知任意两个弹性常数,即可由上式确定第三个弹性常数,可见各向同性材料只有两个独立的弹性常数。
(三)轴向拉压应变能应变能在外力作用下,杆件发生变形,力在相应的位移上作功,同时在杆内贮存的能量称为应变能。
用W表示外力功,用U表示相应应变能。
在线弹性范围内,在静载荷作用下,杆内应变能等于外力功轴向拉压应变能:【例题1】等直杆承受轴向载荷如图,其相应轴力图为()。
A. (A)B. (B)C. (C)D. (D)答案:A【例题5】在相距2m的AB两点之间,水平地悬挂一根直径d=1mm的钢型在中点C逐渐增加荷载P。
设钢丝在断裂前服从虎克定律,E=2x 1O5MPa,在伸长率达到0.5%时拉断,则断裂时钢丝内的应力和C点的位移分别为( )A.26.5B. 51C. 63.6D. 47.1答案:B【例题8】低碳钢拉伸经过冷作硬化后,以下四种指标中得到提高为在()。
A. 强度极限B. 比例极限C. 断面收缩率D. 伸长率(延伸率)答案:B(二)剪切【内容提要】本讲主要讲连接件和被连接件的受力分析,区分剪切面与挤压面的区别,剪切和挤压的计算分析,剪力互等定理的意义及剪切虎克定律的应用。
【重点、难点】本讲的重点是剪切和挤压的受力分析和破坏形式及其实用计算,难点是剪切面和挤压面的区分,挤压面积的计算。
一、实用(假定)计算法的概念螺栓、销钉、铆钉等工程上常用的连接件及其被连接的构件在连接处的受力与变形一般均较复杂,要精确分析其应力比较困难,同时也不实用,因此,工程上通常采用简化分析方法或称为实用(假定)计算法。
具体是:1.对连接件的受力与应力分布进行简化假定,从而计算出各相关部分的“名义应力”;2.对同样连接件进行破坏实验,由破坏载荷采用同样的计算方法,确定材料的极限应力。
然后,综合根据上述两方面,建立相应的强度条件,作为连接件设计的依据。
实践表明,只要简化假定合理,又有充分的试验依据,这种简化分析方法是实用可靠的。
二、剪切与剪切强度条件当作为连接件的铆钉、螺栓、销钉、键等承受一对大小相等、方向相反、作用线互相平行且相距很近的力作用时,当外力过大;其主要破坏形式之一是沿剪切面发生剪切破坏,如图2-1所示的铆钉连接中的铆钉。
因此必须考虑其剪切强度问题。
连接件(铆钉)剪切面上剪应力r:假定剪切面上的剪应力均匀分布。
于是,剪应力与相应剪应力强度条件分别为(2-1)(2-2)式中:为剪切面上内力剪力;为剪切面的面积;[ ]为许用剪应力,其值等于连接件的剪切强度极限除以安全系数。
如上所述,剪切强度极限值,也是按式(2-1)由剪切破坏载荷确定的。
需要注意,正确确定剪切面及相应的剪力。
例如图2-1(a)中铆钉只有一个剪切面,而图2-1(b) 中铆钉则有两个剪切面。
相应的剪力值均为P。
三、挤压与挤压强度条件在承载的同时,连接件与其所连接的构件在相互直接接触面上发生挤压,因而产生的应力称为挤压应力。
当挤压应力过大时,将导致两者接触面的局部区域产生显著塑性变形,因而影响它们的正常配合工作,连接松动。
为此必须考虑它们的挤压强度问题。
如图2—2所示的铆钉连接中的铆钉与钢板间的挤压。
连接件与其所连接的构件,挤压面上挤压应力。
:假定挤压面上的挤压应力均匀分布。
于是;挤压应力,与相应的挤压强度条件分别为式中:Pc为挤压面上总挤压力;Ac为挤压面的面积。
当挤压面为半圆柱形曲面时取垂直挤压力方向直径投影面积。
如图2—2所示的取Ac=dt。
[]为许用挤压应力其值等于挤压极限应力除以安全系数。
在实用(假定)计算中的许用剪应力[]、许用挤压应力[ ],与许用拉应力[]之间关系有:对于钢材[ ]=(0.75~0.80)[ ][]=(1.70~2.00)[]四、纯剪切与剪应力互等定理(一) 纯剪切:若单元体上只有剪应力而无正应力作用,称为纯剪切。
如图2-3(a)所示,是单元体受力最基本、最简单的形式之一。
在剪应力作用下.相邻棱边所夹直角的改变量.称为剪应变,用表示,其单位为rad。
如图2-3(b)所示。
(二)剪应力互等定理:在互相垂直的两个平面上,垂直于两平面交线的剪应力,总是大小相等,而方向则均指向或离开该交线(图2-3),即证明:设单元体边长分别为,单元体顶、底面剪应力为,左、右侧面的剪应力为(图2-4a)则由平衡方程得同理可证,当有正应力作用时(图2-3b),剪应力互等定理仍然成立五、剪切胡克定律试验表明,在弹性范围内,剪应力不超过材料的剪应力比例极限,剪应力与剪应变成正比,即式中G称为材料的剪变模量。
上述关系称为剪切胡克定律。
试验表明,对于各向同性材料,材料的三个弹性常数,有下列关系上述关系式同样可从纯剪切时应力、应变关系中导得。
所以,当知道任意两个弹性常数后,由上式可以确定第三个弹性常数。
即E、G、v间只有两个独立常数。
【例题1】如图所示圆截面杆件,承受轴向拉力P作用,设拉杆的直径为d,端部墩头的直径为D,厚度为,已知许用应力[ ]=120MPa,许用剪应力[]=90MPa,许用挤压应力[]=240MPa。
试根据强度方面要求,则D,d,三者间的合理比值为()。
A.1:1:1 B.1:1.223:0.335 C.1.223:1:0.335 D:0.335:1:1.223答案:C【例题2】如图所示光圆钢筋,一端置于混凝土中,另一端外伸端施加一拉力P。
(称钢筋与混凝土之间抗拔力试验)。
已知钢筋的直径d=14mm,埋置长度=300mm, P=20kN,则钢筋与混凝土接触面间平均剪应力为。
A. B. C.D.答案:D【例题3】一外径为250mm,壁厚为lOmm的钢管柱,底部垫置直径为d 的圆钢板,立于混凝土底座上(如图所示)。
已知混凝土的许用挤压应力为15MPa,钢的许用挤压应力为150 MPa,管柱能够承受的最大荷载P及所需钢板的最小直径d分别为。
A.1000310B.1130310C.1200310D. 1200300答案:B【例题4】矩形截面的钢板拉伸试件,如图所示。
为了使拉力P通过试件的轴线,在试件两端部,开有圆孔,孔内插入销钉,作用于试件设试件与销钉的材料相同,其许用剪应力[ ]=1OOMPa,许用挤压应力[]c=300MPa,许用拉应力[]=170MPa,试件拉伸时的强度极限=400MPa,为了使试件仅在中部被拉断,则该试件端部,所需尺寸的大小为( )。