低频信号发生器设计方案
低频信号发生器
2.4、放大电路部分
放大电路部分,该部分主要是由两个放大电路组成,第一个放大电路的作用主要是将单片机输出的微弱的电流信号转换为电压信号,第二级放大电路的作用是对微弱的电压信号进行放大,将其放大到设计要求的范围之内。放大电路如下图(3)所示:
图(3)
2.5、滤波电路部分
滤波电路部分,在第二个运算放大器的输出端连了一个二阶低通滤波器。如果不加低通滤波器,也能够生成波形,但是产生的信号中毛刺很多,加一个低通滤波器不仅起到的滤波的作用,还起到了平滑的作用。
0x30, 0x2f, 0x2d, 0x2c, 0x2a, 0x29, 0x27, 0x26,
0x24, 0x23, 0x21, 0x20, 0x1e, 0x1d, 0x1b, 0x1a,
0x18, 0x17, 0x15, 0x14, 0x12, 0x11, 0x0f, 0x0d,
0x0c, 0x0a, 0x09, 0x07, 0x06, 0x04, 0x03, 0x01,
经比较,方案四既可满足课程设计的基本要求又能充分发挥其优势,电路简单,易控制,性价比高,所以采用该方案.
2、幅度改变方案
方案一:可以将送给DA的数字量乘以一个系数,这样就可以改变DA输出电流的幅度,从而改变输出电压;但是这样做有很严重的问题,单片机在做乘法运算时需要很长的时间,这样的话输出波形的频率就会很低,达不到至少500HZ的要求;
sbitADC_CS = P2^6;
sbitADC_WR = P2^7;
sbitled = P2^0;
sbitkey1 = P3^2;
sbitkey2 = P3^3;
//------------------------------------------------正弦波编码表
基于DDS的基本原理设计的低频信号发生器
基于DDS的基本原理设计的低频信号发生器基于DDS(Direct Digital Synthesis,直接数字合成)的低频信号发生器是一种高精度、灵活性高的信号发生器,可以产生各种低频信号。
本文将从DDS的基本原理、低频信号发生器的设计和实现等方面展开论述。
一、DDS的基本原理DDS是一种通过数字计算产生连续、离散或混合信号的方法。
它将频率和相位信息编码为数字信号,通过数字计算来生成输出信号。
DDS的基本原理如下:1.预存储波形数据:DDS使用查表法将波形数据存储在一个固定的存储器中,例如RAM或ROM中。
每个存储地址对应一个波形振幅值。
2.相位累加器:DDS通过一个相位累加器来产生实时的相位信息。
相位累加器是一个计数器,每个时钟周期增加一个固定的值,该值称为相位增量。
相位累加器产生的相位信息表示了所需输出的信号的相位。
3.数字到模拟转换:相位累加器输出的相位信息经过数字到模拟转换,即将相位信息转换为模拟信号。
这一步可以通过查表法,将相位信息作为地址,从查表的波形存储器中读取波形振幅值,然后通过D/A转换器将波形振幅值转换为模拟信号。
二、低频信号发生器的设计1.频率控制:低频信号发生器需要具备广泛的频率覆盖范围,并能够精确地调节频率。
为了实现这一点,可以使用一个可编程的数字控制单元,比如微控制器或FPGA来控制DDS的相位增量。
通过改变相位增量的大小,可以控制DDS的输出频率。
2.模拟输出滤波:DDS输出的信号是由一串数字零、一和正负极性组成的脉冲串,需要通过模拟输出滤波器进行滤波,以获取平滑的模拟输出信号。
滤波器可以选择低通滤波器或带通滤波器,以滤除高频噪声和杂散成分。
3.波形选择:DDS可以通过选择合适的波形数据来生成多种形状的输出波形,包括正弦、方波、锯齿波等。
在波形存储器中存储不同的波形数据,并通过用户界面或外部接口控制波形的选择。
三、低频信号发生器的实现低频信号发生器的实现可以采用数字电路、模拟电路或数字电路与模拟电路的组合。
低频信号发生器设计与实现报告
仪器科学与电气工程学院本科生“六个一”工程之课外实验项目报告低频信号发生器的设计与实现专业:测控技术与仪器姓名:刘雪锋学号:65090215时间:2011年11月一、实验目的:练习基本技能:常用测试仪器使用、电路安装、测试、调试;初步学会查阅电子器件英文说明书;训练基本单元电路设计、调试、测试。
二、实验内容:设计一个低频信号发生器,可输出方波、矩形波、三角波、锯齿波、正弦波。
频率和幅度可调;矩形波占空比可调;锯齿波上升、下降时间可调;根据电路原理图的具体结构,安装单元电路;测输出幅度、频率、失真度、上升沿、下降沿、观察三角波线性度;不得使用8038模块;写出设计与总计报告,说明电路原理、特点、测试结果、结果分析。
三、总体设计方案:(一)总体设计原理框图产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波转换成方波,再由积分电路将方波变成三角波;也可以先由振荡器产生方波,再经积分电路产生三角波,再经过滤波电路产生正弦波等等。
我选用的是前一种方案,上图为总体设计流程。
(二)各部分电路图及其原理1、正弦波产生电路及其原理:正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入反馈电路,并创造条件,使其产生稳定可靠的振荡。
电路接通电源的一瞬间,由于电路中电流从零突变到某一值,它包含着很多的交流谐波,经过选频网络选出频率为f0的信号,一方面由输出端输出,另一方面经正反馈网络传送回到输入端,经放大和选频,这样周而复始,不断地反复,只要反馈信号大于初始信号,震荡就逐渐变强,最后稳定的震荡起来。
我所设计的正弦波震荡电路为RC 串并联式正弦波震荡电路,又被称为文氏桥电路。
这个电路由两部分组成,即放大电路和选频网络,放大电路为由集成运741放所组成的电压串联负反馈放大电路,选频网络兼作正反馈网络,它具有电路简单、易起振、频率可调等特点被大量应用于低频振荡电路,电路图如下所示 :我选用的电阻R和电容C分别为100kΩ的电位器和0.1μf瓷片电容,这样根据在C不变的情况下,改变电位器R的值可以改变电路的震荡频率,但由于两个R的阻值要相等才能震荡出正弦波,所以我在实际焊制电路时两个R采用一个同轴电位器。
低频三相函数信号发生器制作方案
低频三相函数信号发生器制作方案一提到低频三相函数信号发生器,脑海中瞬间涌现出电路图、元件选择、调试过程等一系列关键词。
咱们就围绕这个主题,详细梳理一下整个制作方案。
要明确低频三相函数信号发生器的功能和用途。
它主要用于产生低频三相正弦波信号,广泛应用于电力系统、自动控制、信号处理等领域。
那么,如何制作一款性能稳定、精度高的低频三相函数信号发生器呢?1.设计思路(1)稳定性:确保输出信号的稳定性,降低噪声干扰;(2)精度:提高输出信号的精度,满足实际应用需求;(3)可扩展性:预留一定的扩展空间,方便后续升级和功能拓展。
2.电路设计(1)信号源设计内部集成振荡器、缓冲放大器和稳压电路,简化电路设计;可产生正弦波、三角波和矩形波等多种波形;频率范围宽,可满足低频信号的需求。
(2)分频电路设计为了得到三相信号,我们需要对信号源输出的单相信号进行分频。
这里采用CD4060分频器,将信号源的输出频率分频为1/3,得到三相信号的初始频率。
(3)滤波电路设计滤波电路的作用是消除信号中的噪声和杂波,提高输出信号的纯净度。
我们采用二阶低通滤波器,截止频率设置为所需信号频率的5倍,确保信号在截止频率附近的失真最小。
(4)放大电路设计放大电路用于放大滤波后的信号,使其达到所需的幅值。
这里采用运算放大器组成的非倒数放大电路,根据实际需求调整放大倍数。
3.元件选择(1)ICL8038:集成函数发生器IC,用于产生低频信号;(2)CD4060:分频器,用于得到三相信号的初始频率;(3)运放:用于滤波和放大电路;(4)电阻、电容、二极管、三极管等:用于搭建滤波、放大和稳压电路。
4.调试与测试(1)检查电路连接,确保无短路、断路现象;(2)接通电源,观察信号源输出波形是否正常;(3)调整分频器CD4060的时钟频率,观察三相信号输出是否稳定;(4)调整滤波电路参数,观察滤波效果;(5)调整放大电路参数,观察输出信号幅值是否达到预期;(6)进行长时间运行测试,观察信号稳定性。
低频信号发生器设计方案
低频信号发生器设计方案一. 设计要求1.方案设计,根据设计任务选择合理的设计设计方案。
2.硬件设计。
选择硬件元件,说明其工作原理及设计过程,使用protel软件画出硬件电路pcb 板。
3.要求有目录,参考资料,结语。
4.设计也数不少于20页。
5.按照规范要求,及时提交课程设计报告,并完成课程设计答辩。
二. 设计的作用,目的1.学习掌握电子电路设计的方法和步骤。
2.掌握protel等常用设计软件的使用方法。
三•设计的具体实现(一)系统概述根据课题任务,所要设计的低频信号发生器由三大部分组成:⑴正弦信号发生部分⑵信号输出部分⑶稳幅部分其中由正弦信号发生部分的电路产生所需要的正弦信号,由输出电路将信号放大后进行输出,再由稳幅电路部分从输出的信号采样反馈回信号发生部分进行稳幅。
1•正弦信号发生部分可以有以下实现方案:⑴以晶体管为核心元件,加RC (文氏桥或移相式)或LC (变压器反馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的分立元件正弦波振荡电路。
这种电路的优点是简单、廉价,但由于采用分立元件,稳定性较差,元件较多时调节也较麻烦。
⑵以集成运放为核心元件,加RC (文氏桥或移相式)或LC (变压器反馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的正弦波振荡电路。
这种电路的优点是更为简单,性价比较好,但频率精度和稳定性较差。
⑶以集成函数信号发生器为核心元件,加适当的外围元件构成正弦波产生电路。
例如函数发生器ICL8038芯片加电阻、电容元件,在一定电压控制下,可以产生一定频率的方波、三角波和正弦波。
这种电路的优点时调节方便,在所采用的外围元件稳定性好的情况下,可以得到较宽频率范围的,且稳定性、失真度和现行度很好的正弦信号。
⑷利用锁相环(PLL )技术构成的高频率精度的频率合成器。
其框图如下图所示。
这种电路主要是利用锁相,即使现象未同步技术来获得频率高稳定度,且频率可步进变化的振荡源。
低频函数信号发生器设计
低频函数信号发生器设计一、引言低频信号在电子工程中有着广泛的应用。
低频信号可以用于音频放大器、振荡电路、传感器等各种电子设备中。
而低频信号发生器则是产生低频信号的一种电子设备。
本文将介绍低频函数信号发生器的设计。
二、低频函数信号发生器的原理1.时钟电路:时钟电路是低频函数信号发生器中的一个重要组成部分。
时钟电路负责提供一个稳定的时钟信号,用于产生低频信号。
可以使用晶体振荡器或RC振荡器作为时钟电路的基础。
2.可调电压控制振荡器:可调电压控制振荡器是低频函数信号发生器中的核心组成部分。
它能够通过改变电压来控制输出频率。
根据不同的需要,可以设计不同的电压控制振荡器,如正弦波振荡器、方波振荡器等。
3.高精度电压参考电路:高精度电压参考电路是为了保证低频函数信号发生器的输出信号精度。
一般来说,高精度电压参考电路采用稳压二极管电路或者基准电压源电路。
4.滤波电路:滤波电路负责将振荡器输出的波形进行滤波,减少噪音和杂散信号。
常用的滤波电路有RC滤波电路、LC滤波电路等。
5.调幅电路:调幅电路可以用于调整低频信号的幅度,以满足不同应用的需求。
常见的调幅电路有放大器电路、差分电路等。
三、低频函数信号发生器的设计步骤1.确定输出信号的频率范围和精度要求。
根据不同的应用需求,确定低频函数信号发生器的频率范围和精度要求,以此确定时钟电路和可调电压控制振荡器的设计参数。
2.设计时钟电路。
根据频率范围和精度要求,设计稳定的时钟电路。
可以选择晶体振荡器或RC振荡器,根据具体情况进行电路设计。
3.设计可调电压控制振荡器。
根据频率范围和精度要求,设计可调电压控制振荡器。
可以采用不同的电压控制振荡器电路,如正弦波振荡器、方波振荡器等。
4.设计高精度电压参考电路。
根据设计要求,选择合适的高精度电压参考电路。
常见的稳压二极管电路和基准电压源电路可以用于高精度电压参考电路的设计。
5.设计滤波电路。
选择合适的滤波电路来滤除振荡器输出的噪音和杂散信号。
低频信号发生器的设计与实现(包括三角波,方波,锯齿波等)
低频信号发生器的设计与实现1.设计任务设计一个低频信号发生器可输出方波、矩形波、三角波、锯齿波、正玄波,1K~3KHZ,幅度30mV~1V 。
矩形波占空比可调,锯齿波上升沿、下降沿可调。
2.方案选择1.RC 文氏电桥振荡器产生正弦波经比较器产生方波和矩形波经积分器产生三角波和锯齿波。
特点:廉价,元器件较多,振荡频率不易调整,故障率高。
2.用比较器和积分器产生矩形波和三角波,用三角波——产生正弦波。
特点:廉价,元器件多,故障率高。
3.用石晶晶体构成正弦波发生器,用比较器积分器产生其他波。
特点:频率稳定度高,但频率不易调整。
4.用集成函数发生器特点: 故障率低,易调整,成本高。
3.方案确定虽然8038成本高,但可考虑到集成电路发展方向,尽可能选4方案4..参数设计1.V+,V-设计由8038说明书V+、V-在,选15~5±±V15±2.选取、B A R R 由说明书得、在1uA~1mA 之间A IB I =10V 5V<<10V\mA R V V uA A 1)(1<-<-++V R V 所以取=5.1KΩA R 3.C 的选取:,Vc 在、之间变化,)(31-+-=-V V V V B A A V B V ⎰=t C C dt I C V 01 a.充电时,,,则A C I I =3201==t I C V A C 充t I C t A==320 b.放电时,,。
A B C I I I -=2)2(320A B I I C t -=放211(320t A B A I I I C t T -+=+=放充 当输出方波时,,, 则,f=1/T ,放充t =t B A I I =)(340R A V V CR T -=+ 计算得PFC 31022⨯= 4.电位器(8脚)选取10kΩ,电阻(8脚)选取10kΩ。
5.RL=100kΩ5.测试结果1.可产生正弦波、矩形波、三角波三种波形,占空比、频率可调2.信号发生器频率调节范围1K~2900HZ ,但没达到3000HZ.3幅度可调范围10mV~10V 不失真。
低频信号发生器设计论文
基于单片机的低频信号发生器设计论文要摘单片机为核心设计了一个低频函数信号发生器。
本文以STC89C52可输出正弦波、方波、信号发生器通过硬件电路和软件程序相结合,波形和三角波、三角波、梯形波,波形的频率在一定范围内可改变.硬件电路和软件频率的改变通过软件控制。
介绍了波形的生成原理、该信号发1440HZ的波形。
部分的设计原理。
本系统可以产生最高频率生器具有体积小、价格低、性能稳定、功能齐全的优点。
;D /A单片机转换; 关键词:低频信号发生器;Abstracta of microcontroller as the core design This paper takes STC89C52 frequency function generator.The signal generator through a combination of hardware circuit and software program.Can output sine wave, square of frequency triangle wave, trapezoidal wave,The wave, triangle wave, and 。
The waveform certain waveform can be changed in a rangethe frequency are changed by software control,This paper introduces design of software part generating principle, hardware circuit and of principlewaveforms,This system can produce the maximum frequency of 1440HZ waveform,The signal generator has the advantages of small volume, low price, stable performance, complete functions.microcomputer low-frequency Keywords: chipsignalgeneratorD /A conversion一、设计选题及任务设计题目:基于单片机的信号发生器的设计与实现.任务与要求:设计一个由单片机控制的信号发生器。
基于DDS的基本原理设计的低频信号发生器
基于DDS的基本原理设计的低频信号发生器低频信号发生器是一种能够产生低频电信号的设备,广泛应用于电子、通信、声学等领域的实验、测试和调试中。
在设计低频信号发生器时,基于DDS(Direct Digital Synthesis,直接数字合成)的原理,可以有效地生成稳定、精确的低频信号。
DDS基本原理:DDS是一种采用数字技术直接产生波形信号的技术,其基本原理是利用数字计算机和其它逻辑电路将高稳定度的时钟信号分频,通过DAC(数字模拟转换器)输出相应的模拟信号。
具体步骤如下:1.频率和相位累加器:DDS中的关键元件是频率和相位累加器。
频率累加器根据输入的控制字频率,以固定的速度递增或递减,并产生一个周期范围内的数字相位输出。
相位累加器则将相位信息输出给DAC。
2.正弦波表:DDS中会预先存储一个周期范围内的正弦波表。
相位输出经过插值之后,会得到一个数值,然后该数值通过正弦波表查表,得到该相位上的正弦波取样值。
3.插值滤波器:DDS通常采用插值滤波器对正弦波表输出进行低通滤波,以去除高频噪声成分。
1.选择合适的时钟源和DDS芯片:首先需要选择一个高稳定度的时钟源,如TCXO(温度补偿型晶体振荡器)。
然后选择合适的DDS芯片,如AD9850或AD9833,这些芯片已经有成熟的设计方案和丰富的技术资料。
2.建立控制电路:根据DDS芯片的规格书和应用电路设计指南,使用微控制器或PLC实现控制电路。
该电路应能够控制频率、相位和幅度等参数,并能与外部设备进行交互。
3.数字信号处理:在设计中,需要进行一系列的数字信号处理,包括频率累加器和相位累加器的递增或递减实现,正弦波表查表的插值运算,以及插值滤波器的设计和滤波处理等。
4.输出电路设计:输出电路应采用高精度DAC进行数字模拟转换,并根据设计要求进行滤波和放大等处理,以产生稳定、精确的低频信号。
5.整体系统测试与调试:完成设计后,需要对整个系统进行全面测试和调试,包括频率范围测试、频率精度测试、稳定度测试、波形畸变测试等。
基于单片机的低频信号发生器设计..
基于单片机的低频信号发生器设计摘要本文设计低频信号发生器,以AT89C52单片机为核心,通过键盘输入控制信号类型和频率的选择,采用DA转换芯片输出相应的波形,同时以示波器进行实时显示信号相关信息,采用汇编语言进行编程,可实现方波,三角波。
锯齿波,正弦波四中波形的产生,且波形的频率可调。
经测试该设计方案线路优化,结构紧凑,性能优越,满足设计要求。
关键词:单片机,DA转换,信号发生器ABSTRACTLow frequency signal generator design, this paper USES AT89C52 single-chip microcomputer as the core, through the keyboard input control signal type and frequency of choice, with DA conversion chip output corresponding waveform, at the same time, the LED display information real-time display signal, using assembly language programming, which can realize square wave, triangle wave. Production of sawtooth, sine wave 4 waveform, and the frequency of the waveform is adjustable. By testing the design scheme of circuit optimization, compact structure, superior performance, meet the design requirements.Key Words:Single chip microcomputer, DA conversion, signal generator目录摘要 (1)ABSTRACT ............................................... 错误!未定义书签。
用AT89C51单片机设计的低频信号发生器
用AT89C51单片机设计的低频信号发生器电子爱好者在日常电子电路设计中,经常要用到各种波形的信号源,下面介绍一款用单片机设计的低频信号发生器。
该低频信号发生器可以产生锯齿波、三角波,正弦波、方波等常用波形,并可以方便地改变各种波形的周期或频宰,具有线路简单、结构紧凑、成本低、性能优越、操作方便等优点。
一、系统硬件设计1、电路组成及芯片选择本设计的总体框图如图l所示。
选用AT89C51单片机作控制器;D/A转换器选用8位D/A转换芯片DAC0832它与微处理器完全兼容,价格低廉、接口简单、转换控制容易;输出运算放大器选用NE5532P芯片,它的DC和AC特性良好,其特点是低噪声、高输出驱动、高增益、低失真、高转换率,具有输入保护二极管和输出保护电路。
2、电路工作原理电路如图2所示。
单片机的Pl口接按键SI~s4和四只发光二极管.SI—S4分别控制产生锯齿波、三角波、正弦波和矩形泼(含方波).而四只发光二极管则作为不同波形的指示灯:单片机的外部中断口1-3.2和P3.3分别接按键55、S6.用于调整各信号的频率;D/A转换器的数据输入端与单片机的的P0口相连,将单片机产生的各种波形的数字信号送人DAC0832进行数模转换,OAC0832的输入寄存器选择信号cs、输入寄存器写选通信号WR1受单片机P2口控制,DAC0832的DAC寄存器写选通信号WR2和数据传送信号XFER直接接地,单片机与DAC0832形成“单缓冲”方式连接:经DAC0832数模转换的模拟信号送人运算放大器NE5532P进行二级放大输出,得到最终的输出信号波形。
二、系统软件设计系统程序流程如图3所示。
程序运行肘,依次判断S1一S4按键是否接下,当SI按下时输出锯齿波,当按键S2按下时输出三角波,当按键S3按下时输出正弦泼,当按键S4按下时输出方渡。
每个波形输出后都要查询按键S6、S7.看是否进行频率调整。
1、锯齿波设计产生锯齿波的原理.是逐步向单片机PO口加1,同时通过DAC0832进行实时的数横转换输出,直到PO的值溢出为零,这样周而复始,从而输出锯齿渡信号。
BEST-低频函数信号发生器的设计解读
低频函数信号发生器的设计一、设计任务设计一个低频函数信号发生器。
二、 设计要求1.同时输出三种波形:方波、三角波、正弦波2.频率范围:10 Hz ~10 kHz ;3.频率稳定度:日310-≤∆o f f ; 4.频率控制方式:(a )通过改变RC 时间常数控制频率(手控方式); (b )通过改变控制电压U 1实现压控频率(即VCF ),常用于自控方式。
即)U (f f 1=(U 1=1~10V ),为确保良好的控制特性,可分三段控制: ① 10 Hz ~100 Hz ② 100 Hz ~1 kHz ③ 1 kHz ~10 kHz5.波形精度:①方波 上升时间和下降时间均应小于2s μ【如图8-1 (a)】; ②三角波 线性度:%1U omδ【如图8-1 (b)】; ③正弦波 谐波失真度:∑=n2i 2iU /U 1<2%(U 1为基波有效值,U i为各次谐波有效值)。
6.输出方式:(a )作电压源输出时,要求:① 输出电压幅度连续可调,最大输出电压(峰峰值)不小于20V ; ② 当R L =100Ω~1K Ω时,输出电压相对变化率%1U U oo∆ (即要求Ω<1.1o R )。
(b )作电流源输出时,要求:① 输出电流连续可调,最大输出电流(峰峰值)不小于200 am ; ② 当R L =0~90Ω时,输出电流相对变化率%1<∆ooI I (即要求Ω>k Ro9)。
(c )作功率输出时,要求最大输出功率W P o 1max ≥(R L =50Ω时)。
7.具有输出过载保护功能当因R L 过小而使I O > 400 mA (峰-峰值)时,输出三极管自动限流,以免损坏电路元器件。
8.采用数字频率显示方式。
图8-1 方波、三角波的技术指标三、方案讨论根据实验任务的要求,对信号产生部分,一般可采用多种实现方案:如模拟电路实现方案、数字电路实现方案、模数结合的实现方案等。
多功能低频函数信号发生器的设计
多功能低频函数信号发生器的设计一、设计任务与要求1、设计任务设计一能产生正弦波、方波、三角波的多功能低频函数信号发生器。
2、基本要求(1)可同时输出正弦波、方波、三角波。
(2)信号频率:10Hz ~ 10KHz 。
(3)频率稳定度:Δf /f < 10-3/日. (4)频率控制方式:通过改变RC 时间常数控制频率(手动方式);通过改变控制电压Vi 实现压控频率,(自动控制方式)。
f=Ψ(Vi ),Vi=1~10V 。
(5)波形精度:方波:如图2-4-1,上升沿和下降沿t r 、t f 时间均应小于2us 。
三角波:如图2-4-2,线性度δ/V om < 2%。
正弦波:谐波失真度图2-4-1 波形精度测量示意图(b )三角波(a )方波方波(V1为基波有效值,Vi 为各次谐波有效值)(6)输出方式:①作电压源输出时,要求:输出幅度连续可调,最大输出电压的峰峰值不小于20V 。
当RL=100Ω~1K Ω时,输出电压相对变化率ΔV0/V0 < 1%(即要求r0<1.1Ω)。
②作功率输出时,要求:最大输出功率大于1W 。
③作电流源输出时,要求:输出电流连续可调,最大输出电流的峰峰值不小于200mA 。
当RL=0Ω~90Ω时,输出电流相对变化率ΔI0/I0 < 1%(即要求r0> 9K Ω)。
%2122<∑=V V Ni i(7)具有输出过载保护功能当因RL过小而使I0>400mA(峰峰值),输出晶体管自动限流,以免进一步损坏元件。
二、基本工作原理1、波形发生部分(1)方案1方波正弦波三角波图2-4-2 波形发生方案1先产生三角波-方波,再将三角波变换为正弦波。
其原理框图如图2-4-2所示。
(2)方案2先产生正弦波,然后由比较器产生方波,再将方波通过积分器变换三角波。
其原理框图如图2-4-3所示。
图2-4-3 波形发生方案22、输出方式(1)用作电压源输出和功率输出时,采用电压串联负反馈,如图2-4-4所示。
设计方案低频函数信号发生器方案
成都电子机械高等专科学校毕业设计说明书(论文>设计(论文>题目:低频函数信号发生器的设计专业: 应用电子技术班级:学号:姓名:指导教师:摘要:信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教案实验等领域。
目前使用的信号发生器大部分是函数信号发生器,且特殊波形发生器的价格昂贵。
所以本设计使用的是AT89c51单片机构成的发生器,可产生三角波、方波、正弦波,波形的频率可用程序控制改变。
在单片机的输出端口接DAC0832进行D/A转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。
本设计具有线路简单、结构紧凑、价格低廉、性能优越等优点。
关键词:信号发生器;单片机;波形调整目录第 1 章绪论31.1 课题背景3第2章低频信号发生器的方案研究32.1 总体方案论证与设计42.2模块结构划分4第 3 章硬件电路的设计53.1 基本原理53.2各模块具体设计63.2.1 AT89C51单片机介绍63.2.2 D/A转换电路的设计8第 4 章软件设计104.1 软件总体设计114.2 程序流程图114.2.1 主函数流程图114.2.2 键盘扫描程序114.3 仿真过程17结论20参考文献20第 1 章绪论1.1 课题背景随着电子测量及其他部门对各类信号发生器的广泛需求及电子技术的迅速发展,促使信号发生器种类增多,性能提高。
尤其随着70年代微处理器的出现,更促使信号发生器向着自动化、智能化方向发展。
现在,许多信号发生器带有微处理器,因而具备了自校、自检、自动故障诊断和自动波形形成和修正等功能,可以和控制计算机及其他测量仪器一起方便的构成自动测试系统。
当前信号发生器总的趋势是向着宽频率覆盖、低功耗、高频率精度、多功能、自动化和智能化方向发展。
在科学研究、工程教育及生产实践中,如工业过程控制、教案实验、机械振动实验、动态分析、材料实验、生物医学等领域,常常需要用到低频信号发生器。
单片机低频信号发生器的设计
单片机低频信号发生器的设计一、系统分析1、系统实现方案用80C51单片微型机实现整个系统的控制,并提供指令系统。
用可编程接口芯片8255将CPU与外设相连,实现其间数据的并行传输。
外设主要有:16*16显示屏——用于显示提示语;数字显示屏——回显键盘输入;波形发生器——显示不同频率的正弦波。
通过键盘和显示电路,实现人机对话,执行频率和幅值的输入然后由单片机进行判断分析,最后输出需要的结果。
2、基本功能屏幕上显示:正弦波 4:50Hz 5:30Hz 6:20Hz 8:停,用户根据提示,从键盘上输入所选参数,在数字显示屏上回显,在波形发生器上显示相应频率的波形。
汇编语言控制程序的结构如下图示,在键盘输入过程中有相应提示。
二、系统硬件设计1、硬件线路图见附录一2、芯片说明⑴8051单片机MCS-51单片机内部结构:MCS-51单片机包括如下功能部件:一个8位中央处理器;4K/8KB的ROM;128/256B 的RAM;32条I/O口;2个和3个(对8032/8052)定时器/计数器;1个具有5个中断源、2个优先级的嵌套中断结构;1个用于多微处理机通信、I/O或全双工UART(通用异步接收发生器)的串行I/O口,此外还有程序寄存器PC,程序状态寄存器PSW,堆栈寄存器SP,数据指针寄存器DPTR等部件,这些部件集成在一块芯片上,通过内部总线连接,构成完整的微型计算机。
根据8051内部结构和工作原理,可以把上述各功能部件划分为以下五部分:①CPU结构:由运算器(ALU)、控制器(定时控制部件等)和专用寄存器三部分电路构成。
算术逻辑部件ALU:既可进行加、减、乘、除四则运算,也可以进行与、或、非、异或等逻辑运算,还具有数据传送,移位,判断和程序转移等功能。
定时控制部件:起控制器的作用,由定时控制逻辑、指令寄存器(IR)和振荡器(OSC)组成。
专用寄存器组:主要用来指示当前要执行指令的内存地址、存放操作数和指示指令执行后的状态等。
低频信号发生器的设计与实现
第二周实习内容:低频信号发生器的设计与实现一、设计任务:设计一个低频信号发生器,可输出方波、矩形波、三角波、锯齿波、正弦波;频率1kHz~3 kHz ;幅度30mv~1v ;矩形波占空比可调;锯齿波上升、下降时间可调。
测试:1、 最大不失真输出频率范围;2、 最大不失真输出幅度范围(最大和最小);3、 方波、矩形波上升沿、下降沿时间;4、 观察三角波线性度;5、 教师演示测试失真度6、 发挥:扩大频率范围、幅度动态范围。
二、方案选择1、 RC 文氏电桥振荡器产生正弦波、经比较器产生方波和锯齿波、经积分器产生三角波和锯齿波。
优点:廉价,缺点:元器件多,振荡频率不易调整,故障率高2、 用比较器和积分器形成矩形波、三角波,用三角波—正弦波转换器形成正弦波。
优点:廉价,缺点:元器件多,故障率高3、 用石英晶体构成正弦波发生器,用比较器、积分器等产生其它波形。
优点:频率稳定度高。
缺点:频率不易调整4、 用集成函数发生器专用芯片8038构成上述各种信号发生器优点:故障率低,易调整。
缺点:成本高方案确定:虽然用8038成本高,但考虑集成电路是发展方向,故尽可能选用方案4。
但部分同学采用方案2。
三、参数设计1、 电路选择由8038芯片原文说明书建议设计电路。
2、 工作原理(1)R-S 触发器简介 S 称为置位输入端 R 称为复位输入端 Q 称为输出端(2)给电,电容电压V C =0,R=1,S=0,Q=0,Pin9=0Q=0使T 1截止,I A 给C 充电,V C ↑;当V A <V C <V B 时,R=0,S=0,Q=0保持;V C ↑继续,当V C >V B 时,R=0,R S Q1 0 00 1 10 0 保持1 1 不定S=1,Q=1,Pin9提供出一个上升沿;Q=1使T 1导通,T 2、T 3、T 4均导通,Ie 2=Ic 2=I B ,由于T 2、T 3、T 4基极相连、射极相连,∴Ic 3= Ic 4=I B ,Ie 1= Ic 1=2 I B ,电容C 由电流(2 I B -I A )放电,V C ↓;当V A <V C <V B 时,R=0,S=0,Q=1保持;当V C <V A 时,R=1,S=0,Q=0,Pin9=0,Pin9提供出一个下降沿;T 1截止,T 2、T 3、T 4均截止,I A 给C 充电,V C ↑;如此周而复始。
单片机低频信号发生器课程设计
目录一、题目的意义 1二、本人所做的工作 1三、课设要求 2四、课设所需设备及芯片功能介绍 2 4.1、所需设备 24.2、芯片功能介绍 2五、总体功能图及主要设计思路 5 5.1、总体功能图 55.2、主要设计思想 5六、硬件电路设计及描述 76.1、硬件原理图 76.2、线路连接步骤 7七、软件设计流程及描述 77.1、锯齿波的实现过程 77.2、三角波的实现过程 87.3、梯形波的实现过程 97.4、方波的实现过程 117.5、正弦波的实验过程 127.6、通过开关实现波形切换和调频、调幅 13八、程序调试步骤与运行结果 158.1、调试步骤 158.2、运行结果 15九、课程设计体会 17十、参考文献 18十一、源代码及注释 18一、题目的意义(1)、利用所学单片机的理论知识进行软硬件整体设计,锻炼学生理论联系实际、提高我们的综合应用能力。
(2)、我们这次的课程设计是以单片机为基础,设计并开发能输出多种波形(正弦波、三角波、锯齿波、方波、梯形波等)且频率、幅度可变的函数发生器。
(3)、掌握各个接口芯片(如0832等)的功能特性及接口方法,并能运用其实现一个简单的微机应用系统功能器件。
(4)、在平时的学习中,我们所学的知识大都是课本上的,在机房的练习大家也都是分散的对各个章节的内容进行练习。
因此,缺乏一种系统的设计锻炼。
在课程所学结束以后,这样的课程设计十分有助于学生的知识系统的总结到一起。
(5)、通过这几个波形进行组合形成了一个函数发生器,使得我对系统的整个框架的设计有了一个很好的锻炼。
这不仅有助于大家找到自己感兴趣的题目,更可以锻炼大家单片机知识的应用。
二、本人所做的工作本次课设组员:刘正、邓强、刘志组长:刘正经过了这一个星期的时间,我们已经基本完成了老师所提出的课程设计要求。
其中,我本人是组长整个系统的设计框架和编写代码由我亲自完成。
由于我们上课没有接触过正弦波因此通过在图书馆和网络上找资料已经顺利完成。
简易低频信号发生器设计
绪论单片机全称为单片微型计算机(Single Chip Microcomputer),又称微控制器(Microcontroller Uint)或嵌入式控制器(Embedded Controller)。
它是将计算机的基本部件微型化并集成到一块芯片上的微型计算机,通常片内都含有CPU、ROM、RAM、并行I/O、串行I/O、定时器/计数器、中断控制、系统时钟及系统总线等。
单片机是随着超大规模集成电路技术的发展而诞生的。
随着技术的发展,单片机片内集成的功能越来越强大,并朝着SoC(片上系统)方向发展。
单片机有着体积小、功耗低、功能强、性能价格比高、易于推广应用等显著优点,所以广泛应用于电子仪表、家用电器、节能装置、机器人、工业控制等诸多领域,使产品小型化、智能化,既提高了产品的功能和质量,又降低了成本,简化了设计。
可以发现,单片机的应用与开发,在时代发展中所占的重要位置。
所以,我们以一简易的低频信号设计为例,了解单片机的基本原理。
编者2008年6月19日目录一.要求与设计方案 (3)二.硬件电路设计 (4)1.原理图 (4)2.控制部分 (4)3.AT89C2051的主要分析 (5)4.数/模转换部分 (7)5.DAC0832的主要分析 (7)三.软件电路设计 (10)1.初始化子程序 (10)2.键扫描子程序 (10)3.波形数据产生子程序 (11)4.主程序 (11)四.调试及性能分析 (12)五.控制源程序清单 (13)六.心得体会 (17)一.要求与设计方案1.要求:输出0.1----50HZ的正弦波,三角波和方波信号,其中正弦波和三角波信号可通过按键选择输出,输出信号的频率可以从0.1----50HZ范围内调整.2由于输出信号的频率较低,因此考虑使用单片机作为控制器,用中断查表法完成波形数据的输出,再用D/A转换输出规定的波形信号.方波信号直接由单片机的端口输出.结合功能要求情况,决定使用AT89C2051单片机作为控制器,用DAC0832作为D/A转换器功能按键使用单片机的三个端口。
低频信号发生器设计
低频信号发生器设计报告姓名:学号:学院:、设计任务设计一个低频信号发生器要求:1、正弦波、方波、矩形波、三角波、锯齿波可选,占空比可调2、幅度10mv~ 1v可调3、频率1kHz〜3kHz可调二、方案选择1方案一:采用传统的直接频率合成器。
这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。
但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。
2方案二:采用锁相环式频率合成器。
利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。
这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。
但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。
而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。
3方案三:采用8038单片压控函数发生器,8038 可同时产生正弦波方波和三角波。
改变8038 的调制电压,可以实现数控调节,其振荡范围为0.001Hz~ 300KHz。
因此,选择方案三(上述方案均来自于网上的论文)三、元、器件参数选择图3.1低频信号设计电路图1、电源的选择由8038特性可知,8038的工作电压在-5V~ -15V之间,所以可以选择我们之前做的电源进行提供工作环境。
即工作电压选择10V。
2、R s与R12的选择当R5与R12相等时,输出三角波;Rs与R12不相等时,输出锯齿波由8038A说明书得,|=空兰」VccR1+ R2R A 5R A由说明书得1uA |A 1mA得-10-6R A1010 R A10RA=RB=5.7K所以,取Rs=R12=1K,Rv3=4.7K3、电容的选取1V B -V A (V -V ),即V c 在V A ,V B 之间变化,31 t 由 V c I c d .得C o当电容充电时充电时电流I c =1 当电容放电时电流I c =2I B - l A 因此,% €心护)20(计算公式来自于实验指导书中)4、 分压器件RV4的选择为了使输出电压幅值可以进行调节,我在信号的输出端加上 一个滑动变阻器进行分压调节,该滑动变阻器可以自由选取,只 要能起到分压作用就行,在这里我们选择 1k 的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低频信号发生器设计方案一. 设计要求1.方案设计,根据设计任务选择合理的设计设计方案。
2.硬件设计。
选择硬件元件,说明其工作原理及设计过程,使用protel软件画出硬件电路pcb 板。
3.要求有目录,参考资料,结语。
4.设计也数不少于20页。
5.按照规范要求,及时提交课程设计报告,并完成课程设计答辩。
二. 设计的作用,目的1.学习掌握电子电路设计的方法和步骤。
2.掌握protel等常用设计软件的使用方法。
三•设计的具体实现(一)系统概述根据课题任务,所要设计的低频信号发生器由三大部分组成:⑴正弦信号发生部分⑵信号输出部分⑶稳幅部分其中由正弦信号发生部分的电路产生所需要的正弦信号,由输出电路将信号放大后进行输出,再由稳幅电路部分从输出的信号采样反馈回信号发生部分进行稳幅。
1•正弦信号发生部分可以有以下实现方案:⑴以晶体管为核心元件,加RC (文氏桥或移相式)或LC (变压器反馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的分立元件正弦波振荡电路。
这种电路的优点是简单、廉价,但由于采用分立元件,稳定性较差,元件较多时调节也较麻烦。
⑵以集成运放为核心元件,加RC (文氏桥或移相式)或LC (变压器反馈式、电感三点式、电容三点式、晶振等)选频网络以及稳幅电路等构成的正弦波振荡电路。
这种电路的优点是更为简单,性价比较好,但频率精度和稳定性较差。
⑶以集成函数信号发生器为核心元件,加适当的外围元件构成正弦波产生电路。
例如函数发生器ICL8038芯片加电阻、电容元件,在一定电压控制下,可以产生一定频率的方波、三角波和正弦波。
这种电路的优点时调节方便,在所采用的外围元件稳定性好的情况下,可以得到较宽频率范围的,且稳定性、失真度和现行度很好的正弦信号。
⑷利用锁相环(PLL )技术构成的高频率精度的频率合成器。
其框图如下图所示。
这种电路主要是利用锁相,即使现象未同步技术来获得频率高稳定度,且频率可步进变化的振荡源。
现在已有集成锁相环电路芯片,例如CC4046,辅以参考频率源、分频器等外围电路后,即可构成频率合成器。
⑸直接数字合成(DDS)正弦信号源。
下图为DDS的原理框图。
由图可知,这是一种数字系统。
其工作原理是将所需正弦信号的一个周期的离散样点的幅值 数字量存于数字波形存储器(ROM 或RAM )中,按一定的地址间隔(即相位增量)读出, 再经D/A 转换成模拟正弦信号,低通滤波器用来滤去 D/A 带来的小台阶以及其他杂波信号。
改变地址间隔的步长,可改变输出正弦信号的频率。
DDS 的频率精度和稳定度由系统的时钟决定。
DDS 可合成产生任意波形的信号,只要把所需波形预先计算好并存于数字波形存储器中, DDS 就可以合成出方波、三角波及各种调制波形和任意形状的波形。
目前有专用的 DDS 集成电路芯片,其时钟频率最高可达 1GHz 以上,产生的正弦信号频率可达数百兆赫。
本课题对所产生的正弦信号的频率精度没有要求,再考虑模拟电路课程的基本内容和课程设计的目的,选择⑴和⑵方案较为合适。
因为课题要求的低频信号振荡频率一般在几十千赫以 下,应选择RC 选频网络的正弦振荡电路(LC 选频网络适合于振荡频率在 1MHz 以上的高频,RC 选频网络适合于几百千赫以下的低频) 。
2 •稳幅方案常用的稳幅方法是根据震荡幅度的变化来改变负反馈的强弱 ,若振幅增大,负反馈系数组成部分就自动变大,加强负反馈,限制振幅继续增长;反之,若振幅减小,负反馈系数就自动变小, 减弱负反馈,防止振幅继续下降,从而达到稳幅的目的。
⑴利用二极管的非线性特性完成自动F=—R s R sR F利用二极管的非线性特性完成自动稳幅的电路,如图所示,为了保证上、下 振幅对称,在图内的电路中,两支稳幅二极管 D i 和D 2必须匹配,从提高温度稳定性来看,宜选用硅管。
不难看出,在振荡过程中,D i 和D 2将交替导通和截止, 并与R 3电阻并联,因此利用二极管的非线性正相导通电阻 r D 的变化就能改变负反馈的强弱。
当振幅增大时,5减小,负反馈加强,限制幅度继续增大;反之, 当振幅减小时,r D 增大,负反馈减弱,防止振荡继续下降,进而达到稳幅的目的。
这种电路简单经济,但它的温度系数较小,输出波形失真较大,适合于要求不高 的场所。
⑵采用热敏电阻作负反馈电阻 R F 进行稳幅R2 IkD1H:C1R4:: 1JDK QAw-k -- - K - - r - fc r■:R3 :I.QkU bi CiIDH62D2 : 1DH62:当输出电压U o因外界条件增大时,流过R F的电流增大,R F温度升高,电阻变小,负反馈系数F=1 +空变小,从而使输出幅度减小。
反之,当U o因外界条R件减小时,流过R F的电流减小,R F温度降低,电阻变大,负反馈系数卩胡+辛变大,从而使输出幅度增大,从而达到稳幅的目的。
用二敏电阻进行稳幅的优点是电路简单,失真度低;缺点是热敏电阻本身受环境温度影响,使输出幅度变化。
⑶用N沟道结型场效应管组成的压敏电阻R ds进行稳幅741——Wv.10W2 1.0|1F1.0原理图如图所示,运算放大器A接成负半波放大器,并与W、R4、G、T等元件构成负反馈稳幅电路。
当输出幅度减小,导致A l的输入减小,输出负值的绝对值也减小,即场效应管栅极电位上升,引起其等效电阻下降,所以A2的闭环增益升高,使输出幅度回升。
当输出幅度增大,导致A的输入增大,输出负值的绝对值也增大,即场效应管栅极电位降低,引起其等效电阻上升,所以A2 的闭环增益降低,使输出幅度回落。
从而达到稳幅的目的。
3.输出电路部分设计输出部分有以下设计方案⑴射极输出器。
这种电路的特点是电路简单,输出波形好,输入电阻高,输出电阻低,可对前级电路和负载起到隔离作用,同时带负载能力也强,虽然电压放大倍数近似为1,但电流放大倍数大,因此有一定的功率输出能力。
这种电路的缺点是由于三机管工作在近似甲类状态,因此效率低(低于50%)。
在要求高功率、高效率的情况下,不能满足要求。
一般用于输出功率和效率要求低的场合。
⑵BJT管OCL或OTL功率放大电路。
这两种功率输出电路在选择合适的元器件和电源电压后可以设计出有较大功率输出,效率低于75%的技术指标来。
这两种电路的缺点是调整比较费事,BJT功率管及电路的对称性不容易做到,因此在要求高功率、高效率的情况下,波形很难达到理想效果。
⑶MOSFET管功放电路。
MOSFET 功率管要求激励功率小,因此可直接由前置级驱动而无须再加推动级;输出功率大,输出漏极电流具有负温度系数,工作安全可靠,无须加保护措施,因此比BJT 管功放电路简单。
⑷集成功率放大器。
目前已有很多公司生产出各种性能指标的集成功率放大器。
只要根据课题技术指标要求选择合适的芯片,按照其手册给出的典型应用电路连接相应的外围电路即可。
因此,在条件允许的情况下,选择合适的集成功放芯片来组建电路,一般都能完成功率、效率等技术指标要求。
例如D2006 就是一种内部有输出短路保护和过热自动闭锁的低频大功率集成电路。
(二)单元电路设计、仿真与分析从电路构成看,电路由两个“桥臂”构成,R1、RF构成负反馈桥臂,并联RC网络和串联RC网络再串联构成正反馈桥臂。
也就是说,文氏桥振荡器既有正反馈,又有负反馈。
我们知道,正反馈电路是不稳定系统,那么,整个电路到底表现为正反馈,还是负反馈呢?这要取决于正反馈和负反馈哪个占“上风”!负反馈增益为A仁1+RF/R1正反馈增益A2(jf)=1/(3+j(f/f0 -f0/f))总增益A(jf)=A1*A2(jf)=(1+RF/R1)/(3+j(f/fO -f0/f))上式中f0=1/2 n RC,先定性分析:频率无穷低时,即f趋于0时,f0/f趋于无穷大,总增益趋于零。
频率无穷高时,即f趋于R时,f/f0趋于无穷大,总增益趋于零。
直观判断,是一个带通网络,事实上,的确如此,并且增益的峰值出现在f=f0此时 A (jf) =(1+RF/R1)/3即:A (jf)是实数,也就是说,频率为f0的信号经过环路一周后,其相移为0RF/R1的值不同时,电路出现下述三种情况:a、A<1时,假如电路有一个扰动,扰动每经过环路一次,信号被衰减,负反馈占“上风”,电路是稳定系统,最终扰动趋于零。
b、A>1时,假如电路有一个扰动,扰动每经过环路一次,信号被放大,正反馈占“上风”,电路是不稳定系统,出现幅度不断增大的振荡。
c、A=1时,负反馈与正反馈“旗鼓相当”,电路为中性的稳定状态,出现扰动时,频率为f0的信号分量维持原有大小,无限的持续下去。
显然,上述电路还会有问题,首先,实际不可能做到A=1,其次,振荡器的输出幅值不可控。
为此,最好是开始时,振荡幅值足够大之前,A>1,振荡幅值达到预定的幅值之后,A=1,显然,这样的电路,需要加入一些非线性环节。
下述电路就是这样的电路:仿真软件搭建的电路与仿真分析过程(1)选取??=??=R, ??=C 2=C ,从RC 串并联选频网络的选频特性可知, ??=1/2?RC=500Hz所以可以选取 R=1.6k Q, C=200nF 。
2) 令R1、C1并联的阻抗为Z1 , R2、C2串联的阻抗为Z 2 ,及w o =1/RC,则联选频网络配一个电压放大倍数等于 3的放大电路就可以构成正弦波振荡电路。
考虑到起振 条件,所选放大电路的电压放大倍数应该略大于 3。
根据起振条件和幅值平衡条件 既-Z i =R/1+jwRC,Z 2=R+1/jwc 。
反馈系数为 即 3 =??), ????1/3???? ??=0??o輕...... !1\_ U)汕性与相频特性分别是得 RC串并联选频网络的幅频特般R F2略大于2R FI根据上述原理,可以用Multisim搭建出如图1的电路仿真结果(1)当没有二极管稳幅电路,如图1搭建的电路时,仿真波形会有一段较长时间处于起振,如图3,可以看出右端峰值比左端峰值高。
在电路中主要的功能有:文氏桥式振荡器具有输出波形失真小、振幅稳定、频率调节方便和频率可调范围宽等特点,故被普遍应用于低频信号发生器主振器中。
主振器产生与低频信号发生器频率一致的低频正弦信号。
文氏桥式振荡器每个波段的频率覆盖系数(即最高频率与最低频率之比)为10,因此,要覆盖1Hz〜1MHz的频率范围,至少需要五个波段。
为了在不分波段的情况下得到很宽的频率覆盖范围,有时采用差频式低频振荡器,图 2.8为其组成框图。
假设f2=3.4MHz , fl可调范围为 3.3997MHz〜5.1MHz ,则振荡器输出差频信号频率范围为300Hz (3.4MHz -3.3997MHz )〜1.7MHz (5.1 MHz-3.4 MHz )。