2020-2021学年高考仿真模拟试题(数学文科)新课标ⅰ卷及答案解析

合集下载

2020-2021学年高考总复习数学(文)高考仿真模拟试题及答案解析三

2020-2021学年高考总复习数学(文)高考仿真模拟试题及答案解析三

最新高三五月高考仿真模联考数学(文)试题(考试时间:120分钟 试卷满分:150分)第Ⅰ卷 选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.已知全集U =R ,集合A ={x |lgx ≤0},B ={x |2x 32,则A ∩B = A .(-∞,1] B .(0,13] C .[13,1 ] D .∅ 2.若复数2a ii+的实部与虚部相等,则实数a = A .-1 B .1 C .-2 D .2 3.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两轴单位长度相同),用回归直线ˆy =bx +a 近似的刻画其相关关系,根 据图形,以下结论最有可能成立的是A .线性相关关系较强,b 的值为1.25B .线性相关关系较强,b 的值为0.83C .线性相关关系较强,b 的值为-0.87D .线性相关关系太弱,无研究价值4.某个几何体的三视图如图所示(其中正视图中的圆弧是半径为2的半圆),则该几何体的表面积为 A .92+14π B .82+14π C .92+24π D .82+24π 5.下列说法错误的是A .命题“若2x -5x +6=0,则x =2”的逆否命题是“若x ≠2,则2x -5x +6≠0” B .若x ,y ∈R ,则“x =y ”是“xy ≥2()2x y +”的充要条件 C .已知命题p 和q ,若p ∨q 为假命题,则命题p 与q 中必一真一假 D .若命题p :0x ∃∈R ,20x +0x +1<0,则p ⌝:x ∀∈R ,2x +x +1≥0 6.阅读如图所示的程序框图,则输出结果S 的值为A .12 B .18 C .316 D .1167.点A (1,2)在抛物线2y =2px 上,抛物线的焦点为F ,直线AF 与抛物线的另一交点为B ,则|AB |= A .2 B .3 C .4 D .68.已知O 为坐标原点,A ,B 两点的坐标均满足不等式组3103010x y x y x ⎧⎪⎨⎪⎩-+≤+-≤-≥,设OA uu r 与OB uu u r 的夹角为θ,则tan θ的最大值为 A .12 B .47 C .34 D .949.己知角ϕ的终边经过点P (5,-12),函数f (x )=sin (ωx +ϕ)(ω>0),满足对任意的x ,存在x 1,x 2使得f (x 1)≤f (x )≤f (x 2)成立,且|x 1-x 2|的最小值为4π,则f (4π)的值为 A .513 B .-513 C .1213 D .-121310.设点P 是双曲线22221x y a b-=(a >0,b >0)与圆22x y +=22a b +在第一象限的交点,F 1,F 2分别是双曲线的左、右焦点,且|PF 1|=3|PF 2|,则双曲线的离心率为AB.2 CD.211.如果对定义在R 上的函数f (x ),对任意1x ≠2x ,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1)则称函数f (x )为“H 函数”.给出下列函数:①y =-3x +x +1;②y =3x -2(sinx -cosx );③y =xe +1:④f (x )=ln ,00,x x x ⎧⎪⎨⎪⎩≠=0.其中函数是“H 函数”的个数为A .1B .2C .3D .4 12.已知函数f (x )=xe -ax 有两个零点x 1<x 2,则下列说法错误的是A .a >eB .x 1+x 2>2C .x 1x 2>1D .有极小值点0x ,且x 1+x 2<2x 0第Ⅱ卷 非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上。

2020-2021学年浙江省高考数学一模试卷(文科)及答案解析

2020-2021学年浙江省高考数学一模试卷(文科)及答案解析

浙江省高考数学一模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|lgx≥0},,则A∩B为()A.{x|x≥1} B.C.{x|0<x≤1} D.2.已知命题p:若a<1,则a2<1,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是:若a<1,则a2≥1D.命题p的逆否命题是:若a2≥1,则a<13.函数的一条对称轴是()A.B.C.D.4.设α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β()A.若m,n是异面直线,则α与β相交B.若m∥β,n∥α则α∥βC.若m⊥n,则α⊥βD.若m⊥β,则α⊥β5.已知等差数列{a n}公差为d,前n项和{s n},则下列描述不一定正确的是()A.若a1>0,d>0,则n唯一确定时也唯一确定B.若a1>0,d<0,则n唯一确定时也唯一确定C.若a1>0,d>0,则唯一确定时n也唯一确定D.若a1>0,d<0,则唯一确定时n也唯一确定6.已知函数f(x)=(x﹣)•sinx,x∈[﹣π,π]且x≠0,下列描述正确的是()A.函数f(x)为奇函数B.函数f(x)既无最大值也无最小值C.函数f(x)有4个零点D.函数f(x)在(0,π)单调递增7.如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t8.已知双曲线=1(a>0,b>0),若焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,则双曲线的离心率为()A.B.2 C.D.3二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知数列{a n}满足a2=2,且数列{3a n﹣2n}为公比为2的等比数列,则a1=______,数列{a n}通项公式a n=______.10.函数则f(﹣1)=______,若方程f(x)=m有两个不同的实数根,则m的取值范围为______.11.已知实数x,y满足x>0,y>0,x+2y=3,则的最小值为______,x2+4y2+xy的最小值为______.12.已知实数x,y满足.(1)当a=2时,则2x+y的最小值为______;(2)若满足上述条件的实数x,y围成的平面区域是三角形,则实数a的取值范围是______.13.是按先后顺序排列的一列向量,若,且,则其中模最小的一个向量的序号为______.14.如图,平面ABC⊥平面α,D为线段AB的中点,,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为,则∠APB的最大值为______.15.边长为1的正方体ABCD﹣A1B1C1D1若将其对角线AC1与平面α垂直,则正方体ABCD﹣A1B1C1D1在平面α上的投影面积为______.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,且(Ⅰ)求cosC的值;(Ⅱ)若△ABC的面积为,求sinB及边b.17.已知数列{a n}的前n项和s n,满足s n=n(n﹣6),数列{b n}满足(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记数列{c n}满足,求数列{c n}的前n项和T n.18.已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,(Ⅰ)求证:EF∥面PCD;(Ⅱ)求直线BP与面PAC所成角的正弦值.19.已知抛物线C:x2=2py(p>0),圆E:x2+(y+1)2=1,若直线L与抛物线C和圆E分别相切于点A,B(A,B不重合)(Ⅰ)当p=1时,求直线L的方程;(Ⅱ)点F是抛物线C的焦点,若对于任意的p>0,记△ABF面积为S,求的最小值.20.已知函数f(x)=x2+ax+1,其中a∈R,且a≠0(Ⅰ)设h(x)=(2x﹣3)f(x),若函数y=h(x)图象与x轴恰有两个不同的交点,试求a的取值集合;(Ⅱ)求函数y=|f(x)|在[0,1]上最大值.参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|lgx≥0},,则A∩B为()A.{x|x≥1} B.C.{x|0<x≤1} D.【考点】交集及其运算.【分析】分别求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式lgx≥0=lg1,得到x≥1,即A={x|x≥1},由B中不等式变形得:2x≥=2,即x≥,∴B={x|x≥},则A∩B={x|x≥1},故选:A.2.已知命题p:若a<1,则a2<1,下列说法正确的是()A.命题p是真命题B.命题p的逆命题是真命题C.命题p的否命题是:若a<1,则a2≥1D.命题p的逆否命题是:若a2≥1,则a<1【考点】四种命题的真假关系.【分析】举例说明命题p为假命题,求出命题p的逆命题,否命题,逆否命题逐一判断即可得答案.【解答】解:已知命题p:若a<1,则a2<1,如a=﹣2,则(﹣2)2>1,命题p为假命题,∴A 不正确;命题p的逆命题是:若a2<1,则a<1,为真命题,∴B正确;命题p的否命题是:若a≥1,则a2≥1,∴C不正确;命题p的逆否命题是:若a2≥1,则a>1,∴D不正确.故选:B.3.函数的一条对称轴是()A.B.C.D.【考点】三角函数中的恒等变换应用;正弦函数的对称性.【分析】由三角函数公式化简可得f(x)=2sin(x+),由三角函数的对称性可得.【解答】解:由三角函数公式化简可得f(x)=sinx+sin(+x)=sinx+cosx=2(sinx+cosx)=2sin(x+),由x+=kπ+可x=kπ+,k∈Z.结合选项可得当k=0时,函数的一条对称轴为x=.故选:B.4.设α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β()A.若m,n是异面直线,则α与β相交B.若m∥β,n∥α则α∥βC.若m⊥n,则α⊥βD.若m⊥β,则α⊥β【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】在A中,α与β相交或平行;在B中,α与β相交或平行;在C中,α与β相交或平行;在D中,由面面垂直的判定定理得α⊥β.【解答】解:由α,β是两个不同的平面,m,n是两条不同的直线,且m⊂α,n⊂β,知:在A中,若m,n是异面直线,则α与β相交或平行,故A错误;在B中,若m∥β,n∥α,则α与β相交或平行,故B错误;在C中,若m⊥n,则α与β相交或平行,故C错误;在D中,若m⊥β,则由面面垂直的判定定理得α⊥β,故D正确.故选:D.5.已知等差数列{a n}公差为d,前n项和{s n},则下列描述不一定正确的是()A.若a1>0,d>0,则n唯一确定时也唯一确定B.若a1>0,d<0,则n唯一确定时也唯一确定C.若a1>0,d>0,则唯一确定时n也唯一确定D.若a1>0,d<0,则唯一确定时n也唯一确定【考点】等差数列的性质.【分析】S n=na1+=+,利用二次函数的性质即可得出.【解答】解:S n=na1+=+,可知:a1>0,d<0,则唯一确定时n不一定唯一确定,可能有两个值,故选:D.6.已知函数f(x)=(x﹣)•sinx,x∈[﹣π,π]且x≠0,下列描述正确的是()A.函数f(x)为奇函数B.函数f(x)既无最大值也无最小值C.函数f(x)有4个零点D.函数f(x)在(0,π)单调递增【考点】函数的图象.【分析】判断函数的奇偶性,求出函数的零点,利用导数判断单调性.【解答】解:∵f(﹣x)=(﹣x+)sin(﹣x)=(x﹣)•sinx=f(x).∴f(x)是偶函数.故A错误.令f(x)=0得x﹣=0或sinx=0,∵x∈[﹣π,π],∴x=±1或x=±π.∴f(x)有4个零点.故C正确.故选:C.7.如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t【考点】平面向量数量积的运算.【分析】连结BC,CD,则=AB2,=AD2.于是•==.【解答】解:连结BC,CD.则AD⊥CD,AB⊥BC.∴=AB×AC×cos∠BAC=AB2=t+1.=AD×AC×cos∠CAD=AD2=t+2.∵,∴•===1.故选:A.8.已知双曲线=1(a>0,b>0),若焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,则双曲线的离心率为()A.B.2 C.D.3【考点】双曲线的简单性质.【分析】首先求出F1到渐近线的距离,利用焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,可得直角三角形,即可求出双曲线的离心率.【解答】解:由题意,F1(﹣c,0),F2(c,0),设一条渐近线方程为y=x,则F1到渐近线的距离为=b.设F1关于渐近线的对称点为M,F1M与渐近线交于A,∴|MF1|=2b,A为F1M的中点,又焦点F(c,0)关于渐近线y=x的对称点在另一条渐近线y=﹣x上,∴OA∥F2M,∴∠F1MF2为直角,∴△MF1F2为直角三角形,∴由勾股定理得4c2=c2+4b2∴3c2=4(c2﹣a2),∴c2=4a2,∴c=2a,∴e=2.故选:B.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.已知数列{a n}满足a2=2,且数列{3a n﹣2n}为公比为2的等比数列,则a1= 1 ,数列{a n}通项公式a n= .【考点】等比数列的通项公式.【分析】由于3a2﹣4=2.利用等比数列的通项公式可得3a n﹣2n,即可得出.【解答】解:3a2﹣4=2.∴3a n﹣2n=2×2n﹣2=2n﹣1.∴3a1﹣2=1,解得a1=1.∴a n=.故答案分别为:1;.10.函数则f(﹣1)= 2﹣,若方程f(x)=m有两个不同的实数根,则m的取值范围为(0,2).【考点】函数的零点与方程根的关系;函数的值.【分析】根据分段函数的表达式代入求解即可,作出函数f(x)的图象,利用数形结合进行求解即可.【解答】解:由分段函数的表达式得f(﹣1)=|﹣2|=2﹣,故答案为:2﹣,作出函数f(x)的图象如图:当x<0时,f(x)=2﹣e x∈(1,2),∴当x≤1时,f(x)∈[0,2),当x≥1时,f(x)≥0,若方程f(x)=m有两个不同的实数根,则0<m<2,即实数m的取值范围是(0,2),故答案为:2﹣,(0,2).11.已知实数x,y满足x>0,y>0,x+2y=3,则的最小值为,x2+4y2+xy的最小值为.【考点】函数的最值及其几何意义.【分析】根据基本不等式进行转化求解得的最小值,利用换元法转化为一元二次函数,利用一元二次函数的性质即可求x2+4y2+xy的最小值.【解答】解:由x+2y=3得+=1,则=+=(+)×1=(+)(+)=2+++≥+2=+=,当且仅当=,即3x2=2y2取等号,即的最小值为.由x+2y=3得x=3﹣2y,由x=3﹣2y>0得0<y<,则x2+4y2+xy=(3﹣2y)2+4y2+(3﹣2y)y=6y2﹣9y+9=6(y﹣)2+,即当y=时,x2+4y2+xy的最小值为,故答案为:,.12.已知实数x,y满足.(1)当a=2时,则2x+y的最小值为 5 ;(2)若满足上述条件的实数x,y围成的平面区域是三角形,则实数a的取值范围是1<a或a <.【考点】简单线性规划.【分析】(1)作出不等式组表示的平面区域;作出目标函数对应的直线;结合图象知当直线过B (5,3)时,z最大,当直线过C时,z最小.(2)作出不等式组.表示的平面区域,从而解出.【解答】解:(1)画出不等式表示的平面区域:将目标函数变形为z=2x+y,作出目标函数对应的直线,,解得A(1,3),直线过A(1,3)时,直线的纵截距最大,z最小,最小值为5;则目标函数z=2x+y的最小值为:5.故答案为:5.(2).如下图:y=a(x﹣3)恒过(3,0),则若不等式组表示的平面区域是一个三角形,K AB==﹣,则实数a的取值范围,1<a或a<,故答案为:1<a或a<.13.是按先后顺序排列的一列向量,若,且,则其中模最小的一个向量的序号为1002 .【考点】数列与向量的综合;向量的模.【分析】根据题意,求出x n与y n的通项公式,计算的模长最小值即可.【解答】解:是按先后顺序排列的一列向量,且,,∴+(1,1),即(x n,y n)=(x n﹣1,y n﹣1)+(1,1)=(x n﹣1+1,y n﹣1+1);∴,∴,∴||===;∴当n==1002,即n=1002时,其模最小.故答案为:1002.14.如图,平面ABC⊥平面α,D为线段AB的中点,,∠CDB=45°,点P为面α内的动点,且P到直线CD的距离为,则∠APB的最大值为90°.【考点】点、线、面间的距离计算.【分析】空间中到直线CD的距离为1的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,且c=,b=,a=2.利用椭圆的性质:椭圆上点关于两焦点的张角在短轴的端点取得最大,即可得出.【解答】解:空间中到直线CD的距离为1的点构成一个圆柱面,它和面α相交得一椭圆,所以P在α内的轨迹为一个椭圆,D为椭圆的中心,c=,b=,a=2,于是A,B为椭圆的焦点,椭圆上点关于两焦点的张角在短轴的端点取得最大,∴∠APB=2∠APD=90°.故答案为:90°.15.边长为1的正方体ABCD﹣A1B1C1D1若将其对角线AC1与平面α垂直,则正方体ABCD﹣A1B1C1D1在平面α上的投影面积为.【考点】平行投影及平行投影作图法.【分析】根据题意,画出图形,找出与AC1垂直的平面去截正方体ABCD﹣A1B1C1D1所得的截面是什么,再求正方体在该平面上的投影面积.【解答】解:如图所示,连接BB1,DD1的中点MN,交AC1于点O,在对角面ACC1A1中,过点O作OP⊥AC,交AC1于点P,则平面MOP是对角线AC1的垂面;该平面截正方体ABCD﹣A1B1C1D1所得的截面是六边形MGHNFE;则正方体在该平面上的投影面积是MN•2OR=××2×=.故答案为:.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,角A,B,C所对的边分别为a,b,c,A=2C,且(Ⅰ)求cosC的值;(Ⅱ)若△ABC的面积为,求sinB及边b.【考点】正弦定理;两角和与差的正弦函数.【分析】(I)使用二倍角公式得出关于cosC的方程解出;(II)使用和角公式计算sinB,利用正弦定理和面积公式计算b.【解答】解:(I)∵cosA=cos2C=2cos2C﹣1=,∴cosC=±.∵A=2C,∴C是锐角,∴cosC=.(II)∵cosA=,cosC=,∴sinA=,sinC=.∴sinB=sin(A+C)=sinAcosC+cosAsinC=.由正弦定理得.∴a===5,∵S△ABC∴b=5.17.已知数列{a n}的前n项和s n,满足s n=n(n﹣6),数列{b n}满足(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记数列{c n}满足,求数列{c n}的前n项和T n.【考点】数列的求和;等比数列的通项公式;等比数列的前n项和.【分析】(Ⅰ)当n≥2时,利用a n=S n﹣S n﹣1计算,进而可知a n=2n﹣7;通过b n+1=3b n可知数列{b n}为等比数列,利用b n=b2•3n﹣2计算即得结论;(Ⅱ)通过(I)可知c n=,进而分n为奇数、偶数两种情况讨论即可.【解答】解:(Ⅰ)当n=1时,a1=S1=﹣5,当n≥2时,a n=S n﹣S n﹣1=2n﹣7,又∵当n=1时满足上式,∴a n=2n﹣7;∵b n+1=3b n,b2=3,∴数列{b n}为等比数列,故其通项公式b n=b2•3n﹣2=3n﹣1;(Ⅱ)由(I)可知c n=,当n为偶数是,T n=+=+;当n为奇数时,T n=+=+;综上所述,T n=.18.已知几何体P﹣ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,(Ⅰ)求证:EF∥面PCD;(Ⅱ)求直线BP与面PAC所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(I)连结BD,则E为BD的中点,利用中位线定理得出EF∥PD,故而EF∥面PCD;(II)取AP的中点H,连结HB,HC,过B作BO⊥HC于O,连结OP.则可证AP⊥平面BCH,于是AP⊥OB,结合OB⊥CH得出OB⊥平面PAC,于是∠BPO为PB与平面PAC所成的角.利用勾股定理计算BH,CH,OB,得出sin∠BPO=.【解答】证明:(I)连结BD,∵四边形ABCD是矩形,E是AC的中点,∴E是BD的中点.又F是BP的中点,∴EF∥PD,又EF⊄平面PCD,PD⊂平面PBD,∴EF∥平面PCD.(II)取AP的中点H,连结HB,HC,过B作BO⊥HC于O,连结OP.∵面ABCD⊥面PAB,面ABCD∩面PAB=AB,BC⊥AB,∴BC⊥平面PAB,∵AP⊂平面PAB,∴BC⊥AP,∵△PAB是等边三角形,∴AP⊥HB,又BC⊂平面BCH,BH⊂平面BCH,BC∩BH=B,∴AP⊥平面BCH,又OB⊂平面BCH,∴AP⊥OB,又OB⊥CH,CH⊂平面PAC,AP⊂平面PAC,CH∩AP=H,∴OB⊥平面PAC.∴∠BPO为PB与平面PAC所成的角.∵AB=2,BC=1,∴BH=,CH==2,∴BO==,∴sin∠BPO==.即直线BP与面PAC所成角的正弦值为.19.已知抛物线C:x2=2py(p>0),圆E:x2+(y+1)2=1,若直线L与抛物线C和圆E分别相切于点A,B(A,B不重合)(Ⅰ)当p=1时,求直线L的方程;(Ⅱ)点F是抛物线C的焦点,若对于任意的p>0,记△ABF面积为S,求的最小值.【考点】直线与圆锥曲线的综合问题;直线的一般式方程.【分析】(Ⅰ)设直线L的方程为y=kx+b,由点到直线距离公式和相切性质得k2+1=(1+b)2,联立,得x2﹣2kx﹣2b=0,由根的判别式得k2+2b=0,由此能求出直线L的方程.(Ⅱ)联立方程,得x2﹣2px﹣2pb=0,由此利用根的判别式、弦长公式、点到直线距离公式,结合已知能求出的最小值.【解答】解:(Ⅰ)当P=1时,抛物线x2=2y,由题意直线L的斜率存在,设直线L的方程为y=kx+b,即kx﹣y+b=0,由题意得=1,即k2+1=(1+b)2,①联立,得x2﹣2kx﹣2b=0,由△=0,得k2+2b=0,②由①②得k=±2,b=﹣4,故直线L的方程为y=,(Ⅱ)联立方程,得x2﹣2px﹣2pb=0,(*)由△=0,得pk2+2p=0,③∴b=﹣,代入(*)式,得x=pk,故点A(pk,),由①②得b=﹣,k2=,故A(pk,),∴|AB|===2•,点F到直线L的距离d==•=,∴S=|AB|•d==,∴==≥,当且仅当p=时,有最小值(2).20.已知函数f(x)=x2+ax+1,其中a∈R,且a≠0(Ⅰ)设h(x)=(2x﹣3)f(x),若函数y=h(x)图象与x轴恰有两个不同的交点,试求a的取值集合;(Ⅱ)求函数y=|f(x)|在[0,1]上最大值.【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】(Ⅰ)分类讨论,从而由f(x)=0恰有一解及f(x)=0有两个不同的解求得;(Ⅱ)分类讨论,从而确定二次函数的单调性及最值,从而确定函数y=|f(x)|在[0,1]上的最大值.【解答】解:(Ⅰ)(1)若f(x)=0恰有一解,且解不为,即a2﹣4=0,解得a=±2;(2)若f(x)=0有两个不同的解,且其中一个解为,代入得+a+1=0,解得a=﹣,检验满足△>0;综上所述,a的取值集合为{﹣,﹣2,2}.(Ⅱ)(1)若﹣≤0,即a≥0时,函数y=|f(x)|在[0,1]上单调递增,故y max=f(1)=2+a;(2)若0<﹣<1,即﹣2<a<0时,此时△=a2﹣4<0,且f(x)的图象的对称轴在(0,1)上,且开口向上;故y max=max{f(0),f(1)}=max{1,a+2}=,(3)若﹣≥1,即a≤﹣2时,此时f(1)=2+a≤0,y max=max{f(0),﹣f(1)}=max{1,﹣a﹣2}=,综上所述,y max=.。

2020-2021学年高考数学文科第二次模拟考试试题及答案解析高考模拟题

2020-2021学年高考数学文科第二次模拟考试试题及答案解析高考模拟题
3
③已知直线 l1:ax+3y-1=0 , l2:x+by+1=0,则 l1 l 2 的充要条件是 a
3;
b
④已知 a>0,b>0,函数 y
2ae x
b 的图象过点 ( 0,1),则 1
1
的最小值是
4
2 ,其中正确命题的序号是。
ab
三.解答题:本大题共 6 小题,共 70 分,解答应写出文字说明,证明过程或演算步骤。 17. (本小题满分 12 分)
( I) 求 a, b 的值;
(Ⅱ)若当 x∈ [0,+ ∞ )是,恒有 f x ≥ k g x 成立,求 k 的取值范围;
若要功夫深,铁杵磨成针!
(Ⅲ)若
5 =2.2361,试估计
5 ln 的值(精确到
0.001)
4
请考生在第 22、 23、 24 三题中任选一题作答,如果多做,则按所做的第一题记分。答题时用
若要功夫深,铁杵磨成针!
最新 高三第二次模 拟考试
数学试题(文)
本试卷分第 I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共
150 分,考试时间 120 分钟。
第 I 卷(选择题 共 60 分)
注意事项: 1. 答第 I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。 2. 每题选出答案后,用 2B 铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在改涂
在其他答案标号。 一.选择题:本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题 目要求的。
1.集合 U= x Z | x( x 7) 0 , A={1,4,5} , B={2,3,5},则 A (CU B) =

2020-2021学年(新课标i卷)高考数学文科模拟试题及答案解析

2020-2021学年(新课标i卷)高考数学文科模拟试题及答案解析

2020-2021学年(新课标i卷)⾼考数学⽂科模拟试题及答案解析绝密★启封并使⽤完毕前试题类型:普通⾼等学校招⽣全国统⼀考试⽂科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分.第Ⅰ卷1⾄3页,第Ⅱ卷3⾄5页. 2.答题前,考⽣务必将⾃⼰的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上⽆效.4.考试结束后,将本试题和答题卡⼀并交回.第Ⅰ卷⼀. 选择题:本⼤题共12⼩题,每⼩题5分,在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =I(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(3)为美化环境,从红、黄、⽩、紫4种颜⾊的花中任选2种花种在⼀个花坛中,余下的2种花种在另⼀个花坛中,则红⾊和紫⾊的花不在同⼀花坛的概率是(A )13(B )12(C )13(D )56(4)△ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=(A (B C )2(D )3(5)直线l 经过椭圆的⼀个顶点和⼀个焦点,若椭圆中⼼到l 的距离为其短轴长的14,则该椭圆的离⼼率为(A )13(B )12(C )23(D )34(6)若将函数y=2sin (2x+π6)的图像向右平移14个周期后,所得图像对应的函数为(A )y=2sin(2x+π4) (B )y=2sin(2x+π3) (C )y=2sin(2x –π4) (D )y=2sin(2x –π3)(7)如图,某⼏何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该⼏何体的体积是28π3,则它的表⾯积是(A )17π(B )18π(C )20π(D )28π(8)若a>b>0,0(A )log a c(D )c a>c b(9)函数y=2x 2–e |x|在[–2,2]的图像⼤致为(A )(B )(C )(D )(10)执⾏右⾯的程序框图,如果输⼊的0,1,x y ==n=1,则输出,x y 的值满⾜(A )2y x =(B )3y x = (C )4y x = (D )5y x =(11)平⾯α过正⽂体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平⾯,ABCD m α=I 平⾯,11ABB A n α=I 平⾯,则m ,n 所成⾓的正弦值为(A )3(B )22(C )3(D )13(12)若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是(A )[]1,1-(B )11,3??-(C )11,33??-(D )11,3--第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考⽣都必须作答.第(22)题~第(24)题为选考题,考⽣根据要求作答. ⼆、填空题:本⼤题共3⼩题,每⼩题5分(13)设向量a=(x ,x+1),b=(1,2),且a ⊥b ,则x=. (14)已知θ是第四象限⾓,且sin(θ+π4)=35,则tan(θ–π4)=. (15)设直线y=x+2a 与圆C :x 2+y 2-2ay-2=0相交于A ,B 两点,若,则圆C 的⾯积为。

2020-2021学年高考数学文科一模试题及答案解析七

2020-2021学年高考数学文科一模试题及答案解析七

最新高考数学一模试卷(文科)一、选择题1.设i为虚数单位,则复数3﹣i的虚部是()A.3 B.﹣i C.1 D.﹣12.记集合A={x|x+2>0},B={y|y=sinx,x∈R},则A∪B=()A.(﹣2,+∞)B.[﹣1,1] C.[﹣1,1]∪[2,+∞)D.(﹣2,1]3.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是()A.圆柱B.圆锥C.棱锥D.棱柱4.已知向量=(cosα,sinβ),=(sinα,cosβ),若∥,则α,β的值可以是()A.α=,β=﹣B.α=,β=C.α=,β=﹣D.α=,β=﹣5.已知数列的前4项为2,0,2,0,则依次归纳该数列的通项不可能是()A.a n=(﹣1)n﹣1+1 B.a n=C.a n=2sin D.a n=cos(n﹣1)π+16.已知定义在R上的函数f(x)满足f(x+1)=﹣f(x),且f(x)=,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)7.某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表使用智能手机不使用智能手机合计学习成绩优秀 4 8 12学习成绩不优秀16 2 18合计20 10 30附表:p(K2≥k0)0.15 0.10 0.05 0.025 0.010 0.005 0.001k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828经计算K2=10,则下列选项正确的是:()A.有99.5%的把握认为使用智能手机对学习有影响B.有99.5%的把握认为使用智能手机对学习无影响C.有99.9%的把握认为使用智能手机对学习有影响D.有99.9%的把握认为使用智能手机对学习无影响8.函数的单调递增区间是()A.B.C.D.9.平面直径坐标系xOy中,动点P到圆(x﹣2)2+y2=1上的点的最小距离与其到直线x=﹣1的距离相等,则P点的轨迹方程是()A.y2=8x B.x2=8y C.y2=4x D.x2=4y10.非负实数x、y满足ln(x+y﹣1)≤0,则关于x﹣y的最大值和最小值分别为()A.2和1 B.2和﹣1 C.1和﹣1 D.2和﹣211.如果执行如图所示的程序框图,则输出的数S不可能是()A.0.7 B.0.75 C.0.8 D.0.912.已知函数f(x)=e x,g(x)=x+1,则关于f(x),g(x)的语句为假命题的是()A.∀x∈R,f(x)>g(x)B.∃x1,x2∈R,f(x1)<g(x2)C.∃x0∈R,f(x0)=g(x0)D.∃x0∈R,使得∀x∈R,f(x0)﹣g(x0)≤f(x)﹣g(x)二、填空题13.在空间直角坐标系中,已知点A(1,0,1),B(﹣1,1,2),则线段AB的长度为_______.14.记等差数列{a n}的前n项和为S n,若S3=2a3,S5=15,则a2016=_______.15.△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于_______.16.M,N分别为双曲线﹣=1左、右支上的点,设是平行于x轴的单位向量,则|•|的最小值为_______.三、解答题17.如图,OPQ是半径为2,圆心角为的扇形,C是扇形弧上的一动点,记∠COP=θ,四边形OPCQ的面积为S.(1)找出S与θ的函数关系;(2)试探求当θ取何值时,S最大,并求出这个最大值.18.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了去年某地某月10天的AQI的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天计算)(2)若从样本的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.19.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE=2CG=2.(1)求三棱锥A﹣FGC的体积.(2)求证:面GEF⊥面AEF.20.已知椭圆C1:+=1(a>b>0)的顶点到直线l1:y=x的距离分别为,.(1)求C1的标准方程;(2)设平行于l1的直线l交C1与A、B两点,若以AB为直径的圆恰好过坐标原点,求直线l的方程.21.已知函数f(x)=x2+(a为实常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断是否存在直线l与f(x)的图象有两个不同的切点,并证明你的结论.[选修4-1:几何证明选讲]22.如图,C,D是以AB为直径的半圆上两点,且=.(1)若CD∥AB,证明:直线AC平分∠DAB;(2)作DE⊥AB交AC于E,证明:CD2=AE•AC.[选修4-4:坐标系与参数方程选讲]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2﹣4ρcosθ+3=0,θ∈[0,2π].(1)求C1的直角坐标方程;(2)曲线C2的参数方程为(t为参数),求C1与C2的公共点的极坐标.[选修4-5:不等式选讲]24.设α、β、γ均为实数.(1)证明:|cos(α+β)|≤|cosα|+|sinβ|;|sin(α+β)|≤|cosα|+|cosβ|.(2)若α+β+γ=0.证明:|cosα|+|cosβ|+|cosγ|≥1.参考答案与试题解析一、选择题1.设i为虚数单位,则复数3﹣i的虚部是()A.3 B.﹣i C.1 D.﹣1【考点】复数的基本概念.【分析】直接由复数的基本概念得答案.【解答】解:∵复数3﹣i,∴复数3﹣i的虚部是:﹣1.故选:D.2.记集合A={x|x+2>0},B={y|y=sinx,x∈R},则A∪B=()A.(﹣2,+∞)B.[﹣1,1] C.[﹣1,1]∪[2,+∞)D.(﹣2,1]【考点】并集及其运算.【分析】先化简集合A,B,再根据并集的定义即可求出.【解答】解:集合A={x|x+2>0}=(﹣2,+∞),B={y|y=sinx,x∈R}=[﹣1,1],则A∪B=(﹣2,+∞),故选:A.3.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是()A.圆柱B.圆锥C.棱锥D.棱柱【考点】由三视图求面积、体积.【分析】由于圆锥的三视图中一定不会出现正方形,即可得出结论.【解答】解:圆锥的三视图中一定不会出现正方形,∴该空间几何体不可能是圆锥.故选:B.4.已知向量=(cosα,sinβ),=(sinα,cosβ),若∥,则α,β的值可以是()A.α=,β=﹣B.α=,β=C.α=,β=﹣D.α=,β=﹣【考点】平面向量共线(平行)的坐标表示.【分析】根据向量的平行的条件以及两角和的余弦公式即可判断.【解答】解:向量=(cosα,sinβ),=(sinα,cosβ),若∥,∴cosαcosβ﹣sinαsinβ=0,即cos(α+β)=0,∴α+β=kπ+,k∈Z,对于A:α+β=0,不符合,对于B,α+β=π,不符合,对于C:α+β=﹣,符合,对于D,α+β=,不符合,故选:C.5.已知数列的前4项为2,0,2,0,则依次归纳该数列的通项不可能是()A.a n=(﹣1)n﹣1+1 B.a n=C.a n=2sin D.a n=cos(n﹣1)π+1【考点】数列的概念及简单表示法.【分析】令n=1,2,3,4分别代入验证:即可得出答案.【解答】解:令n=1,2,3,4分别代入验证:可知C:a3=﹣2,因此不成立.故选:C.6.已知定义在R上的函数f(x)满足f(x+1)=﹣f(x),且f(x)=,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)【考点】函数的值.【分析】由f(x+1)=﹣f(x),得到函数的周期是2,根据分段函数的表达式结合函数的周期性进行求解即可.【解答】解:由f(x+1)=﹣f(x),得f(x+2)=﹣f(x+1)=f(x),则函数的周期是2,则f(2.5)=f(2+0.5)=f(0.5)=﹣1,f(f(2.5))=f(﹣1)=f(﹣1+2)=f(1)=﹣1f(f(1.5))=f(f(2﹣0.5))=f(f(﹣0.5))=f(1)=﹣1,f(2)=f(0)=1,即列函数值为1的f(2),故选:D.7.某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表使用智能手机不使用智能手机合计学习成绩优秀 4 8 12学习成绩不优秀16 2 18合计20 10 30附表:p(K2≥k0)0.15 0.10 0.05 0.025 0.010 0.005 0.001k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828经计算K2=10,则下列选项正确的是:()A.有99.5%的把握认为使用智能手机对学习有影响B.有99.5%的把握认为使用智能手机对学习无影响C.有99.9%的把握认为使用智能手机对学习有影响D.有99.9%的把握认为使用智能手机对学习无影响【考点】独立性检验的应用.【分析】根据观测值K2,对照数表,即可得出正确的结论.【解答】解:因为7.879<K2=10<10.828,对照数表知,有99.5%的把握认为使用智能手机对学习有影响.故选:A.8.函数的单调递增区间是()A.B.C.D.【考点】复合三角函数的单调性.【分析】由2kπ﹣≤+≤2kπ+(k∈Z)与x∈[﹣2π,2π]即可求得答案.【解答】解:y=sin(+)的单调递增区间由2kπ﹣≤+≤2kπ+(k∈Z)得:4kπ﹣≤x≤4kπ+(k∈Z),∵x∈[﹣2π,2π],∴﹣≤x≤.即y=sin(+)的单调递增区间为[﹣,].故选A.9.平面直径坐标系xOy中,动点P到圆(x﹣2)2+y2=1上的点的最小距离与其到直线x=﹣1的距离相等,则P点的轨迹方程是()A.y2=8x B.x2=8y C.y2=4x D.x2=4y【考点】直线与圆的位置关系.【分析】设动点P(x,y),由已知得|x+1|=﹣1,由此能求出点P的轨迹方程.【解答】解:设动点P(x,y),∵动点P到直线x=﹣1的距离等于它到圆:(x﹣2)2+y2=1的点的最小距离,∴|x+1|=﹣1,化简得:6x﹣2+2|x+1|=y2,当x≥﹣1时,y2=8x,当x<﹣1时,y2=4x﹣4<﹣8,不合题意.∴点P的轨迹方程为:y2=8x.故选:A.10.非负实数x、y满足ln(x+y﹣1)≤0,则关于x﹣y的最大值和最小值分别为()A.2和1 B.2和﹣1 C.1和﹣1 D.2和﹣2【考点】简单线性规划;对数函数的图象与性质.【分析】作出不等式组对应的平面区域,利用z的几何意义进行求解即可.【解答】解:由题意得,作出不等式组对应的平面区域如图:设z=x﹣y,由z=x﹣y,得y=x﹣z表示,斜率为1纵截距为﹣z的一组平行直线,平移直线y=x﹣z,当直线y=x﹣z经过点C(2,0)时,直线y=x﹣z的截距最小,此时z最大,最大为z max=2﹣0=2当直线经过点A(0,2)时,此时直线y=x﹣z截距最大,z最小.此时z min=0﹣2=﹣2.故选:D.11.如果执行如图所示的程序框图,则输出的数S不可能是()A.0.7 B.0.75 C.0.8 D.0.9【考点】程序框图.【分析】模拟执行程序,可得此程序框图的功能是计算并输出S=+的值,结合选项,只有当S的值为0.7时,n不是正整数,由此得解.【解答】解:模拟执行程序,可得此程序框图执行的是输入一个正整数n,求+的值S,并输出S,由于S=+=1+…+﹣=1﹣=,令S=0.7,解得n=,不是正整数,而n分别输入2,3,8时,可分别输出0.75,0.8,0.9.故选:A.12.已知函数f(x)=e x,g(x)=x+1,则关于f(x),g(x)的语句为假命题的是()A.∀x∈R,f(x)>g(x)B.∃x1,x2∈R,f(x1)<g(x2)C.∃x0∈R,f(x0)=g(x0)D.∃x0∈R,使得∀x∈R,f(x0)﹣g(x0)≤f(x)﹣g(x)【考点】命题的真假判断与应用.【分析】根据全称命题和特称命题的定义进行判断即可.【解答】解:设h(x)=f(x)﹣g(x),则h(x)=e x﹣x﹣1,则h′(x)=e x﹣1,当x<0时,h′(x)<0,h(x)单调递减,当x>0时,h′(x)>0,则h(x)单调递增,即当x=0时,函数h(x)取得极小值同时也是最小值h(0)=0,即h(x)≥0,即∀x∈R,f(x)>g(x)不一定成立,故A是假命题,故选:A二、填空题13.在空间直角坐标系中,已知点A(1,0,1),B(﹣1,1,2),则线段AB的长度为.【考点】空间两点间的距离公式.【分析】根据两点间的距离公式,进行计算即可.【解答】解:空间直角坐标系中,点A(1,0,1),B(﹣1,1,2),所以线段AB的长度为|AB|==.故答案为:.14.记等差数列{a n}的前n项和为S n,若S3=2a3,S5=15,则a2016= 2016 .【考点】等差数列的前n项和.【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:设等差数列{a n}的公差为d.∵S3=2a3,S5=15,∴d=2(a1+2d),d=15,解得a1=d=1.则a2016=1+×1=2016.故答案为:2016.15.△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于 1 .【考点】正弦定理.【分析】利用正弦定理得出a,b,c和外接圆半径R的关系,根据周长列出方程解出R.【解答】解:设△ABC的三边分别为a,b,c,外接圆半径为R,由正弦定理得,∴a=2RsinA,b=2RsinB,c=2RsinC,∵a+b+c=2(sinA+sinB+sinC),∴2RsinA+2RsinB+2RsinC=2(sinA+sinB+sinnC),∴R=1.故答案为:1.16.M,N分别为双曲线﹣=1左、右支上的点,设是平行于x轴的单位向量,则|•|的最小值为 4 .【考点】双曲线的简单性质.【分析】根据向量数量积的定义结合双曲线的性质进行求解即可.【解答】解:由向量数量积的定义知•即向量在向量上的投影||模长的乘积,故求|•|的最小值,即求在x轴上的投影的绝对值的最小值,由双曲线的图象可知|•|的最小值为4,故答案为:4三、解答题17.如图,OPQ是半径为2,圆心角为的扇形,C是扇形弧上的一动点,记∠COP=θ,四边形OPCQ的面积为S.(1)找出S与θ的函数关系;(2)试探求当θ取何值时,S最大,并求出这个最大值.【考点】三角函数中的恒等变换应用;弧度制的应用;三角函数的最值.【分析】(1)由面积公式即可得到S与θ的函数关系.(2)对三角函数化简,由θ的范围,得到S的最大值.【解答】解:(1)∵S=S△OPC+S△OQC=OP•0Csin∠POC+OQ•OCsin∠QOC=2sinθ+2sin(﹣θ)(θ∈(0,))(2)由(1)知,S=2sinθ+2sin(﹣θ)=sinθ+cosθ=2sin(θ+)∵θ∈(0,),∴θ+∈(,)∴当θ+=,即θ=时,S最大,为2.18.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;>300为严重污染.一环保人士记录了去年某地某月10天的AQI的茎叶图如图所示.(1)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天计算)(2)若从样本的空气质量不佳(AQI>100)的这些天中,随机地抽取两天深入分析各种污染指标,求该两天的空气质量等级恰好不同的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)由茎叶图可得样本中空气质量优良的天数,可得概率,用总天数乘以概率可得;(2)该样本中轻度污染共4天,分别记为a,b,c,d,中度污染为1天,记为A,重度污染为1天,记为α,列举可得总的基本事件共15个,其中空气质量等级恰好不同有9个,由概率公式可得的.【解答】解:(1)由茎叶图可发现样本中空气质量优的天数为1,空气质量为良的天数为3,故空气质量优良的概率为=,故利用该样本估计该地本月空气质量优良的天数为30×=12;(2)该样本中轻度污染共4天,分别记为a,b,c,d,中度污染为1天,记为A,重度污染为1天,记为α,则从中随机抽取2天的所有可能结果为:(a,b)(a,c)(a,d)(a,A)(A,α)(b,c)(b,d)(b,A)(b,α)(c,d)(c,A)(c,α)(d,A)(d,α)(A,α)共15个,其中空气质量等级恰好不同有(a,A)(A,α)(b,A)(b,α)(c,A)(c,α)(d,A)(d,α)(A,α)共9个,该两天的空气质量等级恰好不同的概率P==19.如图,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE=2CG=2.(1)求三棱锥A﹣FGC的体积.(2)求证:面GEF⊥面AEF.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积.【分析】(1)由平面BDEF⊥平面ABCD得FB⊥平面ABCD,故FB⊥AB,又AB⊥BC,于是AB ⊥平面FBCG,即AB为棱锥A﹣FCG的高;(2)建立空间坐标系,分别求出平面AEF和平面EFG的法向量,证明他们的法向量垂直即可.【解答】解:(1)∵平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,FB⊥BD,FB⊂平面BDEF,∴FB⊥平面ABCD,∵AB⊂平面ABCD,∴AB⊥FB,又AB⊥BC,∴AB⊥平面BCGF,∴V A﹣FGC===.(2)以B为原点,AB,BC,BF为坐标轴建立空间直角坐标系,如图:则A(﹣2,0,0),E(﹣2,2,2),F(0,0,2),G(0,2,1),∴=(0,2,2),=(2,﹣2,0),=(0,2,﹣1).设平面AEF的法向量为=(x,y,z),平面EFG的法向量为=(a,b,c),则,,即,,令z=1得=(﹣1,﹣1,1),令c=1得=(,,1).∴=﹣=0.∴,∴平面AEF⊥平面EFG.20.已知椭圆C1:+=1(a>b>0)的顶点到直线l1:y=x的距离分别为,.(1)求C1的标准方程;(2)设平行于l1的直线l交C1与A、B两点,若以AB为直径的圆恰好过坐标原点,求直线l的方程.【考点】椭圆的简单性质.【分析】(1)由a>b,可设顶点(a,0)到直线y=x的距离为,又顶点(0,b)到直线y=x的距离为,运用点到直线的距离公式,计算可得a=2,b=1,进而得到椭圆方程;(2)设直线l的方程为y=x+t(t≠0),代入椭圆方程x2+4y2=4,设A(x1,y1),B(x2,y2),运用韦达定理和判别式大于0,以及直径所对的圆周角为直角,由向量垂直的条件:数量积为0,化简整理,可得t,进而得到所求直线l的方程.【解答】解:(1)由a>b,可设顶点(a,0)到直线y=x的距离为,可得=,即a=2,又顶点(0,b)到直线y=x的距离为,可得=,即b=1,则椭圆方程为+y2=1;(2)设直线l的方程为y=x+t(t≠0),代入椭圆方程x2+4y2=4,可得5x2+8tx+4t2﹣4=0,设A(x1,y1),B(x2,y2),即有△=64t2﹣20(4t2﹣4)>0,解得﹣<t<,且t≠0,x1+x2=﹣,x1x2=,y1y2=(x1+t)(x2+t)=x1x2+t2+t(x1+x2)=+t2﹣=,以AB为直径的圆恰好过坐标原点,可得OA⊥OB,即有•=0,即x1x2+y1y2=0,即为+=0,解得t=±,满足﹣<t<,且t≠0,则直线l的方程为y=x±.21.已知函数f(x)=x2+(a为实常数).(1)若f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断是否存在直线l与f(x)的图象有两个不同的切点,并证明你的结论.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(1)求出导数,由题意可得2x3﹣a≥0在(0,+∞)上恒成立,即a≤2x3,求出右边函数的值域,即可得到a的范围;(2)不存在直线l与f(x)的图象有两个不同的切点.假设存在这样的直线l,设两切点为(x1,f(x1)),(x2,f(x2)),由假设可得f′(x1)=f′(x2)=,运用导数和函数的解析式,化简整理,即可得到矛盾.【解答】解:(1)函数f(x)=x2+的导数为f′(x)=2x﹣=,由f(x)在(0,+∞)上单调递增,可得2x3﹣a≥0在(0,+∞)上恒成立,即a≤2x3,由2x3在(0,+∞)上递增,可得2x3的值域为(0,+∞),则a≤0,即有a的取值范围为(﹣∞,0];(2)不存在直线l与f(x)的图象有两个不同的切点.证明:假设存在这样的直线l,设两切点为(x1,f(x1)),(x2,f(x2)),由假设可得f′(x1)=f′(x2)=,由f′(x1)=f′(x2),可得2x1﹣=2x2﹣,即有2(x1﹣x2)=a•,显然x1+x2≠0,x1﹣x2≠0,即有a=﹣,而﹣f′(x1)=﹣2x1+=x1+x2﹣﹣2x1+=x2﹣x1+﹣=﹣≠0,即f′(x1)=f′(x2)≠,故不存在直线l与f(x)的图象有两个不同的切点.[选修4-1:几何证明选讲]22.如图,C,D是以AB为直径的半圆上两点,且=.(1)若CD∥AB,证明:直线AC平分∠DAB;(2)作DE⊥AB交AC于E,证明:CD2=AE•AC.【考点】与圆有关的比例线段;弦切角.【分析】(1)证明:直线AC平分∠DAB,只要证明∠DAC=∠BAC,利用平行线的性质及等弧对等角即可;(2)作DE⊥AB交AC于E,证明:△ADE∽△ACD,即可证明CD2=AE•AC.【解答】证明:(1)∵CD∥AB,∴∠DCA=∠BAC,∵=,∴∠DAC=∠DCA,∴∠DAC=∠BAC,∴直线AC平分∠DAB;(2)∵DE⊥AB,∴∠ADE+∠DAB=90°,∵AB为直径,∴∠DBA+∠DAB=90°,∴∠ADE=∠ABD,∵∠ABD=∠DCA,∴∠ADE=∠ACD,∴△ADE∽△ACD,∴AD2=AE•AC,∵AD=DC,∴CD2=AE•AC.[选修4-4:坐标系与参数方程选讲]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2﹣4ρcosθ+3=0,θ∈[0,2π].(1)求C1的直角坐标方程;(2)曲线C2的参数方程为(t为参数),求C1与C2的公共点的极坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)把ρ2=x2+y2,x=ρcosθ,代入曲线C1的极坐标方程可得直角坐标方程.(2)由曲线C2的参数方程为(t为参数),可知:此条直线经过原点,倾斜角为.因此C1的极坐标方程为:,或(ρ>0).分别代入C1的极坐标方程即可得出.【解答】解:(1)把ρ2=x2+y2,x=ρcosθ,代入曲线C1的极坐标方程ρ2﹣4ρcosθ+3=0,θ∈[0,2π],可得:x2+y2﹣4x+3=0,配方为:(x﹣2)2+y2=1.(2)由曲线C2的参数方程为(t为参数),可知:此条直线经过原点,倾斜角为.因此C1的极坐标方程为:,或(ρ>0).将代入C1可得:ρ2﹣2ρ+3=0,解得ρ=.将代入C1可得:ρ2+2ρ+3=0,解得ρ=﹣,舍去.故C1与C2的公共点的极坐标为.[选修4-5:不等式选讲]24.设α、β、γ均为实数.(1)证明:|cos(α+β)|≤|cosα|+|sinβ|;|sin(α+β)|≤|cosα|+|cosβ|.(2)若α+β+γ=0.证明:|cosα|+|cosβ|+|cosγ|≥1.【考点】绝对值三角不等式.【分析】(1)利用和的余弦、正弦公式,结合三角不等式,即可证明结论;(2)由(1)可得|cos[α+(β+γ]=|cosα|+|sin(β+γ)|≤|cosα|+|cosβ|+|cosγ|,即可证明结论.【解答】证明:(1)|cos(α+β)|=|cosαcosβ﹣sinαsinβ|≤|cosαcosβ|+|sinαsinβ|≤|cos α|+|sinβ|;|sin(α+β)|=|sinαcosβ﹣cosαsinβ|≤|sinαcosβ|+|cosαsinβ|≤|cosα|+|cosβ|.(2)由(1)可得|cos[α+(β+γ)]≤|cosα|+|sin(β+γ)|≤|cosα|+|cosβ|+|cosγ|,∵α+β+γ=0,∴|cos[α+β+γ]=1∴|cosα|+|cosβ|+|cosγ|≥1.2016年9月12日。

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

2020-2021学年高三数学(文科)三校联考高考模拟试题及答案解析

三校联考高考数学模拟试卷(文科)(解析版)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()A.2 B.C.1 D.34.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=5.执行如图所示的程序框图,则输出的S的值为()A.7 B.8 C.9 D.106.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A .在[,]上是增函数B .其图象关于直线x=﹣对称C .函数g (x )是奇函数D .当x ∈[0,]时,函数g (x )的值域是[﹣1,2]7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .8.一个棱锥的三视图如图(尺寸的长度单位为m ),则该棱锥的全面积是(单位:m 2).( )A .B .C .D .9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]10.已知双曲线C :﹣=1的左、右焦点分别是F 1,F 2,正三角形△AF 1F 2的顶点A在y 轴上,边AF 1与双曲线左支交于点B ,且=4,则双曲线C 的离心率的值是( )A .+1 B .C .+1 D .11.已知一个平放的棱长为4的三棱锥内有一小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于( ) A .π B .π C .π D .π12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015 B .2016C .4030D .4032二、填空题:本大题共4小题,每小题5分. 13.设i 为虚数单位,则复数= .14.已知函数f (x )=2x 2﹣xf ′(2),则函数f (x )的图象在点(2,f (2))处的切线方程是 . 15.若x ,y 满足若z=x+my 的最大值为,则实数m= .16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列; (2)若b n =log 2a n +3,求数列{}的前n 项和T n .18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a ,b ,c 的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率. 19.如图所示,在四棱锥P ﹣ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB=4,CD=2,侧面PAD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为PA 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A ﹣PBC 的体积.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.21.设函数f (x )=x 2﹣(a+b )x+ablnx (其中e 为自然对数的底数,a ≠e ,b ∈R ),曲线y=f (x )在点(e ,f (e ))处的切线方程为y=﹣e 2. (1)求b ;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2} B.{x|x>﹣1} C.{x|x<﹣1} D.{x|x≤﹣2}【分析】根据题意先求出集合M和集合N,再求M∪N.【解答】解:∵集合M={x|x2+3x+2<0}={x|﹣2<x<﹣1},集合={x|2﹣x≤22}={x|﹣x≤2}={x|x≥﹣2},∴M∪N={x|x≥﹣2},故选A.【点评】本题考查集合的运算,解题时要认真审题,仔细解答.2.命题p:∃x∈N,x3<x2;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=loga (x﹣1)的图象过点(2,0),则下列命题是真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】分别判断出p,q的真假,从而判断出复合命题的真假.【解答】解:命题p:∃x∈N,x3<x2,是假命题;命题q:∀a∈(0,1)∪(1,+∞),令x﹣1=1,解得:x=2,此时f(2)=0,(x﹣1)的图象过点(2,0),是真命题;故函数f(x)=loga故¬p∧q真是真命题;故选:C.【点评】本题考查了不等式以及对数函数的性质,考查复合命题的判断,是一道基础题.3.已知平面向量,的夹角为,且||=1,|+2|=2,则||=()【分析】根据向量的数量积的运算和向量的模计算即可.【解答】解:∵|+2|=2,∴+4+4=||2+4||||cos+4||2=||2+2||+4=12,解得||=2,故选:A.【点评】本题考查了向量的数量积的运算和向量的模的计算,属于基础题.4.已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y= B.y=C.y=±x D.y=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.执行如图所示的程序框图,则输出的S的值为()【分析】由已知中的程序语句可知该框图的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序框图,由程序框图可知该程序的功能是利用循环结构计算并输出变量S=﹣12+22﹣32+42的值,∵S=﹣12+22﹣32+42=10故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.6.已知函数f(x)=2sin(2x+),把函数f(x)的图象沿x轴向左平移个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是()A.在[,]上是增函数B.其图象关于直线x=﹣对称C.函数g(x)是奇函数D.当x∈[0,]时,函数g(x)的值域是[﹣1,2]【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象性质,得出结论.【解答】解:把函数f(x)=2sin(2x+)的图象沿x轴向左平移个单位,得到函数g(x)=2sin[2(x+)+]=2cos2x的图象,显然,函数g(x)是偶函数,故排除C.当x∈[,],2x∈[,π],函数g(x)为减函数,故排除A.当x=﹣时,g (x )=0,故g (x )的图象不关于直线x=﹣对称,故排除B .当x ∈[0,]时,2x ∈[0,],cos2x ∈[﹣,1],函数g (x )的值域是[﹣1,2],故选:D .【点评】本题主要考查函数y=Asin (ωx+φ)的图象变换规律,余弦函数的图象性质,属于基础题.7.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }前n 项的和,则(n ∈N +)的最小值为( ) A .4B .3C .2﹣2 D .【分析】由题意得(1+2d )2=1+12d ,求出公差d 的值,得到数列{a n }的通项公式,前n 项和,从而可得,换元,利用基本不等式,即可求出函数的最小值.【解答】解:∵a 1=1,a 1、a 3、a 13成等比数列, ∴(1+2d )2=1+12d . 得d=2或d=0(舍去), ∴a n =2n ﹣1, ∴S n ==n 2, ∴=.令t=n+1,则=t+﹣2≥6﹣2=4当且仅当t=3,即n=2时,∴的最小值为4.故选:A .【点评】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.8.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底连长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的连长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等.9.已知函数f (x )=,则方程f (x )=ax 恰有两个不同实数根时,实数a的取值范围是( )(注:e 为自然对数的底数) A .(0,)B .[,]C .(0,)D .[,e]【分析】由题意,方程f (x )=ax 恰有两个不同实数根,等价于y=f (x )与y=ax 有2个交点,又a 表示直线y=ax 的斜率,求出a 的取值范围. 【解答】解:∵方程f (x )=ax 恰有两个不同实数根, ∴y=f (x )与y=ax 有2个交点, 又∵a 表示直线y=ax 的斜率, ∴y ′=,设切点为(x 0,y 0),k=,∴切线方程为y ﹣y 0=(x ﹣x 0),而切线过原点,∴y 0=1,x 0=e ,k=, ∴直线l 1的斜率为, 又∵直线l 2与y=x+1平行, ∴直线l 2的斜率为,∴实数a 的取值范围是[,). 故选:B .【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题.10.已知双曲线C:﹣=1的左、右焦点分别是F1,F2,正三角形△AF1F2的顶点A在y轴上,边AF1与双曲线左支交于点B,且=4,则双曲线C的离心率的值是()A.+1 B.C.+1 D.【分析】不妨设△AF1F2的边长为4,求得c=2,由向量共线可得|BF1|=1,在△BF1F2中,由余弦定理求得|BF2|=,再由双曲线的定义和离心率公式计算即可得到所求值.【解答】解:不妨设△AF1F2的边长为4,则|F1F2|=2c=4,c=2.由,可得|BF1|=1,在△BF1F2中,由余弦定理可得|BF2|2=|BF1|2+|F1F2|2﹣2|BF1||F1F2|cos∠BF1F2=1+16﹣2×1×4×=13,|BF2|=,由双曲线的定义可得2a=|BF2|﹣|BF1|=﹣1,解得a=,则e==.故选:B.【点评】本题考查双曲线的离心率的求法,注意运用双曲线的定义和余弦定理,考查运算能力,属于中档题.11.已知一个平放的棱长为4的三棱锥内有一小球O(重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的时,小球与该三棱锥各侧面均相切(与水面也相切),则球的表面积等于()A.πB.πC.πD.π【分析】先求出没有水的部分的体积是,再求出棱长为2,可得小球的半径,即可求出球的表面积.【解答】解:由题意,没有水的部分的体积是正四面体体积的,∵正四面体的各棱长均为4, ∴正四面体体积为=,∴没有水的部分的体积是,设其棱长为a ,则=, ∴a=2,设小球的半径为r ,则4×r=,∴r=,∴球的表面积S=4=.故选:C .【点评】本题考查球的表面积,考查体积的计算,考查学生分析解决问题的能力,正确求出半径是关键.12.若定义在区间[﹣2016,2016]上的函数f (x )满足:对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,且x >0时,有f (x )<2016,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( ) A .2015B .2016C .4030D .4032【分析】特殊值法:令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032.根据条件x >0时,有f (x )<2016,得出函数的单调性,根据单调性求出函数的最值.【解答】解:∵对于任意的x 1,x 2∈[﹣2016,2016],都有f (x 1+x 2)=f (x 1)+f (x 2)﹣2016,∴令x 1=x 2=0,得f (0)=2016,再令x 1+x 2=0,将f (0)=2014代入可得f (x )+f (﹣x )=4032. 设x 1<x 2,x 1,x 2∈[﹣2016,2016],则x 2﹣x 1>0,f (x 2﹣x 1)=f (x 2)+f (﹣x 1)﹣2016,∴f(x2)+f(﹣x1)﹣2016<2016.又∵f(﹣x1)=4032﹣f(x1),∴f(x2)<f(x1),即函数f(x)是递减的,∴f(x)max=f(﹣2016),f(x)min=f(2016).又∵f(2016)+f(﹣2016)=4032,∴M+N的值为4032.故选D.【点评】考查了抽象函数中特殊值的求解方法,得出函数的性质.二、填空题:本大题共4小题,每小题5分.13.设i为虚数单位,则复数= i .【分析】直接由复数代数形式的乘除运算化简复数,则答案可求.【解答】解:=,故答案为:i.【点评】本题考查了复数代数形式的乘除运算,是基础题.14.已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是4x﹣y﹣8=0 .【分析】求导函数,确定切点处的斜率与切点的坐标,即可求得函数f(x)的图象在点(2,f(2))处的切线方程.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.15.若x,y满足若z=x+my的最大值为,则实数m= 2 .【分析】画出满足约束条件的可行域,求出目标函数的最大值,从而建立关于m的等式,即可得出答案.【解答】解:由z=x+my得y=x,作出不等式组对应的平面区域如图:∵z=x+my的最大值为,∴此时z=x+my=,此时目标函数过定点C(,0),作出x+my=的图象,由图象知当直线x+my=,经过但A时,直线AC的斜率k=>﹣1,即m>1,由平移可知当直线y=x,经过点A时,目标函数取得最大值,此时满足条件,由,解得,即A(,),同时,A也在直线x+my=上,代入得+m=,解得m=2,故答案为:2.【点评】本题主要考查线性规划的应用,根据目标函数的几何意义确定取得最大值的最优解是解决本题的关键.16.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a=,S为△ABC 的面积,则S+cosBcosC 的最大值为.【分析】先利用余弦定理求得A ,进而通过正弦定理表示出c ,代入面积公式求得S+cosBcosC 的表达式,利用两角和与差的余弦函数公式化简求得其最大值.【解答】解:∵a 2=b 2+c 2+bc , ∴cosA==﹣,∴A=,由正弦定理 c=a ==2sinC , ∴S===sinBsinC ∴S+cosBcosC=sinBsinC+cosBcosC=cos (B ﹣C )≤,故答案为:.【点评】本题主要考查了正弦定理和余弦定理的应用.求得面积的表达式是解决问题的关键,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知正项数列{a n }的前n 项和为S n ,且S n ,a n ,成等差数列. (1)证明数列{a n }是等比数列;(2)若b n =log 2a n +3,求数列{}的前n 项和T n .【分析】(1)由题意得2a n =S n +,易求,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n﹣1﹣,两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),由递推式可得结论;(2)由(1)可求=2n ﹣2,从而可得b n ,进而有=,利用裂项相消法可得T n ;【解答】解:(1)证明:由S n ,a n ,成等差数列,知2a n =S n +, 当n=1时,有,∴,当n ≥2时,S n =2a n ﹣,S n ﹣1=2a n ﹣1﹣, 两式相减得a n =2a n ﹣2a n ﹣1(n ≥2),即a n =2a n ﹣1, 由于{a n }为正项数列,∴a n ﹣1≠0,于是有=2(n ≥2),∴数列{a n }从第二项起,每一项与它前一项之比都是同一个常数2, ∴数列{a n }是以为首项,以2为公比的等比数列. (2)解:由(1)知==2n ﹣2,∴b n =log 2a n +3==n+1,∴==,∴T n =()+()+…+()==.【点评】本题考查等差数列、等比数列的概念、数列的求和,裂项相消法是高考考查的重点内容,应熟练掌握.18.从甲、乙两部门中各任选10名员工进行职业技能测试,测试成绩(单位:分)数据的茎叶图如图1所示:(Ⅰ)分别求出甲、乙两组数据的中位数,并从甲组数据频率分布直方图如图2所示,求a,b,c的值;(Ⅱ)从甲、乙两组数据中各任取一个,求所取两数之差的绝对值大于20的概率.【分析】(Ⅰ)根据茎叶图能求出甲部门数据的中位数和乙部门数据的中位数,再求出甲部门的成绩在70~80的频率为0.5,由此能求出a,b,c.(Ⅱ)利用列举法求出从“甲、乙两组数据中各任取一个”的所有可能情况和其中所取“两数之差的绝对值大于20”的情况,由此能求出所取两数之差的绝对值大于20的概率.【解答】解:(Ⅰ)根据茎叶图得甲部门数据的中位数是78.5,乙部门数据的中位数是78.5;∵甲部门的成绩在70~80的频率为0.5,∴a=0.05,在80~90的频率为0.2,∴b=0.02在60~70的频率为0.1,∴c=0.01.(Ⅱ)从“甲、乙两组数据中各任取一个”的所有可能情况是:(63,67),(63,68),(63,69),(63,73),(63,75),…,(96,86),(96,94),(96,97)共有100种;其中所取“两数之差的绝对值大于20”的情况是:(63,85),(63,86),(63,94),(63,97),(72,94),(72,97),(74,97),(76,97),(91,67),(91,68),(91,69),(96,67),(96,68),(96,69),(96,73),(96,75)共有16种,故所求的概率为.【点评】本题考查概率的求法,考查频率分布直方图的应用,是基础题,解题时要认真审题,注意列举法的合理运用.19.如图所示,在四棱锥P﹣ABCD中,底面是直角梯形ABCD,其中AD⊥AB,CD∥AB,AB=4,CD=2,侧面PAD是边长为2的等边三角形,且与底面ABCD垂直,E为PA的中点.(1)求证:DE∥平面PBC;(2)求三棱锥A﹣PBC的体积.【分析】(1)(法一)取PB的中点F,连接EF,CF,由已知得EF∥AB,且,从而四边形CDEF是平行四边形,由此能证明DE∥平面PBC.(1)(法二):取AB的中点F,连接DF,EF,由已知得四边形BCDF为平行四边形,从而DF∥BC,由此能证明DE∥平面PBC.(2)取AD的中点O,连接PO,由已知得PO⊥平面ABCD,由此能求出三棱锥A﹣PBC 的体积.【解答】(1)证明:(方法一):取PB的中点F,连接EF,CF.∵点E,F分别是PA,PB的中点∴EF∥AB,且又CD∥AB,且∴EF∥CD,且EF=CD∴四边形CDEF是平行四边形,∴DE∥CF.又DE⊄平面PBC,CF⊂平面PBC∴DE∥平面PBC.(1)证明:(方法二):取AB的中点F,连接DF,EF.在直角梯形ABCD中,CD∥AB,且AB=4,CD=2,所以BF∥CD,且BF=CD.所以四边形BCDF为平行四边形,所以DF∥BC.在△PAB中,PE=EA,AF=FB,所以EF∥PB.又DF∩EF=F,PB∩BC=B,所以平面DEF∥平面PBC.因为DE⊂平面DEF,所以DE∥平面PBC.(2)解:取AD的中点O,连接PO.在△PAD中,PA=PD=AD=2,所以PO⊥AD,PO=又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,所以PO就是三棱锥P﹣ABC的高.在直角梯形ABCD中,CD∥AB,且AB=4,AD=2,AB⊥AD,所以.故.【点评】本题考查直线与平面平行的证明,考查三棱锥的体积的求法,解题时要注意空间思维能力的培养.20.已知椭圆E :(a >b >0),F 1(﹣c ,0),F 2(c ,0)为椭圆的两个焦点,M 为椭圆上任意一点,且|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3. (1)求椭圆E 的方程;(2)若存在以原点为圆心的圆,使该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且⊥,求出该圆的方程.【分析】(1)通过|MF 1|,|F 1F 2|,|MF 2|构成等差数列,过椭圆焦点垂直于长轴的弦长为3.列出方程,求出a 、b ,即可求椭圆E 的方程;(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,然后联立直线方程与椭圆方程,设A (x 1,y 1),B (x 2,y 2),结合x 1x 2+y 1y 2=0,即可求圆的方程.(ⅱ)若AB 的斜率不存在,设A (x 1,y 1),则B (x 1,﹣y 1),利用⊥,求出半径,得到结果.【解答】解:(1)由题知2|F 1F 2|=|MF 1|+|MF 2|, 即2×2c=2a ,得a=2c .①又由,得②且a 2=b 2+c 2,综合解得c=1,a=2,b=.∴椭圆E 的方程为+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)假设以原点为圆心,r 为半径的圆满足条件.(ⅰ)若圆的切线的斜率存在,并设其方程为y=kx+m ,则r=,r 2=,①消去y ,整理得(3+4k 2)x 2+8kmx+4(m 2﹣3)=0,设A (x 1,y 1),B (x 2,y 2),又∵⊥,∴x1x2+y1y2=0,即4(1+k2)(m2﹣3)﹣8k2m2+3m2+4k2m2=0,化简得m2=(k2+1),②由①②求得r2=.所求圆的方程为x2+y2=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(ⅱ)若AB的斜率不存在,设A(x1,y1),则B(x1,﹣y1),∵⊥,∴=0,得x=.此时仍有r2=|x|=.综上,总存在以原点为圆心的圆x2+y2=满足题设条件.【点评】考查椭圆的方程和基本性质,与向量相结合的综合问题.考查分析问题解决问题的能力.21.设函数f(x)=x2﹣(a+b)x+ablnx(其中e为自然对数的底数,a≠e,b∈R),曲线y=f(x)在点(e,f(e))处的切线方程为y=﹣e2.(1)求b;(2)若对任意x∈[,+∞),f(x)有且只有两个零点,求a的取值范围.【分析】(1)求导,从而求b;(2)由(1)得,,从而①当时,要使得f(x)在上有且只有两个零点,只需=,②当时,求导确定零点个数,③当a>e时,求导确定零点个数.【解答】解:(1),∵f′(e)=0,a≠e,∴b=e;(2)由(1)得,,①当时,由f′(x)>0得x>e;由f′(x)<0得.此时f(x)在上单调递减,在(e,+∞)上单调递增.∵,;∴要使得f(x)在上有且只有两个零点,则只需=,即;②当时,由f′(x)>0得或x>e;由f′(x)<0得a<x<e.此时f(x)在(a,e)上单调递减,在和(e,+∞)上单调递增.此时,∴此时f(x)在[e,+∞)至多只有一个零点,不合题意;③当a>e时,由f′(x)>0得或x>a,由f′(x)<0得e<x<a,此时f(x)在和(a,+∞)上单调递增,在(e,a)上单调递减,且,∴f(x)在至多只有一个零点,不合题意.综上所述,a的取值范围为.【点评】本题考查了导数的综合应用及导数的几何意义的应用,同时考查了分类讨论的思想应用,属于中档题.请考生在(22)、(23)、(24)三题中任选一题作答.如果多做,则按所做第一个题目记分.作答时,请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BEBD﹣AEAC.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F四点共圆即可证得结论;(2)由(1)知,BDBE=BABF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BEBD﹣AEAC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,(1分)又EF⊥AB,∠AFE=90°,(1分)则A,D,E,F四点共圆(2分)∴∠DEA=∠DFA(1分)(2)由(1)知,BDBE=BABF,(1分)又△ABC∽△AEF∴,即ABAF=AEAC(2分)∴BEBD﹣AEAC=BABF﹣ABAF=AB(BF﹣AF)=AB2(2分)【点评】本小题主要考查与圆有关的比例线段、四点共圆的证明方法、三角形相似等基础知识,考查运算求解能力、化归与转化思想.属于中档题.[选修4-4:坐标系与参数方程]23.(2016福安市校级模拟)极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2sin(θ+),曲线C 2的极坐标方程为ρsinθ=a(a>0),射线θ=φ,θ=φ﹣,θ=φ+,与曲线C1分别交异于极点O的四点A、B、C、D.(Ⅰ)若曲线C1关于曲线C2对称,求a的值,并把曲线C1和曲线C2化成直角坐标方程;(Ⅱ)求|OA||OC|+|OB||OD|的值.【分析】(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,把ρ2=x2+y2,x=ρcosθ,y=ρsinθ代入可得直角坐标方程.把C2的方程化为直角坐标方程为y=a,根据曲线C1关于曲线C2对称,故直线y=a经过圆心解得a,即可得出.(Ⅱ)由题意可得,|OA|,|OB|,|OC|,|OD|,代入利用和差公式即可得出.【解答】解:(Ⅰ)曲线C1的极坐标方程为ρ=2sin(θ+),展开可得:,化为直角坐标方程为(x﹣1)2+(y﹣1)2=2.把C2的方程化为直角坐标方程为y=a,∵曲线C1关于曲线C2对称,故直线y=a经过圆心(1,1),解得a=1,故C2的直角坐标方程为y=1.(Ⅱ)由题意可得,,,,,.【点评】本题考查了直角坐标与极坐标的互化、圆的对称性、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.=|x+m|.(Ⅰ)解关于m的不等式f(1)+f(﹣2)≥5;(Ⅱ)当x≠0时,证明:.【分析】(Ⅰ)问题等价于|m+1|+|m﹣2|≥5,通过讨论m的范围,求出不等式的解集即可;(Ⅱ)根据绝对值的性质证明即可.【解答】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等价于|m+1|+|m﹣2|≥5,可化为,解得m≤﹣2;或,无解;或,解得m≥3;综上不等式解集为(﹣∞,﹣2]∪[3,+∞)…(5分)(Ⅱ)证明:当x≠0时,,|x|>0,,…(10分)【点评】本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.。

2020-2021学年最新高考总复习数学(文)高考考前得分模拟训练试题及答案解析

2020-2021学年最新高考总复习数学(文)高考考前得分模拟训练试题及答案解析

最新高考模拟得分训练试题(六)文科数学本试卷分为第I 卷和第Ⅱ卷两部分,共2页。

考试时间120分钟,满分150分。

第I 卷(选择题)一、选择题:本大题共12个小题,每小题5分,共60分。

每小题给出的四个选项中只有一项是符合题目要求的。

1.已知集合2{|20}A x x x =-≥,{|0lg 1}B x x =≤<,则()R C A B I 是( )A .{|210}x x ≤< B .{|2}x x ≥ C .{|1x 2}x ≤< D .{|010}x x << 2.设复数2()1a i z i+=+,其中a 为正实数,若2z =,则z 的虚部为( )A .4-B .4C .-1D .1 3.已知{}na 为等比数列,1105610,25a a a a +=⋅=则29a a +=( )A .10B .5C .﹣5D .﹣10 4.已知命题p :,2lg x R x x ∃∈->,命题q :,1x x R e ∀∈>,则( )A .命题p ∨q 是假命题B .命题p ∧q 是真命题C .命题p ∧(¬q )是真命题D .命题p ∨(¬q )是假命题 5.已知(1,2),b (0,1),c (k,2)a===-r r r,若(a 2b)//c +r r r ,则k =( )A .8-B .2C .12-D .18-6.某几何体的三视图如下图所示,则该几何体的表面积为( )A.8B.24C.1823+D.1242+7.我校为了了解高三学生在大庆市第一次模拟考试中对数学的掌握情况,从高三年级中随机抽查了100名学生的数学成绩,并制成了频率直方图,从下图中可以知道这100名学生的平均分数和中位数分别为( ) A.103.2 113.2 B.108.2 108 C.103.2 108 D.108.2 113.2 8.已知函数()()421008ln e 120161x f x x x =+-+,()2f a =,则()f a -的值为( )A. 1B. 0C.1-D. 2- 9.函数()()sin 0,0f x A x A ωω=>>的部分图象如图所示,()()()()1232016f f f f +++⋅⋅⋅+的值为( )A .0B .32C .62D .2-10.变量x 、y 满足条件420203240x y x y x y -+≤⎧⎪++≥⎨⎪--≤⎩,则22(x 1)(y 2)-+-22(x 2)(y 1)++++的最小值为( ) A .252+ B .175+ C .131+ D .3211.如图,已知双曲线22221(a 0,b 0)x y a b-=>>上有一点A ,它关于原点的对称点为B ,点F 为双曲线的右焦点,且满足BF AF ⊥,设α=∠ABF ,且]6,12[ππα∈,则该双曲线离心率e的取值范围为()A .]32,3[+ B.]13,2[+ C.]32,2[+ D.]13,3[+12.已知函数211,[0,),22()13,,1,2x xf xx x⎧+∈⎪⎪=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩若存在12x x<,使得12()()f x f x=,则()12x f x⋅的取值范围为()A.3[,1)4B.13[,)86C.31[,)162D.3[,3)8第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.执行如图所示的程序框图,若输入8=x,则输出y的值为 .14.在△ABC中,cos cos cos cos2b Cc B a C c A+=+=,且cos3sina C a Cb c+=+,则△ABC的面积为.15.直线21ax by+=与圆221x y+=相交于A B,两点(其中a b,是实数),且AOB∆是直角三角形(O是坐标原点),则点()P a b,与点()00O,之间距离的最大值为.16.已知2()(1)()xf x x mg x xe=--+=,,若12x x R∃∈,,使得12()()f xg x≥成立,则实数m的取值范围是_______.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.已知数列{}n a中,12125,2,23(n3)n n na a a a a--===+≥.(1)求证:数列{}1n na a-+为等比数列(2)求数列{}nn a⋅的前2n项和2nT.18.十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖健康、妇幼保健、托幼等公共服务水平,为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了200位30到40岁的公务员,得到情况如下表:(1)是否有99%以上的把握认为“生二胎与性别有关”,并说明理由;(2)采用分层抽样的方式从男公务员中调查6人,并对其中的3人进行回访,则这三人都要生二胎的概率是多少?附:22()()()()()n ad bcka b c d a c b d-=++++19.如图,三棱柱111ABC A B C-中,侧面11AAC C⊥侧面11ABB A ,12AC AA AB ==,1160AAC ∠=︒,1AB AA ⊥,H 为棱1CC 的中点,D 为1BB 的中点.(Ⅰ) 求证:1A D ⊥平面1AB H ; (Ⅱ) 若2AB =,求三棱柱111ABC A B C -的体积.20.如图,曲线T 由两个椭圆1T :22221(a b 0)x y a b +=>>和椭圆22222:1(b c 0)y x T b c+=>>组成,当,,a b c 成等比数列时,称曲线Γ为“猫眼曲线”.若猫眼曲线Γ过点(0,2)M -,且,,a b c 的公比为22.(1)求猫眼曲线Γ的方程; (2)任作斜率为(K 0)K ≠且不过原点的直线与该曲线相交,交椭圆1T 所得弦的中点为M ,交椭圆2T 所得弦的中点为N ,求证:OM ONK K 为与K 无关的定值; (3)若斜率为2的直线l 为椭圆2T 的切线,且交椭圆1T 于点,A B ,N为椭圆1T 上的任意一点(点N 与点,A B 不重合),求ABN ∆面积的最大值.21.已知函数ln ()a xf x x-=在点(1,(1))f 处的切线与x 轴平行. (1)求实数a 的值及()f x 的极值;(2)若对任意1x ,2x 2[,)e ∈+∞,有121212()()||>f x f x k x x x x --⋅,求实数k 的取值范围; 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答题时用2B 铅笔在答题卡上把所选的题号涂黑.22.(本题满分10分)《选修4—1:几何证明选讲》如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E.若6AB =,2ED =. (1)求证:CE AD ⊥;(2)求BC 的长.23. (本题满分10分)《选修4—4:坐标系与参数方程》平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴的极坐标系中,直线l 的极坐标方程为4πθ=,曲线C 的参数方程为2cos sin x y θθ⎧=⎪⎨=⎪⎩.(θ为参数)(1)写出直线l 与曲线C 的直角坐标方程;(2)过点M 且平行于直线l 的直线与曲线C 交于,A B 两点,若8||||3MA MB ⋅=,求点M 轨迹的直角坐标方程.24. (本题满分10分)《选修4—5:不等式选讲》 设函数()22,f x x x x R =++-∈,不等式()6f x ≤的解集为M .(1) 求M ;(2)当,a b M ∈时,求证:33a b ab +≤+.文科数学得分训练试题(六)答案1——5 CDACC 6-----10CBBAD 11---12 BC13.121m m e ⎧⎫≥-⎨⎬⎩⎭.121121211221111121232122233(a a )03(n 3)373(1)131[37(1)13]4T 123(2n 1)27T a n n n n n n n n n n n n n n n n n n n n n n nn a a a a a a a a a a a a a a a a a n a ---------------=++=++≠+=≥++=⨯-=-⨯=⨯+-⨯=⨯+⨯+⨯++-⨯+⨯=17.(1)由a 得因为所以即证。

2020-2021学年高考数学文科一模测试题及答案解析

2020-2021学年高考数学文科一模测试题及答案解析

2018高考数学一模试卷(文科)(解析版)一、选择题(共12小题,每小题5分,满分60分)1.若z=,则z=()A.﹣+i B.+i C.D.2.sin15°+cos15°的值为()A.B.C.D.3.已知集合A={x|﹣2<x<3},B={x|log2x>1},则A∩(∁R B)=()A.(﹣2,2] B.(﹣2,1] C.(0,3)D.(1,3)4.设函数f(x)=,则f(﹣2)=()A.3 B.4 C.5 D.65.若双曲线的顶点和焦点分别为椭圆+y2=1的焦点和顶点,则该双曲线方程为()A.x2﹣y2=1 B.﹣y2=1 C.x2﹣=1 D.﹣=16.执行如图所示的程序框图,则输出的s=()A.6 B.15 C.25 D.37.从[0,1]内随机取两个数a,b,则使a≥2b的概率为()A.B.C.D.8.在等比数列{a n}中,公比q≠1,且a1+a2,a3+a4,a5+a6成等差数列,若a1+a2+a3=1,则a12+a22+…+a102=()A.1 B.10 C.32 D.1009.函数f(x)=的图象大致为()A.B.C. D.10.已知函数f(x)=2sin2(ωx+)(ω>0)在区间[0,]内单调递增,则ω的最大值是()A.B.1 C.D.211.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的体积为()A.B.1 C.D.212.已知数列{b n}满足b1=,2b n+1﹣b n b n+1=1,则b1+++…+=()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.在正六边形ABCDEF中,若=+λ,则λ= .14.已知x,y满足约束条件,则z=2x+3y的最大值为.15.已知三棱锥P﹣ABC内接于球O,PA=PB=PC=2,当三棱锥P﹣ABC的三个侧面的面积之和最大时,球O的表面积为.16.设点P在圆x2+(y﹣6)2=5上,点Q在抛物线x2=4y上,则|PQ|的最小值为.三、解答题(共5小题,满分60分)17.(12分)(2016邯郸一模)在△ABC中,角A,B,C的对边分别为a,b,c,满足acosB+bcosA=2cosC.(Ⅰ)求C;(Ⅱ)若△ABC的面积为2,求c的最小值.18.(12分)(2016邯郸一模)如图,在四棱锥P﹣ABCD中,△ABD是边长为2的正三角形,∠CBD=∠CDB=30°,E为棱PA的中点.(Ⅰ)求证:DE∥平面PBC;(Ⅱ)若平面PAB⊥平面ABCD,PA=PB=2,求点E到平面PBC的距离.19.(12分)(2016邯郸一模)在一次数学考试中,数学课代表将他们班50名同学的考试成绩按如下方式进行统计得到如下频数分布表(满分为100分)成绩[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)人数 2 8 15 15 4 6(Ⅰ)在答题卡上作出这些数据中的频率分布直方图;(Ⅱ)估计该班学生数学成绩的中位数和平均值;(Ⅲ)若按照学生成绩在区间[0,60),[60,80),[80,100)内,分别认定为不及格,及格,优良三个等次,用分层抽样的方法从中抽取一个容量为5的样本,计算:从该样本中任意抽取2名学生,至少有一名学生成绩属于及格等次的概率.20.(12分)(2016邯郸一模)已知抛物线C:x2=2py(p>0)的焦点为F,直线l过点F 交抛物线C于A、B两点.且以AB为直径的圆M与直线y=﹣1相切于点N.(1)求C的方程;(2)若圆M与直线x=﹣相切于点Q,求直线l的方程和圆M的方程.21.(12分)(2016邯郸一模)设函数f(x)=(x+a)lnx+b,曲线y=f(x)在点(1,f(1))处的切线为x+y﹣2=0.(Ⅰ)求y=f(x)的解析式(Ⅱ)证明:f(x)>0.[选修4-1:几何证明选讲]22.(10分)(2016邯郸一模)如图,点A、B、D、E在⊙O上,ED、AB的延长线交于点C,AD、BE交于点F,AE=EB=BC.(1)证明:=;(2)若DE=4,AD=8,求DF的长.[选修4-4:坐标系与参数方程]23.(2016邯郸一模)在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点P(2,﹣1)的直线l:(t为参数)与曲线C交于M、N两点.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)求|PM|2+|PN|2的值.[选修4-5:不等式选讲]24.(2016邯郸一模)已知函数f(x)=|x﹣a|﹣|2x﹣1|.(1)当a=2时,求f(x)+3≥0的解集;(2)当x∈[1,3]时,f(x)≤3恒成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.若z=,则z=()A.﹣+i B.+i C.D.【分析】利用复数代数形式的乘除运算化简,求得z,再由求得答案.【解答】解:∵z==,∴z=|z|2==.故选:D.【点评】本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.2.sin15°+cos15°的值为()A.B.C.D.【分析】把原式通过两角和的正弦函数公式化简为一个角的一个三角函数的形式,然后利用特殊角的三角函数值求解即可.【解答】解:sin15°+cos15°=(sin15°+cos15°)=(sin15°cos45°+cos15°sin45°)=sin(15°+45°)=sin60°=×=.故选C.【点评】考查学生灵活运用两角和的正弦函数公式的逆运算化简求值,牢记特殊角的三角函数值.3.已知集合A={x|﹣2<x<3},B={x|log2x>1},则A∩(∁R B)=()A.(﹣2,2] B.(﹣2,1] C.(0,3)D.(1,3)【分析】求出集合B中不等式的解集确定出B,进而求出B的补集,即可确定出所求的集合.【解答】解:由集合B={x|log2x>1}=(2,+∞),∴∁R B=(﹣∞,2],∵集合A={x|﹣2<x<3}=(﹣2,3),∴A∩(∁R B)=(﹣2,2]故选:A.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.4.设函数f(x)=,则f(﹣2)=()A.3 B.4 C.5 D.6【分析】直接利用分段函数的解析式化简求解即可.【解答】解:函数f(x)=,则f(﹣2)=f(2)+1=22+1=5.故选:C.【点评】本题考查分段函数的应用,函数值的求法,考查计算能力.5.若双曲线的顶点和焦点分别为椭圆+y2=1的焦点和顶点,则该双曲线方程为()A.x2﹣y2=1 B.﹣y2=1 C.x2﹣=1 D.﹣=1【分析】求得椭圆的焦点和顶点坐标,设双曲线的方程为﹣=1(a,b>0),可得a,c,进而得到b的值,可得双曲线的方程.【解答】解:椭圆+y2=1的焦点为(±1,0)和顶点(±,0),设双曲线的方程为﹣=1(a,b>0),可得a=1,c=,b==1,可得x2﹣y2=1.故选:A.【点评】本题考查双曲线的方程的求法,注意运用椭圆的方程和性质,考查运算能力,属于基础题.6.执行如图所示的程序框图,则输出的s=()A.6 B.15 C.25 D.3【分析】模拟执行程序,依次写出每次循环得到的i,S的值,当i=4时,满足i>3,退出循环,输出S的值,即可得解.【解答】解:模拟执行程序,可得s=1,i=1s=1+1,i=2不满足条件i>3,s=1+1+22,i=3不满足条件i>3,s=1+1+22+32,i=4满足条件i>3,退出循环,输出s=1+1+22+32=15.故选:B.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基本知识的考查.7.从[0,1]内随机取两个数a,b,则使a≥2b的概率为()A.B.C.D.【分析】作出不等式组对应的平面区域,根据几何概型的概率公式,求出对应区域的面积即可得到结论.【解答】解:由题意知,满足a≥2b的条件为,作出不等式组对应的平面区域如图:则对应的区域为△OAD,则D(1,),则△OAD的面积S=,正方形的面积S=1,则使a≥2b的概率P==,故选:D.【点评】本题主要考查几何概型的概率的计算,求出对应的面积是解决本题的关键.8.在等比数列{a n}中,公比q≠1,且a1+a2,a3+a4,a5+a6成等差数列,若a1+a2+a3=1,则a12+a22+…+a102=()A.1 B.10 C.32 D.100【分析】由题意列关于等比数列的首项和公比的方程组,求解方程组得答案.【解答】解:在等比数列{a n}中,公比q≠1,由a1+a2,a3+a4,a5+a6成等差数列,且a1+a2+a3=1,得,即:,解得.∴数列{}是常数列1,1,1,…,则a12+a22+…+a102=10.故选:B.【点评】本题考查等比数列的通项公式,考查方程组的解法,是基础题.9.函数f(x)=的图象大致为()A.B.C. D.【分析】根据函数的奇偶性和特殊值进行判断.【解答】解:∵f(﹣x)=,∴f(x)是偶函数,即f(x)的图象关于y轴对称.排除A,C.当x>1时,f(x)=ln|x|=lnx>0,排除D.故选:B.【点评】本题考查了对数函数的性质,函数图象的判断,使用排除法可快速判断出答案.10.已知函数f(x)=2sin2(ωx+)(ω>0)在区间[0,]内单调递增,则ω的最大值是()A.B.1 C.D.2【分析】求出f(x)的单调增区间,根据集合的包含关系列不等式解出ω的范围.【解答】解:y=sin2x在[0,]上单调递增,周期为π.令kπ≤wx+≤,解得﹣+≤x≤+,∴当k=0时,f(x)的单调增区间为[﹣,].∵f(x)在[0,]上单调递增,∴≤,解得ω≤.故选:A.【点评】本题考查了正弦函数的图象与性质,属于中档题.11.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的体积为()A.B.1 C.D.2【分析】由三视图可知:该几何体为P﹣ABC,其中PD⊥平面ABCD,四边形ABCD是边长为2的正方形.利用体积计算公式即可得出.【解答】解:如图所示,由三视图可知:该几何体为P﹣ABC,其中PD⊥平面ABCD,四边形ABCD是边长为2的正方形.∴该四面体的体积=×2=.故选:C【点评】本题考查了三视图的有关知识、四棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.12.已知数列{b n}满足b1=,2b n+1﹣b n b n+1=1,则b1+++…+=()A.B.C.D.【分析】由数列的递推公式,猜想b n=,利用数学归纳法证明,再根据裂项求和,即可求出答案.【解答】解:∵2b n+1﹣b n b n+1=1,∴b n+1=,∵b1=,∴b2=,b3=,可以猜测b n=,利用数学归纳法证明如下,①当n=1时,b1=,等式成立,②假设n=k时,等式成立,即b k=,那么n=k+1时,b k+1===,则n=k+1时,等式成立,由①②可知,猜想成立,∴==﹣,∴b1+++…+=(1﹣)+()+…(﹣)=1﹣=,故选:C.【点评】本题考查了通过数列的递推公式求数列的通项公式,和裂项求和,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.在正六边形ABCDEF中,若=+λ,则λ= ﹣.【分析】根据向量加减运算的几何意义求出λ.【解答】解:由正六边形的知识可知,∵=,∴=.∴.故答案为:.【点评】本题考查了平面向量的线性运算的几何意义,属于基础题.14.已知x,y满足约束条件,则z=2x+3y的最大值为20 .【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(4,4),化目标函数z=2x+3y为,由图可知,当直线过A时,直线在y轴上的截距最大,z有最大值为20.故答案为:20.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.已知三棱锥P﹣ABC内接于球O,PA=PB=PC=2,当三棱锥P﹣ABC的三个侧面的面积之和最大时,球O的表面积为12π.【分析】三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,三棱锥P﹣ABC的三个侧面的面积之和最大,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积.【解答】解:由题意三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,三棱锥P﹣ABC 的三个侧面的面积之和最大,三棱锥P﹣ABC的外接球就是它扩展为正方体的外接球,求出正方体的对角线的长:2所以球的直径是2,半径为,球的表面积:4π×=12π.故答案为:12π.【点评】本题考查球的表面积,几何体的外接球,考查空间想象能力,计算能力,是基础题.16.设点P在圆x2+(y﹣6)2=5上,点Q在抛物线x2=4y上,则|PQ|的最小值为.【分析】设圆心为C,则当|PQ|最小时,P,Q,C三点共线,即|PQ|=|CQ|﹣|CP|=|CQ|﹣,求出|CP|的最小值,即可得出结论【解答】解:设点Q(x,y),则x2=4y,圆x2+(y﹣6)2=5的圆心C(0,6),半径r=,由圆的对称性可得,当|PQ|的最小时,C,P,Q三点共线,即|PQ|=|CQ|﹣|CP|.∴|PQ|=﹣=﹣=﹣≥2﹣=.故答案为.【点评】本题考查抛物线上的动点和圆上的动点间的距离的最小值,解题时要认真审题,注意两点间距离公式和配方法的灵活运用.三、解答题(共5小题,满分60分)17.(12分)(2016邯郸一模)在△ABC中,角A,B,C的对边分别为a,b,c,满足acosB+bcosA=2cosC.(Ⅰ)求C;(Ⅱ)若△ABC的面积为2,求c的最小值.【分析】(Ⅰ)由正弦定理及两角和的正弦函数公式,三角形内角和定理可得sinC=2sinCcosC,可得,从而解得C的值.(Ⅱ)由三角形面积公式可得ab=8,由余弦定理可得c2≥2ab﹣2abcosC,从而可记得c的最小值.【解答】(本题满分为12分)解:(Ⅰ)在△ABC中,由正弦定理,可得sinAcosB+sinBcosA=2sinCcosC,…(2分)∴sin(A+B)=2sinCcosC,∴sinC=2sinCcosC,…(4分)∴,故C=60°;…(6分)(Ⅱ)由已知,所以ab=8,…(8分)由余弦定理c2=a2+b2﹣2abcosC,∴c2≥2ab﹣2abcosC⇒c2≥8,…(10分)∴(当且仅当a=b时取等号).∴c的最小值为.…(12分)【点评】本题主要考查了正弦定理及两角和的正弦函数公式,三角形内角和定理,三角形面积公式,余弦定理及基本不等式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.18.(12分)(2016邯郸一模)如图,在四棱锥P﹣ABCD中,△ABD是边长为2的正三角形,∠CBD=∠CDB=30°,E为棱PA的中点.(Ⅰ)求证:DE∥平面PBC;(Ⅱ)若平面PAB⊥平面ABCD,PA=PB=2,求点E到平面PBC的距离.【分析】(Ⅰ)取AB中点F,连接EF、DF,利用三角形中位线定理、等边三角形的性质可得:EF∥PB,DF⊥AB.进而得到DF∥BC.于是平面DEF∥平面PBC,即可证明DE∥平面PBC.(Ⅱ)由平面PAB⊥平面ABCD,BC⊥AB,可得BC⊥平面PAB,平面PAB⊥平面PBC.在△PAB中,过E作EG⊥PB交BP延长线于G点,则EG的长为点E到平面PBC的距离,设点A 到PB的距离为h,利用S△PAB=PFAB=hPB,即可得出.【解答】(Ⅰ)证明:取AB中点F,连接EF、DF,∴EF∥PB,DF⊥AB.∵∠CBD=∠FDB=30°,∴∠ABC=90°,即CB⊥AB,∴DF∥BC,∵EF、DF⊂平面DEF,PB、BC⊂平面PBC,∴平面DEF∥平面PBC,∵DE⊂平面DEF,∴DE∥平面PBC.(Ⅱ)解:∵平面PAB⊥平面ABCD,BC⊥AB,∴BC⊥平面PAB,∵BC⊂平面PBC,∴平面PAB⊥平面PBC.∴在△PAB中,过E作EG⊥PB交BP的延长线于G点,则EG的长为点E到平面PBC的距离,设点A到PB的距离为h,则,即,∴,即点E到平面PBC的距离为.【点评】本题考查了空间位置关系、线面面面判平行与垂直的判定与性质定理、三角形中位线定理、平行线的判定方法、,考查了推理能力与计算能力,属于中档题.19.(12分)(2016邯郸一模)在一次数学考试中,数学课代表将他们班50名同学的考试成绩按如下方式进行统计得到如下频数分布表(满分为100分)成绩[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)人数 2 8 15 15 4 6(Ⅰ)在答题卡上作出这些数据中的频率分布直方图;(Ⅱ)估计该班学生数学成绩的中位数和平均值;(Ⅲ)若按照学生成绩在区间[0,60),[60,80),[80,100)内,分别认定为不及格,及格,优良三个等次,用分层抽样的方法从中抽取一个容量为5的样本,计算:从该样本中任意抽取2名学生,至少有一名学生成绩属于及格等次的概率.【分析】(Ⅰ)绘制频率分步直方图即可,(Ⅱ)利用中位数、平均值的意义即可得出;(Ⅲ)利用分层抽样及列举法、古典概型的计算公式即可得出.【解答】解:(Ⅰ)频率分布直方图如图所示(Ⅱ)由频率分布直方图可得该班学生数学成绩的中位数为70;该班学生数学成绩的平均值为,(Ⅲ)由题可得在抽取的5个样本中属于不及格、及格、优良三个等次的个数分别为1、3、1,对应编号分别为A、B1、B2、B3、C,从中任意抽取2名学生的情况有AB1、AB2、AB3、AC、B1B2、B1B3、B1C、B2B3、B2C、B3C,共10种,其中至少有一名学生成绩属于及格等次的情况有9种,∴至少有一名学生成绩属于及格等次的概率为.【点评】熟练掌握中位数、平均值的意义、分层抽样及列举法、古典概型的计算公式是解题的关键.20.(12分)(2016邯郸一模)已知抛物线C:x2=2py(p>0)的焦点为F,直线l过点F 交抛物线C于A、B两点.且以AB为直径的圆M与直线y=﹣1相切于点N.(1)求C的方程;(2)若圆M与直线x=﹣相切于点Q,求直线l的方程和圆M的方程.【分析】(1)利用梯形的中位线定理和抛物线的性质列出方程解出p即可;(2)设l斜率为k,联立方程组解出AB的中点即M的坐标,根据切线的性质列方程解出k 即可得出l的方程和圆的圆心与半径.【解答】解:(1)设A(x1,y1),B(x2,y2),则|AB|=y1+y2+p,又∵以AB为直径的圆M与直线y=﹣1相切,∴|AB|=y1+y2+2,故p=2,∴抛物线C的方程为x2=4y.(2)设直线l的方程为y=kx+1,代入x2=4y中,化简整理得x2﹣4kx﹣4=0,∴x1+x2=4k,x1x2=﹣4,∴,∴圆心的坐标为M(2k,2k2+1),∵圆M与直线相切于点Q,∴|MQ|=|MN|,∴,解得,此时直线l的方程为,即x﹣2y+2=0,圆心,半径,∴圆M的方程为.【点评】本题考查了抛物线的性质,直线与圆锥曲线的位置关系,切线的性质,属于中档题.21.(12分)(2016邯郸一模)设函数f(x)=(x+a)lnx+b,曲线y=f(x)在点(1,f(1))处的切线为x+y﹣2=0.(Ⅰ)求y=f(x)的解析式(Ⅱ)证明:f(x)>0.【分析】(Ⅰ)求出函数的导数,求得切线的斜率和切点,解方程组可得a,b,进而得到所求解析式;(Ⅱ)求出函数的导数,由导数的单调性和零点存在定理,可得存在x0∈(1,2)使得f′(x)=0,证明f(x0)为最小值,且大于0,即可得证.【解答】(Ⅰ)解:∵函数f(x)的导数,∴f′(1)=1+a=﹣1,即a=﹣2,又点(1,f(1))在切线x+y﹣2=0上,∴1+b﹣2=0,即b=1,∴y=f(x)的解析式为f(x)=(x﹣2)lnx+1;(Ⅱ)证明:由(Ⅰ)知,又∵f′(x)在(0,+∞)内单调递增,且f′(1)=﹣1<0,f′(2)=ln2>0,∴存在x0∈(1,2)使得f′(x)=0.当0<x<x0时,f′(x)<0,f(x)递减;当x>x0时,f′(x)>0,f(x)递增.∴f(x)≥f(x0)=(x0﹣2)lnx0+1.由f′(x0)=0得,∴.令,则,∴r(x)在区间(1,2)内单调递减,所以r(x)<r(1)=5,∴.综上,对任意x∈(0,+∞),f(x)>0.【点评】本题考查导数的运用:求切线的斜率和单调区间、最值,考查不等式的证明,注意运用函数零点存在定理和构造法,运用单调性是解题的关键.[选修4-1:几何证明选讲]22.(10分)(2016邯郸一模)如图,点A、B、D、E在⊙O上,ED、AB的延长线交于点C,AD、BE交于点F,AE=EB=BC.(1)证明:=;(2)若DE=4,AD=8,求DF的长.【分析】(1)证明∠BAD=∠EAD,即可证明:=;(2)证明△EAD∽△FED,利用比例关系求DF的长.【解答】(1)证明:∵EB=BC∴∠C=∠BEC∵∠BED=∠BAD∴∠C=∠BED=∠BAD…(2分)∵∠EBA=∠C+∠BEC=2∠C,AE=EB∴∠EAB=∠EBA=2∠C,又∠C=∠BAD∴∠EAD=∠C∴∠BAD=∠EAD…(4分)∴.…(5分)(2)解:由(1)知∠EAD=∠C=∠FED,又∠EDA=∠EDA∴△EAD∽△FED…(8分)∴又∵DE=4,AD=8,∴DF=2.…(10分)【点评】本题考查相似三角形的判定与性质,考查等角对等弧,考查学生分析解决问题的能力,属于中档题.[选修4-4:坐标系与参数方程]23.(2016邯郸一模)在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2cosθ,过点P(2,﹣1)的直线l:(t为参数)与曲线C交于M、N两点.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)求|PM|2+|PN|2的值.【分析】(1)由ρsin2θ=2cosθ得ρ2sin2θ=2ρcosθ,把,代入即可得出直角坐标方程.根据(t为参数),消去t得普通方程.(2)将直线l的参数方程化为(t为参数)代入y2=2x中,整理得.由参数的几何意义,可知:|PM|2+|PN|2==﹣4t1t2即可得出.【解答】解:(1)由ρsin2θ=2cosθ得ρ2sin2θ=2ρcosθ,∵,∴y2=2x;根据(t为参数),消去t得,x﹣y﹣3=0,故曲线C的直角坐标方程和直线l的普通方程分别是y2=2x,x﹣y﹣3=0.(2)将直线l的参数方程化为(t为参数)代入y2=2x中,整理得.设t1,t2是该方程的两根,则,由参数的几何意义,可知.【点评】本题考查了直角坐标与极坐标的互化、参数方程化为普通方程、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.(2016邯郸一模)已知函数f(x)=|x﹣a|﹣|2x﹣1|.(1)当a=2时,求f(x)+3≥0的解集;(2)当x∈[1,3]时,f(x)≤3恒成立,求a的取值范围.【分析】(1)问题转化为解关于x的不等式组,求出不等式的解集即可;(2)根据x的范围,去掉绝对值号,从而求出a的范围即可.【解答】解:(1)当a=2时,由f(x)≥﹣3,可得|x﹣2|﹣|2x﹣1|≥﹣3,①或②或③,解①得;解②得;解③得x=2,综上所述,不等式的解集为{x|﹣4≤x≤2};(2)若当x∈[1,3]时,f(x)≤3成立,即|x﹣a|≤3+|2x﹣1|=2x+2,故﹣2x﹣2≤x﹣a≤2x+2,即:﹣3x﹣2≤﹣a≤x+2,∴﹣x﹣2≤a≤3x+2对x∈[1,3]时成立,∴a∈[﹣3,5].【点评】本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.。

2020-2021学年高考总复习数学(文)三校联考模拟试题及答案解析一

2020-2021学年高考总复习数学(文)三校联考模拟试题及答案解析一

最新三校联考高考数学模拟试卷(文科)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知全集U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},则(∁U A)∩B=()A.{2,4} B.{3} C.{2,4,6} D.{1,2,3,4,5}2.设z=1+i(是虚数单位),则=()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i3.化简的结果是()A.cos160° B.﹣cos160°C.±cos160°D.±|cos160°|4.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为()A.6万元B.8万元C.10万元D.12万元5.已知向量,其中,且,则向量和的夹角是()A.B.C.D.6.各项为正的等比数列{a n}中,a4与a14的等比中项为2,则log2a7+log2a11=()A.4 B.3 C.2 D.17.若实数x,y满足条件,则z=x﹣2y的最小值为()A.﹣1 B.﹣2 C.﹣D.﹣8.执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.169.若函数,ω>0,x∈R,又f(x1)=2,f(x2)=0,且|x1﹣x2|的最小值为,则ω的值为()A.B.C.D.210.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积最大的是()A.8 B.C.12 D.1611.已知F1、F2是双曲线=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点P 与点F2关于直线y=对称,则该双曲线的离心率为()A.B.C.D.212.已知函数f(x)=若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2015) B.(1,2016) C.(2,2016) D.[2,2016]二.填空题:本大题共4小题,每小题5分.13.已知函数f(x)=,则f(ln3)= .14.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a= .15.三棱锥P﹣ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P﹣ABC的外接球的表面积为.16.在△ABC中,内角A,B,C所对的边分别为a,b,c,且BC边上的高为,则取得最大值时,内角A的值为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知数列{a n}的前n项和为S n,且S n=n2+2n,(n∈N*)求:(1)数列{a n}的通项公式a n;(2)若b n=a n•3n,求数列{b n}的前n项和T n.18.某班同学利用寒假进行社会实践活动,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:组数分组低碳族人数占本组的频率第一组[25,30)120 0.6第二组[30,35)195 p第三组[35,40)100 0.5第四组[40,45) a 0.4第五组[45,50)30 0.3第六组[50,55)15 0.3(1)补全频率分布直方图并求n、a、p的值;(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.19.如图,在四面体ABCD中,CD=CB,AD⊥BD,点E,F分别是AB,BD的中点.(Ⅰ)求证:平面ABD⊥平面EFC;(Ⅱ)当AD=CD=BD=1,且EF⊥CF时,求三棱锥C﹣ABD的体积.20.已知圆M过C(1,﹣1),D(﹣1,1)两点,且圆心M在x+y﹣2=0上.(Ⅰ)求圆M的方程;(Ⅱ)设P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.21.已知函数,且曲线y=f(x)在点(1,f(1))处的切线与y 轴垂直.(Ⅰ)求b的值;(Ⅱ)设g(x)=x2,求证g(x)>f(x)﹣2ln2.[选修4-1:几何证明选讲]22.如图,A,B,C为⊙O上的三个点,AD是∠BAC的平分线,交⊙O于点D,过B作⊙O的切线交Ad的延长线于点E.(Ⅰ)证明:BD平分∠EBC;(Ⅱ)证明:AE•DC=AB•BE.[选修4-4:坐标系与参数方程]23.已知曲线C1的极坐标方程是,曲线C2的参数方程是是参数).(1)写出曲线C1的直角坐标方程和曲线C2的普通方程;(2)求t的取值范围,使得C1,C2没有公共点.[选修4-5:不等式选讲]24.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|≥m对一切实数x均成立,求m的取值范围.高考数学模拟试卷(文科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知全集U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},则(∁U A)∩B=()A.{2,4} B.{3} C.{2,4,6} D.{1,2,3,4,5}【考点】交、并、补集的混合运算.【专题】对应思想;定义法;集合.【分析】根据补集的定义先求出∁U A,再计算(∁U A)∩B.【解答】解:∵U={1,2,3,4,5,6},A={1,3,5},B={2,3,4},∴∁U A={2,4,6},∴(∁U A)∩B={2,4}.故选:A.【点评】本题考查了集合的简单运算问题,是基础题目.2.设z=1+i(是虚数单位),则=()A.﹣1﹣i B.1﹣i C.﹣1+i D.1+i【考点】复数代数形式的乘除运算.【专题】计算题.【分析】把复数z=1+i代入后直接运用复数的除法运算.【解答】解:因为z=1+i,所以.故选B.【点评】本题考查了复数的代数形式的乘除运算,复数的除法采用分子分母同时乘以分母的共轭复数,此题是基础题.3.化简的结果是()A.cos160° B.﹣cos160°C.±cos160°D.±|cos160°|【考点】同角三角函数基本关系的运用;三角函数值的符号.【专题】计算题.【分析】确定角的象限,然后确定cos160°的符号,即可得到正确选项.【解答】解:160°是钝角,所以=|cos160°|=﹣cos160°故选B【点评】本题是基础题,考查同角三角函数的基本关系式,象限三角函数的符号,考查计算能力,常考题型.4.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为()A.6万元B.8万元C.10万元D.12万元【考点】用样本的频率分布估计总体分布.【专题】计算题;图表型.【分析】设11时到12时的销售额为x万元,因为组距相等,所以对应的销售额之比等于之比,也可以说是频率之比,解等式即可求得11时到12时的销售额.【解答】解:设11时到12时的销售额为x万元,依题意有,故选C.【点评】本题考查频率分布直方图的应用问题.在频率分布直方图中,每一个小矩形的面积代表各组的频率.5.已知向量,其中,且,则向量和的夹角是()A.B.C.D.【考点】数量积表示两个向量的夹角.【专题】方程思想;综合法;平面向量及应用.【分析】由题意和垂直关系可得向量夹角余弦值的方程,解方程结合夹角的范围可得.【解答】解:∵,且,∴•(﹣)=﹣=1﹣1×2×cos<,>=0,解得cos<,>=,∴向量和的夹角<,>=,故选:B.【点评】本题考查向量的数量积和夹角以及垂直关系,属基础题.6.各项为正的等比数列{a n}中,a4与a14的等比中项为2,则log2a7+log2a11=()A.4 B.3 C.2 D.1【考点】等比数列的性质.【专题】计算题;等差数列与等比数列.【分析】利用a4•a14=(a9)2,各项为正,可得a9=2,然后利用对数的运算性质,即可得出结论.【解答】解:∵各项为正的等比数列{a n}中,a4与a14的等比中项为2,∴a4•a14=(2)2=8,∵a4•a14=(a9)2,∴a9=2,∴log2a7+log2a11=log2a7a11=log2(a9)2=3,故答案为:3.【点评】本题考查等比数列的通项公式和性质,涉及对数的运算性质,属基础题.7.若实数x,y满足条件,则z=x﹣2y的最小值为()A.﹣1 B.﹣2 C.﹣D.﹣【考点】简单线性规划.【专题】计算题;对应思想;数形结合法;不等式.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(,),化目标函数z=x﹣2y为,由图可知,当直线过A时,最小在y轴上的截距最大,z有最小值为.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.执行如图所示的程序框图,输出的S值为()A.2 B.4 C.8 D.16【考点】循环结构.【专题】算法和程序框图.【分析】列出循环过程中S与K的数值,不满足判断框的条件即可结束循环.【解答】解:第1次判断后S=1,k=1,第2次判断后S=2,k=2,第3次判断后S=8,k=3,第4次判断后3<3,不满足判断框的条件,结束循环,输出结果:8.故选C.【点评】本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力.9.若函数,ω>0,x∈R,又f(x1)=2,f(x2)=0,且|x1﹣x2|的最小值为,则ω的值为()A.B.C.D.2【考点】三角函数的最值.【专题】计算题;函数思想;数学模型法;三角函数的求值.【分析】利用辅助角公式化积,结合已知得到函数的最小正周期,再由周期公式求得ω.【解答】解:=,∵函数f(x)的最大值为2,∵f(x1)=2,f(x2)=0,且|x1﹣x2|的最小值为,∴函数f(x)的周期T=4×=6π,由周期公式可得T==6π,解得ω=,故选:A.【点评】本题考查三角函数的最值,考查了三角函数的图象和性质,是基础题.10.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积最大的是()A.8 B.C.12 D.16【考点】由三视图求面积、体积.【专题】计算题;函数思想;转化思想;空间位置关系与距离.【分析】根据三视图得出该几何体是在棱长为4的正方体中的三棱锥,画出图形,求出各个面积即可.【解答】解:根据题意,得;该几何体是如图所示的三棱锥A﹣BCD,且该三棱锥是放在棱长为4的正方体中,所以,在三棱锥A﹣BCD中,BD=4,AC=AB==,AD==6,S△ABC=×4×4=8.S△ADC==4,S△DBC=×4×4=8,在三角形ABC中,作CE ⊥E,连结DE,则CE==,DE==,S△ABD==12.故选:C.【点评】本题考查了空间几何体三视图的应用问题,解题的关键是由三视图还原为几何体,是中档题.11.已知F1、F2是双曲线=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点P 与点F2关于直线y=对称,则该双曲线的离心率为()A.B.C.D.2【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】求出过焦点F2且垂直渐近线的直线方程,联立渐近线方程,解方程组可得对称中心的点的坐标,代入方程结合a2+b2=c2,解出e即得.【解答】解:过焦点F2且垂直渐近线的直线方程为:y﹣0=﹣(x﹣c),联立渐近线方程y=与y﹣0=﹣(x﹣c),解之可得x=,y=故对称中心的点坐标为(,),由中点坐标公式可得对称点的坐标为(﹣c,),将其代入双曲线的方程可得,结合a2+b2=c2,化简可得c2=5a2,故可得e==.故选:B.【点评】本题考查双曲线的简单性质,涉及离心率的求解和对称问题,属中档题.12.已知函数f(x)=若a、b、c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2015) B.(1,2016) C.(2,2016) D.[2,2016]【考点】分段函数的应用.【专题】函数的性质及应用.【分析】0≤x≤1,可得sinπx∈[0,1],且x∈时,函数f(x)=sinπx单调递增;x∈时,函数f(x)=sinπx单调递减.x>1,log2015x>0,且函数f(x)=log2015x单调递增,log20152015=1.不妨设0<a<b<c,利用f(a)=f(b)=f(c),可得a+b=1,2015>c>1,即可得出.【解答】解:∵0≤x≤1,∴sinπx∈[0,1],且x∈时,函数f(x)=sinπx单调递增,函数值由0增加到1;x∈时,函数f(x)=sinπx单调递减,函数值由1减少到0;x>1,∴log2015x>0,且函数f(x)=log2015x单调递增,log20152015=1.不妨设0<a<b<c,∵f(a)=f(b)=f(c),∴a+b=1,2015>c>1,∴a+b+c的取值范围是(2,2016).故选:C.【点评】本题考查了函数的单调性与值域,考查了数形结合的思想方法、推理能力与计算能力,属于难题.二.填空题:本大题共4小题,每小题5分.13.已知函数f(x)=,则f(ln3)= e .【考点】函数的值.【专题】函数的性质及应用.【分析】根据分段函数的表达式直接代入即可得到结论.【解答】解:∵1<ln3<2,∴2<ln3+1<3,由分段函数的表达式可知,f(ln3)=f(1+ln3)=f(ln3e)=,故答案为:e.【点评】本题主要考查函数值的计算,利用分段函数的表达式直接代入即可,比较基础.14.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a= 1 .【考点】利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】求出函数的导数,利用切线的方程经过的点求解即可.【解答】解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.【点评】本题考查函数的导数的应用,切线方程的求法,考查计算能力.15.三棱锥P﹣ABC中,△ABC为等边三角形,PA=PB=PC=2,PA⊥PB,三棱锥P﹣ABC的外接球的表面积为12π.【考点】球的体积和表面积.【专题】计算题;数形结合法;空间位置关系与距离;球.【分析】证明PA⊥PC,PB⊥PC,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P﹣ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P﹣ABC外接球的表面积.【解答】解:∵三棱锥P﹣ABC中,△ABC为等边三角形,PA=PB=PC=2,∴△PAB≌△PAC≌△PBC.∵PA⊥PB,∴PA⊥PC,PB⊥PC.以PA、PB、PC为过同一顶点的三条棱,作长方体如图:则长方体的外接球同时也是三棱锥P﹣ABC外接球.∵长方体的对角线长为,∴球直径为2,半径R=,因此,三棱锥P﹣ABC外接球的表面积是4πR2=4π×=12π.故答案为:12π.【点评】本题考查了长方体对角线公式和球的表面积计算等知识,属于基础题.16.在△ABC中,内角A,B,C所对的边分别为a,b,c,且BC边上的高为,则取得最大值时,内角A的值为.【考点】余弦定理.【专题】计算题;转化思想;数形结合法;解三角形.【分析】利用三角形面积公式和余弦定理可得,由三角函数恒等变换的应用化简可得,利用正弦函数的图象和性质即可求解.【解答】解:在△ABC中,由题意得:,由余弦定理得:,所以,即,所以当时,取得最大值.故答案为:.【点评】本题主要考查了三角形面积公式和余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.已知数列{a n}的前n项和为S n,且S n=n2+2n,(n∈N*)求:(1)数列{a n}的通项公式a n;(2)若b n=a n•3n,求数列{b n}的前n项和T n.【考点】数列的求和.【专题】等差数列与等比数列.【分析】(1)由,当n=1时,a1=S1=3.当n≥2时,a n=S n﹣S n﹣1,即可得出.(2)由(1)可得,.再利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(1)∵,∴当n=1时,a1=S1=3.(*),显然,当n=1时也满足(*)式,综上所述,.(2)由(1)可得,.其前n项和①则②①﹣②得,==﹣2n•3n+1,∴.【点评】本题考查了递推关系、“错位相减法”与等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.18.某班同学利用寒假进行社会实践活动,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:组数分组低碳族人数占本组的频率第一组[25,30)120 0.6第二组[30,35)195 p第三组[35,40)100 0.5第四组[40,45) a 0.4第五组[45,50)30 0.3第六组[50,55)15 0.3(1)补全频率分布直方图并求n、a、p的值;(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.【考点】古典概型及其概率计算公式;频率分布直方图;用样本的频率分布估计总体分布.【专题】计算题.【分析】(1)由题意及统计图表,利用图表性质得第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,在有频率定义知高为=0.06,在有频率分布直方图会全图形即可.(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.【解答】解:(1)第一组的人数为=200,频率为0.04×5=0.2,所以n==1000.由题可知,第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以第二组的人数为1000×0.3=300,所以p==0.65,第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以a=150×0.4=60.频率直方图如下:(2)∵[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:30=2:1,所以采用分层抽样法抽取6人,[40,45)岁中有4人,[45,50)岁中有2人.设[40,45)岁中的4人为a、b、c、d,[45,50)岁中的2人为m、n,则选取2人作为领队的有(a,b)、(a,c)、(a,d)、(a,m)、(a,n)、(b,c)、(b,d)、(b,m)、(b,n)、(c,d)、(c,m)、(c,n)、(d,m)、(d,n)、(m,n),共15种;其中恰有1人年龄在[40,45)岁的有(a,m)、(a,n)、(b,m)、(b,n)、(c,m)、(c,n)、(d,m)、(d,n),共8种.∴选取的2名领队中恰有1人年龄在[40,45)岁的概率为P=.【点评】本题考查频率分步直方图,考查频数,频率和样本容量之间的关系,考查等可能事件的概率,考查利用列举法来得到题目要求的事件数,本题是一个概率与统计的综合题目.19.如图,在四面体ABCD中,CD=CB,AD⊥BD,点E,F分别是AB,BD的中点.(Ⅰ)求证:平面ABD⊥平面EFC;(Ⅱ)当AD=CD=BD=1,且EF⊥CF时,求三棱锥C﹣ABD的体积.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【专题】数形结合;数形结合法;空间位置关系与距离.【分析】(I)由CB=CD得CF⊥BD,由AD⊥BD,AD∥EF得EF⊥BD,故BD⊥平面CEF,于是平面ABD⊥平面EFC;(II)由CF⊥BD,CF⊥EF得CF⊥平面ABD,即CF为棱锥的高.底面为直角△ABD,代入体积公式计算即可.【解答】(Ⅰ)证明:∵E,F分别是AB,BD的中点,∴EF∥AD,∵AD⊥BD,∴EF⊥BD,∵CB=CD,F是BD的中点,∴CF⊥BD.又∵CF∩EF=F,CF⊂平面CEF,EF⊂平面CEF,∴BD⊥面EFC,∵BD⊂平面ABD,∴平面ABD⊥平面EFC.(Ⅱ)解:∵CF⊥BD,EF⊥CF,EF∩BD=F,BD⊂平面ABD,EF⊂平面ABD,∴CF⊥平面ABD,∵CB=CD=BD=1,∴,∵AD=BD=1,AD⊥BD,∴,∴.【点评】本题考查了线面垂直,面面垂直的判定,棱锥的体积计算,属于中档题.20.已知圆M过C(1,﹣1),D(﹣1,1)两点,且圆心M在x+y﹣2=0上.(Ⅰ)求圆M的方程;(Ⅱ)设P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.【考点】直线与圆相交的性质.【专题】综合题;直线与圆.【分析】(1)设出圆的标准方程,利用圆M过两点C(1,﹣1)、D(﹣1,1)且圆心M在直线x+y﹣2=0上,建立方程组,即可求圆M的方程;(2)四边形PAMB的面积为S=2,因此要求S的最小值,只需求|PM|的最小值即可,在直线3x+4y+8=0上找一点P,使得|PM|的值最小,利用点到直线的距离公式,即可求得结论.【解答】解:(1)设圆M的方程为:(x﹣a)2+(y﹣b)2=r2(r>0),根据题意得,解得:a=b=1,r=2,故所求圆M的方程为:(x﹣1)2+(y﹣1)2=4;(2)由题知,四边形PAMB的面积为S=S△PAM+S△PBM=(|AM||PA|+|BM||PB|).又|AM|=|BM|=2,|PA|=|PB|,所以S=2|PA|,而|PA|2=|PM|2﹣|AM|2=|PM|2﹣4,即S=2.因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,所以|PM|min==3,所以四边形PAMB面积的最小值为2=2.【点评】本题考查圆的标准方程,考查四边形面积的计算,考查学生分析解决问题的能力,属于中档题.21.已知函数,且曲线y=f(x)在点(1,f(1))处的切线与y 轴垂直.(Ⅰ)求b的值;(Ⅱ)设g(x)=x2,求证g(x)>f(x)﹣2ln2.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【专题】计算题;方程思想;转化法;导数的概念及应用.【分析】(Ⅰ)根据导数的几何意义,求出函数的切线,建立方程关系即可求b的值;(Ⅱ)求函数的导数,构造函数,利用函数最值和导数之间的关系进行证明即可.【解答】解:(Ⅰ),所以…由题设知f'(1)=2﹣b=0,∴b=2…(Ⅱ)由(Ⅰ)可得,故只需证,设,…F′(x)=2x﹣1﹣+==令F′(x)=0,得…当时,F′(x)<0,当时,F'(x)>0,所以,…所以,g(x)>f(x)﹣2ln2…【点评】本题主要考查导数的综合应用,根据导数的几何意义建立方程关系,以及构造函数利用函数单调性最值和导数之间的关系是解决本题的关键.综合性较强,有一定的难度.[选修4-1:几何证明选讲]22.如图,A,B,C为⊙O上的三个点,AD是∠BAC的平分线,交⊙O于点D,过B作⊙O的切线交Ad的延长线于点E.(Ⅰ)证明:BD平分∠EBC;(Ⅱ)证明:AE•DC=AB•BE.【考点】相似三角形的判定;与圆有关的比例线段.【专题】计算题;直线与圆.【分析】(1)由BE是⊙O的切线,可得∠EBD=∠BAD,又∠CBD=∠CAD,∠BAD=∠CAD,从而可求∠EBD=∠CBD,即可得解.(2)先证明△BDE∽△ABE,可得,又可求∠BCD=∠DBC,BD=CD,从而可得,即可得解.【解答】解:(1)因为BE是⊙O的切线,所以∠EBD=∠BAD…又因为∠CBD=∠CAD,∠BAD=∠CAD…所以∠EBD=∠CBD,即BD平分∠EBC.…(2)由(1)可知∠EBD=∠BAD,且∠BED=∠BED,有△BDE∽△ABE,所以,…又因为∠BCD=∠BAE=∠DBE=∠DBC,所以∠BCD=∠DBC,BD=CD…所以,…所以AE•DC=AB•BE…【点评】本题主要考查了相似三角形的判定,与圆有关的比例线段的应用,解题时要认真审题,注意圆的切线的性质的灵活运用,属于中档题.[选修4-4:坐标系与参数方程]23.已知曲线C1的极坐标方程是,曲线C2的参数方程是是参数).(1)写出曲线C1的直角坐标方程和曲线C2的普通方程;(2)求t的取值范围,使得C1,C2没有公共点.【考点】参数方程化成普通方程;点的极坐标和直角坐标的互化.【专题】计算题.【分析】(1)把曲线C1的极坐标方程化为直角坐标方程是x2+y2=2,把曲线C2的参数方程化为普通方程是.(2)结合图象,根据直线和圆的位置关系可得,当且仅当时,C1,C2没有公共点,由此求得t的取值范围.【解答】解:(1)曲线C1的直角坐标方程是x2+y2=2,表示以原点(0,0)为圆心,半径等于的圆.曲线C2的普通方程是,表示一条垂直于x轴的线段,包括端点.…(2)结合图象,根据直线和圆的位置关系可得,当且仅当时,C1,C2没有公共点,解得,即t的取值范围为(0,)∪(,+∞).…【点评】本题主要考查把参数方程化为普通方程、把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系的应用,属于基础题.[选修4-5:不等式选讲]24.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|≥m对一切实数x均成立,求m的取值范围.【考点】绝对值不等式的解法.【专题】函数的性质及应用;不等式的解法及应用.【分析】(1)对x讨论,分当x≥4时,当﹣≤x<4时,当x<﹣时,分别解一次不等式,再求并集即可;(2)运用绝对值不等式的性质,求得F(x)=f(x)+3|x﹣4|的最小值,即可得到m的范围.【解答】解:(1)当x≥4时,f(x)=2x+1﹣(x﹣4)=x+5>0,得x>﹣5,所以x≥4成立;当﹣≤x<4时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以1<x<4成立;当x<﹣时,f(x)=﹣x﹣5>0,得x<﹣5,所以x<﹣5成立.综上,原不等式的解集为{x|x>1或x<﹣5};(2)令F(x)=f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9,当﹣时等号成立.即有F(x)的最小值为9,所以m≤9.即m的取值范围为(﹣∞,9].【点评】本题考查绝对值不等式的解法,以及不等式恒成立思想转化为求函数的最值问题,运用分类讨论的思想方法和绝对值不等式的性质是解题的关键.。

2021届全国新高考仿真模拟试题(二)数学(文)(解析版)

2021届全国新高考仿真模拟试题(二)数学(文)(解析版)

∴CD⊥平面
ABD,∴CD
是三棱锥
C
­
ABD
的高,∴VC
­
ABD=13×12×2×2×sin
60°×2=2 3, 3
故选 A.
8.答案:C
解析:由射线测厚技术原理公式得I20=I0e-7.6×0.8μ,∴12=e-6.08μ,-ln 2=-6.08μ,μ≈0.114,
故选 C.
9.答案:C
解析:从题图(1)可以看出,该品牌汽车在 1 月份所对应的条形图最高,即销售量最多,
商品销售 25.0 30.0 34.0 37.0 39.0 41.0 42.0 44.0 48.0 y10
额 y/万元
且已知 错误!i=380.0
(1)求第 10 年的年收入 x10. (2)若该城市居民年收入 x 与该种商品的销售额 y 之间满足线性回归方程y^=363x+^a,
254 (ⅰ)求该种商品第 10 年的销售额 y10; (ⅱ)若该城市居民年收入为 40.0 亿元,估计这种商品的销售额是多少?(精确到 0.01) 附:①在线性回归方程y^=b^x+^a中,b^=错误!,^a=-y -b^-x ;
(1)求轨迹Γ的方程; (2)过点 F 作互相垂直的直线 AB 与 CD,其中直线 AB 与轨迹Γ交于点 A,B,直线 CD 与轨迹Γ交于点 C,D,设点 M,N 分别是 AB 和 CD 的中点,求△FMN 的面积的最小值.
-5-
21.(12 分)[2020·安徽省示范高中名校高三联考]函数 f(x)=aex+x2-ln x(e 为自然对数的底数,a 为常 数),曲线 f(x)在 x=1 处的切线方程为(e+1)x-y=0.
于 8 月份,所以该公司 7 月份汽车的总销售量比 8 月份少,所以选项 C 是错误的;从题图(1)

2023年新高考数学临考题号押题第2题 复数(新高考)(解析版)

2023年新高考数学临考题号押题第2题 复数(新高考)(解析版)

押新高考卷2题


考点3年考题
考情分析
复数
2022年新高考Ⅰ卷第2题2022年新高考Ⅱ卷第2题
2021年新高考Ⅰ卷第2题2021年新高考Ⅱ卷第1题2020年新高考Ⅰ卷第2题2020年新高考Ⅱ卷第2题
高考对复数知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练复数基础知识点,包括复数的代数形式,复数的实部与虚部,共轭复数,复数模长,复数的几何意义及四则运算.纵观近几年的新高考试题,均以复数的四则运算为切入点,考查复数的四则运算、共轭复数及几何意义.可以预测2023年新高考命题方向将继续围绕复数的四则运算为背景展开命题.
1.虚数单位:i ,规定12-=i
2.虚数单位的周期4
=T 3.复数的代数形式:Z=(),a bi a b R +∈,a 叫实部,b 叫虚部4.复数的分类
⎪⎪⎪⎩
⎪⎪⎪⎨
⎧⎩⎨⎧=≠≠⎩⎨⎧===+=000
00
00
a b b b a b bi a z 纯虚数:虚数::实数:5.复数相等:,,21di c Z bi a Z +=+=若则,21Z Z =d
b c a ==,6.共轭复数:若两个复数的实部相等,而虚部是互为相反数时,这两个复数叫互为共轭复数;
(),,z a bi z a bi a b R =+=-∈,
()()()2
22
22
2b a z z b a bi a bi a bi a z z +=⋅+=-=-+=⋅结论:推广:7.复数的几何意义:复数(),z a bi a b R =+∈←−−−→一一对应
复平面内的点(,)
Z a b
8.复数的模:()R b a bi a Z ∈+=,,
则||z a bi =+=;。

2020—2021年新高考总复习数学(文)三校联考模拟试题及答案解析.docx

2020—2021年新高考总复习数学(文)三校联考模拟试题及答案解析.docx

2018届高三三校联考 数学(文科)试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.2.答卷前,考生务必先将自己的班级、姓名、准考证号、座号用5.0mm 黑色签字笔和2B 铅笔分别涂写在答题卡与答题纸上.3.选择题每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑;非选择题直接答在答题纸相应区域,不能答在试卷上;试题不交,请妥善保存,只交答题卡与答题纸. 参考公式:用最小二乘法求线性回归直线方程系数公式xb y a xn xy x n yx x xy y x xb ni ini ii ni ini i i∧∧====∧-=--=---=∑∑∑∑,)())((1221121.球的表面积公式24R S π=,其中R 是球的半径.如果事件B A ,互斥,那么)()()(B P A P B A P +=+;如果事件B A ,对立,那么)(1)(A P B P -=.第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是正确的. 1.已知集合},{},,3{b a B a A ==,若}2{=B A I ,则=B A Y( ) A}3,2{B}4,3{C}3,2,2{D}4,3,2{2.已知复数i 21-=a z ,i 22+=z (i 为虚数单位),若21z z 为纯虚数,则实数a 的值为( )A 4-B 1-C 1D 43.执行如图所示的程序框图,若输入的M 的值为55,则输出的i 的值为( ) A 3B 4C 5D 64.设∈b a ,R ,则“b a <”是“0)(2<-a b a ” 的( )A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件5.已知具有线性相关关系的两个变量y x ,之间的一组数据如下:且回归直线方程为6.2+=x b y ,根据模型预报当6=x 时,y 的预测值为( )A 76.5B 8.6C 3.8D 46.86.函数2cos )(x xx f π=的图象大致是()A BCD7.已知函数⎪⎩⎪⎨⎧≥<+=2,)31(,2),2()(x x x f x f x,则)5log 1(3+-f 的值为( )A151B 35C 15D328.某几何体的三视图如图所示,则该几何体外接球的表面积为( )侧视图俯视图•Aπ34 Bπ332C π4D π169.已知函数)(x f 是定义在R 上的可导函数,)('x f 为其导函数,若对于任意实数x ,都有)()('x f x f >,其中e 为自然对数的底数,则()A )2016()2015(e f f >B )2016()2015(e f f <C)2016()2015(e f f =D)2015(e f 与)2016(f 大小关系不确定10.对于两个平面向量b a ,,定义它们的一种运算:θsin ||||b a b a ⋅=⊗(其中θ为向量,的夹角),则关于这种运算的以下结论中,不恒成立的是( ) A⊗=⊗B 若0=⊗b a ,则b a //C ⊗+⊗=⊗+)(D 若),(),,(2211y x y x ==,则||1221y x y x -=⊗第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.函数21)1ln(1)(x x x f -++=的定义域为________.12.若直线)0,0(2>>=-b a by ax 过圆012422=++-+y x y x 的圆心,则ab 的最大值为________. 13.设△ABC 的内角CB A ,,的对边分别为cb a ,,,若BA C a sin 2sin 3,41cos ,4=-==,则=c ________.14.某企业生产甲、乙两种产品均需用B A ,两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.15.抛物线)0(2:21>=p x p y C 的焦点与双曲线13:22=-y x C 的右焦点的连线交1C 于第一象限的点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则=p ________.三、解答题:本大题共6个小题,共75分.16.(本小题满分12分)某市为庆祝北京夺得2022年冬奥会举办权,围绕“全民健身促健康、同心共筑中国梦”主题开展全民健身活动.组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组)30,20[,第2组)40,30[,第3组)50,40[,第4组)60,50[,第5组]70,60[,得到的频率分布直方图如图所示. (Ⅰ)若电视台记者要从抽取的群众中选1人进行采访,估计被采访人恰好在第1组或第4组的概率;(Ⅱ)已知第1组群众中男性有3名,组织方要从第1组中随机抽取2名群众组成志愿者服务队,求至少有1名女性群众的概率.17.(本小题满分12分)已知函数)0(21cos cos sin 3)(2>-+⋅=ωωωωx x x x f 的两条相邻对称轴之间的距离为2π.(Ⅰ)求ω的值;(Ⅱ)将函数)(x f 的图象向左平移6π个单位,再将所得函数的图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数)(x g y =的图象,若函数k x g y -=)(在区间]32,6[ππ-上存在零点,求实数k 的取值范围..0.0.0.018.(本小题满分12分)如图,在三棱柱111C B A ABC -中,1111C A B A =,点E D ,分别是1111,B A C B 的中点,11===BD AB AA ,ο601=∠AB A .(Ⅰ)求证://1AC 平面BD A 1; (Ⅱ)求证:平面BDE ⊥平面111C B A .19.(本小题满分12分)已知等比数列}{n a 的前n 项和为n S ,32,01=>a a n ,且4321,1,3a a a -成等差数列.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足1)1(log 13=-⋅+n n S b ,求满足方程100950413221=++++n n b b b b b b Λ的正整数n 的值.20.(本小题满分13分)已知函数)0(21ln )2()(≤++-=a ax x x a x f .(Ⅰ)当0=a 时,求)(x f 的极值; (Ⅱ)当0<a 时,讨论)(x f 的单调性; (Ⅲ)若对于任意的)2,(],3,1[,21--∞∈∈a x x 都有3ln 2)3ln (|)()(|21-+<-a m x f x f ,求实数m 的取值范围.21.(本小题满分14分)已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为21,它的四个顶点构成的四边形的面积为34.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆C 的右焦点为F ,过F 作两条互相垂直的直线21,l l ,直1C1B1ACBA DE线1l 与椭圆C 交于Q P ,两点,直线2l 与直线4 x 交于N 点. (i )求证:线段PQ 的中点在直线ON 上;(ii )求||||FN PQ 的取值范围.数学(文科)参考答案及评分标准说明:1.本解答仅给出了一种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容参照评分标准标准酌情赋分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题共10小题,每小题5分,共50分. 1.【答案】D . 【解析】由}2{=B A I得B A ∈∈2,2,所以2,2==b a ,所以}2,4{},2,3{==B A ,所以}4,3,2{=B A Y .故选D .【考点】元素与集合关系、集合运算. 2.【答案】C . 【解析】由题意可得,i 54522i 2i 221+--=+-=a a a z z ,因为21z z 为纯虚数,所以054,0522≠+-=-a a ,所以1=a .故选C .【考点】复数的概念、复数的代数运算.3.【答案】D .【解析】执行程序框图,第一次2,551102=<=+⨯=i N ,第二次3,554212=<=+⨯=i N ,第三次4,5511342=<=+⨯=i N ,第四次5,55264112=<=+⨯=i N ,第五次6,55575262=>=+⨯=i N ,所以输出的i 的值为6.故选D .【考点】程序框图输出结果. 4.【答案】B .【解析】由题意可得,“0)(2<-a b a ”等价于“0,02><-a b a 或0,02<>-a b a ”,即“0,0≠<-a b a ” ,所以“b a <”是“0)(2<-a b a ” 的必要不充分条件.故选B .【考点】充要条件、不等式性质. 5.【答案】C . 【解析】由题意可得,2)43210(51=++++⨯=x ,5.4)7.68.45.43.42.2(51=++++⨯=y ,因为回归直线一定过样本点的中心),(y x ,所以6.225.4+⨯=∧b ,解得95.0=∧b .当6=x 时,y 的预测值为3.86.2695.0=+⨯.故选D .【考点】线性回归直线方程、预测值. 6.【答案】B .【解析】由题意可得,)(cos )()(cos )(22x f x xx x x f ==--=-ππ,所以)(x f 为偶函数,)(x f 的图象关于y 轴对称,可排除答案A 、C ;当1=x 时,01cos )1(<-==πf ,可排除D .故选B .【考点】函数的图象与性质. 7.【答案】A . 【解析】由题意可得,135log 5log 1033<=+-<,所以315log 25log 1233<=++-<,所以151)3()31()15(log )25log 1()5log 1(115log 15log 33333====++-=+--f f f .故选A .【考点】函数值、指对运算. 8.【答案】D .【解析】由三视图可知,该几何体是底面半径为3,高为1的圆锥.设其外接球的半径为R ,则222)3()1(=--R R ,解得2=R ,所以该几何体外接球的表面积为πππ1624422=⨯==R S .故选D .【考点】三视图、组合体体积. 9.【答案】A . 【解析】构造函数∈=x x f x F x ,e )()(R ,)(x F 的导函数x x x x x f x f x f x f x F e )()()e ()e )((e )()('2'''-=-=.因为)()('x f x f >,0e >x ,所以0)('<x F ,)(x F 在R 上是减函数,所以20162015e )2016()2016(e )2015()2015(f F f F =>=,所以)2016()2015(e f f >.故选A .【考点】抽象函数单调性、比较大小. 10.【答案】C .【解析】因为θsin ||||b a b a ⋅=⊗,所以3R1-R1⊗=⋅=⋅=⊗θθsin ||||sin ||||,选项A 恒成立.当,≠,0sin ||||=⋅=⊗θ时,0sin =θ,所以0=θ或πθ=,所以//;当=或0=b 时,b a //恒成立,选项B 恒成立.θsin ||||⋅=⊗θ2cos 1||||-⋅=2||||⋅===212212212122222121)()())((y x y x y y x x y x y x -=+-++=||1221y x y x -=,选项D 恒成立.当⊥⊥=+===,,,1||||||时,20)(=⊗+⊗≠=⊗+c b c a c b a ,选项C 不恒成立.故选C .【考点】新定义、数量积.编者注:本题中,,在印刷体中用黑体..来表示。

2020-2021学年度山东省济宁市高考第二次模拟文科数学试题及答案

2020-2021学年度山东省济宁市高考第二次模拟文科数学试题及答案

济宁市高三模拟考试文科数学试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写到答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带不按以上要求作答的答案无效.第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的.1.设复数z 满足1z i z=+(i 为虚数单位),则z = A .1122i + B .1122i -+ C .1122i -- D .1122i - 2.设集合(){}11ln 2,,22x A x y x B x A B ⎧⎫⎪⎪⎛⎫==-=>⋂=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭则 A .{}1x x <- B .{}2x x < C .{}12x x -<< D .{}2x x -1<≤ 3.在某次测量中得到的甲样本数据如下:22,23,26,32,22,30,若乙样本数据恰好是甲样本数据都减3后所得数据,则甲,乙两个样本的下列数字特征对应相同的是A .平均数B .标准差C .众数D .中位数4.各项均为正数的等比数列{}n a 的前n 项和为23356,6,64=n S a a a a S +=⋅=则A .31B .32C .63D .645.已知12F F 、分别为双曲线()222210x y a b a b-=>0,>的左、右焦点,过点1F 且与双曲线实轴垂直的直线与双曲线的两条渐近线相交于A 、B 两点,当2F AB ∆为等腰直角三角形时,此双曲线的离心率为A 2B 3C .2D 56.已知函数()()()()2sin 00x f x e x f x f =+,则在点,处的切线方程为 A .10x y +-= B .10x y ++= C .310x y -+= D .310x y --=7.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,若将()f x 图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数()g x 的图象,则()g x 的解析式为A .()2sin 6g x x π⎛⎫=+⎪⎝⎭ B .()2sin 12g x x π⎛⎫=+ ⎪⎝⎭ C .()2sin 46g x x π⎛⎫=+⎪⎝⎭ D .()2sin 43g x x π⎛⎫=+ ⎪⎝⎭8.函数()2ln 22e xf x x -=-的图象可能是9.下列程序框图最终输出的结果S 为A .910B .1011 C .9D .1010.某几何体的三视图如图所示,则该几何体的表面积为A .1823+B .1842+C .142342++D .182342++11.已知函数()f x 是定义在R 上的奇函数且满足()()201f x f x x -=<≤,当时,()1x f x e x =-,则函数()(]23y f x =-在,上的零点个数是 A .7 B .8 C .9D .10 12.斜率为k 的直线l 过抛物线()220C y px p =>:的焦点F 且与抛物线C 相交于A ,B 两点,线段AB 的垂直平分线交x 轴于点E ,若8,=AB EF =则A .2B .4 C.8 D. 16第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()()2,1,4,,//a b m a b =-=若,则实数m= ▲ . 14.已知实数,x y 满足约束条件2020,220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩则11y z x +=+的最小值为 ▲ . 15.已知直线3410x y -+=与圆C :2284170x y x y +--+=相交于A 、B 两点,则AB AC ⋅u u u r u u u r = ▲ 16.已知数列{}{},n n a b 均为公差为1的等差数列,其首项11111,4,a b a b a +=满足且1b N *∈设()n n a c b n N *=∈,则数列{}n c 的前10项和为 ▲ .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)在△ABC 中,内角A ,B ,C 所对的边分别为,,a b c ,且()sin sin sin b B a A b c C -=-.(I)求角A 的大小;(Ⅱ)若6,33a b c ABC =+=∆,求的面积.18.(本小题满分12分)如图,在三棱柱111ABC A B C -中,侧棱1BB ⊥底面ABC ,D ,E 分别为BC ,CC 1的中点,12,3AA AC AB BC ====.(I)证明:1//A B 平面1ADC ;(Ⅱ)求三棱锥1E A BC -的体积.19.(本小题满分12分)某企业为提高生产效率,决定从全体职工中抽取60名男性职工,40名女性职工进行技术培训,培训结束后,将他们的考核分数分成4组:[60,70),[70,80),[80,90),[90,100],分别加以统计,得到如图所示的频率分布直方图:(I)若从考核分数[]90,100内随机抽取2人代表本企业外出比赛,求至少抽到一名女性职工的概率;(Ⅱ)若考核分数不低于80分的定为“技术能手”,请你根据已知条件完成2×2列联表,并判断是否有95%的把握认为“技术能手与职工性别有关”?附()()()()()22n ad bc K a b c d a c b d -=++++20.(本小题满分12分)已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为())123,03,0F F -和,椭圆E 与抛物线26C x y =:的一个交点坐标为13,2⎫⎪⎭. (I)求椭圆E 的标准方程;(Ⅱ)过抛物线C 的焦点的直线l 交椭圆E 于A ,B 两点,求△OAB 面积的最大值(其中O 为坐标原点).21.(本小题满分12分)已知函数()()()2ln ,xe f x x a x a R g x x=-∈=. (I)讨论函数()f x 的单调性;(Ⅱ)当2a =时,证明:()()g x f x >.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xoy 中,曲线121cos :4sin x C x y C y αα=+⎧+=⎨=⎩,曲线:(α为参数),过坐标原点O 的直线l 交曲线1C 于点A ,交曲线2C 于点B(点B 不是原点).(I)以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,写出曲线1C 和2C 的极坐标方程; (Ⅱ)求OB OA 的最大值.23.[选修4—5:不等式选讲](本小题满分10分)设函数()21f x x =-.(I)设()()15f x f x ++<的解集为A ,求集合A ;(Ⅱ)已知m 为(I)中集合A 中的最大整数,且a b c m ++=(其中,,a b c 为正实数), 求证:1118a b c a b c---⋅⋅≥.。

2020-2021学年(全国ⅲ卷)普通高等学校招生全国统一仿真模拟试题数学(文)试题(含解析)

2020-2021学年(全国ⅲ卷)普通高等学校招生全国统一仿真模拟试题数学(文)试题(含解析)

普通高等学校招生全国统一考试试题文科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(A ){48},(B ){026},, (C ){02610},,,(D ){0246810},,,,, 【答案】C 【解析】试题分析:依据补集的定义,从集合}10,8,6,4,2,0{=A 中去掉集合}8,4{=B ,剩下的四个元素为10,6,2,0,故}10,6,2,0{=B C A ,故应选答案C 。

(2)若43i z =+,则||zz = (A )1 (B )1-(C )43+i55 (D )43i55-【答案】D 【解析】试题分析:因i z 34+=,则其共轭复数为i z 34-=,其模为534|34|||22=+=+=i z ,故i z z 5354||-=,应选答案D 。

(3)已知向量BA →=(12,32),BC →=(32,12),则∠ABC=(A )30° (B )45°(C)60°(D)120°【答案】A(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个【答案】D【解析】试题分析:从题设中提供的信息及图中标注的数据可以看出:深色的图案是一年十二个月中各月份的平均最低气温,稍微浅一点颜色的图案是一年十二个月中中各月份的平均最高气温,故结合所提供的四个选项,可以确定D 是不正确的,因为从图中可以看出:平均最高气温高于20C 0只有7、8两个月份,故应选答案D 。

2020-2021学年最新高考总复习数学(文)第三次高考模拟训练试题及答案解析一

2020-2021学年最新高考总复习数学(文)第三次高考模拟训练试题及答案解析一

最新高考数学三模试卷(文科)一、选择题1.设集合A={x|x (x ﹣3)<0},B={x|x ﹣2≤0},则A ∩B=( )A .(0,2]B .(0,2)C .(0,3)D .[2,3)2.设z 满足i (1+z )=2+i ,则|z|=( )A .B .C .2D .13.设命题p :∀x >0,xe x >0,则¬p 为( )A .∀x ≤0,xe x ≤0B .∃x 0≤0,x 0e x0≤0C .∀x >0,xe x ≤0D .∃x 0>0,x 0e x0≤04.从3名男生和2名女生中任意推选2名选手参加辩论赛,则推选出的2名选手恰好是1男1女的概率是( )A .B .C .D .5.如图所示的程序框图的算法思路源于我国古代数字著作《数书九章》,称为“秦九韶算法”.执行该程序框图,若输入x=2,n=5,则输出的v=( )A .26B .48C .57D .646.一个圆柱挖去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积等于( )A .39πB .48πC .57πD .63π7.已知x ,y 满足约束条件,则的最大值是( )A .﹣2B .﹣1C .D .28.已知函数f (x )=Asin (ωx+φ)(A >0,ω>0)的图象与直线y=b (0<b <A )相交,其中一个交点P 的横坐标为4,若与P 相邻的两个交点的横坐标为2,8,则函数f (x )( )A .在[0,3]上是减函数B .在[﹣3,0]上是减函数C .在[0,π]上是减函数D .在[﹣π,0]上是减函数9.设函数f (x )=e x +ax 在(0,+∞)上单调递增,则实数a 的取值范围为( )A .[﹣1,+∞)B .(﹣1,+∞)C .[0,+∞)D .(0,+∞)10.正三棱柱的底面边长为,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为( )A .4πB .8πC .12πD .16π11.已知定义在R 上的函数f (x )是奇函数,且f (x )在(﹣∞,0)上是减函数,f (2)=0,g (x )=f (x+2),则不等式xg (x )≤0的解集是( )A .(﹣∞,﹣2]∪[2,+∞)B .[﹣4,﹣2]∪[0,+∞)C .(﹣∞,﹣4]∪[﹣2,+∞)D .(﹣∞,﹣4]∪[0,+∞)12.已知抛物线C :y 2=2px (p >0)的焦点为F ,点A ,B 在C 上,且点F 是△AOB 的重心,则cos ∠AFB 为( )A .﹣B .﹣C .﹣D .﹣二、填空题13.若和是两个互相垂直的单位向量,则|+2|=_______.14.已知α为锐角,cos α=,则sin (﹣α)=_______.15.在△ABC 中,∠A ,∠B ,∠C 所对的边长分别是x+1,x ,x ﹣1,且∠A=2∠C ,则△ABC 的周长为_______.16.已知圆C :(x ﹣a )2+y 2=1(a >0),过直线l :2x+2y+3=0上任意一点P 作圆C 的两条切线PA ,PB ,切点分别为A ,B ,若∠APB 为锐角,则a 的取值范围为_______.三、解答题17.设S n 是数列{a n }的前n 项和,且S n =2a n ﹣1.(1)证明:数列{a n }是等比数列;(2)求数列{na n }的前n 项和T n .18.在四棱锥P ﹣ABCD 中,底面ABCD 是菱形,AB=2,∠BAD=60°,PC ⊥BD .(1)证明:PB=PD ;(2)若平面PBD ⊥平面ABCD ,且∠DPB=90°,求点B 到平面PDC 的距离.19.PM2.5是指空气中直径小于或等于2.5微米的细颗粒物,它对人体健康和大气环境质量的影响很大.2012年2月,中国发布了《环境空气质量标准》,开始大力治理空气污染.用x=1,2,3,4,5依次表示2013年到2017年这五年的年份代号,用y 表示每年3月份的PM2.5指数的平均值(单位:μg/m 3).已知某市2013年到2016年每年3月份PM2.5指数的平均值的折线图如图:(1)根据折线图中的数据,完成表格:年份2013 2014 2015 2016年份代号(x) 1 2 3 4PM2.5指数(y)(2)建立y关于x的线性回归方程;(3)在当前治理空气污染的力度下,预测该市2017年3月份的PM2.5指数的平均值.附:回归直线方程=x+中参数的最小二乘估计公式;=, =﹣.20.已知椭圆C: +=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的两个焦点为顶点的三角形的周长为6.(1)求椭圆C的方程;(2)设过点C的左焦点F的直线l交C于A,B两点,是否存在常数λ,使||=λ•恒成立,若存在,求出λ的值;若不存在,请说明理由.21.已知函数f(x)=+b在x=1处的切线方程为x+y﹣3=0.(1)求a,b.(2)证明:当x>0,且x≠1时,f(x)>.[选修4-1:几何证明选讲]22.如图,E为⊙O上一点,点A在直径BD的延长线上,过点B作⊙O的切线交AE的延长线于点C,CE=CB.(1)证明:AE2=AD•AB.(2)若AE=4,CB=6,求⊙O的半径.[选修4-4:坐标系与参数方程选讲]23.已知曲线C的极坐标方程是ρsin2θ﹣8cosθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在直角坐标系中,倾斜角为α的直线l过点P(2,0).(1)写出曲线C的直角坐标方程和直线l的参数方程;(2)设点Q和点G的极坐标分别为(2,),(2,π),若直线l经过点Q,且与曲线C 相交于A,B两点,求△GAB的面积.[选修4-5:不等式选讲]24.已知函数f(x)=.(1)求函数f(x)的值域;(2)若函数f(x)的值域是[m,n],且a2+b2=m,c2+d2=n,求ac+bd的取值范围.参考答案与试题解析一、选择题1.设集合A={x|x (x ﹣3)<0},B={x|x ﹣2≤0},则A ∩B=( )A .(0,2]B .(0,2)C .(0,3)D .[2,3)【考点】交集及其运算.【分析】求出A 与B 中不等式的解集分别确定出A 与B ,找出两集合的交集即可.【解答】解:由A 中不等式解得:0<x <3,即A=(0,3),由B 中不等式解得:x ≤2,即B=(﹣∞,2],则A ∩B=(0,2],故选:A .2.设z 满足i (1+z )=2+i ,则|z|=( )A .B .C .2D .1【考点】复数求模.【分析】根据复数的四则运算求出z ,然后利用复数的模长公式进行求解即可.【解答】解:由i (1+z )=2+i ,得1+z==1﹣2i ,则z=﹣2i ,则|z|=2,故选:C3.设命题p :∀x >0,xe x >0,则¬p 为( )A .∀x ≤0,xe x ≤0B .∃x 0≤0,x 0e x0≤0C .∀x >0,xe x ≤0D .∃x 0>0,x 0e x0≤0【考点】命题的否定.【分析】根据全称命题的否定是特称命题进行判断.【解答】解:命题是全称命题,则命题的否定是特称命题,则¬p :∃x 0>0,x 0e x0≤0,故选:D4.从3名男生和2名女生中任意推选2名选手参加辩论赛,则推选出的2名选手恰好是1男1女的概率是( )A .B .C .D .【考点】古典概型及其概率计算公式.【分析】本题是一个等可能事件的概率,试验发生所包含的事件数是C 52种结果,满足条件的事件是抽到的2名学生恰好是1男1女,有C 31C 21,进而得到概率.【解答】解:从3名男生和2名女生中任意推选2名选手参加辩论赛,共有C 52=10种选法, 选出的2名选手恰好是1男1女有C 31C 21=6种,故推选出的2名选手恰好是1男1女的概率是=,故选:C .5.如图所示的程序框图的算法思路源于我国古代数字著作《数书九章》,称为“秦九韶算法”.执行该程序框图,若输入x=2,n=5,则输出的v=( )A.26 B.48 C.57 D.64【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,可得答案.【解答】解:模拟程序的运行,可得x=2,n=5,v=1,k=2执行循环体,v=4,k=3满足条件k<5,执行循环体,v=11,k=4满足条件k<5,执行循环体,v=26,k=5不满足条件k<5,退出循环,输出v的值为26.故选:A.6.一个圆柱挖去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积等于()A.39π B.48π C.57π D.63π【考点】由三视图求面积、体积.【分析】根据三视图可知该几何体是:一个圆柱在上底面挖去了一个同底等高的圆锥,由三视图求出几何元素的长度,由圆柱、圆锥的侧面积公式求出剩余部分的表面积.【解答】解:根据三视图可知该几何体是:一个圆柱在上底面挖去了一个同底等高的圆锥,且圆柱底面圆的半径为3,母线长是4,则圆锥的母线长是=5,∴剩余部分的表面积S=π×32+2π×3×4+π×3×5=48π,故选:B.7.已知x,y满足约束条件,则的最大值是()A.﹣2 B.﹣1 C.D.2【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用直线的斜率公式,结合数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图,则的几何意义是区域内的点到原点的斜率,由图象知OA的斜率最大,由得,即A(2,4),此时的最大值是,故选:D8.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)相交,其中一个交点P的横坐标为4,若与P相邻的两个交点的横坐标为2,8,则函数f(x)()A.在[0,3]上是减函数B.在[﹣3,0]上是减函数C.在[0,π]上是减函数D.在[﹣π,0]上是减函数【考点】正弦函数的图象.【分析】先根据正弦函数的图象的对称性可得函数f(x)的图象的相邻的两条对称轴分别为x=3和x=6,且函数f(x)在[3,6]上单调递减,故f(x)在[0,3]上是增函数,在[﹣3,0]上是减函数,从而得出结论.【解答】解:∵函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)相交,其中一个交点P的横坐标为4,若与P相邻的两个交点的横坐标为2,8,则函数f(x)的图象的相邻的两条对称轴分别为x=3和x=6,且函数f(x)在[3,6]上单调递减,故f(x)在[0,3]上是增函数,在[﹣3,0]上是减函数,故选:B.9.设函数f(x)=e x+ax在(0,+∞)上单调递增,则实数a的取值范围为()A.[﹣1,+∞)B.(﹣1,+∞)C.[0,+∞)D.(0,+∞)【考点】利用导数研究函数的单调性.【分析】函数f(x)=e x+ax在区间(0,+∞)上单调递增⇔函数f′(x)=e x+a≥0在区间在区间(0,+∞)上成立.(0,+∞)上恒成立⇔a≥[﹣e x]min【解答】解:f′(x)=e x+a,∵函数f(x)=e x+ax在区间(0,+∞)上单调递增,∴函数f′(x)=e x+a≥0在区间(0,+∞)上恒成立,∴a≥[﹣e x]在区间(0,+∞)上成立,min∵在区间(0,+∞)上﹣e x<﹣1,∴a≥﹣1,故选:A.10.正三棱柱的底面边长为,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为()A.4πB.8πC.12π D.16π【考点】球的体积和表面积.【分析】根据正三棱柱的对称性,它的外接球的球心在上下底面中心连线段的中点.再由正三角形的性质和勾股定理,结合题中数据算出外接球半径,用球表面积公式即可算出该球的表面积.【解答】解:设三棱柱ABC﹣A′B′C′的上、下底面的中心分别为O、O′,,根据图形的对称性,可得外接球的球心在线段OO′中点O1∵OA=AB=1,OO=AA′=11A=∴O1因此,正三棱柱的外接球半径R=,可得该球的表面积为S=4πR2=8π故选:B.11.已知定义在R上的函数f(x)是奇函数,且f(x)在(﹣∞,0)上是减函数,f(2)=0,g(x)=f(x+2),则不等式xg(x)≤0的解集是()A.(﹣∞,﹣2]∪[2,+∞)B.[﹣4,﹣2]∪[0,+∞)C.(﹣∞,﹣4]∪[﹣2,+∞)D.(﹣∞,﹣4]∪[0,+∞)【考点】奇偶性与单调性的综合.【分析】由题意可得g(x)关于点(﹣2,0)对称,g(0)=f(2)=0,g(﹣4)=f(﹣2)=0,画出g(x)的单调性示意图,数形结合求得不等式xg(x)≤0的解集.【解答】解:由题意可得g(x)的图象是把f(x)的图象向左平移2个单位得到的,故g(x)关于点(﹣2,0)对称,g(0)=f(2)=0,g(﹣4)=f(﹣2)=0,它的单调性示意图,如图所示:根据不等式xg(x)≤0可得,x的符号和g(x)的符号相反,∴xg(x)≤0的解集为(﹣∞,﹣4]∪[﹣2,+∞),故选:C.12.已知抛物线C:y2=2px(p>0)的焦点为F,点A,B在C上,且点F是△AOB的重心,则cos∠AFB为()A.﹣ B.﹣ C.﹣D.﹣【考点】抛物线的简单性质.【分析】设A(m,)、B(m,﹣),则=,p=,可得A的坐标,求出AF,利用二倍角公式可求.【解答】解:由抛物线的对称性知,A、B关于x轴对称.设A(m,)、B(m,﹣),则=,∴p=.∴A(m, m),∴AF=m,∴cos∠AFB==,∴cos∠AFB=2cos2∠AFB﹣1=﹣.故选:D.二、填空题13.若和是两个互相垂直的单位向量,则|+2|= .【考点】平面向量数量积的运算.【分析】计算()2,然后开方即可.【解答】解:∵和是两个互相垂直的单位向量,∴,.∴()2==5,∴||=.故答案为:.14.已知α为锐角,cosα=,则sin(﹣α)= .【考点】两角和与差的正弦函数.【分析】由已知利用同角三角函数基本关系式可求sinα,利用特殊角的三角函数值及两角差的正弦函数公式化简所求即可计算得解.【解答】解:∵α为锐角,cosα=,∴sin==,∴sin(﹣α)=sin cosα﹣cos sinα=﹣×=.故答案为:.15.在△ABC中,∠A,∠B,∠C所对的边长分别是x+1,x,x﹣1,且∠A=2∠C,则△ABC 的周长为15 .【考点】余弦定理.【分析】由已知及正弦定理,二倍角的正弦函数公式可得:cosC=,又由余弦定理可得:cosC=,从而可得=,解得x,即可得解三角形的周长.【解答】解:∵∠A,∠B,∠C所对的边长分别是x+1,x,x﹣1,且∠A=2∠C,∴由正弦定理可得:,∴,可得:cosC=,又∵由余弦定理可得:cosC=,∴=,整理即可解得x=5,∴△ABC的周长为:(x+1)+x+(x﹣1)=3x=15.故答案为:15.16.已知圆C:(x﹣a)2+y2=1(a>0),过直线l:2x+2y+3=0上任意一点P作圆C的两条切线PA,PB,切点分别为A,B,若∠APB为锐角,则a的取值范围为(,+∞).【考点】圆的切线方程.【分析】作出直线l和圆C,PA,PB为圆的两条切线,连接AC,BC,PC,由∠APB为锐角,可得0<∠APC<,运用解直角三角形可得可得1<PA恒成立,由勾股定理可得PA2=PC2﹣1,求得PC的最小值,可得PA的最小值,解不等式即可得到所求a的范围.【解答】解:作出直线l和圆C,PA,PB为圆的两条切线,连接AC,BC,PC,由圆心C(a,0)到直线l的距离为d=>>1,可得直线和圆相离.由∠APB为锐角,可得0<∠APC<,即0<tan∠APC<1,在Rt△APC中,tan∠APC==,可得1<PA恒成立,由勾股定理可得PA2=PC2﹣1,当PC⊥l时,PC取得最小值,且为,即有1<,解得a>.故答案为:(,+∞).三、解答题17.设S n 是数列{a n }的前n 项和,且S n =2a n ﹣1.(1)证明:数列{a n }是等比数列;(2)求数列{na n }的前n 项和T n .【考点】数列的求和;等比数列的通项公式.【分析】(1)由S n =2a n ﹣1.可得当n=1时,a 1=2a 1﹣1,解得a 1.当n ≥2时,a n =S n ﹣S n ﹣1,化为:a n =2a n ﹣1.利用等比数列的通项公式即可得出.(2)由(1)可得:a n =2n ﹣1.na n =n •2n ﹣1.利用“错位相减法”与等比数列的前n 项和公式即可得出.【解答】(1)证明:∵S n =2a n ﹣1.∴当n=1时,a 1=2a 1﹣1,解得a 1=1.当n ≥2时,a n =S n ﹣S n ﹣1=2a n ﹣1﹣(2a n ﹣1﹣1),化为:a n =2a n ﹣1.∴数列{a n }是等比数列,首项为1,公比为2.(2)解:由(1)可得:a n =2n ﹣1.na n =n •2n ﹣1.∴数列{na n }的前n 项和T n =1+2×2+3×22+…+n •2n ﹣1,2T n =2+2×22+…+(n ﹣1)•2n ﹣1+n •2n ,∴﹣T n =1+2+22+…+2n ﹣1﹣n •2n =﹣n •2n =(1﹣n )•2n ﹣1,∴T n =(n ﹣1)•2n +1.18.在四棱锥P ﹣ABCD 中,底面ABCD 是菱形,AB=2,∠BAD=60°,PC ⊥BD .(1)证明:PB=PD ;(2)若平面PBD ⊥平面ABCD ,且∠DPB=90°,求点B 到平面PDC 的距离.【考点】点、线、面间的距离计算.【分析】(1)如图所示,连接AC 交BD 于点O ,连接OP .利用菱形的性质可得AC ⊥BD ,利用线面垂直的判定与性质定理可证明BD ⊥PO .又O 是BD 的中点,可得PB=PD .(2)底面ABCD 是菱形,AB=2,∠BAD=60°,可得△PBD 与△BCD 都是等边三角形.由平面PBD ⊥平面ABCD ,平面PBD ∩平面ABCD=BD ,PO ⊥BD .可得PO ⊥平面ABCD ,因此PO ⊥AC ,又AC⊥BD,可建立如图所示的空间直角坐标系.设平面PCD的法向量=(x,y,z),则,利用点B到平面PDC的距离d=即可得出.【解答】(1)证明:如图所示,连接AC交BD于点O,连接OP.∵四边形ABCD是菱形,∴AC⊥BD,又PC⊥BD,且PC∩AC=C,∴BD⊥平面PAC.则BD⊥PO.又O是BD的中点,∴PB=PD.(2)解:底面ABCD是菱形,AB=2,∠BAD=60°,∴△PBD与△BCD都是等边三角形.∵平面PBD⊥平面ABCD,平面PBD∩平面ABCD=BD,PO⊥BD.∴PO⊥平面ABCD,∴PO⊥AC,又AC⊥BD,可建立如图所示的空间直角坐标系.∵∠DPB=90°,PB=PD,BD=2,∴PO=1,∴P(0,0,1),B(1,0,0),D(﹣1,0,0),C(0,,0),=(﹣1,0,﹣1),=(0,,﹣1),=(1,﹣,0),设平面PCD的法向量=(x,y,z),则,∴,取=,则点B到平面PDC的距离d===.19.PM2.5是指空气中直径小于或等于2.5微米的细颗粒物,它对人体健康和大气环境质量的影响很大.2012年2月,中国发布了《环境空气质量标准》,开始大力治理空气污染.用x=1,2,3,4,5依次表示2013年到2017年这五年的年份代号,用y表示每年3月份的PM2.5指数的平均值(单位:μg/m3).已知某市2013年到2016年每年3月份PM2.5指数的平均值的折线图如图:(1)根据折线图中的数据,完成表格:年份2013 2014 2015 2016年份代号(x) 1 2 3 4PM2.5指数(y)(2)建立y关于x的线性回归方程;(3)在当前治理空气污染的力度下,预测该市2017年3月份的PM2.5指数的平均值.附:回归直线方程=x+中参数的最小二乘估计公式;=, =﹣.【考点】线性回归方程.【分析】(1)根据折线图中的数据,完成表格即可;(2)计算线性回归方程中的系数,可得线性回归方程;(3)x=5代入线性回归方程,可得结论.【解答】解:(1)年份2013 2014 2015 2016年份代号(x) 1 2 3 4PM2.5指数(y)90 88 70 64(2)=2.5, =78,(xi ﹣)(yi﹣)=﹣48,=5,==﹣9.6, =﹣=102,∴y关于x的线性回归方程是: =﹣9.6x+102;(3)2017年的年份代号是5,当x=5时, =﹣9.6×5+102=54,∴该市2017年3月份的PM2.5指数的平均值的预测值是54μg/m3.20.已知椭圆C: +=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的两个焦点为顶点的三角形的周长为6.(1)求椭圆C的方程;(2)设过点C的左焦点F的直线l交C于A,B两点,是否存在常数λ,使||=λ•恒成立,若存在,求出λ的值;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)由=,2a+2c=6,a2=b2+c2,联立解出即可得出椭圆C的方程.(2)F(﹣1,0),设A(x1,y1),B(x2,y2).当直线l的斜率不存在时,x1=﹣1,不妨取y1=,可得λ==﹣.当直线l的斜率存在时,设直线l的方程为y=k(x+1),代入椭圆方程整理为:(4k2+3)x2+8k2x+4k2﹣12=0,△>0,利用根与系数的关系可得=,•=(x1+1)(x2+1)+y1y2,计算即可得出.【解答】解:(1)∵=,2a+2c=6,a2=b2+c2,解得a=2,c=1,b2=3.∴椭圆C的方程为=1.(2)F(﹣1,0),设A(x1,y1),B(x2,y2).当直线l的斜率不存在时,x1=﹣1,不妨取y1=,||=3, =, =.•=,则λ===﹣.当直线l的斜率存在时,设直线l的方程为y=k(x+1),则,整理为:(4k2+3)x2+8k2x+4k2﹣12=0,△=64k4﹣4(4k2+3)(4k2﹣12)=122(1+k2)>0,x 1+x2=,x1x2=.==,=(x1+1,y1),=(x2+1,y2)..• =(x1+1)(x2+1)+y1y2=(k2+1)[x1x2+(x1+x2)+1]=,则==﹣.综上所述:可得存在常数λ=﹣,使||=λ•恒成立.21.已知函数f(x)=+b在x=1处的切线方程为x+y﹣3=0.(1)求a,b.(2)证明:当x>0,且x≠1时,f(x)>.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,根据f(1)=2,f′(1)=﹣1,求出a,b的值即可;(2)问题转化为(x﹣﹣2lnx)>0,令g(x)=x﹣﹣2lnx,(x>0),求出g(x)的单调区间,从而证出结论即可.【解答】解:(1)f(x)的定义域是(0,+∞),f(x)=+b,切点是(1,2),∴f(1)=b=2,f′(x)=,∴f′(1)=a=﹣1,故a=﹣1,b=2;(2)证明:由(1)得:f(x)=+2,f(x)>,∴(x﹣﹣2lnx)>0,令g(x)=x﹣﹣2lnx,(x>0),则g′(x)=(x﹣1)2>0,∴g(x)在(0,1)递增,在(1,+∞)递增,∵g(1)=0,∴g(x)>0⇔x>1,g(x)<0⇔0<x<1,∴x>1时, g(x)>0,0<x<1时, g(x)>0,x>0且x≠1时,(x﹣﹣2lnx)>0,∴当x>0,且x≠1时,f(x)>.[选修4-1:几何证明选讲]22.如图,E为⊙O上一点,点A在直径BD的延长线上,过点B作⊙O的切线交AE的延长线于点C,CE=CB.(1)证明:AE2=AD•AB.(2)若AE=4,CB=6,求⊙O的半径.【考点】与圆有关的比例线段.【分析】(1)证明AC是⊙O的切线,根据切割线定理可得:AE2=AD•AB.(2)根据切割线定理求出AD,即可求⊙O的半径.【解答】(1)证明:∵过点B作⊙O的切线交AE的延长线于点C,∴∠CBO=∠CBE+∠OBE=90°.∵CE=CB,OE=OB,∴∠CEB=∠CBE,∠OEB=∠OBE,∴∠CEO=∠CEB+∠OEB=∠CBE+∠OBE=90°,∴CE⊥OE,∵OE是⊙O的半径,∴AC是⊙O的切线,根据切割线定理可得AE2=AD•AB.(2)解:∵CE=CB=6,AE=4,∴AC=10,∴AB=8∵AE2=AD•AB,AE=4,∴42=AD•8,∴AD=2,∴BD=8﹣2=6,∴⊙O的半径为3.[选修4-4:坐标系与参数方程选讲]23.已知曲线C的极坐标方程是ρsin2θ﹣8cosθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.在直角坐标系中,倾斜角为α的直线l过点P(2,0).(1)写出曲线C的直角坐标方程和直线l的参数方程;(2)设点Q和点G的极坐标分别为(2,),(2,π),若直线l经过点Q,且与曲线C相交于A,B两点,求△GAB的面积.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)ρsin2θ﹣8cosθ=0,化为ρ2sin2θ﹣8ρcosθ=0,令,即可得出直角坐标方程.直线l的参数方程为:(t为参数).(2)点Q和点G的极坐标分别为(2,),(2,π),分别化为:Q(0,﹣2),G(﹣2,0).kl=1,倾斜角为,可得直线l的参数方程:(t为参数).将参数方程代入曲线C的方程可得:t2﹣8t﹣32=0,设t1与t2为此方程的两个实数根,可得|AB|=|t1﹣t2|=.点G到直线l的距离d.即可得出S△GAB=|BA|•d.【解答】解:(1)ρsin2θ﹣8cosθ=0,化为ρ2sin2θ﹣8ρcosθ=0,∴直角坐标方程为:y2=8x.直线l的参数方程为:(t为参数).(2)点Q和点G的极坐标分别为(2,),(2,π),分别化为:Q(0,﹣2),G(﹣2,0),kl==1,倾斜角为,直角坐标方程为:y=x﹣2.可得直线l的参数方程:(t为参数).将参数方程代入曲线C的方程可得:t2﹣8t﹣32=0,△=128+4×32>0,设t1与t2为此方程的两个实数根,可得:t1+t2=,t1t2=﹣32.∴|AB|=|t1﹣t2|===16.点G到直线l的距离d==2.∴S △GAB=|BA|•d==16.[选修4-5:不等式选讲]24.已知函数f(x)=.(1)求函数f(x)的值域;(2)若函数f(x)的值域是[m,n],且a2+b2=m,c2+d2=n,求ac+bd的取值范围.【考点】函数的最值及其几何意义.【分析】(1)记g(x)=|x+3|﹣|x﹣1|+5,分类讨论求得g(x)=,从而求值域;(2)由柯西不等式知(a2+b2)(c2+d2)≥(ac+bd)2,从而求取值范围.【解答】解:(1)记g(x)=|x+3|﹣|x﹣1|+5,则g(x)=,故g(x)∈[1,9],故f(x)∈[1,3].(2)由(1)知,a2+b2=1,c2+d2=3,由柯西不等式知,(a2+b2)(c2+d2)≥(ac+bd)2,(当且仅当ad=bc时,取等号;)即(ac+bd)2≤3,故﹣≤ac+bd≤,故ac+bd的取值范围为[﹣,].2016年9月12日。

2020-2021学年山东省高考数学模拟(文)试题及答案解析

2020-2021学年山东省高考数学模拟(文)试题及答案解析

普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð=(A ){2,6}(B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} (2)若复数21iz =-,其中i 为虚数单位,则z =(A)1+i (B)1−i (C)−1+i (D)−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A)56 (B)60 (C)120 (D)140(4)若变量x,y满足2,239,0,x yx yx+≤⎧⎪-≤⎨⎪≥⎩则x2+y2的最大值是(A)4(B)9(C)10(D)12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A)12+π33(B)123(C)123(D)2(6)已知直线a,b分别在两个不同的平面α,b内,则“直线a和直线b相交”是“平面α和平面b相交”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆N :22(1)1x y +-=(-1)的位置关系是(A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A=(A )3π4(B )π3(C )π4(D )π6 (9)已知函数f(x)的定义域为R.当x <0时,f(x)=x 3-1;当-1≤x ≤1时,f(-x)= —f(x);当x >12时,f(x+12)=f(x —12).则f(6)= (A )-2 (B )-1(C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2020—2021年最新高考总复习数学(文)三校联考模拟试题及答案解析.docx

2020—2021年最新高考总复习数学(文)三校联考模拟试题及答案解析.docx

2019年高三校际联合检测文科数学本试卷分第I卷和第Ⅱ卷两部分,共5页。

满分150分。

考试时间120分钟.考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:=V Sh柱体(S是柱体的底面积,h是柱体的高);34=3V Rπ球(R是球的半径)第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z满足11zi=+(i为虚数单位),则复数z的共轭复数z的模为(A)0 (B)1 (C) 2(D)2(2)已知命题:,sin 1p x R ∀∈≤,则p ⌝是 (A),sin 1x R x ∀∈≥(B) ,sin 1x R x ∀∈> (C),sin 1x R ∃∈≥(D),sin 1x R x ∃∈>(3)若集合{}21x A x =>,集合{}ln B x x =>0,则“x ∈A ”是“x ∈B ”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件(4)一个算法的程序框图如图所示,若该程序输出的结果为10,则判断框中应填入的条件是 (A) 3k ≥- (B) 2k ≥- (C) 3k <-(D) 3k ≤-(5)函数()cos x y e x ππ=-≤≤ (其中e 为自然对数的底数)的大致图象为(6)某几何体的三视图如图所不,则该几何体的体积是 (A)43π (B)243π+(C)223π+(D)53π(7)函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移4π个单位后,所得图象与y 轴距离最近的对称轴方程为 (A) 3x π=(B) 6x π=- (C)24x π=-(D)1124x π=(8) ABC ∆三内角A ,B ,C 的对边分别为,,,120a b c A =o ,则()sin 30a C b c--o 的值为(A)12(B)12-(C)32(D)32-(9)已知函数()2016112,01,2log , 1.x x f x x x ⎧--≤≤⎪=⎨⎪>⎩若,,a b c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是(A)(1,2016) (B)[1,2016] (C)(2,2017) (D)[2,2017](10)如图,已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的一条渐近线交于P ,Q两点,若60,3PAQ OQ OP ∠==ou u u r u u u r 且,则双曲线C 的离心率为 (A) 233(B)72(C)396(D) 3第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)将某班参加社会实践的48名学生编号为:l ,2,3,…,48,采用系统抽样的方法从中抽取一个容量为6的样本,已知5号,21号,29号,37号,45号学生在样本中,则样本中还有一名学生的编号是____________.(12)设不等式组0,4,1x y x y x -≤⎧⎪+≤⎨⎪≥⎩表示的平面区域为M ,若直线():2l y k x =+上存在区域M 内的点,则实数k 的取值范围是___________.(13)若,a b R ∈,且满足条件()()22111a b ++-<,则函数()log a b y x +=是增函数的概率是____________.(14)在计算“()12231n n ⨯+⨯+⋅⋅⋅+⨯+”时,某同学发现了如下一种方法: 先改写第k 项:()()()()()111211,3k k k k k k k k +=++--+⎡⎤⎣⎦由此得()1121230123⨯=⨯⨯-⨯⨯,()1232341233⨯=⨯⨯-⨯⨯, ……()()()()()1112113n n n n n n n n +=++--+⎡⎤⎣⎦相加,得()()()112231123n n n n n ⨯+⨯+⋅⋅⋅++=++.类比上述方法,()()12323412n n n ⨯⨯+⨯⨯+⋅⋅⋅+++=_______________________. (结果写成关于n 的一次因式的积......的形式) (15)已知不等式()[]22222201,22x xxxa x --+-+≥∈在时恒成立,则实数a 的取值范围是___________.三、解答题:本大题共6小题,共75分. (16)(本小题满分12分)2016年“五一”期间,高速公路某服务区从七座以下小型汽车中,按进服务区的先后每间隔50辆就抽查一辆进行询问调查.共询问调查40名驾驶员.将他们在某段高速公路的车速(km /h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),得到如图所示的频率分布直方图.(I)求这40辆小型车辆的平均车速(各组数据平均值可用其中间数值代替); (II)若从车速在[60,70)的车辆中任意抽取2辆,求其中车速在[65,70)的车辆中至少有一辆的概率.(17)(本小题满分12分)已知函数()()2cos 23sin cos sin f x x x x a x =-+的一个零点是12π.(I)求函数()f x 的最小正周期;(II)令,64x ππ⎡⎤∈-⎢⎥⎣⎦,求此时()f x 的最大值和最小值. (18)(本小题满分12分)等差数列{}n a 的前n 项和为nS ,数列{}n b 是等比数列,且满足11223,1,10a b b S ==+=,5232a b a -=.(I)求数列{}n a 和数列{}n b 的通项公式;(II)令2,n n nn S c b n ⎧⎪=⎨⎪⎩为奇数,,为偶数,设数列{}n c 的前n 项和为n T ,求2n T .(19)(本小题满分12分)如图,平面ABCD ⊥平面ABEF ,四边形ABCD 是矩形,四边形ABEF 是等腰梯形,其中AB//EF ,AB=2AF ,∠BAF=60°,O ,P 分别为AB ,CB 的中点,M 为△OBF 的重心.(I)求证:平面ADF ⊥平面CBF ; (II)求证:PM //平面AFC .(20)(本小题满分13分)已知函数()()212ln 21xf x f x x+'=+. (I)求函数()f x 在点()()1,1f 处的切线方程;(II)若关于x 的方程()()121,f x a f x e e⎡⎤'=+⎢⎥⎣⎦在上有两个不同的实数根,求实数a的取值范围;(Ⅲ)若存在120x x >>,使()()1122ln ln f x k x f x k x -≤-成立,求实数k 的取值范围.(21)(本小题满分14分)如图,A(2,0)是椭圆()222210x y a a a b +=>>长轴右端点,点B ,C 在椭圆上,BC过椭圆O ,0,,,AC BC OC AC M N ⋅==u u u u r u u u u r u u u r u u u r为椭圆上异于A ,B 的不同两点,MCN∠的角平分线垂直于x 轴. (I)求椭圆方程;(II)问是否存在实数λ,使得MN BA λ=u u u u r u u u r,若存在,求出λ的最大值;若不存在,请说明理由.参考答案及评分标准说明:本标准中的解答题只给出一种解法,考生若用其它方法解答,只要步骤合理,结果正确,准应参照本标准相应评分。

2020-2021学年浙江省杭州市高三高考数学仿真模拟检测试卷12及答案解析

2020-2021学年浙江省杭州市高三高考数学仿真模拟检测试卷12及答案解析

高考模拟试卷 数学(文科)卷本试题卷分选择题和非选择题两部分。

考试时间120分钟,满分150分。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

参考公式: 球的表面积公式 S=42R π 球的体积公式 V=334R π其中R 表示球的半径 锥体的体积公式 V=13Sh其中S 表示锥体的底面积,h 表 示锥体的高 柱体的体积公式 V=Sh其中S 表示柱体的底面积,h 表示柱体的高 台体的体积公式 V=121()3h S S +其中12,S S 分别表示台体的上、下底面积,h 表示台体的高选择题部分一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合}02|{2>-+=x x x A ,}log |{2x y x B ==,则=⋂B A C R )( [原创](A )),2[+∞- (B )]1,0[ (C )),0(+∞ (D ))1,0( 2. 已知a R ∈,则0)2)(1(>--a a 是11>a成立的 [原创] (A )充分不必要条件 (B )必要不充分条件3. 已知βα,是不同的两个平面,b a ,是不同的两条直线,则下列命题中不正确...的是[原创] (A )若α⊥a b a ,//,则α⊥b (B )若βα⊥⊥a a ,,则βα// (C )若βα⊂⊥a a ,,则αβ⊥ (D )若b a =⋂βαα,//,则b a //4. 一个几何体的三视图如右图所示,其中正视图是一个正三 角形,则这个几何体的体积是 [原创] (A )3 (B )33 (C )2 (D )325. 函数)0,0)(2sin(πϕωϕω<<>+=x y 的最小正周期为π, 且函数图像关于点)0,6(π-对称,则函数的解析式为 [原创](A ))32sin(π+=x y (B ))322sin(π+=x y (B ))34sin(π+=x y (D ))324sin(π+=x y 6. 已知椭圆)0(12222>>=+b a by a x 上一点A 关于原点的对称点为B ,F 为其左焦点,AF ^BF ,设6π=∠ABF ,则该椭圆的离心率为 [原创](A )22 (B )33(C )13- (D )231-7. 已知平面向量b a ,,其中b 为非零向量,a 为单位向量,且b 与a b -的夹角为ο150,则||b 的取值范围为 [原创](A ))23,0( (B )]1,0[ (C ))3,0( (D ))1,0( 8. 定义“正对数”:ln +x =⎩⎨⎧0,0<x<1,ln x ,x ≥1.现有四个命题:①若a>0,b>0,则ln +(a b)=bln +a ②若a>0,b>0,则ln +(ab)=ln +a +ln +b ③若a>0,b>0,则ln +⎝ ⎛⎭⎪⎫a b ≥ln +a -ln +b ④若a>0,b>0,则ln +(a +b)≤ln +a +ln +b +ln 2其中的真命题有________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.5kg,乙材料 1kg,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg,乙材料 0.3kg,用 3 个工时,
生产一件产品 A 的利润为 2100 元,生产一件产品 B 的利润为 900 元。该企业现有甲材料 150kg,
乙材料 90kg,则在不超过 600 个工时的条件下,生产产品 A、产品 B 的利润之和的最大值为元。
考点:线面位置关系及几何体体积的结束 (19)(本小题满分 12 分)某公司计划购买 1 台机器,该种机器使用三年后即被淘汰.机器有一易 损零件,在购进机器时,可以额外购买这种零件作为备件,每个 200 元.在机器使用期间,如果备 件不足再购买,则每个 500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理 了 100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
绝密★启封并使用完毕前
普通高等学校招生全国统一考试 文科数学
试题类型:
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷
考点:集合运算
(2) 设 (1 2i)(a i) 的实部与虚部相等,其中 a 为实数,则 a=
(A)-3(B)-2(C)2(D)3 【答案】A 【解析】
试题分析:设 (1 2i)(a i) a 2 (1 2a)i ,由已知,得 a 2 1 2a ,解得 a 3 ,选 A.
考点:复数的概念
考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.
(12)若函数 f (x) x - 1 sin 2x a sin x 在 , 单调递增,则 a 的取值范围是
3
(A)
1,1
(B)
1,
1 3
(C)
1 3
,
1 3
(D)
1,
1 3
【答案】C
【解析】
试题分析: f x 1 2 cos 2x a cos x 0 对 x R 恒成立,
(A)17π (B)18π (C)20π (D)28π
【答案】A
【解析】
试题分析:由三视图知:该几何体是 7 个球,设球的半径为 R ,则 V 7 4 R3 28 ,解得
8
83
3
R 2 ,所以它的表面积是 7 4 22 3 22 17 ,故选 A.
8
4
考点:三视图及球的表面积与体积
角形且 PA 6,可得 DE 2, PE 2 2. 在等腰直角三角形 EFP 中,可得 EF PF 2. 四面
体 PDEF 的体积V 1 1 2 2 2 4 .
32

3
试题解析:(I)因为 P 在平面 ABC 内的正投影为 D ,所以 AB PD.
因为 D 在平面 PAB 内的正投影为 E ,所以 AB DE. 所以 AB 平面 PED ,故 AB PG. 又由已知可得, PA PB ,从而 G 是 AB 的中点.
2
2
y 4x .故选 C
考点:程序框图与算法案例
( 11 ) 平 面 过 正 文 体 ABCD—A1B1C1D1 的 顶 点 A //平面CB1D1 , 平面ABCD m ,
平面ABB1A1 n ,则 m,n 所成角的正弦值为
(A) 3 (B) 2 (C) 3 (D) 1
2
2
3
3
【答案】A
(13)设向量 a=(x,x+1),b=(1,2),且 a b,则 x=.
【答案】 2 3
【解析】
试题分析:由题意, a b 0, x 2(x 1) 0, x 2 . 3
考点:向量的数量积及坐标运算
(14)已知 θ 是第四象限角,且 sin(θ+ π )= 3 ,则 tan(θ– π )=.
bn1
nbn
,.
(I)求an 的通项公式;
(II)求bn 的前 n 项和.
【答案】(I) an
3n
1 (II)
3 2
1 2 3n1
.
考点:等差数列与等比数列 18.(本题满分 12 分)如图,在已知正三棱锥 P-ABC 的侧面是直角三角形,PA=6,顶点 P 在平面 ABC 内的正投影为点 E,连接 PE 并延长交 AB 于点 G. (I)证明 G 是 AB 的中点; (II)在答题卡第(18)题图中作出点 E 在平面 PAC 内的正投影 F(说明作法及理由),并求四面 体 PDEF 的体积.
(III)假设这 100 台机器在购机的同时每台都购买 19 个易损零件,或每台都购买 20 个易损零件,
分别计算这 100 台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买 1 台机器
的同时应购买 19 个还是 20 个易损零件?
【答案】(I)
y
3800, 500x
x 19, (x
3
故1 2 2cos2 x 1 a cos x 0 ,即 a cos x 4 cos2 x 5 0 恒成立,
3
3
3
即 4 t2 at 5 0 对 t 1,1 恒成立,构造 f t 4 t2 at 5 ,开口向下的二次函数
3
3
3
3
f t 的最小值的可能值为端点值,
故只需保证
ON
(II)除 H 以外,直线 MH 与 C 是否有其它公共点?说明理由. 【答案】(I)2(II)没有
考点:直线与抛物线
(21)(本小题满分 12 分)已知函数
.
(I)讨论 的单调性;
(II)若 有两个零点,求 a 的取值范围.
【答案】见解析(II) 0,
【解析】 试题分析:(I)求导,根据导函数的符号来确定,主要要根据导函数零点来分类;(II)借组第一问的
| AB | 2 3, C 到 直 线 y x 2a 的 距 离 为 | 0 a 2a | , 所 以 由 2
(2 3 )2 (| 0 a 2a |)2 a2 2 得 a2 1, 所以圆的面积为 (a2 2) 3 .
2
2
考点:直线与圆
(16)某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料。生产一件产品 A 需要甲材料
频数
24 20 16
10 6
0
16 17 18 19 20 21 更换的易损零件数
记 x 表示 1 台机器在三年使用期内需更换的易损零件数,y 表示 1 台机器在购买易损零件上所需的
费用(单位:元), n 表示购机的同时购买的易损零件数. (I)若 n =19,求 y 与 x 的函数解析式; (II)若要求“需更换的易损零件数不大于 n ”的频率不小于 0.5,求 n 的最小值;
(8)若 a>b>0,0<c<1,则
(A)logac<logbc(B)logca<logcb(C)ac<bc(D)ca>cb
【答案】B
考点:指数函数与对数函数的性质 (9)函数 y=2x2–e|x|在[–2,2]的图像大致为
(A)
(C) 【答案】D
(B) (D)
(10)执行右面的程序框图,如果输入的 x 0, y 1, n=1,则输出 x, y 的值满足 (A) y 2x (B) y 3x (C) y 4x (D) y 5x
离心率为
(A)13(B)12(C)23(D)34
【答案】B
【解析】
试题分析:如图,由题意得在椭圆中, OF c, OB b, OD 1 2b 1 b
4
2
在 RtOFB 中,| OF | | OB || BF | | OD | ,且 a2 b2 c2 ,代入解得
a2 4c2 ,所以椭圆得离心率得: e 1 ,故选 B. 2
开始
n=n+1
输入x,y,n n-1
x=x+ 2 ,y=ny
x2+y2≥36?
输出x,y
结束
【答案】C
【解析】
试题分析:第一次循环: x 0, y 1, n 2 ,
第二次循环: x 1 , y 2, n 3, 2
第三次循环: x 3 , y 6, n 3,此时满足条件 x2 y2 36 ,循环结束, x 3 , y 6 ,满足
【答案】 216000
将 z 2100x 900y 变形,得 y 7 x z ,平行直线 y 7 x ,当直线 y 7 x z 经
3 900
3
3 900
过点 M 时, z 取得最大值.
解方程组
10x 3y 900 5x 3y 600
,得
M
的坐标
(60,100)
.
所以当 x 60 , y 100 时, zmax 2100 60 900100 216000 .
f f
1 1
1 3 1 3
t t
0
,解得 1
0
3
a
1 .故选 C. 3
考点:三角变换及导数的应用
第 II 卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~
第(24)题为选考题,考生根据要求作答.
二、填空题:本大题共 3 小题,每小题 5 分
P
E A
D
C
G
B
【答案】(I)见解析(II)作图见解析,体积为 4 3
【解析】
试题分析:证明 AB PG.由 PA PB 可得 G 是 AB 的中点. (II)在平面 PAB 内,过点 E 作 PB 的平行线交 PA于点 F ,F 即为 E 在平面 PAC 内的正投影.根据 正三棱锥的侧面是直角三
相关文档
最新文档