1电荷守恒定律和库仑定律
电荷守恒定律和库仑定律
电荷守恒定律和库仑定律电荷守恒定律:电荷既不能被创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移的过程中,电荷量保持不变.通过对摩擦起电、接触带电、感应起电等使物体带电的方法的分析发现,在这些使物体带电的方法中电荷都不是被创造出来的,而是电荷在物体之间的或物体的各部分之间发生了转移。
库仑定律:在真空中两点电荷的相互作用力跟它们的电荷量的乘积成正比,跟它们间的距离平方成反比,作用力的方向在它们的连线上. 公式:122Q Q F k r =,其中:1Q 、2Q 为点电荷,r 为两点电荷间距,环境为真空. 一、库仑定律的理解和应用例一、真空中有两个完全相同的小金属球,相距为r ,带电量分别为1Q Q =+,23Q Q =-,它们间的静电力为F .现在将两个小球接触一下,然后放置于相距2r 处,它们间的静电力为F ',则F F ':的值为( )A.2∶1B.4∶1C.8∶1D.12∶1例二、两个半径为0.3 m 的金属球,球心相距1.0 m 放置,当它们都带1.5×10-5 C 的正电时,相互作用力为1F ,当它们分别带51.510C -+⨯和51.510C --⨯的电量时,相互作用力为2F ,则( )A 12.F F =B.12F F <C.12F F >D.无法判断二、库仑定律与带电体平衡例三、一条长为3l 的丝线穿着两个相同的质量均为m 的小金属环A 和B ,将线的两端都系于同一点O ,如图19-1所示.当金属环带电后,由于两环间的静电斥力使丝线构成一等边三角形,此时两环处于同一水平线上.若不计环与丝线的摩擦,两环各带多少电量?例四、如图9—1—13所示,完全相同的金属小球A 和B 带等量异种电荷,中间连接着一个轻质绝缘弹簧,放在光滑绝缘水平面上,平衡时弹簧的压缩量为x 0.现将不带电的与A 、B 完全相同的金属球C 与A 球接触一下,然后拿走,重新平衡后弹簧的压缩量为x ,则图9—1—13A.0x xB.012x x >C.012x x < D 不能确定例五、在真空中同一条直线上的A 、B 两点固定有电荷量分别为+4Q 和-Q 的点电荷。
电磁学知识点总结(一)
电磁学中有三大实验定律:库仑定律,安培定律及法拉第电磁感应定律;并在此基础上,麦克斯韦进行归纳总结,得出了描述宏观电磁学规律的麦克斯韦方程组。
1 电荷守恒与库伦定律1.1 电荷守恒定律摩擦起电和静电感应实验表明,起电过程是电荷从某一物体转移到另一物体的过程。
电荷守恒定律电荷不能被创造,也不能被凭空消失,只能从一个物体转移到另外的物体,或者是从物体的一部分转移到另一部分。
也就是说,在任何物理过程中,电荷代数式守恒的。
在1897年,英国科学家汤姆逊在实验中发现了电子;1907-1913年,美国科学家密立根通过油滴实验,精确测定除了电荷的量值:e =1.602 177 33×10^-19 C。
这表明电子式量子化的。
1.2 库伦定律库伦定律两个静止电荷q1和q2之间的相互作用力大小和与q1与q2的乘积呈正比,和它们之间的距离r的平方呈反比;作用力的方向沿着它们的联线,同号电荷相斥,异号电荷相吸,即:其中,ε0为真空介电常数。
ε0 ≈8. 854187817×10-12 C2 / (N?m2)。
在MKSA单位制中,1库伦定义为:如果导线中有1A的恒定电流,在1s内通过导线横截面的电量为1C,即:1 C=1 A?s。
1.3 电场强度电场强度E 这是一个矢量,表示置于该点的点位电荷所受到的力,是描述电场分布的物理量,即:场强叠加原理由于电场是矢量,服从矢量叠加原理,因此我们可以得出:电荷组所产生的电场在某点的场强等于各点电荷单独存在时所产生的电场为该点场强的矢量叠加。
电场线形象描述电场分布,我们可以引入电场线的概念,利用电场线可以得出较为直观的图像。
1.4 电荷分布为了对概念有更清晰的认识,我们介绍实际带电系统中电荷分布的4种形式:体分布电荷;面分布电荷;线分布电荷及点电荷。
电荷体密度:电荷连续分布于体积V 内,用电荷体密度来描述其分布,即:电荷面密度:若电荷分布在薄层上,当仅考虑薄层外、距薄层的距离要比薄层的厚度大得多处的电场,而不分析和计算该薄层内的电场时,可将该薄层的厚度忽略,认为电荷是面分布。
高中物理必修课《电荷及其守恒定律、库仑定律》知识讲解及考点梳理
高中物理必修课《电荷及其守恒定律、库仑定律》知识讲解及考点梳理【学习目标】1、知道自然界存在两种电荷,理解元电荷和点电荷的概念2、理解摩擦起电和感应起电的实质,知道电荷守恒定律3、了解库仑扭秤的实验原理4、理解库仑定律,并会用库仑定律进行相互作用力的计算【要点梳理】要点一:电荷及电荷守恒定律1、自然界中存在两种电荷要点诠释:(1)两种电荷:自然界中只存在两种电荷,即正电荷和负电荷.我们把用丝绸摩擦过的玻璃棒所带的电荷称为正电荷,用正数表示;把用毛皮摩擦过的硬橡胶棒所带的电荷称为负电荷,用负数表示.(2)自由电子和离子:金属中离原子核较远的电子往往会脱离原子核的束缚而在金属中自由活动,这种电子叫做自由电子,失去电子的原子便成为带正电的离子,简称正离子;得到电子的原子便成为带负电的离子,称为负离子.(3)电荷的性质:①同种电荷相互排斥,异种电荷相互吸引;②任何带电体都能吸引轻小物体2、物体带电的三种方式比较要点诠释:结果由于毛皮的原子核束缚电子的本领比橡胶棒弱,在摩擦过程中由于摩擦力做功使毛皮上的一些电子转移到橡胶棒,橡胶棒得到电子带负电,毛皮失去电子带正电.带电体接触验电器带电体接触验电器时,带电体的部分电荷转移到验电器上,使验电器带电.带电体靠近验电器当带电体靠近验电器时,由于电荷间的相互吸引或排斥,使验电器两端带上等量异种电荷,靠近带电体的一端带异种电荷,远离带电体的一端带同种电荷.注意:感应起电只适用于导体,摩擦起电只适用于绝缘体.因为只有导体的电子才可以自由移动,绝缘体的电子不能自由移动,因此,绝缘体不会发生感应起电.3、电荷守恒定律要点诠释:1.内容电荷既不能创造,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变,这个结论叫做电荷守恒定律.2.电荷守恒定律的另一种表述一个与外界没有电荷交换的系统,电荷的代数和总是保持不变的.4、元电荷(1)电荷量:电荷的多少叫做电荷量,符号:q. 单位:库仑,符号:C.(2)元电荷: 电子所带电荷量是带电体的所带电荷量的最小单元,叫做元电荷,用e表示.要点诠释:(1)所有带电体的电荷量或者等于e ,或者等于e 的整数倍.也就是说,电荷量是不能连续变化的物理量.(2)元电荷的具体数值最早是由密立根用油滴实验测得的.通常情况元电荷e 的值可取作:-191610C e .=⨯(3)比荷:带电粒子的电荷量与质量之比称为比荷.如电子的电荷量e 和电子的质量m e (m e =0.91×10-30kg)之比,叫电子的比荷.1117610C kg ee./m =⨯,可作为物理常量使用. 要点二: 库仑定律真空中两个点电荷之间的相互作用力,跟电荷量的乘积成正比,跟距离的二次方成反比,作用力的方向在它们的连线上.这种作用力叫做静电力,也叫库仑力.公式:122q q F kr = 其中,q 1、q 2为两个电荷的电量,r 为两个电荷中心的距离.k 为静电力恒量,它的数值由选取的单位决定,国际单位制中k=9.0×109 N·m 2/C 2.库仑定律和万有引力定律都遵从二次方反比规律,但人们至今还不能说明它们的这种相似性. 要点诠释:1.适用条件:真空中的点电荷.点电荷也是一个理想化的模型,是一种科学的抽象.当带电体的线度远远小于带电体之间的距离,以致带电体的形状和大小对其相互作用力的影响可以忽略不计,这样的电荷叫点电荷.但在具体问题中,两均匀带电球体或带电球壳之间的库仑作用力可以看成将电荷集中在球心处产生的作用力.提醒:在利用库仑定律122q q F kr=计算库仑力时,从数学角度分析,若两电荷间的距离r →0,F →∞;但在物理上是错误的,因为当r →∞时电荷已经失去了作为点电荷的前提条件,此时库仑定律已不再适用. 2.库仑力是“性质力”:库仑力也叫做静电力,是“性质力”不是“效果力”,它与重力、弹力、摩擦力一样具有自己的特性,同样遵循牛顿第三定律,不要认为电荷量大的对电荷量小的电荷作用力大.在实际应用时,库仑力与其他力一样,对物体的平衡或运动起着独立的作用,受力分析时不能漏掉.3.库仑定律是电磁学的基本定律之一.库仑定律给出的虽然是点电荷间的静电力,但是任何一个带电体都可以看成是由许多点电荷组成的.所以,如果知道带电体上的电荷分布,根据库仑定律和平行四边形定则就可以求出带电体间的静电力的大小和方向. 4.应用库仑定律应注意:(1)统一国际单位:因静电力常量99.010k =⨯N ·m 2/C 2,所以各量要统一到国际单位.(2)计算库仑力时,q 1、q 2可先只代入绝对值求出库仑的大小,再由同种电荷相互排斥、异种电荷相互吸引来判断力的方向.【典型例题】类型一、关于点电荷和元电荷的理解例1、关于元电荷,下列说法中正确的是( )A 、元电荷实质上指电子和质子本身B 、所有带电体的电荷量一定等于元电荷的整数倍C 、元电荷的数值通常取作e =1.6×10-19CD 、电荷量e 的数值最早是由美国科学家密立根用实验测得的【答案】BCD【解析】元电荷实际上是指电荷量,数值是1.6×10-19C,不要误认为元电荷是指具体的电荷,元电荷是电荷量值,没有正负电性的区别,宏观上所有带电体的电荷量只是元电荷的整数倍,元电荷的具体数值最早是由密立根用油滴实验测得的,测量精度相当高.【点评】注意理解元电荷的概念,区别其与电子、质子的不同,同时注意物理学习时也要重视课外阅读,了解有关的物理学史.例2、下面关于点电荷的说法正确的是 ( )A.只有体积很小的带电体才能看成是点电荷B.体积很大的带电体一定不能看成是点电荷C.当两个带电体的大小远小于它们之间的距离时,可将这两个带电体看成是点电荷D.一切带电体都可以看成是点电荷【解析】本题考查对点电荷的理解.带电体能否看做点电荷,和带电体的体积无关,主要看带电体的体积相对所研究的问题是否可以忽略,如果能够忽略,则带电体可以看成是点电荷,否则就不能.【答案】 C【点评】(1)点电荷是只有电荷量,没有大小、形状的理想化模型,它与质点的概念类似,突出了问题的主要因素,为我们研究问题带来了很大的方便.(2)形状与大小对相互作用力的影响很小的实际带电体才可看做点电荷,而与带电体的体积大小无关.类型二、静电感应与验电器的使用例3、如图所示是一个带正电的验电器,当一个金属球A靠近验电器上的金属小球B时,验电器中金属箔片的张角减小,则( )A、金属球A可能不带电B、金属球A一定带正电C、金属球A可能带负电D、金属球A一定带负电【答案】AC【解析】验电器上的金属箔片和金属球都带有正电荷,金属箔片之所以张开,是由于箔片上的正电荷互相排斥造成的.当验电器金属箔片的张角减小时,说明箔片上的正电荷一定比原来减少了.由于金属球A只是靠近验电器而没有与验电器上的金属球B发生接触,要考虑感应起电的影响.当金属球A靠近时,验电器的金属球B、金属杆包括金属箔片整体相当于一个导体,金属球A距金属球B较近,而距金属箔片较远,如果金属球A带正电,验电器上的正电一定向远处移动,则金属箔片上的正电荷量不会减少,所以选项B 是错误的.如果金属球A带负电,验电器上的正电荷会由于静电力作用向近端移动,造成金属箔片上的正电荷量减少,所以选项C是正确的,如果金属球A不带电,由于受到金属球B上正电荷的影响,金属球A 上靠近金属球B的部分也会由于静电力的作用出现负电荷,而这些负电荷反过来会使得验电器上的正电荷向金属球B移动,效果与金属球A带负电荷一样,所以选项A也是正确的,选项D是错误的.【点评】验电器不但可以判断物体是否带电,而且还能演示静电感应现象.了解静电感应现象、区别感应带电与接触带电的不同是分析本题的关键.举一反三【变式1】如图所示,Q是一个绝缘金属导体,把一个带正电的绝缘金属球P移近Q,由于静电感应,A端出现的感应电荷量大小为q A,B端为q B,同下列结论中正确的是( )A 、导体Q 上,q A >qB B 、导体Q 上,q A =q BC 、用手触一下Q 的A 端,拿走P 后Q 带正电D 、用手触一下Q 的B 端,拿走P 后Q 带负电【答案】BD【解析】因为P 带正电,所以Q 上的A 端出现负电荷,受P 的吸引;而在B 端出现正电荷,受P 的排斥.不管用手接触Q 的哪一处都是大地上的负电荷与Q 上的正电荷中和,使Q 带负电,用手接触导体的过程是一个接地过程,导体接地时都是远端(离带电体较远的一端)的电荷入地.静电感应的过程是导体内的电荷重新分布的过程,由此可知q A =q B . 【高清课程:电荷及守恒定律 库仑定律 例题1】【变式2】使带电的金属球靠近不带电的验电器,验电器的箔片张开.下列各图表示验电器上感应电荷的分布情况,正确的是( )【答案】B类型三、关于库仑定律的理解和应用例4、关于库仑定律,下列说法中正确的是 ( )A 、库仑定律适用于点电荷,点电荷其实就是体积很小的球体B 、根据122q q F kr=,当两电荷的距离趋近于零时,静电力将趋向无穷大 C 、若点电荷q 1的电荷量大于q 2的电荷量,则q 1对q 2的静电力大于q 2对q 1的静电力 D 、库仑定律和万有引力定律的表达式相似,都是平方反比定律 【答案】D【解析】点电荷是实际带电体的模型,只有带电体的大小和形状对电荷的作用力影响很小时,实际带电体才能视为点电荷,故A 错;当两个“电点荷”之间的距离趋近于零时,这两个“点电荷”已相对变成很大的带电体,不能再视为点电荷,公式122q q F kr=已不能用于计算此时的静电力,故B 错;q 1和q 2之间的静电力是一对相互作用力,它们的大小相等,故C 错;库仑定律与122m mF G r=的表达式相似,研究和运用的方法也很相似,都是平方反比定律,故D 对.【点评】(1)库仑定律和万有引力定律具有相似的表达式,都是平方反比定律,但它们的适用条件不同;库仑定律只适用于真空中的点电荷,而万有引力定律既适用于两质点间引力大小的计算,又适用于质量分布均匀两球体间引力的计算.(2)库仑力和重力、弹力、摩擦力一样,都具有自己的特性,是“性质力”,同样遵循牛顿运动定律. 举一反三【变式】对于库仑定律,下面说法正确的是( )A 、库仑定律适用于真空中两个点电荷之间的相互作用力B 、两个带电小球即使相距非常近,也能用库仑定律C 、相互作用的两个点电荷,不论它们的电荷量是否相同,它们之间的库仑力大小一定相等D 、当两个半径为r 的带电金属球中心相距为4r 时,对于它们之间的静电作用力大小,只取决于它们各自所带的电荷量 【答案】AC 【解析】由库仑定律的适用条件知,A 正确;两个小球若距离非常近则不能看作点电荷,库仑定律不成立,B 错误;点电荷之间的库仑力属作用力和反作用力,符合牛顿第三定律,故大小一定相等,C 正确;选项D 项中两金属球不能看作点电荷,它们之间的静电力大小不仅与电荷量大小有关,而且与电性有关,若带同种电荷,则在斥力作用下.电荷分布如图(a)所示,若带异种电荷,则在引力作用下电荷分布如图(b)所示,显然带异种电荷相互作用力大,故D 错误.类型四、库仑定律的灵活应用例5、如图甲所示,在A 、B 两点分别放置点电荷Q 1=+2×1410-C 和Q 2=-2×1410-C ,在AB 的垂直平分线上有一点C ,且AB =AC =BC =6×10-2m .如果有一个电子静止在C 点,它所受的库仑力的大小和方向如何?【答案】 8.0×2110-N 方向平行于AB 向左【解析】本题是考查多个带电体同时存在时库仑力的叠加原理.求解关键是正确使用平行四边形法则合成.电子在C 点同时受A 、B 点电荷的作用力F A 、F B ,如图乙所示,由库仑定律122q q F kr =得9141921122229.010210 1.610810(610)A B Q q F F k N N r ----⨯⨯⨯⨯⨯====⨯⨯.由矢量的平行四边形法则和几何知识得:静止在C 点的电子受到的库仑力F =F A =F B =8.0×2110-N ,方向平行于AB 向左.【点评】当多个带电体同时存在时,每两个带电体间的库仑力都遵守库仑定律.某一带电体同时受到多个库仑力作用时可利用力的平行四边形法则求出其合力.这就是库仑力的叠加原理. 举一反三【高清课程:电荷及守恒定律 库仑定律 第15页】【变式1】a 、b 两个点电荷,相距40cm ,电荷量分别为q 1和q 2,且q 1=9q 2,都是正电荷;现引入点电荷c ,这时a 、b 、c 三个电荷都恰好处于平衡状态.试问:点电荷c 的性质是什么?电荷量多大?它放在什么地方?【解析】点电荷c 应为负电荷,否则三个正电荷相互排斥,不可能平衡.由于每一个电荷都受另外两个电荷的作用,三个点电荷只有处在同一条直线上,且c 在a 、b 之间才有可能都平衡.设c 与a 相距x ,则c 、b 相距(0.4-x ),设点电荷c 的电荷量为q 3,根据二力平衡a 平衡:1312220.4q q q q k k x=b 平衡:3212220.4(0.4)q q q q kkx =-c 平衡:132322(0.4)q q q q kkxx =-显然,上述三个方程只有两个是独立的,解方程可得x =30cm (c 在a 、b 连线上,与a 相距30cm ,与b 相距10cm .)321911616q q q ==,即q 1︰q 2︰q 3=1︰19︰116(q 1、q 2为正电荷,q 3为负电荷). 【点评】三个自由电荷平衡的特点是:三点共线,两大夹小,两同夹异,近小远大.【变式2】有3个完全一样的金属小球,A 、B 、C ,A 带电荷量7Q ,B 带电荷量-Q ,C 球不带电,今将A 、B 固定起来,然后让C 反复与A 、B 球接触,最后移去C 球,求A 、B 间的相互作用力变为原来的多少? 【答案】47【解析】 C 与A 、B 反复接触,最后A 、B 、C 三球电荷量均分,即7()23A B C Q Q q q q Q +-'''====, A 、B 间的作用力222224Q Q kQ F k r r ⋅'=⋅=,原来A 、B 间作用力22277Q Q kQ F k r r⋅==, 所以47F F '=.【点评】本题考查电荷守恒定律和库仑定律,库仑力与两个点电荷电荷量间的关系,注意对电荷的转移要全面分析.两个完全相同的带电球体,相互接触后电荷量平分,如果原来两球带异种电荷,则先中和然后再把剩余的电荷量平分.【高清课程:电荷及守恒定律 库仑定律 第6页】【变式3】如图所示,一个半径为R 的圆环均匀带电,ab 为一极小的缺口,缺口长为L (L<<R ),圆环的带电量为Q (正电荷),在圆心处置一带电量为q 的负点电荷,试求负点电荷受到的库仑力.【答案】2(2)LQq F k R L R '=-π 方向由ab 指向圆心.类型五、涉及库仑力的力学综合问题 例6、(2015 浙江高考)如图所示,用两根长度相同的绝缘细线把一个质量为0.1kg 的小球A 悬挂到水平板的MN 两点,A 上带有的正电荷。
高三物理库仑定律
T1 θ
T2 q2
F
q1
m2
m1 m2g
m1g
可知在θ角逐渐减小的过程中, T1变小,T2=m2g不变。
045.南京市金陵中学07—08学年一轮复习检测(一)3
3.如图所示,电荷量为Q1、Q2的两个正电电荷分别 置于A点和B点,两点相距L,在以L的直径的光滑绝
缘半圆环上,穿着一个带电小球q (视为点电荷),在P
库,也不能消灭,只能从一个物体转移 到另一个物体, 或者从物体的一部分转移到另一部分.
元电荷: 电子所带的电荷量, 用e表示, e=1.60×10-19C. e 的数值最早是由美国科学家密立根实验测得的.
比荷:电子的电荷量ee和电1子.76的质10量11 Cm/ek的g比值,
相等,A球带正电。平衡时三根绝缘细线都是直的, 但拉力都为零。
(1)指出B球和C球分别带何种电荷;并说明理由。
(2)若A球带电量为Q,则B球的 带电量为多少?
(3)若A球带电量减小,B、C两 球带电量保持不变,则细线AB、BC
O qa A
中的拉力分别如何变化?
B qb
C qc
解: (1)B、C两球都带负电荷; ①
(2)由对称性知:qB= qC
②
O qa A
B球受三力作用,如图所示。
B qb
C qc
根据平衡条件有:
k
QqB r2
cos 60
k
qC qB r2
y
③
Fy
FCB
FAB x
解①②两式得:qB = Q / 2
④
B Fx
GB
(3)AB细线中拉力增大,BC中仍无作用力 ⑤
; 配资门户 配资平台 配资炒股 炒股配资 ;
电荷守恒定律 库仑定律
电荷守恒定律 库仑定律一、电荷及电荷守恒定律 1.元电荷、点电荷 (1)元电荷:e =1.6×10-19C ,所有带电体的电荷量都是元电荷的整数倍,其中质子、正电子的电荷量与元电荷相同,但符号相反.(2)点电荷:当带电体本身的大小和形状对研究的问题影响很小时,可以将带电体视为点电荷. 2.电荷守恒定律(1)内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变. (2)起电方式:摩擦起电、接触起电、感应起电. (3)带电实质:物体带电的实质是得失电子.(4)电荷的分配原则:两个形状、大小相同的导体,接触后再分开,两者带同种电荷时,电荷量平均分配;两者带异种电荷时,异种电荷先中和后平分.3.感应起电:感应起电的原因是电荷间的相互作用,或者说是电场对电荷的作用. (1)同种电荷相互排斥,异种电荷相互吸引.(2)当有外加电场时,电荷向导体两端移动,出现感应电荷,当无外加电场时,导体两端的电荷发生中和. 二、库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.2.表达式:F =k Q 1Q 2r 2,式中k =9.0×109 N·m 2/C 2,叫做静电力常量.3.适用条件:真空中的点电荷.(1)在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式. (2)当两个带电体的间距远大于本身的大小时,可以把带电体看成点电荷. 基础检测1.[对电现象的理解]关于电现象,下列说法中正确的是( )A .感应起电是利用静电感应,使电荷从物体的一部分转移到物体的另一部分的过程B .带电现象的本质是电子的转移,中性物体得到多余电子就一定带负电,失去电子就一定带正电C .摩擦起电是普遍存在的现象,相互摩擦的两个物体总是同时带等量异种电荷D .当一种电荷出现时,必然有等量异种电荷出现,当一种电荷消失时,必然有等量异种电荷同时消失 2.[对库仑定律适用条件的理解]关于库仑定律的公式F =k q 1q 2r 2,下列说法正确的是( )A .当真空中的两个点电荷间的距离r →∞时,它们之间的静电力F →0B .当真空中的两个电荷间的距离r →0时,它们之间的静电力F →∞C .当真空中的两个电荷之间的距离r →∞时,库仑定律的公式就不适用了D .当真空中的两个电荷之间的距离r →0时,电荷不能看成是点电荷,库仑定律的公式就不适用了3.[库仑定律和电荷守恒定律的应用]使两个完全相同的金属小球(均可视为点电荷)分别带上-3Q 和+5Q 的电荷后,将它们固定在相距为a 的两点,它们之间库仑力的大小为F 1.现用绝缘工具使两小球相互接触后,再将它们固定在相距为2a 的两点,它们之间库仑力的大小为F 2.则F 1与F 2之比为 ( )A .2∶1B .4∶1C .16∶1D .60∶14.[感应起电的分析方法]如图所示,A 、B 是两个带有绝缘支架的金属球,它们原来均不带电,并彼此接触.现使带负电的橡胶棒C 靠近A (C 与A 不接触),然后先将A 、B 分开,再将C 移走.关于A 、B 的带电情况,下列判断正确的是( )A .A 带正电,B 带负电B .A 带负电,B 带正电C .A 、B 均不带电D .A 、B 均带正电 考点一 静电现象及电荷守恒定律 1.使物体带电的三种方法及其实质摩擦起电、感应起电和接触带电是使物体带电的三种方法,它们的实质都是电荷的转移.而电荷转移的原因是同种电荷相互排斥、异种电荷相互吸引. 2.验电器与静电计的结构与原理玻璃瓶内有两片金属箔,用金属丝挂在一根导体棒的下端,棒的上端通过瓶塞从瓶口伸出(如图甲所示).如果把金属箔换成指针,并用金属做外壳,这样的验电器又叫静电计(如图乙所示).注意金属外壳与导体棒之间是绝缘的.不管是静电计的指针还是验电器的箔片,它们张开角度的原因都是同种电荷相互排斥.例1 使带电的金属球靠近不带电的验电器,验电器的箔片张开.下列各图表示验电器上感应电荷的分布情况,其中正确的是( )突破训练1 如图所示,A 、B 为相互接触的用绝缘支柱支撑的金属导体,起初它们不带电,在它们的下部贴有金属箔片,C 是带正电的小球,下列说法正确的是 ( )A .把C 移近导体A 时,A 、B 上的金属箔片都张开B .把C 移近导体A 后,先把A 、B 分开,然后移去C ,A 、B 上的金属箔片仍张开 C .把C 移近导体A 后,先把C 移走,再把A 、B 分开,A 、B 上的金属箔片仍张开D .把C 移近导体A 后,先把A 、B 分开,再把C 移走,然后重新让A 、B 接触,A 上的金属箔片张开,而B 上的金属箔片闭合考点二 对库仑定律的理解和应用 1.电荷的分配规律(1)两个相同的导体球,一个带电,一个不带电,接触后电荷量平分. (2)两个相同导体球带同种电荷,先接触再分离,则其电荷量平分. (3)两个相同导体球带异种电荷,先接触再分离,则其电荷量先中和再平分. 2.对库仑定律的深入理解(1)F =k Q 1Q 2r 2,r 指两点电荷间的距离.对可视为点电荷的两个均匀带电球,r 为两球心间距.(2)当两个电荷间的距离r →0时,电荷不能视为点电荷,它们之间的静电力不能认为趋于无限大.例2 如图所示,两个质量均为m 的完全相同的金属球壳a 与b ,其壳层的厚度和质量分布均匀,将它们固定于绝缘支架上,两球心间的距离为l ,为球壳外半径r 的3倍.若使它们带上等量异种电荷,使其所带电荷量的绝对值均为Q ,那么a 、b 两球之间的万有引力F 1与库仑力F 2为( )A .F 1=G m 2l 2,F 2=k Q 2l 2B .F 1≠G m 2l 2,F 2≠k Q 2l2C .F 1≠G m 2l 2,F 2=k Q 2l2D .F 1=G m 2l 2,F 2≠k Q 2l2突破训练2三个相同的金属小球1、2、3分别置于绝缘支架上,各球之间的距离远大于小球的直径.球1的带电荷量为+q ,球2的带电荷量为+nq ,球3不带电且离球1和球2很远,此时球1、2之间作用力的大小为F .现使球3先与球2接触,再与球1接触,然后将球3移至远处,此时1、2之间作用力的大小仍为F ,方向不变.由此可知( )A .n =3B .n =4C .n =5D .n =6考点三 库仑力作用下的平衡问题1.处理平衡问题的常用方法:(1)合成法,(2)正交分解法. 2.三个自由点电荷的平衡问题(1)条件:两个点电荷在第三个点电荷处的合场强为零,或每个点电荷受到的两个库仑力必须大小相等,方向相反. (2)规律“三点共线”——三个点电荷分布在同一直线上; “两同夹异”——正负电荷相互间隔; “两大夹小”——中间电荷的电荷量最小;“近小远大”——中间电荷靠近电荷量较小的电荷.例3如图所示,竖直墙面与水平地面均光滑且绝缘,两个带有同种电荷的小球A 、B 分别处于竖直墙面和水平地面,且处于同一竖直平面内,若用图示方向的水平推力F 作用于小球B ,则两球静止于图示位置,如果将小球B 向左推动少许,并待两球重新达到平衡时,则两个小球的受力情况与原来相比( ) A .推力F 将增大B .竖直墙面对小球A 的弹力减小C .地面对小球B 的弹力一定不变D .两个小球之间的距离增大突破训练3 可以自由移动的点电荷q 1、q 2、q 3放在光滑绝缘水平面上,如图所示,已知q 1与q 2之间的距离为l 1,q 2与q 3之间的距离为l 2,且每个电荷都处于平衡状态.(1)如果q 2为正电荷,则q 1为________电荷,q 3为________电荷. (2)q 1、q 2、q 3三者电荷量大小之比是________. 答案 (1)负 负 (2)(l 1+l 2l 2)2∶1∶(l 1+l 2l 1)2处理库仑力作用下电荷平衡问题的方法(1)库仑力作用下电荷的平衡问题与力学中物体的平衡问题相同,可以将力进行合成与分解. (2)恰当选取研究对象,用“隔离法”或“整体法”进行分析. (3)对研究对象进行受力分析,注意比力学中多了一个库仑力.例4如图所示,竖直平面内有一圆形光滑绝缘细管,细管截面半径远小于半径R,在中心处固定一带电荷量为+Q的点电荷.质量为m、带电荷量为+q的带电小球在圆形绝缘细管中做圆周运动,当小球运动到最高点时恰好对细管无作用力,求当小球运动到最低点时对管壁的作用力是多大?答案6mg突破训练4如图所示,点电荷+4Q与+Q分别固定在A、B两点,C、D两点将AB连线三等分,现使一个带负电的粒子从C点开始以某一初速度向右运动,不计粒子的重力,则该粒子在CD之间运动的速度大小v与时间t 的关系图像可能是图中的()突破训练5 如图所示,足够大的光滑绝缘水平面上有三个带电质点,A 和C 围绕B 做匀速圆周运动,B 恰能保持静止,其中A 、C 和B 的距离分别是L 1和L 2.不计三质点间的万有引力,则A 和C 的比荷(电量和质量之比)之比应是( )A .(L 1L 2)2B .(L 2L 1)2C .(L 1L 2)3D .(L 2L 1)31.某原子电离后其核外只有一个电子,若该电子在核的静电力作用下绕核做匀速圆周运动,那么电子运动 ( ) A .半径越大,加速度越大 B .半径越小,周期越大 C .半径越大,角速度越小 D .半径越小,线速度越小2.如图所示,一个均匀的带电圆环,带电荷量为+Q ,半径为R ,放在绝缘水平桌面上.圆心为O 点,过O 点作一竖直线,在此线上取一点A ,使A 到O 点的距离为R ,在A 点放一检验电荷+q ,则+q 在A 点所受的电场力为( )A .kQqR 2,方向向上B .2kQq4R 2,方向向上 C .kQq4R 2,方向水平向左D .不能确定3.A 、B 两带电小球,质量分别为m A 、m B ,电荷量分别为q A 、q B ,用绝缘不可伸长的细线如图悬挂,静止时A 、B 两球处于同一水平面.若B 对A 及A 对B 的库仑力分别为F A 、F B ,则下列判断正确的是 ( ) A .F A <F BB .细线OC 的拉力T C =(m A +m B )gC .细线AC 对A 的拉力T A =m A2gD .同时烧断细线AC 、BC 后,A 、B 在竖直方向的加速度相同4.如图所示,正电荷q 1固定于半径为R 的半圆光滑轨道的圆 心处,将另一带正电、电荷量为q 2、质量为m 的小球,从轨道的A 处无初速度释放,求:(1)小球运动到B 点时的速度大小;(2)小球在B 点时对轨道的压力.答案 (1)2gR (2)3mg +k q 1q 2R 2,方向竖直向下►题组1 起电的三种方式和电荷守恒定律的应用1.一带负电的金属小球放在潮湿的空气中,一段时间后,发现该小球上带的负电荷几乎不存在了.这说明( )A .小球上原有的负电荷逐渐消失了B .在此现象中,电荷不守恒C .小球上负电荷减少的主要原因是潮湿的空气将电子导走了D.该现象是由电子的转移引起的,仍然遵循电荷守恒定律2.如图所示,左边是一个原来不带电的导体,右边C是后来靠近的带正电的导体球,若用绝缘工具沿图示某条虚线将导体切开,分导体为A、B两部分,这两部分所带电荷量的数值分别为Q A、Q B,则下列结论正确的是()A.沿虚线d切开,A带负电,B带正电,且Q A>Q BB.只有沿虚线b切开,才会使A带正电,B带负电,且Q A=Q BC.沿虚线a切开,A带正电,B带负电,且Q A<Q BD.沿任意一条虚线切开,都会使A带正电,B带负电,而Q A、Q B的值与所切的位置有关►题组2库仑定律的理解和应用4.用控制变量法,可以研究影响电荷间相互作用力的因素.如图所示,O是一个带电的物体,若把系在丝线上的带电小球先后挂在横杆上的P1、P2、P3位置,可以比较小球在不同位置所受带电物体的作用力的大小,这个力的大小可以通过丝线偏离竖直方向的角度θ显示出来.若物体O的电荷量用Q表示,小球的电荷量用q表示,物体与小球间距离用d表示,物体和小球之间的作用力大小用F表示.则以下对该实验现象的判断正确的是()A.保持Q、q不变,增大d,则θ变大,说明F与d有关B.保持Q、q不变,减小d,则θ变大,说明F与d成反比C.保持Q、d不变,减小q,则θ变小,说明F与q有关D.保持q、d不变,减小Q,则θ变小,说明F与Q成正比►题组3库仑力作用下带电体的平衡问题5.如图所示,可视为点电荷的小球A、B分别带负电和正电,B球固定,其正下方的A球静止在绝缘斜面上,则A 球受力个数可能为()A.可能受到2个力作用B.可能受到3个力作用C.可能受到4个力作用D.可能受到5个力作用6.在光滑绝缘的水平地面上放置着四个相同的金属小球,小球A、B、C位于等边三角形的三个顶点上,小球D位于三角形的中心,如图所示.现让小球A、B、C带等量的正电荷Q,让小球D带负电荷q,使四个小球均处于静止状态,则Q与q的比值为()A .13B .33C .3D . 37.如图所示,将两个摆长均为l 的单摆悬于O 点,摆球质量均为m ,带电荷量均为q (q >0).将另一个带电荷量也为q (q >0)的小球从O 点正下方较远处缓慢移向O 点,当三个带电小球分别处在等边三角形abc 的三个顶点上时,两摆线的夹角恰好为120°,则此时摆线上的拉力大小等于 ( )A .3mgB .mgC .23·kq 2l 2D .3·kq 2l28.如图所示,在光滑绝缘的水平桌面上有四个小球,带电量分别为-q 、Q 、-q 、Q .四个小球构成一个菱形,-q 、-q 的连线与-q 、Q 的连线之间的夹角为α.若此系统处于平衡状态,则正确的关系式可能是 ( )A .cos 3α=q8QB .cos 3α=q 2Q2C .sin 3α=Q8qD .sin 3α=Q 2q2►题组4 在库仑力作用下的动力学问题9.两根绝缘细线分别系住a 、b 两个带电小球,并悬挂在O 点,当两个小球静止时,它们处在同一水平面上,两细线与竖直方向间夹角分别为α、β,α<β,如图所示.现将两细线同时剪断,则 ( ) A .两球都做匀变速运动 B .两球下落时间相同 C .落地时两球水平位移相同D .a 球落地时的速度小于b 球落地时的速度10.如图所示,质量为m 的小球A 放在绝缘斜面上,斜面的倾角为α.小球A 带正电,电荷量为q .在斜面上B 点处固定一个电荷量为Q 的正电荷,将小球A 由距B 点竖直高度为H 处无初速度释放.小球A 下滑过程中电荷量不变.不计A 与斜面间的摩擦,整个装置处在真空中.已知静电力常量k 和重力加速度g . (1)A 球刚释放时的加速度是多大?(2)当A 球的动能最大时,求此时A 球与B 点的距离. 答案 (1)g sin α-kQq sin 2 αmH 2 (2)kQqmg sin α。
高中物理:《库仑定律电场强度》知识点总结
一、电荷守恒与库仑定律1. 自然界中只存在两种电荷,即正电荷和负电荷.电荷间相互作用的规律是同种电荷相斥,异种电荷相吸.电荷量为e=1.6×10-19C称为元电荷,任何物体所带电荷量都是元电荷的整数倍.2. 摩擦起电、感应起电和接触带电等现象的本质都只是电荷的转移.3. 电荷既不能被创造,也不能被消灭,它们只能是从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷代数和不变,这就是电荷守恒定律.电荷守恒是自然界的普遍规律,不仅适用于宏观系统,也适用于微观系统,例如两个物体间电荷的转移,摩擦起电,带电导体间的接触或连接,电容器连接时的电荷重新分布转移等.在求解这类问题时,可以利用下面的结论:完全相同的带电小球相接触,电荷量的分配规律为:同种电荷总电荷量平分,异种电荷先中和再平分.4. 库仑定律:公式:,静电力常量:k=9×109Nm2/C2.该定律适用于真空中两点电荷之间,Q1、Q2只需用绝对值代入即可求得作用力大小,方向由两电荷的电性判断,两电荷之间的库仑力是一对作用力与反作用力.有时可将物体等效为点电荷.但“点”的位置与电荷分布有关.点电荷是一理想化模型,当带电体间的距离远远大于带电体的自身大小时,可以视其为点电荷而使用库仑定律,否则不能使用.例 1. 有三个完全一样的金属小球A、B、C,A带电荷量+7Q,B带电荷量-Q,C不带电,将A、B固定起来,然后让C球反复与A、 B两球接触,最后移去C球,试问A、B两球间的库仑力变为原来的多少倍?解析:题中所说的C与A、B反复接触之意,隐含了一个条件:A、B原先所带电荷量的总和,最后在三个相同的小球上均分,所以A、B两球最后带的电荷量均为,A、B两球原先有引力。
A、B两球最后的斥力以上两式相除可得:,即A、B间的库仑力变为原来的。
答案:例 2. 半径均为r的金属球如图所示放置,使两球的边缘相距为r,今使两球带上等量的异种电荷Q,设两电荷Q间的库仑力大小为F,比较F与的大小关系.解析:如果电荷能全部集中在球心处,则二者相等。
电场
例题:一个电容器所带电量为6×10-11C, 其两极板间的电压为60V,求:
1.它的电容是多少? 2.若使它的电量减少一半,它的电容是多少?
六、带电粒子在匀强电场中的运动
1、带电粒子在匀强电场中的加速
从静止开始由正极板向负极板运动, 到达负极板时的速度有多大?
1、受力分析: 2、运动分析:
由动能定理 qU 1 2 qU 1 2
v0 v
Y q
d
+ + + + + +
v0
y
1、受力分析:粒子受到竖直向下的 电场力F=Eq=qU/d。
U 2、运动规律分析:粒子作类平抛运动。
v0 x方向:匀速直线运动
F
Y′
- - - - - -v L
Φ v0
Y方向:加速度为 a
y
qU md
的匀加直。
v
3、位移:x方向
Y方向 4、速度:x方向
电场强度E 定 义
E F q
点电荷周 围的场强
E
kQ r
2
匀强电场 的场强
E
U d
A
B
d
例:检验电荷q放在点电荷Q所形成的电场中的A点, 若检验电荷带负电,它的电量为q=2.0×10-8C, 它所受的电场力F=4.0×10-3N,方向指向Q, A点距离Q的距离为r=0.3m。试求: (1)A点的电场强度。 (2)点电荷Q的电量和电性。 (3)若把检验电荷q取走,A点的电场强度又是多少? 例:图1是电场中某区域的电场线分布图, P点是电场中的一点,则 ( BD )
L
v0t
1 qU L
y
2
vy
v
1、库仑定律( 上课)
点电荷: 1.带电体本身的线度远小于它们之间的距离.
带电体本身的大小对研究的问题影响甚小,
可把带电体视为一个点----称为点电荷。
2.点电荷是一个理想化的模型。
3.点电荷本身的线度不一定很小,它所带的电量
也可以很大.
点电荷这个概念与力学中的“质点”类似.
例1.关于点电荷的下列说法中正确的是: A.真正的点电荷是不存在的. B.点电荷是一种理想模型. C.体积很大的带电体一定不能看作点电荷,只 有体积很小的带电体才能看作点电荷 D.当两个带电体的形状、体积对它们之间相互 作用力的影响可忽略时,这两个带电体可看作 点电荷. E.对于任何带电球体,总可把它看作电荷全部 集中在球心的点电荷
结论:保持两球间的距离不变,改变两球的带 电量,从实验结果中库仑得出静电力与电量的 乘积成正比,即: F ∝q1q2
(二)库仑定律的内容 真空中两个静止点电荷之间的相互作用力(静 电力或库仑力),与它们的电荷量的乘积成正比, 与它们的距离的二次方成反比,作用力的方向在 q1q2 它们的连线上. 大小: k 2 F 其中:K--静电力常量:k=9.0×109 N·2/C2 m r--点电荷间的距离. 适用范围: 1.真空中; 2.点电荷. 3.均匀带电球体. r--球体球心间的距离.
m1m2 F2 G 2 r
9.1 1031 1.67 1027 (1.6 1019 )2 N 9.0 109 N 6.67 1011 11 2 (5.3 10 ) (5.3 1011 )2
8.2 10 N
8
3.6 10
物质的微观结构是怎样的? 原子的构成 (正电)
原子 (中性)
原子核 核外电子 (负电)
(正电) 质子
电荷守恒与库仑定律
电荷守恒与库仑定律电荷守恒和库仑定律是电磁学中的两个重要原理。
电荷守恒原理表明,在一个封闭系统中,电荷的总量是不变的;库仑定律则揭示了两个电荷之间相互作用的规律。
本文将从电荷守恒和库仑定律的概念、表达式以及应用方面进行探讨。
一、电荷守恒原理电荷守恒原理是电磁学的基本原理之一,它断言在闭合的系统中,电荷的总量保持不变。
这意味着在任何一个过程中,电荷既不会被创造,也不会被销毁,只会从一个物体转移到另一个物体。
电荷守恒原理可以用数学形式表示为:∑Q = 0其中,∑Q代表系统中所有电荷的代数和。
当系统中有正电荷时,它的电量被视为正值;反之,负电荷的电量被视为负值。
根据电荷守恒原理,对于一个封闭系统,电荷的总量始终保持不变。
二、库仑定律库仑定律是描述电荷之间相互作用的基本规律。
根据库仑定律,两个电荷之间的力与它们之间的距离成正比,与它们的电量的乘积成正比。
库仑定律可以用数学表达式表示为:F = k * |Q1 * Q2| / r^2其中,F代表两个电荷之间的力,k代表库仑常数(k=9×10^9N·m^2/C^2),Q1和Q2分别代表两个电荷的电量,r代表它们之间的距离。
根据库仑定律可以得出以下几个结论:1. 两个电荷的电量相同时,它们之间的斥力或引力与它们之间的距离的平方成反比。
距离越近,相互作用力越强。
2. 两个同种电荷(正电荷与正电荷或负电荷与负电荷)之间的相互作用力为斥力,即它们互相排斥。
3. 两个异种电荷(正电荷与负电荷)之间的相互作用力为引力,即它们互相吸引。
三、电荷守恒与库仑定律的应用电荷守恒和库仑定律在电磁学中有着广泛的应用。
以下是它们的一些重要应用:1. 静电现象:根据库仑定律,当两个电荷互相接触或靠近时,它们之间会产生静电力。
这解释了为什么我们在摩擦物体时会感受到电击或看到电火花。
2. 静电场的建立和分析:根据库仑定律,我们可以计算出一个电荷在周围产生的电场的强度和方向。
电荷守恒与库仑定律
电荷守恒与库仑定律知识点一:电荷及电荷守恒定律1.电荷在自然界中存在两种电荷即正电荷和负电荷,电荷的多少称为电荷量,其国际单位为库仑,简称库,符号C ,与元电荷的关系为:。
2.物体带电的三种方式使物体带电叫做起电,使物体带电的三种方式为摩擦起电、感应起电和接触起电。
带电粒子所带电荷量是元电荷的整数倍。
物体带电的三种方式:(1)摩擦起电;(2)感应起电;(3)接触带电。
3.电荷守恒定律电荷既不能被创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷总量不变(1)电荷量的实质:物体得到或失去电子便带上了电荷,得到电子带负电,失去电子带正电,讨论物体带何种电性,是指物体的净电荷是正还是负,也就是说物体所具有的总电荷中是正电荷多于负电荷,还是负电荷多于正电荷,净电荷的多少叫做电荷量。
(2)电荷的中和:两个有等量异种电荷的导体,相互接触后净电荷为零的现象叫电荷的中和。
同步练习11、关于物体的带电荷量,以下说法中正确的是()A.物体所带的电荷量可以为任意实数B.物体所带的电荷量只能是某些特定值C.物体带电+1.60×10-9C,这是因为该物体失去了1.0×1010个电子D.物体带电荷量的最小值为1.6×10-19C2、如图1—1—1所示,将带电棒移近两个不带电的导体球,两个导体球开始时互相接触且对地绝缘,下述几种方法中能使两球都带电的是() A.先把两球分开,再移走棒B.先移走棒,再把两球分开C.先将棒接触一下其中的一个球,再把两球分开D.棒的带电荷量不变,两导体球不能带电3、带电微粒所带的电荷量不可能是下列值中的()- ---- -甲乙图1—1—1A. 2.4×10-19CB.-6.4×10-19CC.-1.6×10-18CD.4.0×10-17C4、有三个相同的绝缘金属小球A、B、C,其中小球A带有2.0×10-5C的正电荷,小球B、C不带电.现在让小球C先与球A接触后取走,再让小球B与球A接触后分开,最后让小球B与小球C接触后分开,最终三球的带电荷量分别为q A= ,q B= ,q C= .知识点二:库仑定律1.点电荷点电荷是一种理想化模型,当带电体本身的大小和形状对研究的问题影响不大时,可以将带电体视为点电荷。
电荷守恒定律和库仑定律
电荷守恒定律和库仑定律电荷守恒定律和库仑定律是电磁学中非常重要的两个定律。
它们描述了电荷之间的相互作用和分布,并为我们理解电磁现象提供了基础。
本文将对这两个定律进行解析和说明。
首先,我们来看电荷守恒定律。
这个定律是指在任何一个封闭系统中,电荷的总量保持不变。
简单来说,如果一个封闭系统中的某个地方出现了正电荷的增加,那么就会有另外一个地方出现负电荷的增加,以保持整体电荷量的平衡。
这个定律从宏观角度看,可以用来解释电荷的流动和守恒现象。
接下来,我们来看库仑定律。
库仑定律是描述电荷之间相互作用的定律。
据库仑定律,两个电荷之间的作用力与它们之间距离的平方成反比,与它们的电荷量的乘积成正比。
这个定律可以用公式表示为F = k * (q1 * q2) / r^2,其中F是作用力,q1和q2是电荷量,r是它们之间的距离,k是库仑常数。
根据库仑定律,同性电荷之间会产生排斥作用力,异性电荷之间会产生吸引作用力。
这个定律对于电磁学中的许多现象,如原子结构、电场和电路等的分析非常重要。
电荷守恒定律和库仑定律有着密切的联系。
首先,电荷守恒定律的存在为库仑定律提供了基础。
如果电荷不守恒,那么库仑定律就无法成立。
其次,库仑定律可以用来解释电荷守恒定律。
根据库仑定律的公式,当两个电荷相互作用时,它们之间的电荷量总是保持不变的。
这与电荷守恒定律是一致的。
除了这两个定律,电磁学还有许多其他的定律和规律。
比如,静电场和电场的性质可以用高斯定律来描述,电路中的电流和电压关系可以用欧姆定律来表示。
这些定律共同构成了电磁学的理论体系,为我们理解电磁现象提供了坚实的基础。
总结起来,电荷守恒定律和库仑定律是电磁学中非常重要的两个定律。
它们描述了电荷之间的相互作用和分布,并为我们理解电磁现象提供了基础。
电荷守恒定律指出电荷的总量在封闭系统中保持不变,而库仑定律描述了电荷之间的作用力与它们之间距离和电荷量的关系。
这两个定律的存在与相互联系为我们建立了电磁学的理论体系,帮助我们更深入地理解电磁现象的本质。
库仑定律 高中物理课件11-1
C.54kaQ2 ,沿 y 轴正向 D.54kaQ2 ,沿 y 轴负向
第1节 库仑定律 场强
三、电场强度与电场强度的计算
2.对称法 【原型题 6】如图所示,一半径为 R 的绝缘圆盘上均匀分布着电荷量为 Q 的电荷,在垂直于圆
盘且过圆心 c 的轴线上有 a、b、d 三个点,a 和 b、b 和 c、c 和 d 间的距离均为 R,在 a 点处有
q 3.矢量性:规定正电荷在电场中某点所受电场力的方向为该点电场强度的方向.
第1节 库仑定律 场强
三、电场强度与电场强度的计算
4.场强公式的比较: E=F q E=kQr2 E=Ud
笔记:电场强度
①适用于任何电场 ②场强与试探电荷是否存在无关 ①适用于点电荷产生的电场 ②Q 为场源电荷的电荷量 ①适用于匀强电场 ②U 为两点间的电势差,d 为沿电 场方向两点间的距离
笔记
(1)起电方式:摩擦起电、接触起电、感应起电. (2)带电实质:物体带电的实质是得失电子. (3)内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物 体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变. (4)电荷分配原则∶两个形状、大小相同且带电的球形导体,接触后再分开,若两导体带同 种电荷,则两导体上的电荷先叠加后平分;若两导体带异种电荷,则两导体上的电荷先中和, 余下的电荷再平分.
第1节 库仑定律 场强
一、电荷的产生 电荷守恒定律 2.电荷守恒定律
【原型题 3】半径相同的两金属小球 A、B 带有相同的电荷量,并相隔一定的距离,今让第三个 半径相同的不带电金属小球 C,先后与 A、B 接触后再移开.求:
(1)当 A、B 两球带同种电荷时,接触后两球的电荷量之比; (2)当 A、B 两球带异种电荷时,接触后两球的电荷量之比.
电场复习课第1课时电荷守恒库仑定律一电荷1正负电荷
如图所示,实线表示匀强电场的电场线, 虚线表示带正电微粒射入此电场后的运动轨迹, A、B为先后经过的轨迹上的两个点,试判断以 下物理量:( ) (1) 场强方向的方向 (2) 比较电荷在AB两点的电势能的大小 (3) 比较电荷在AB两点的速度大小
B
A
练习《会考标准释疑》P80.29-32题
《电场》复习课第3课时
O
B
A
练习《会考标准释疑》P77.15题
请同学们总结出该类题型的规律。
《电场》复习课第2课时
场强 电势 电势差 电势能
高二物理备课组
2004.5.18
一.场强
1.判断和计算电场强度大小的方法: (1).大小由以下几种方法得到: ①由定义式E=F/q计算 ②在匀强电场中,场强处处相等且 满足E=U/d; ③在点电荷电场中利用E=kQ/r2 ④利用电场线疏密程度判断大小 (5)感应电荷的场强由等效法求得
②电场线上每一点的切线方向即是该点
的场强方向
③电势降低最快的方向就是场强的方向。
例3:以下说法正确的是:
A、若将放在电场中某点的电荷q改为-q,则 该点的电场强度大小不变,方向与原来相反 B、沿电场线方向,场强一定越来越小 C、电场中某点电场线的方向,就是放在该点的 电荷所受电场力的方向。 D、无论什么电场,场强的方向总是由高电势指 向低电势
例题(高考难度)
4.在绝缘的水平面上固定一个金属小球A,用 两端带有绝缘装置的轻质弹簧把A和另一个 金属小球B连接起来(可视为点电荷),让AB 带上同种电荷,此时弹簧的伸长量为x1,(在 弹性限度内)如果让AB的电量减小一半,弹 簧的伸长量为x2,则两者的关系的是:( ) A.x2=x1/4 B.x2>x1/4 C.x2<x1/4 D.以上都不对
1.1电荷守恒定律 1.2库仑定律
库伦扭秤实验
法国物理学家库仑利用扭 秤研究出了电荷间相互作 用力的大小跟电量和距离 的关系
一、库仑定律
1、内容:
真空中两个静止点电荷之间的相互作 用力,与它们的电荷量的乘积成正比, 与它们的距离的二次方成反比,作用 力的方向在它们的连线上。
2、适用范围:
1.真空中 2.点电荷
一、库仑定律
3、表达式: F
第一章 静电场
第一节 电荷及其守恒定律
闪电是如何形成的?
一、电荷
1、自然界中有两种电荷(富兰克林命名)
(1)正电荷:
+
丝绸摩擦过的玻璃棒所带的电荷
(2)负电荷:
_
毛皮摩擦过的橡胶棒所带的电荷
同种电荷相互排斥,异种电荷相互吸引。
2、使物体带电的方法:
(1)、摩擦起电 为什么摩擦能使物体带电?
微观解释:本质 电子从一个物体转移到另一个物体上。 得到电子:带负电 失去电子:带正电
D .一个带电体能否看成点电荷,不是看它的 尺寸大小,而是看它的形状和大小对所研究 的问题的影响是否可以忽略不计
例题2:真空中有三个点电荷,它们固定 在边长50cm的等边三角形的三个顶 点上,每个点电荷都是+2 X 10-6C,求 它们所受的库仑力.
q1 +
q2 +
q3 +
F2
F1
F3
带电体间作用力随电荷量的增大而增大。
猜想:
r一定时, q一定时,
F q1q 2
F 1 r
F
q12q
2 2
F
1 r2
• 早在我国东汉时期人们就掌握了电荷间相 互作用的定性规律。
• 卡文迪许和普里斯特等人都确信“平方反 比”规律适用于电荷间的力。
库仑定律和电场强度.
2、1、1 库仑定律和电场强度1、电荷守恒定律大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持不变。
我们熟知的摩擦起电就是电荷在不同物体间的转移,静电感应现象是电荷在同一物体上、不同部位间的转移。
此外,液体和气体的电离以及电中和等实验现象都遵循电荷守恒定律。
2、库仑定律真空中,两个静止的点电荷1q 和2q 之间的相互作用力的大小和两点电荷电量的乘积成正比,和它们之间距离r 的平方成正比;作用力的方向沿它们的连线,同号相斥,异号相吸221r q q kF =式中k 是比例常数,依赖于各量所用的单位,在国际单位制(SI )中的数值为:229/109C m N k ⋅⨯=(常将k 写成041πε=k 的形式,0ε是真空介电常数,22120/1085.8m N C ⋅⨯=-ε)库仑定律成立的条件,归纳起来有三条: (1)电荷是点电荷;(2)两点电荷是静止或相对静止的; (3)只适用真空。
3、电场强度电场强度是从力的角度描述电场的物理量,其定义式为q F E =式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。
借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为2r Q k q r Qq k q F E ===式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。
4、场强的叠加原理在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。
原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。
例题讲解1、两个完全相同的绝缘金属小球分别带有正、负电荷,固定在一定的距离上,若把它们接触后再放回原处,则它们间库仑力的大小与原来相比将( ) A.一定变小 B.一定变大C.一定不变D.以上情况均有可能2.如图所示,电量为Q 1、Q 2的两个正点电荷分别置于A 点和B 点,两点相距L .在以L 为直径的光滑绝缘的半圆环上,穿有负点电荷q (不计重力)且在P 点平衡,PA 与AB 夹角为α,则12/Q Q 应为( )A .αtanB .α2tan C .α3tan D .α4tan3、 如图所示,地面上某区域存在着竖直向下的匀强电场,一个质量为m 的带负电的小球以水平方向的初速度v 0由O 点射入该区域,刚好通过竖直平面中的P 点,已知连线OP 与初速度方向的夹角为450,则此带电小球通过P 点时的动能为 ( )A. 20mvB. 20mv /2 C. 220mv D.520mv /24、水平地面上有一个倾角为θ的斜面,其表面绝缘。
高中物理静电场知识点归纳
《静电场》第一节电场力的性质【基本概念、规律】一、电荷和电荷守恒定律1.点电荷:形状和大小对研究问题的影响可忽略不计的带电体称为点电荷.2.电荷守恒定律(1)电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变.(2)起电方式:摩擦起电、接触起电、感应起电.二、库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.2.公式:F=k q1q2r2,式中的k=9.0×109 N·m2/C2,叫做静电力常量.3.适用条件:(1)点电荷;(2)真空.三、电场强度1.意义:描述电场强弱和方向的物理量.2.公式(1)定义式:E=Fq,是矢量,单位:N/C或V/m.(2)点电荷的场强:E=k Qr2,Q为场源电荷,r为某点到Q的距离.(3)匀强电场的场强:E=U d.3.方向:规定为正电荷在电场中某点所受电场力的方向.四、电场线及特点1.电场线:电场线是画在电场中的一条条有方向的曲线,曲线上每点的切线方向表示该点的电场强度方向.2.电场线的特点(1)电场线从正电荷或无限远处出发,终止于负电荷或无限远处.(2)电场线不相交.(3)在同一电场里,电场线越密的地方场强越大.(4)沿电场线方向电势降低.(5)电场线和等势面在相交处互相垂直.3.几种典型电场的电场线(如图所示)【重要考点归纳】考点一 对库仑定律的理解和应用 1.对库仑定律的理解(1)F =k q 1q 2r 2,r 指两点电荷间的距离.对可视为点电荷的两个均匀带电球,r 为两球心间距.(2)当两个电荷间的距离r →0时,电荷不能视为点电荷,它们之间的静电力不能认为趋于无限大.2.电荷的分配规律(1)两个带同种电荷的相同金属球接触,则其电荷量平分.(2)两个带异种电荷的相同金属球接触,则其电荷量先中和再平分. 考点二 电场线与带电粒子的运动轨迹分析1.电荷运动的轨迹与电场线一般不重合.若电荷只受电场力的作用,在以下条件均满足的情况下两者重合:(1)电场线是直线.(2)电荷由静止释放或有初速度,且初速度方向与电场线方向平行. 2.由粒子运动轨迹判断粒子运动情况:(1)粒子受力方向指向曲线的内侧,且与电场线相切. (2)由电场线的疏密判断加速度大小.(3)由电场力做功的正负判断粒子动能的变化. 3.求解这类问题的方法:(1)“运动与力两线法”——画出“速度线”(运动轨迹在初始位置的切线)与“力线”(在初始位置电场线的切线方向),从二者的夹角情况来分析曲线运动的情景.(2)“三不知时要假设”——电荷的正负、场强的方向(或等势面电势的高低)、电荷运动的方向,是题意中相互制约的三个方面.若已知其中的任一个,可顺次向下分析判定各待求量;若三个都不知(三不知),则要用“假设法”分别讨论各种情况.考点三 静电力作用下的平衡问题1.解决这类问题与解决力学中的平衡问题的方法步骤相同,只不过是多了静电力而已.2.(1)解决静电力作用下的平衡问题,首先应确定研究对象,如果有几个物体相互作用时,要依据题意,适当选取“整体法”或“隔离法”.(2)电荷在匀强电场中所受电场力与位置无关;库仑力大小随距离变化而变化.考点四带电体的力电综合问题解决该类问题的一般思路【思想方法与技巧】用对称法处理场强叠加问题对称现象普遍存在于各种物理现象和物理规律中,应用对称性不仅能帮助我们认识和探索某些基本规律,而且也能帮助我们去求解某些具体的物理问题.利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的特点,出奇制胜,快速简便地求解问题.第二节电场能的性质【基本概念、规律】一、电场力做功和电势能1.电场力做功(1)特点:静电力做功与实际路径无关,只与初末位置有关.(2)计算方法①W=qEd,只适用于匀强电场,其中d为沿电场方向的距离.②W AB=qU AB,适用于任何电场.2.电势能(1)定义:电荷在电场中具有的势能,数值上等于将电荷从该点移到零势能位置时静电力所做的功.(2)静电力做功与电势能变化的关系:静电力做的功等于电势能的减少量,即W AB=E p A-E p B =-ΔE p.(3)电势能具有相对性.二、电势、等势面1.电势(1)定义:电荷在电场中某一点的电势能与它的电荷量的比值.(2)定义式:φ=E p q.(3)相对性:电势具有相对性,同一点的电势因零电势点的选取不同而不同.2.等势面(1)定义:电场中电势相同的各点构成的面.(2)特点①在等势面上移动电荷,电场力不做功.②等势面一定与电场线垂直,即与场强方向垂直.③电场线总是由电势高的等势面指向电势低的等势面.④等差等势面的疏密表示电场的强弱(等差等势面越密的地方,电场线越密).三、电势差1.定义:电荷在电场中,由一点A移到另一点B时,电场力所做的功W AB与移动的电荷的电量q的比值.2.定义式:U AB=W AB q.3.电势差与电势的关系:U AB=φA-φB,U AB=-U BA.4.电势差与电场强度的关系匀强电场中两点间的电势差等于电场强度与这两点沿电场方向的距离的乘积,即U AB=Ed.特别提示:电势和电势差都是由电场本身决定的,与检验电荷无关,但电场中各点的电势与零电势点的选取有关,而电势差与零电势点的选取无关.【重要考点归纳】考点一电势高低及电势能大小的比较1.比较电势高低的方法(1)根据电场线方向:沿电场线方向电势越来越低.(2)根据U AB=φA-φB:若U AB>0,则φA>φB,若U AB<0,则φA<φB.(3)根据场源电荷:取无穷远处电势为零,则正电荷周围电势为正值,负电荷周围电势为负值;靠近正电荷处电势高,靠近负电荷处电势低.2.电势能大小的比较方法(1)做功判断法电场力做正功,电势能减小;电场力做负功,电势能增加(与其他力做功无关).(2)电荷电势法正电荷在电势高处电势能大,负电荷在电势低处电势能大.考点二等势面与粒子运动轨迹的分析1.几种常见的典型电场的等势面比较电场等势面(实线)图样重要描述2.带电粒子在电场中运动轨迹问题的分析方法(1)从轨迹的弯曲方向判断受力方向(轨迹向合外力方向弯曲),从而分析电场方向或电荷的正负;(2)结合轨迹、速度方向与静电力的方向,确定静电力做功的正负,从而确定电势能、电势和电势差的变化等;(3)根据动能定理或能量守恒定律判断动能的变化情况.考点三公式U=Ed的拓展应用1.在匀强电场中U=Ed,即在沿电场线方向上,U∝d.推论如下:(1)如图甲,C点为线段AB的中点,则有φC=φA+φB2.(2)如图乙,AB∥CD,且AB=CD,则U AB=U CD.2.在非匀强电场中U=Ed虽不能直接应用,但可以用作定性判断.考点四电场中的功能关系1.求电场力做功的几种方法(1)由公式W=Fl cos α计算,此公式只适用于匀强电场,可变形为W=Eql cos α.(2)由W AB=qU AB计算,此公式适用于任何电场.(3)由电势能的变化计算:W AB=E p A-E p B.(4)由动能定理计算:W电场力+W其他力=ΔE k.注意:电荷沿等势面移动电场力不做功.2.电场中的功能关系(1)若只有电场力做功,电势能与动能之和保持不变.(2)若只有电场力和重力做功,电势能、重力势能、动能之和保持不变.(3)除重力、弹簧弹力之外,其他各力对物体做的功等于物体机械能的变化.(4)所有外力对物体所做的功等于物体动能的变化.3.在解决电场中的能量问题时常用到的基本规律有动能定理、能量守恒定律和功能关系.(1)应用动能定理解决问题需研究合外力的功(或总功).(2)应用能量守恒定律解决问题需注意电势能和其他形式能之间的转化.(3)应用功能关系解决该类问题需明确电场力做功与电势能改变之间的对应关系.(4)有电场力做功的过程机械能不守恒,但机械能与电势能的总和可以守恒.【思想方法与技巧】E-x和φ-x图象的处理方法1.E-x图象(1)反映了电场强度随位移变化的规律.(2)E>0表示场强沿x轴正方向;E<0表示场强沿x轴负方向.(3)图线与x轴围成的“面积”表示电势差,“面积”大小表示电势差大小,两点的电势高低根据电场方向判定.2.φ-x图象(1)描述了电势随位移变化的规律.(2)根据电势的高低可以判断电场强度的方向是沿x轴正方向还是负方向.(3)斜率的大小表示场强的大小,斜率为零处场强为零.3.看懂图象是解题的前提,解答此题的关键是明确图象的斜率、面积的物理意义.第三节电容器与电容带电粒子在电场中的运动【基本概念、规律】一、电容器、电容1.电容器(1)组成:由两个彼此绝缘又相互靠近的导体组成.(2)带电量:一个极板所带电量的绝对值.(3)电容器的充、放电充电:使电容器带电的过程,充电后电容器两板带上等量的异种电荷,电容器中储存电场能.放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能.2.电容(1)定义式:C=Q U.(2)单位:法拉(F),1 F=106μF=1012pF.3.平行板电容器(1)影响因素:平行板电容器的电容与正对面积成正比,与介质的介电常数成正比,与两极板间距离成反比.(2)决定式:C=εr S4πkd,k为静电力常量.特别提醒:C=QU⎝⎛⎭⎫或C=ΔQΔU适用于任何电容器,但C=εr S4πkd仅适用于平行板电容器.二、带电粒子在电场中的运动1.加速问题(1)在匀强电场中:W=qEd=qU=12mv2-12mv2;(2)在非匀强电场中:W=qU=12mv2-12mv2.2.偏转问题(1)条件分析:不计重力的带电粒子以速度v0垂直于电场线方向飞入匀强电场.(2)运动性质:匀变速曲线运动.(3)处理方法:利用运动的合成与分解.①沿初速度方向:做匀速运动.②沿电场方向:做初速度为零的匀加速运动.特别提示:带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.【重要考点归纳】考点一平行板电容器的动态分析运用电容的定义式和决定式分析电容器相关量变化的思路1.确定不变量,分析是电压不变还是所带电荷量不变.(1)保持两极板与电源相连,则电容器两极板间电压不变.(2)充电后断开电源,则电容器所带的电荷量不变.2.用决定式C=εr S4πkd分析平行板电容器电容的变化.3.用定义式C=QU分析电容器所带电荷量或两极板间电压的变化.4.用E =Ud分析电容器两极板间电场强度的变化.5.在分析平行板电容器的动态变化问题时,必须抓住两个关键点:(1)确定不变量:首先要明确动态变化过程中的哪些量不变,一般情况下是保持电量不变或板间电压不变.(2)恰当选择公式:要灵活选取电容的两个公式分析电容的变化,还要应用E =Ud ,分析板间电场强度的变化情况.考点二 带电粒子在电场中的直线运动 1.运动类型(1)带电粒子在匀强电场中做匀变速直线运动.(2)带电粒子在不同的匀强电场或交变电场中做匀加速、匀减速的往返运动. 2.分析思路(1)根据带电粒子受到的电场力,用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的运动情况.(2)根据电场力对带电粒子所做的功等于带电粒子动能的变化求解.此方法既适用于匀强电场,也适用于非匀强电场.(3)对带电粒子的往返运动,可采取分段处理. 考点三 带电粒子在电场中的偏转 1.基本规律设粒子带电荷量为q ,质量为m ,两平行金属板间的电压为U ,板长为l ,板间距离为d (忽略重力影响),则有(1)加速度:a =F m =qE m =qUmd .(2)在电场中的运动时间:t =lv 0.(3)位移⎩⎪⎨⎪⎧v x t =v 0t =l 12at 2=y ,y =12at 2=qUl 22mv 20d. (4)速度⎩⎪⎨⎪⎧v x =v 0v y=at ,v y =qUt md ,v =v 2x +v 2y ,tan θ=v y v x =qUl mv 20d . 2.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的.证明:由qU 0=12mv 20及tan θ=qUl mdv 20得tan θ=Ul2U 0d. (2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到电场边缘的距离为l 2.3.带电粒子在匀强电场中偏转的功能关系:当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差. 【思想方法与技巧】带电粒子在交变电场中的偏转1.注重全面分析(分析受力特点和运动特点),找到满足题目要求所需要的条件. 2.比较通过电场的时间t 与交变电场的周期T 的关系:(1)若t ≪T ,可认为粒子通过电场的时间内电场强度不变,等于刚进入电场时刻的场强. (2)若不满足上述关系,应注意分析粒子在电场方向上运动的周期性.对称思想、等效思想在电场问题中的应用一、割补法求解电场强度由于带电体不规则,直接求解产生的电场强度较困难,若采取割或补的方法,使之具有某种对称性,从而使问题得到简化.二、等效法求解电场中的圆周运动1.带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题是一类重要而典型的题型.对于这类问题,若采用常规方法求解,过程复杂,运算量大.若采用“等效法”求解,则过程往往比较简捷.2.等效法求解电场中圆周运动问题的解题思路:(1)求出重力与电场力的合力F 合,将这个合力视为一个“等效重力”. (2)将a =F 合m视为“等效重力加速度”.(3)将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级 姓名
【知识要点】 1.元电荷、点电荷、检验电荷的概念:
2.电荷守恒定律:电荷既不能 ,也不能 ,只能从一个物体转移到另一个物体;或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量 .
3.比荷:带电粒子的电荷量和质量的比值m q .电子的比荷为kg C m e e
/1076.111⨯= 4.库仑定律的内容:真空中两个静止点电荷之间的相互作用力跟它们电荷量的 成正比,跟它们的距离的 成反比,作用力的方向在它们的 .库仑定律的表达式: 。
其中q 1、q 2表示两个点电荷的电荷量,r 表示它们的距离,k 为比例系数,也叫静电力常量。
【例题精选】
例1、 两个大小相同的小球带有同种电荷(可看作点电荷),质量分别为m 1和m 2,带电荷量分别是q 1和q 2,用绝缘线悬挂后,因静电力而使两悬线张开,分别与铅垂线方向成夹角θ1和θ2,且两球同处一水平线上,如图所示,若θ1=θ2,则下述结论正确的是( )
A .q 1一定等于q 2
B .一定满足q 1/ m 1=q 2/ m 2
C .m 1一定等于m 2
D .必须同时满足q 1=q 2, m 1= m 2
例题2、两个分别带有电荷量-Q 和+3Q 的相同金属小球(均可视为点电荷),固定在相距为r 的两
处,它们间库仑力的大小为F ,两小球相互接触后将其固定距离变为2r ,则两球间库仑力的大小
为( )
A . 1/12F
B .3/4F
C .4/3F
D .12F
[变式练习]两个完全相同的导体小球,所带电量多少不同,相距一定的距离时,两个导体球之间有相互作用的库仑力。
如果将两个导体球相互接触一下后,再放到原来的位置,则两球的作用力的变化情况是( )
A .如果相互接触前两球的库仑力是引力,则相互接触后的库仑力仍是引力
B .如果相互接触前两球的库仑力是引力,则相互接触后的库仑力是斥力
C .如果相互接触前两球的库仑力是斥力,则相互接触后的库仑力仍是斥力
D .如果相互接触前两球的库仑力是斥力,则相互接触后的库仑力是引力
例题3、一半径为R 的绝缘球壳上均匀地带有电荷量为+Q 的电荷,另一电荷量为+q 的点电荷放在球心O 上,由于对称性,点电荷所受力的合力为零,现在球壳上挖去半径为r (r <R )的一个小圆孔,则此时置于球心的点电荷所受力的大小为 (静电力恒量k)方向为 。
.
高二第一章静电力复习
【训练设计】
1.用毛皮摩擦过的橡胶棒靠近已带电的验电器时,发现它的金属箔片的张角减小,由此可判断
A .验电器所带电荷量部分被中和
B .验电器所带电荷量部分跑掉了 ( )
C .验电器一定带正电
D .验电器一定带负电
2.有三个相同的绝缘金属小球A 、B 、C ,其中小球A 带有2.0×10-5C 的正电荷,小球B 、C 不带电.现在让小球C 先与球A 接触后取走,再让小球B 与球A 接触后分开,最后让小球B 与小球C 接触后分开,最终三球的带电荷量分别为q A = ,q B = ,q C = .
3.下列哪些带电体可视为点电荷( )
A .电子和质子在任何情况下都可视为点电荷
B .在计算库仑力时均匀带电的绝缘球体可视为点电荷
C .带电的细杆在一定条件下可以视为点电荷
D .带电的金属球一定不能视为点电荷
4.对于库仑定律,下面说法正确的是
A .凡计算真空中两个静止点电荷间的相互作用力,就可以使用公式F = 221r
q q k ; B .两个带电小球即使相距非常近,也能用库仑定律
C .相互作用的两个点电荷,不论它们的电荷量是否相同,它们之间的库仑力大小一定相等
D .当两个半径为r 的带电金属球心相距为4r 时,对于它们之间相互作用的静电力大小,只取决于它们各自所带的电荷量
5、如图所示,a 、b 两带电小球的质量均为m ,所带电荷分别为+q 和-q ,两球间用绝缘细线连接,a 球又用绝缘细线悬挂在天花板上,在两球所在空间有水平向左的匀强电场,电场强度为E ,平衡时细线都被拉紧,则平衡时的位置可能是图中哪一个?( )
A .
B .
C .
D .
6、图中A 、B 两点放有电量为+Q 和+2Q 的点电荷,A 、B 、C 、D 四点在同一直线上,且AC=CD=DB ,将一正电荷从C 点沿直线移动到D 点,,则( )
A .电场力一直做正功
B .电场力先做正功再做负功
C .电场力一直做负功
D .电场力先做负功再做正功
7、三个相同的金属小球1.2.3.分别置于绝缘支架上,各球之间的距离远大于小球的直径。
球1的带电量为q ,球2的带电量为nq ,球3不带电且离球1和球2很远,此时球1、2之间作用力的大小为F 。
现使球3先与球2接触,再与球1接触,然后将球3移至远处,此时1、2之间作用力的大小仍为F ,方向不变。
由此可知( )
A .n=3
B .n=4
C .n=5
D .n=6。