动力学三大定律的综合应用汇总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动力学三大定律的综合应用
教学目的:1.明确三大定律的区别及解题过程中的应用原则
2.掌握三大定律解题的思路和方法
教学重点、难点:用两个守恒定律去解决问题时,必须注意研究的问题是否满足守恒的条件.
考点梳理:
一、解决动力学问题的三个基本观点
1.力的观点
牛顿运动定律结合运动学公式,是解决力学问题的基本思路和方法,此种方法往往求得的是瞬时关系.利用此种方法解题必须考虑运动状态改变的细节.中学只能用于匀变速运动(包括直线和曲线运动),对于一般的变加速运动不作要求.
2.动量的观点
动量观点主要考虑动量守恒定律.
3.能量的观点
能量观点主要包括动能定理和能量守恒定律.动量的观点和能量的观点研究的是物体或系统经历的过程中状态的改变,它不要求对过程细节深入研究,关心的是运动状态的变化,只要求知道过
程的始末状态动量、动能和力在过程中功,即可对问题求解.二、力学规律的选用原则
1.选用原则:求解物理在某一时刻的受力及加速度时,可用牛顿第二定律解决,有时也可结合运动学公式列出含有加速度的关系式.
2.动能定理的选用原则:研究某一物体受到力的持续作用而发生运动状态改变时,涉及位移和速度,不涉及时间时优先考虑动能定理。
3.动量守恒定律和机械能守恒定律原则:若研究的对象为相互作用的物体组成的系统,一般用这两个守恒定律去解决问题,但须注意研究的问题是否满足守恒的条件.
4.选用能量守恒定律的原则:在涉及相对位移问题时优先考虑能量守恒定律,即用系统克服摩擦力所做的总功等于系统机械能的减少量,也即转变为系统内能的量.
5.选用动量守恒定律的原则:在涉及碰撞、爆炸、打击、绳绷紧等物理过程时,必须注意到一般这些过程中均隐含有系统机械能与其他形式能量之间的转化.这种问题由于作用时间都极短,故动量守恒定律一般能派上大用场.
三、综合应用力学三大观点解题的步骤
1.认真审题,明确题目所述的物理情景,确定研究对象.2.分析所选研究对象的受力情况及运动状态和运动状态的变化过程,画出草图.对于过程比较复杂的问题,要正确、合理地把
全过程划分为若干阶段,注意分析各阶段之间的联系.
3.根据各阶段状态变化的规律确定解题方法,选择合理的规律列方程,有时还要分析题目的隐含条件、临界条件、几何关系等列出辅助方程.
4.代入数据(统一单位),计算结果,必要时要对结果进行讨论.例1.如图6-3-1所示,在光滑水平地面上,有一质量m1=4.0 kg的平板小车,小车的右端有一固定的竖直挡板,挡板上固定一轻质细弹簧.位于小车上A点处的质量m2=1.0 kg的木块(可视为质点)与弹簧的左端相接触但不连接,此时弹簧与木块间无相互作用力.木块与A点左侧的车面之间的动摩擦因数μ=0.40,木块与A点右侧的车面之间的摩擦可忽略不计,现小车与木块一起以v0=2.0 m/s的初速度向右运动,小车将与其右侧的竖直墙壁发生碰撞,已知碰撞时间极短,碰撞后小车以v1=1.0 m/s的速度水平向左运动,g取10 m/s2.
(1)求小车与竖直墙壁发生碰撞的过程中小车动量变化量的大小;
(2)若弹簧始终处于弹性限度内,求小车撞墙后与木块相对静止时的速度大小和弹簧的最大弹性势能;
(3)要使木块最终不从小车上滑落,则车面A点左侧粗糙部分的长度应满足什么条件?
【思路点拨】小车碰后向左的动量m1v1比木块m2向右的动量m2v0大,因此,最终木块和小车的总动量方向向左;弹簧的最大弹性势能对应小车与木块同速向左时;而木块恰好不从小车左侧滑落对应车面A点左侧粗糙部分的最小长度.
【解析】(1)设v1的方向为正,则小车与竖直墙壁发生碰撞的过程中小车动量变化量的大小为
Δp=m1v1-m1(-v0)=12 kg〃m/s.
(2)小车与墙壁碰撞后向左运动,木块与小车间发生相对运动将弹簧压缩至最短时,二者速度大小相等,此后木块和小车在弹簧弹力和摩擦力的作用下,做变速运动,直到二者两次具有相同速度为止.整个过程中,小车和木块组成的系统动量守恒.设小车和木块相对静止时的速度大小为v,根据动量守恒定律有:
m1v1-m2v0=(m1+m2)v
解得v=0.40 m/s,
当小车与木块达到共同速度v时,弹簧压缩至最短,此时弹簧的弹性势能最大,设最大弹性势能为E p,根据机械能守恒定律可
得E p=1
2
m1v21+
1
2
m2v02 -
1
2
( m1 +m2 )v2 =36J
(3)根据题意,木块被弹簧弹出后滑到A点左侧某点时与小车具
有相同的速度v.木块在A点右侧运动过程中,系统机械能守恒,而在A点左侧相对滑动过程中将克服摩擦阻力做功,设此过程中滑行的最大相对位移为s,根据功能关系有
1 2m1v21+
1
2
m2v02 -
1
2
( m1 +m2 )v2 =μm2gs
解得s=0.90 m,
即车面A点左侧粗糙部分的长度应大于0.90 m.
【答案】(1)12 kg〃m/s (2)0.40 m/s 3.6 J (3)大于0.90 m 【规律总结】对两个(或两个以上)物体与弹簧组成的系统,在物体瞬间碰撞时,满足动量守恒,但碰撞瞬间往往有机械能损失,而系统内物体与外界作用时,系统动量往往不守恒,在系统内物体与弹簧作用时,一般满足机械能守恒,如果同时有滑动摩擦力做功,产生摩擦热,一般考虑用能量守恒定律.对于有竖直弹簧连接的问题,弹簧的形变量与物体高度的变化还存在一定的数量关系.
变式练习1.
如右图所示,在光滑水平桌面
上,物体A和B用轻弹簧连接,
另一物体C靠在B左侧未连
接,它们的质量分别为m A=0.2 kg,m B=m C=0.1 kg.现用外力作用B、C和A压缩弹簧,外力做功为7.2 J,弹簧仍在弹性限度内,然后由静止释放.试求:
(1)弹簧伸长最大时弹簧的弹性势能;
(2)弹簧从伸长最大回复到自然长度时,A、B速度的大小.
解析:取向右为正方向.
(1)第一过程,弹簧从缩短至恢复原长