二次根式易错题难题

合集下载

二次根式易错题难题

二次根式易错题难题

二次根式易错题难题1、当a 时, 有意义2、计算:3、计算:4、计算: (a >0,b >0,c >0)5、计算: = =6、7、 则 2006个3 2006个48、9、观察以下各式:利用以上规律计算:10、已知 一、选择题11、若32+x 有意义,则 ( ) A 、 B 、 C 、 D 、12、化简 的结果是 ( ) A 、0 B 、2a -4 C 、4 D 、4-2a13、能使等式 成立的条件是 ( ) A 、x ≥0 B 、x ≥3 C 、x >3 D 、x >3或x <0 14、下列各式中,是最简二次根式的是 ( ) A 、x 8 B 、b a 25 C 、2294b a + D 、15、已知 ,那么 的值是 ( ) A 、1 B 、-1 C 、±1 D 、4 16、如果 ,则a 和b 的关系是 ( ) A 、a ≤b B 、a <b C 、a ≥b D 、a >b 17、已知xy >0,化简二次根式 的正确结果为 ( ) A 、 B 、 C 、 D 、 18、如图,Rt △AMC 中,∠C=90°, ∠AMC=30°,AM ∥BN ,MN=2 cm , BC=1cm ,则AC 的长度为 ( ) A 、23cm B 、3cm C 、3.2cm D 、19、下列说法正确的个数是 ( ) ①2的平方根是 ;② 是同类二次根式; ③ 互为倒数;④ A 、1 B 、2 C 、3 D 、420、下列四个算式,其中一定成立的是 ( )① ; ② ; ③ ④ A 、①②③④ B 、①②③ C 、①③ D 、①三、解答题21、求 有意义的条件(5分) 22、已知 求3x +4y 的值23、化简625①- ②627-24、在实数范围内将下列各式因式分解① ② ③④25、已知实数a 满足 ,求a -20052的值 26设长方形的长与宽分别为a 、b ,面积为S①已知 ;②已知S= cm 2,b = cm,求 a27、①已知 ; ②已知x = 求x 2-4x -6的值28、已知Rt △ABC 中,∠ACB=90°,AC=22cm , BC=10cm ,求AB 上的高CD 长度29、计算:30、已知 ,求① ;② 的值()=-231)(a -1()=2232)(=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--2511)(()=-262)(=-⨯)()(27311=c b a 2382)(73)1(a38)2(=->2,0xy xy 化简如果=+=+=+222222444333443343,,=+22444333 =+-20062005)12()12(343412323112121-=+-=+-=+,,()=+⎪⎭⎫ ⎝⎛++++++++12006200520061341231121 =⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+-=+=x y y x 11111313,则,23-≥x 23-≤x 32-≥x 32-≤x 2)2(2-+-a a 33-=-x x x x 2y 51=+xx xx 1-12122-=+-⋅-b ab a ba 2xyx -y y -y -y --3M A N BCcm 323a a 2.05与21212+-与3223--的绝对值是11222+=+a a )(a a =2)(0>⋅=ab b a ab 11)1)(1(-⋅+=-+x x x x 11+-x x 214422-+-+-=x x x y 3322+-x x 752-x 44-x 44+x aa a =-+-200620057250S cmb cm a ,求,1022==11322+--=x x x ,求102-C AB D()()()()121123131302-+-+---+23232323+-=-+=y x ,y x 11+y x x y +。

(易错题精选)初中数学二次根式难题汇编附解析

(易错题精选)初中数学二次根式难题汇编附解析

(易错题精选)初中数学二次根式难题汇编附解析一、选择题1.如果一个三角形的三边长分别为12、k、72,则化简21236k k-+﹣|2k﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k【答案】D【解析】【分析】求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为12、k、72,∴72-12<k<12+72,∴3<k<4,21236k k-+-|2k-5|,=()26k--|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k,故选D.【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.2.下列计算正确的是()A.+=B.﹣=﹣1 C.×=6 D.÷=3【答案】D【解析】【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】解:A、B与不能合并,所以A、B选项错误;C、原式= ×=,所以C选项错误;D、原式==3,所以D选项正确.故选:D.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.下列各式计算正确的是( )A 1082==-= B .()()236==-⨯-=C 115236==+=D .54==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式,所以A 选项错误;B 、原式,所以B 选项错误;C 、原式6,所以C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.当3x =-时,二次根m 等于( )AB .2CD 【答案】B【解析】解:把x =﹣3代入二次根式得,原式=,依题意得:=.故选B .5.若代数式1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】∵代数式1x -在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.6.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=-C .1)4=D .()422a a -=【答案】C【解析】【分析】 根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、1)514=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.7.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .8.5130.5a 22a b -22x y +中,是最简二次根式的有( )A .2个B .3个C .4个D .5个 【答案】A【解析】 5 133 0.5a 2a ,不是最简二次根式; 22a b -b ,不是最简二次根式;22x y +是最简二次根式.共有2个最简二次根式.故选A.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.9.下列计算错误的是( )A .2598a a a +=B .14772⨯=C .3223-=D .60523÷= 【答案】C【解析】【分析】 根据二次根式的运算法则逐项判断即可.【详解】解:A. 259538a a a a a +=+=,正确;B. 14727772⨯=⨯⨯=,正确;C. 32222-=,原式错误;D. 6051223÷==,正确;故选:C .【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.10.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D【答案】A【解析】【分析】先化简原式得45-5545【详解】原式=45-由于25<<3,∴1<45-<2.故选:A .【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.11.有意义的x 的取值范围( ) A .x >2B .x≥2C .x >3D .x≥2且x≠3 【答案】D【解析】试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数. 根据题意,得20{30x x -≥-≠解得,x≥2且x≠3. 考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件12.有意义,则x 的取值范围是( )A .1x >-B .0x ≥C .1x ≥-D .任意实数【答案】C【解析】【分析】a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】有意义,则10x +≥,故1x ≥-故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.13的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.14.计算201720192)2)的结果是( )A.B2 C.7 D.7- 【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩可求解.16.下列运算正确的是( )A .235a a a +=B .23241(2)()162a a a -÷=-C .1133a a-= D .2222)3441a a a ÷=-+【答案】D【解析】 试题分析:A .23a a +,无法计算,故此选项错误;B .()23262112824a a a a ⎛⎫⎛⎫-÷=-÷ ⎪ ⎪⎝⎭⎝⎭=432a -,故此选项错误; C .133a a -=,故此选项错误;D .()22223441a a a ÷=-+,正确.故选D .17.下列运算正确的是( )A =B 2÷=C .3=D .142=【答案】B【解析】【分析】根据二次根式的混合运算的相关知识即可解答.【详解】=,故错误;2÷=,正确;C. =D. 142故选B.【点睛】此题考查二次根式的性质与化简,解题关键在于掌握运算法则.18.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0得,3x +有意义的条件是+30≥x解得:-3≥x故选:D 【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.19.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】 2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.20.已知25523y x x =--,则2xy 的值为( ) A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由25523y x x =--,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .。

八年级初二数学下学期二次根式单元 易错题难题检测试题

八年级初二数学下学期二次根式单元 易错题难题检测试题

一、选择题1.下列各式成立的是( )A 3=B 3=C .22(3=-D .2-=2.下列计算正确的是( )AB C D 3.下列运算正确的是 ( )A .3=B =C .=D =4.下列运算中,正确的是( )A =B 1=C =D =5.化简 )A B C D6.2= )A .3B .4C .5D .6 7.已知:,,则a 与b 的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .平方相等8.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( )A .1个B .2个C .3个D .4个9.下列运算正确的是( )A =B .(28-=C 12=D 1=10.下列属于最简二次根式的是( )A B C D 二、填空题11.设4 a,小数部分为 b.则1a b -= __________________________.12.若0a >化成最简二次根式为________. 13.已知112a b +=,求535a ab b a ab b++=-+_____.14.已知a ,b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有____对.15.把根号外的因式移入根号内,得________16.10=,则222516x y +=______.17.÷=________________ . 18.已知实数m 、n 、p 满足等式,则p =__________.19.mn =________.20.n 为________.三、解答题21.2-+1 【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.【详解】22-+=1)2(3+⨯=121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.像2)=1=a(a≥0)、﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1);(2)(3)的大小,并说明理由.【答案】(1(2)(3)<【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式;(2)原式=2+=2+(3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.23.阅读下面的解答过程,然后作答:m和n,使m2+n2=a 且,则a +2b 可变为m 2+n 2+2mn ,即变成(m +n )2,从而使得2a b +化简. 例如:∵5+26=3+2+26=(3)2+(2)2+26=(3+2)2∴526+=()232+=3+2请你仿照上例将下列各式化简(1)423+,(2)7210-.【答案】(1)1+3;(2)52-. 【分析】参照范例中的方法进行解答即可.【详解】解:(1)∵222423123(3)(13)+=++=+,∴24+23=(13)13+=+;(2)∵2227210(5)252(2)(52)-=-⋅+=-,∴27210(52)52-=-=-.24.先化简,再求值:a+212a a -+,其中a =1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ;(3)先化简,再求值:269a a -+a =﹣2018.【答案】(1)小亮(22a (a <0)(3)2013.【解析】试题分析:(12a ,判断出小亮的计算是错误的;(22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(22a (a <0)(3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.25.计算:(1)0 1 2⎛⎫ ⎪⎝⎭(2)(4【答案】(1)-5;(2)9【分析】(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果;(2)利用平方差公式计算即可.【详解】(1)0 1 2⎛⎫ ⎪⎝⎭41=--,5=-;(2)(4167=-9=.【点睛】本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.26.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n个等式:(n为正整数).(2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,< ∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.27.2020(1)-【答案】1【分析】先计算乘方,再化简二次根式求解即可.【详解】2020(1)-=1=1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:A3=,故A正确;B-不能合并,故B错误;C、22(3=,故C错误;D、=D错误;故选:A.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.2.A解析:A【解析】分析:根据二次根式的加、减、乘、除的法则计算逐一验证即可.详解: , 此选项正确;≠此选项错误;, 此选项错误;,此选项错误.故选A.点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键. 3.A解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A、3=,故选项A正确;B B错误;C、18=,故选项C错误;D=D错误;故选:A.【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.4.C解析:C【分析】根据二次根式的加、减、乘、除运算法则对各项进行计算即可得到结果.【详解】不是同类二次根式,不能合并,故此选项错误;不是同类二次根式,不能合并,故此选项错误;=D=,故此选项错误;故选:C.【点睛】此题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答此题的关键.5.C解析:C【解析】根据二次根式有意义的条件可知﹣1x>0,求得x<0,然后根据二次根式的化简,可得x.故选C.6.C解析:C【解析】2=,2222251510x x=-=--+=,5=.故选C.7.C解析:C【解析】 因为1a b ⨯==,故选C. 8.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误; ④如果点P (3-2n ,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.9.B解析:B【分析】根据二次根式的性质及运算法则依次计算各项后即可解答.【详解】选项A A 错误;选项B ,(2428-=⨯=,选项B 正确;选项C 124==,选项C 错误;选项D 1,选项D 错误.综上,符合题意的只有选项B .故选B .【点睛】本题考查了二次根式的性质及运算法则,熟练运用二次根式的性质及运算法则是解决问题的关键.10.B解析:B【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】解:A,不符合题意;BC=2,不符合题意;D3,不符合题意;故选B.【点睛】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.二、填空题11.【分析】根据实数的估算求出a,b,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:.【点睛】此题主要考查无理解析:12-【分析】根据实数的估算求出a,b,再代入1ab-即可求解.【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=22==1故填:12-. 【点睛】此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.12.【分析】先判断b 的符号,再根据二次根式的性质进行化简即可.【详解】解:∵∴∴所以答案是:【点睛】本题考查了二次根式的性质.解析: 【分析】先判断b 的符号,再根据二次根式的性质进行化简即可.【详解】 解:∵40,0a a b-≥> ∴0b < 2a b b b b=--所以答案是: 【点睛】a =.13.13【解析】【分析】由得a+b=2ab ,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】由112a b+=得a+b=2ab,然后再变形535a ab ba ab b++-+,最后代入求解即可.【详解】解:∵112 a b+=∴a+b=2ab∴()5353510ab3===132aba b aba ab b aba ab b a b ab ab+++++-++--故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 14.7【解析】解:∵=+,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a =240,b =240时,即2=1;⑥当a =135,b =540时,即2=1;⑦当a =540,b =135时,即2=1; 故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a ,b )共有 7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a 、b 可能的取值.15.【分析】根据被开方数大于等于零,可得出,再根据二次根式的性质进行计算即可.【详解】解:∵,∴,∴.故答案为:.【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质【分析】根据被开方数大于等于零,可得出0a <,再根据二次根式的性质进行计算即可.【详解】 解:∵310a -≥, ∴0a <,∴===故答案为:a . 【点睛】本题考查的知识点是二次根式的性质与化简,掌握二次根式的基本性质是解此题的关键.16.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.17.【解析】=,故答案为.解析:【解析】÷====-,故答案为18.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=,∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=, 解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.19.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321.mn=⨯=故答案为21.20.7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.三、解答题21.无22.无23.无24.无26.无27.无28.无。

人教版八年级初二数学下学期二次根式单元 易错题难题测试题试题

人教版八年级初二数学下学期二次根式单元 易错题难题测试题试题

一、选择题1.对于所有实数a ,b ,下列等式总能成立的是( ) A .()2ba b a +=+ B .22222(b a b )a +=+ C .22b a b a +=+D .2(b)a b a +=+2.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣1 3.下列式子中,属于最简二次根式的是( )A 4B 3C 12D 204.下列各式中正确的是( ) A 36 6B 2(2)2--=-C 8 4D .2(7)=75.化简二次根式 22a a+- ) A 2a --B 2a --C 2a -D 2a -6.如果2a a 2a 1-+,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.下列计算正确的是( ) A 366=± B .422222=C .83266= D a b ab =(a≥0,b≥0)8.下面有四个命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.013323)=5;④如果点P (3-2n ,1)到两坐标轴的距离相等,那么n =1,其中假命题的有( ) A .1个B .2个C .3个D .4个9.23a -2a a 的值是( ) A .2B .-1C .3D .-1或310.32的结果是( ) A .±3B .﹣3C .3D .9二、填空题11.比较实数的大小:(1)5?-______3 ;(251-_______1212.已知实数,x y 满足()()22200820082008x x y y ----=,则2232332007x y x y -+--的值为______.13.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =+++,则S=________________ (用含有n 的代数式表示,其中n 为正整数).14.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.15.222a a ++-1的最小值是______. 16.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行 13154 1732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示).17.若a 、b 、c 均为实数,且a 、b 、c 均不为0化简43252a c b=___________ 18.若0xy >,则二次根式2yx x -化简的结果为________. 19.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.20.2m 1-1343m --mn =________.三、解答题21.若x ,y 为实数,且y 14x -41x -12.求x y y x ++2-xy y x +-2的值. 2【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =14,此时y =12.即可代入求解. 【详解】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩∴ x =14.当x =14时,y =12.又∵x y y x ++2-x yy x +-2=-| ∵x =14,y =12,∴ x y <y x.∴+当x =14,y =12时,原式=.【点睛】(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22.(112=3=4=;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想. 【答案】(12=55=6=;(2n=;(3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果;(2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④=25,6,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,n .n.故答案为5=25 n;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.观察下列等式:1==;==== 回答下列问题:(1(2)计算:【答案】(1(2)9 【分析】(1)根据已知的3=-n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可.【详解】=解:(1(2+99+++-=1100=1=10-1=9.+24.计算:(1)+-(2(33【答案】(1)2) -10【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可.【详解】+解:(1)===+-(2(33=5+9-24=14-24=-10.【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.25.观察下列各式.====……根据上述规律回答下列问题.(1)接着完成第⑤个等式: _____;n n≥的式子写出你发现的规律;(2)请用含(1)(3)证明(2)中的结论.=+3)见解析【答案】(1=2(n【分析】(1)当n=5==+(2(n(3)直接根据二次根式的化简即可证明.【详解】解:(1==+(2(n(3=(n==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.26.计算(1-(2)(()21【答案】(1);(2)24+【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案.【详解】解:(1=+2=(-+2=2(2)(()21-=22(181)---=452181--+=24+.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.27.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.28.计算:(1(2)()()2221-【答案】2)1443(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443. 【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【详解】解:A 、错误,∵2=+a bB 、正确,因为a 2+b 2≥0a 2+b 2;CD =|a +b |,其结果a+b 的符号不能确定. 故选B .2.A解析:A 【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可 【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A . 【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小3.B【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可. 【详解】解:A=2,不是最简二次根式,故本选项错误; BC= D=,不是最简二次根式,故本选项错误; 故选:B . 【点睛】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.4.D解析:D 【分析】直接利用二次根式的性质分别化简得出答案. 【详解】解:A,故A 错误; B12=,故B 错误; C=C 错误; D、2(=7,故D 正确; 故选:D . 【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.5.B解析:B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可 【详解】2202a a a a a +-∴+<∴<-a∴===故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.6.C解析:C【解析】试题解析:∵a1,a∴1-a≥0,a≤1,故选C.7.D解析:D6=,故A不正确;根据二次根式的除法,可直接得到2=,故B不正确;根据同类二次根式的性质,可知C不正确;=(a≥0,b≥0)可知D正确.故选:D8.D解析:D【分析】利用平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质分别判断后即可确定正确的选项.【详解】解:①两条平行线直线被第三条直线所截,同位角相等,故错误;②0.01的算术平方根是0.1,故错误;)=17322+=,故错误;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1或n=2,故错误,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行线的性质、算术平方根的定义、实数的运算及点的坐标的性质,难度一般.9.C【分析】根据同类二次根式的性质即可求出答案.【详解】由题意可知:a2-3=2a∴解得:a=3或a=-1当a=-1时,该二次根式无意义,故a=3故选C.【点睛】本题考查二次根式的概念,解题的关键是熟练正确理解最简二次根式以及同类二次根式的概念.10.C解析:C【分析】根据二次根式的性质即可求出答案.【详解】原式=3,故选C.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.二、填空题11.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为:,.解析:<<【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.(1)<12=∵3=<<1 2故答案为:<,<.【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键.12.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系.13.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题 解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 14.-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,∴∴﹣|a ﹣c|+﹣|﹣b|=解析:-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,0c a b <<<∴00.a c c b >,<|a ﹣c ﹣|﹣b |=||()||a ac c b b =()aa cbc b =aa cbc b =-2a .【点睛】本题考查二次根式的性质与化简和化简绝对值.在解决本题时需注意①对于任意实数a ,都有||a =;②在化简绝对值时,绝对值内如果是一个多项式,要给化简后的结果带上括号.15.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。

二次根式十大易错题(带答案)

二次根式十大易错题(带答案)

二次根式十大经典易错题1. 下列说法正确有 个. (1)2(2)若236a =,则6a =±(34=±(4的平方根是10±. (5(6)2a 的算术平方根a .(76=,则6a =. (8)2a -没有平方根. (9)若两个数平方后相等,则这两个数也一定相等.(10)如果两个非负数相等,那么他们各自的算术平方根也相等.2. 下列二次根式中,最简二次根式的个数是( )A .1个B .2个C .3个D .4个3. 实数a ,b ,c 在数轴上的对应点如图所示,化简2c b a a -++的值是( )A .c b --B .b c -C .)(2c b a +-D .c b a ++24.(0)=a >( ) A . B .C .D .5. 已知a ,b 满足11a ab ++=,则ab =________.6. 已知非零实数a ,b 满足a b a b a 24)3(2422=+-+++-,则a b +=________.7. 计算:23)3412(22---÷-.( ) A . B . C . D .ab a 2-ab ab -a ab 2-b b a 2-2-232-32+-322--8. 计算:40282015)32()347(+-的结果为( )A .1B .32+C .347-D .9. 已知0xy >,化简二次根式 )ABC. D.10. 已知2a b +=-,12ab =347+1. 【解析】(2)(10)正确【答案】22. 【解析】此题的关键是看二次根式的被开方数是否满足最简二次根式的两个条166x x -=0.5中的13是分数,它们都不满足条件1中有能开得尽方的因式2b中有能开得尽方的因数22,()22x -,它们都不满足条件2;满足最简二次根式的两个条件.. 点评:要牢记最简二次根式的两个条件,判断时只须看被开方数,注意当被开方数是多项式时要先分解因式,找一找有没有能开得尽方得因式和因数,特别要分清2a 和2b ,但2a 和2b 不是2a +2b 的因式. 【答案】B 3. 【答案】B 4. 【答案】D 5. 【答案】-1 6. 【答案】1 7. 【答案】A 8. 【答案】C9.【解析】解题的关键是确定被开放式字母的符号.由题可知20x >,且20,0yy x-≥∴≤,又0xy >,0x ∴<,∴原式=. 【答案】D10. 【解析】∵102ab =>,∴a b ,同号,又∵2a b +=-,∴00a b <<,,2===【答案】。

专题6二次根式易错题疑难题综合拓展题及2022中考真题集训(解析版)

专题6二次根式易错题疑难题综合拓展题及2022中考真题集训(解析版)

专题6 二次根式易错题疑难题综合拓展题及2022中考真题集训类型一 易错题:教材易错易混题集训易错点1 考虑问题不全面典例1(2021春•+x 的取值范围是( )A .x >﹣2B .x ≥3C .x ≥3且x ≠﹣2D .x ≥﹣2思路引领:根据二次根式有意义的条件即可求出答案.解:由题意可知:x ―3≥0x +2>0,解得:x ≥3,故选:B .总结提升:本题考查二次根式以有意义的条件,解题的关键是正确理解二次根式的条件,本题属于基础题型.变式训练1.(2019•x 应满足的条件是( )A .x ≠3B .x ≤―13C .x ≥―13且x ≠3D .x >―13且x ≠3思路引领:根据二次根式有意义的条件,分式有意义的条件列出不等式,解不等式即可.解:由题意得,1+3x ≥0,x ﹣3≠0,解得,x ≥―13且x ≠3,故选:C .总结提升:本题考查的是二次根式有意义的条件,分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.易错点2 (0)a a =³时,忽略a ≥0典例2(2022春•乐陵市期末)先阅读材料,然后回答问题.(1经过思考,小张解决这个问题的过程如下:===在上述化简过程中,第 ④ 步出现了错误,化简的正确结果为 (2思路引领:(1|a |即可进行判断;(2)把被开方数化成完全平方的形式,然后利用二次根式的性质即可化简求解.解:(1)在化简过程中④故答案是:④―(2)原式====总结提升:本题考查了二次根式的化简求值,正确把被开方数化成完全平方的形式是本题的关键.变式训练1= .思路引领:根据二次根式的性质和完全平方公式化简即可.===―1,―1.总结提升:本题考查了二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.2.对于题目:“化简并求值:1a+a =15”,甲、乙两人的解答不同.甲的解答是:1a 1a +1a ―a =2a―a =495,乙的解答是:1a 1a +a ―1a =a =15.阅读后你认为谁的解答是错误的?为什么?思路引领:已知二次根式具有双重非负性,即被开方数为非负数,二次根式的值为非负数,已知a =15,故可得1a ―a =5―15>01a―a ,再对待求式进行化简求值即可解答题目.解:乙错误,理由如下:1a +=1a +=1a +|1a―a |.∵a =15,∴1a―a =5―15=245>0,∴|1a ―a |=1a―a ,1a +1a +1a ―a =2a ―a =495.故乙的解答是错误的.总结提升:本题考查分式的化简求值,正确进行计算是解题关键.易错点3 忽视二次根式的隐含条件典例3阅读下列解答过程,判断是否正确.如果正确,请说明理由;如果不正确,请写出正确的解答过程.已知a ―a (a ﹣1思路引领:先根据二次根式有意义的条件求出a 的取值范围,再进行化简.解:不正确,∵﹣a 3>0,∴a <0,―=﹣=(﹣a+1总结提升:本题考查了二次根式有意义的条件,二次根式的化简是解题的关键.变式训练1.(2022秋•长安区期中)求代数式a+a=﹣2022.下面是小芳和小亮的解题过程,都是把含有字母式子先开方再进行运算的方法,请认真思考、理解解答过程,回答下列问题.小芳:解:原式=a=a+1﹣a=1小亮:解:原式=a=a+a﹣1=﹣4045(1) 的解法是错误的;(2)求代数式a a=4―思路引领:(1)根据题意得到a﹣1<0,根据二次根式的性质计算即可;(2)根据二次根式的性质把原式化简,代入计算即可.解:(1)∵a=﹣2022,∴a﹣1=﹣2022﹣1=﹣2023<0,1﹣a,∴小亮的解法是错误的,故答案为:小亮;(2)∵a=4∴a﹣3=4――3=1―0,3﹣a,则a=a=a+2(3﹣a)=6﹣a,当a=4―6﹣(4―2+总结提升:=|a|是解题的关键.易错点4 成立的条件是a≥0,b≥0典例4(2022春•⋅x的取值范围是( )A.x≥1B.x≥0C.0≤x≤1D.x为任意实数思路引领:根据二次根式有意义的条件列不等式组求解.解:由题意可得x≥0x―1≥0,解得:x≥1,故选:A.总结提升:a≥0)是解题关键.变式训练1.(2021春•―(x x的取值范围是( )A.x≥﹣1B.x≥﹣2C.x≤﹣1D.﹣2≤x≤﹣1思路引领:根据二次根式化简与有意义的条件,即可求得:x+1≤0x+2≥0,解此不等式组即可求得答案.=―(x+1∴x+1≤0 x+2≥0,解得:﹣2≤x≤﹣1.故选:D.总结提升:此题考查了二次根式化简与有意义的条件.此题比较简单,注意掌握二次根式有意义的条件.易错点5 运用想当然的运算法则典例5(2021秋•÷解:原式=―①=②=(2―③=④(1)老师认为小明的解法有错,请你指出小明从第 步开始出错的;(2)请你给出正确的解题过程.思路引领:根据二次根式的运算法则即可求出答案.解:(1)③,故答案为:③.(2)原式==―=总结提升:本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则.变式训练1.(2022春•―=4.他的解答过程是否有错误?如果有错误,请写出正确的解答过程.思路引领:根据二次根式的加减法的法则进行分析即可.解:有错误,==总结提升:本题主要考查二次根式的加减法,解答的关键是对二次根式的加减法的法则的掌握.易错点6 误用乘法公式典例6(2022秋•金水区校级期中)计算:下面是李明同学在解答某个题目时的计算过程,请认真阅读并完成相应任务.222+22+2……第一步=10……第三步任务一:填空:以上步骤中,从第 步开始出现错误,这一步错误的原因是 ;任务二:请写出正确的计算过程;任务三:除纠正上述错误外,请你根据平时的学习经验,就二次根式运算时还需注意的事项给其他同学提一条建议.思路引领:任务一:利用完全平方公式进行计算即可解答;任务二:先计算二次根式的乘法,再算加减,即可解答;任务三:根据在进行二次根式运算时,结果必须化成最简二次根式,即可解答.解:任务一:填空:以上步骤中,从第一步开始出现错误,这一步错误的原因是完全平方公式运用错误,故答案为:一,完全平方公式运用错误;任务二:222+2﹣[2﹣+2]=5﹣(6﹣+5)=5﹣5=任务三:在进行二次根式运算时,结果必须化成最简二次根式.总结提升:本题考查了二次根式的混合运算,熟练掌握完全平方公式是解题的关键.易错点7 运用运算律出现符号错误典例7(2022秋•迎泽区校级月考)下面是小明同学进行实数运算的过程,认真阅读并完成相应的任务:×+1)︸①×︸②第一步―10+2……第二步―8……第三步任务一:以上化简步骤中第一步中:标①的运算依据是 ;标②的运算依据是 (运算律).任务二:第 步开始出现错误,错误原因是 ,该式运算后的正确结果是 .思路引领:利用二次根式的性质、二次根式的加减法法则、除法法则计算可得结论.解:任务一、①由②的运算依据是乘法的分配律;故答案为:二次根式的性质.乘法的分配律;任务二、从第二步开始出现错误.×+1)×1―10﹣2―12,故答案为:任务一:二次根式的性质;乘法的分配律.任务二:①12.总结提升:本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是解决本题的关键.变式训练1.(2022春•12(的过程,请认真阅读并完成相应的任务.―12(―12(2第一步―12×―12×第二步第三步第四步=―第五步任务一:小明同学的解答过程从第 步开始出现错误,这一步错误的原因是  .任务二:请你写出正确的计算过程.思路引领:先计算二次根式的乘法,再算加减,即可解答.解:(1)任务一:小明同学的解答过程从第二步开始出现错误,这一步错误的原因是去括号后,括号内第二项没有变号,故答案为:二;去括号后,括号内第二项没有变号;(2―12(―12(2总结提升:本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.易错点8 滥用运算律典例8(2021秋•迎泽区校级月考)下面是小倩同学进行实数运算的过程,认真阅读并完成相应的任务:÷1 )第一步1⋯第二步+2第三步+2﹣10…第四步―8…第五步任务一:以上化简步骤中第一步化简的依据是 .任务二:第 二 步开始出现错误,该式运算后的正确结果是 .思路引领:利用二次根式的性质、二次根式的加减法法则、除法法则计算可得结论.故答案为:二次根式的性质.任务二、从第二步开始出现错误.÷1)÷1)=2+4++52总结提升:本题考查了二次根式的混合运算,掌握二次根式的性质及运算法则是解决本题的关键.类型二疑难题:常考疑难问题突破疑难点1 二次根式非负性的应用1.已知实数a 满足|2019﹣a |+a ,求a ﹣20192的值.思路引领:首先由二次根式有意义的条件来去绝对值,得到a ﹣2019a ,由此得到a ﹣20192=2019.解:∵a ﹣2019≥0,∴a >2019.∴由|2019﹣a |+=a 得到a ﹣2019+a ,整理,得a ﹣2019=20192.∴a ﹣20192=2019.总结提升:a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.疑难点2 整体思想在二次根式中的应用2.(2018春•禹州市期中)已知a =+1,b ―1(a b +b a―1)的值思路引领:先由a 、b 的值计算出ab 、a +b 的值,再代入到原式=•a 2b 2abab a 2得.解:∵a =1,b =―1,∴a +b =ab 1)1)=2,则原式=•a 2b 2ab ab=总结提升:本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.3.(1)已知x =x 2﹣2x +5的值;(2)若a =2b =2,求a思路引领:(1)先把x 2﹣2x +5化简,再代入求值;(2)先把a―解:(1)由x 2+1,∴x 2﹣2x +5+1)2﹣2+1)+5=―2+5=7;(2=a =ab a b,当a =2+b =2―原式=总结提升:先化简再代入,应该是求值题的一般步骤;不化简,直接代入,虽然能求出结果,但往往导致繁琐的运算.疑难点3 判断求知问题4.(2019春•西湖区校级期中)王老师为了解学生掌握二次根式知识的情况,出了这样一道题:“根据所给”粗心的黎明同学把式子看错了,他根据条件得到2”思路引领:2,继而求出答案.解:45﹣x 2﹣(35﹣x 2)=10,2,5.总结提升:本题考查二次根式的乘除法运算,难度不大,关键是平方差公式的运用.类型三 综合拓展题:思维能力专项特训专题1 二次根式性质的应用1.(2022秋•+|2a ﹣b +1|=0,则(b ﹣a )2022=( )A .﹣1B .1C .52022D .﹣52022思路引领:因为算术平方根具有非负性,在实数范围内,任意一个数的绝对值都是非负数,若+|2a ﹣b +1|=0,则a +b +5=0,2a ﹣b +1=0,联立组成方程组,解出a 和b 的值即可解答.|2a ﹣b +1|=0,∴a+b+5=02a―b+1=0,解得a=―2 b=―3,∴(b﹣a)2022=(﹣3+2)2022=(﹣1)2022=1.故选:B.总结提升:本题考查了非负数的性质以及解二元一次方程组,根据几个非负数的和等于0,则每一个算式都等于0列出关于a、b的方程是解题的关键.2.已知x、y为实数,且y=+12,求5x﹣3y的值.思路引领:根据二次根式有意义的条件列出不等式,求出x、y的值,计算即可.解:由题意得,3x﹣4≥0,4﹣3x≥0,解得,x=4 3,∴y=1 2,则5x﹣3y=5×43―3×12=316.总结提升:本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.3.(2022春•大连月考)已知实数a在数轴上的对应点位置如图,则化简|a―1|―( )A.2a﹣3B.﹣1C.1D.3﹣2a思路引领:根据数轴上a点的位置,判断出(a﹣1)和(a﹣2)的符号,再根据非负数的性质进行化简.解:由图知:1<a<2,∴a﹣1>0,a﹣2<0,原式=a﹣1﹣[﹣(a﹣2)]=a﹣1+(a﹣2)=2a﹣3.故选:A.总结提升:此题主要考查了二次根式的性质与化简,正确得出a﹣1>0,a﹣2<0是解题关键.4.当x+6有最小值,最小值为多少?思路引领:≥0,可以得出最小值.0,∴当x =―12时,6有最小值,最小值为6.总结提升:本题考查了算术平方根.解题的关键是掌握算术平方根的非负性.5.(2019秋•渠县校级期中)已知x 、y 、a 满足:+=x 、y 、a 的三条线段组成的三角形的面积.思路引领:直接利用二次根式的性质得出x +y =8,进而得出:3x ―y ―a =0x ―2y +a +3=0x +y =8,进而得出答案.解:根据二次根式的意义,得x +y ―8≥08―x ―y ≥0,解得:x +y =8,0,根据非负数得:3x ―y ―a =0x ―2y +a +3=0x +y =8,解得:x =3y =5a =4,∴可以组成直角三角形,面积为:12×3×4=6.总结提升:此题主要考查了二次根式的应用,正确应用二次根式的性质是解题关键.专题2 二次根式大小比较方法1 平方法1.(2022•思路引领:++解:2=202=∴20+故答案为:<.总结提升:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)解答此题的关键是比较出两个数的平方的大小关系.方法2 分子有理化法2.认真阅读下列解答过程:比较2―解:∵2―(2―1,=1,又20即22的大小关系.思路引领:认真阅读题目,然后依据题目所给的方法进行比较即可.―2=21,2>0,<1.2.总结提升:1,―2=1是解题的关键.方法3 作商法3.利用作商法比较大小思路引领:根据作商比较法,看最后的比值与1的大小关系,从而可以解答本题.=×=1,总结提升:本题考查分母有理化、实数大小的比较,解题的关键是明确作商法比较大小的方法.方法四定义法4思路引领:根据非负数的性质和有理数大小的比较方法即可得到结论.解:∵5﹣a≥0,∴a≤5,∴a﹣6<0,00,总结提升:本题考查的是实数的大小比较,要善于借助一个中间数作桥梁是解决问题的关键.专题3 二次根式的运算5.(2019秋•皇姑区校级月考)计算:(1)(2)―÷(3)(1―――1)2.(4―11)―20180――2|.思路引领:(1)直接化简二次根式进而合并即可;(2)直接利用二次根式的混合运算法则进而得出答案;(3)直接利用二次根式的混合运算法则计算进而得出答案;(4)直接利用负整数指数幂的性质以及零指数幂的性质分别化简进而得出答案.解:(1)原式=+=(2)原式=(=﹣1;(3)原式=+―(12+1﹣=――=﹣―(4)原式=3――1﹣2=总结提升:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.专题4 二次根式的求值6.(2022秋•宁德期中)已知:x =y =(1)填空:|x ﹣y |= ;(2)求代数式x 2+y 2﹣2xy 的值.思路引领:(1)根据二次根式的减法运算法则计算即可.(2)将代数式转化为(x ﹣y )2,再分别求出x ﹣y 和xy 的值,进而可得答案.解:(1)|x ﹣y |=||=+=故答案为:(2)x 2+y 2﹣5xy =(x ﹣y )2,∵x ﹣y =∴(x ﹣y )2﹣3xy =2=8.即代数式x 2+y 2﹣2xy 的值为8.总结提升:本题考查二次根式的化简求值,熟练掌握运算法则是解答本题的关键.7.(2020春•川汇区期末)计算题:已知x +1x x ―1x 的值.思路引领:根据平方差公式计算;∵x +1x∴(x +1x)22,∴x 2+2+1x 2=5,∴x 2﹣2+1x 2=5﹣4,∴(x ―1x)2=1,∴x―1x=±1.总结提升:本题考查的是分式的化简求值、二次根式的乘法,熟记平方差公式、完全平方公式是解题的关键.8.(2017秋•昌江区校级期末)已知正数m、n满足m4n=3,求值:思路引领:由m4n=3得出2﹣2﹣3=0,―13,代入计算即可.解:∵m4n=3,2+(2﹣23=0,2﹣2+3=0,1)+―3)=0,―1+=3,∴原式=3232012=12015.总结提升:本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.类型四中考真题:精选2022中考真题过关1.(2022•内蒙古)实数a1+|a﹣1|的化简结果是( )A.1B.2C.2a D.1﹣2a思路引领:根据数轴得:0<a<1,得到a>0,a﹣1<0=|a|和绝对值的性质化简即可.解:根据数轴得:0<a<1,∴a>0,a﹣1<0,∴原式=|a|+1+1﹣a=a+1+1﹣a=2.故选:B.总结提升:=|a|是解题的关键.2.(2022•安顺)估计(A.4和5之间B.5和6之间C.6和7之间D.7和8之间思路引领:直接利用二次根式的性质结合估算无理数的大小方法得出答案.解:原式=2∵34,∴5<2+6,故选:B.总结提升:此题主要考查了二次根式的混合运算,估算无理数的大小,正确估算无理数是解题关键.3.(2022•x的取值范围是( )A.x>2B.x<2C.x≤2D.x≥2思路引领:根据二次根式有意义的条件:被开方数是非负数即可得出答案.解:∵3x﹣6≥0,∴x≥2,故选:D.总结提升:本题考查了二次根式有意义的条件,掌握二次根式有意义的条件:被开方数是非负数是解题的关键.4.(2022•广州)代数式1有意义时,x应满足的条件为( )A.x≠﹣1B.x>﹣1C.x<﹣1D.x≤﹣1思路引领:直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.解:代数式1有意义时,x+1>0,解得:x>﹣1.故选:B.总结提升:此题主要考查了二次根式有意义的条件以及分式有意义的条件,正确掌握相关定义是解题关键.5.(2022•聊城)射击时,子弹射出枪口时的速度可用公式v=a为子弹的加速度,s 为枪筒的长.如果a=5×105m/s2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为( )A.0.4×103m/s B.0.8×103m/s C.4×102m/s D.8×102m/s思路引领:把a=5×105m/s2,s=0.64m代入公式v=解:v=8×102(m/s),故选:D.总结提升:此题主要考查了二次根式的性质与化简以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(2022•x﹣2在实数范围内有意义,则x的取值范围是( )A.x>﹣1B.x≥﹣1C.x≥﹣1且x≠0D.x≤﹣1且x≠0思路引领:根据二次根式的被开方数是非负数,a﹣p=1a p(a≠0)即可得出答案.解:∵x+1≥0,x≠0,∴x≥﹣1且x≠0,故选:C.总结提升:本题考查了二次根式有意义的条件,负整数指数幂,掌握二次根式的被开方数是非负数,a﹣p=1a p(a≠0)是解题的关键.7.(2022•荆州)若3―a,小数部分为b,则代数式(2+)•b的值是 .思路引领:3―a、b的值,代入所求式子计算即可.解:∵12,∴1<3―2,∵若3―a,小数部分为b,∴a=1,b=31=2∴(2+)•b=(2+(2―2,故答案为:2.总结提升:本题考查了估算无理数的大小的应用,解题的关键是求出a、b的值.8.(2022•随州)已知m为正整数,=m有最小值3×7=21.设n1的整数,则n的最小值为 ,最大值为 .思路引领:n最小为31越小,300 n越小,则n=2时,即可求解.∴n最小为3,1的整数,越小,300n越小,则n 越大,2时,300n=4,∴n =75,故答案为:3;75.总结提升:本题考查二次根式的乘除法,二次根式的性质与化简,解题的关键是读懂题意,根据关键词“大于”,“整数”进行求解.9.(2022•遂宁)实数a 、b 在数轴上的位置如图所示,化简|a +1|― .思路引领:根据数轴可得:﹣1<a <0,1<b <2,然后即可得到a +1>0,b ﹣1>0,a ﹣b <0,从而可以将所求式子化简.解:由数轴可得,﹣1<a <0,1<b <2,∴a +1>0,b ﹣1>0,a ﹣b <0,∴|a +1|=a +1﹣(b ﹣1)+(b ﹣a )=a +1﹣b +1+b ﹣a=2,故答案为:2.总结提升:本题考查二次根式的性质与化简、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.10.(2022•内蒙古)已知x ,y 是实数,且满足y+18,则的值是 .思路引领:根据负数没有平方根求出x 的值,进而求出y 的值,代入计算即可求出值.解:∵y =18,∴x ﹣2≥0,2﹣x ≥0,∴x =2,y =18,则原式==12,故答案为:12总结提升:此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.11.(2022•济宁)已知a =2+b =2―a 2b +ab 2的值.思路引领:利用因式分解,进行计算即可解答.解:∵a =2b =2∴a 2b +ab 2=ab (a +b )=(2+(2(2+2―=(4﹣5)×4=﹣1×4=﹣4.总结提升:本题考查了二次根式的混合运算,代数式求值,熟练掌握因式分解是解题的关键.12.(2022•河池)计算:|﹣3﹣1―(π﹣5)0.思路引领:先去绝对值,计算负整数指数幂,零指数幂和二次根式乘法,再合并即可.解:原式=―13―1=23.总结提升:本题考查实数的混合运算,解题的关键是掌握实数相关运算的法则.13.(2022•泰州)(1×(2)按要求填空:小王计算2x x 24―1x 2的过程如下:解:2x x 24―1x 2=2x (x 2)(x 2)―1x 2⋯⋯第一步=2x (x 2)(x 2)―x 2(x 2)(x 2)⋯⋯第二步=2x x2(x2)(x2)⋯⋯第三步=x2(x2)(x2)⋯⋯第四步=1x2.……第五步小王计算的第一步是 (填“整式乘法”或“因式分解”),计算过程的第 步出现错误.直接写出正确的计算结果是 .思路引领:(1)原式利用二次根式乘法法则计算,合并即可得到结果;(2)观察解题的过程,分析第一步变形的依据,找出出错的步骤,计算出正确的结果即可.解:(1)原式===(2)2xx24―1x2=2x(x2)(x2)―1x2=2x(x2)(x2)―x2(x2)(x2)=2x(x2) (x2)(x2)=2x x2 (x2)(x2)=x2(x2)(x2)=1x2,小王计算的第一步是因式分解,计算过程的第三步出现错误.直接写出正确的计算结果是1x2.故答案为:因式分解,三,1x2.总结提升:此题考查了二次根式的混合运算,因式分解﹣运用公式法,以及分式的加减法,熟练掌握运算法则是解本题的关键.。

(完整word版)二次根式易错题难题

(完整word版)二次根式易错题难题
二次根式易错题难题
1、当a时,有意义
2、计算:
3、计算:
4、计算:(a>0,b〉0,c〉0)
5、计算:==
6、
7、

2006个3 2006个4
8、
9、观察以下各式:
利用以上规律计算:
10、已知
一、选择题
11、若 有意义,则( )
A、B、C、D、
12、化简的结果是( )
A、0 B、2a-4 C、4 D、4-2a
13、能使等式成立的条件是( )
A、x≥0 B、x≥3 C、x〉3 D、x〉3或x〈0
14、下列各式中,是最简二次根式的是( )ቤተ መጻሕፍቲ ባይዱ
A、 B、 C、 D、
15、已知,那么的值是( )
A、1 B、-1 C、±1 D、4
16、如果,则a和b的关系是()
A、a≤bB、a〈bC、a≥bD、a>b
17、已知xy>0,化简二次根式的正确结果为()
27、①已知;②已知x=
求x2—4x—6的值
28、已知Rt△ABC中,∠ACB=90°,AC=2 cm,
BC= cm,求AB上的高CD长度
29、计算:
30、已知,求①;②的值
A、B、C、D、
18、如图,Rt△AMC中,∠C=90°,
∠AMC=30°,AM∥BN,MN=2cm,
BC=1cm,则AC的长度为()
A、2 cmB、3cm
C、3.2cmD、
19、下列说法正确的个数是()
①2的平方根是;②是同类二次根式;③
互为倒数;④
A、1 B、2 C、3 D、4
20、下列四个算式,其中一定成立的是()
①;②;③

二次根式易错题汇编及答案解析

二次根式易错题汇编及答案解析
故选:C.
【点睛】
此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.
4.若代数式 在实数范围内有意义,则实数 的取值范围是( )
A. B. 且 C. D. 且
【答案】D
【解析】
【分析】
根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.
17.下列二次根式是最简二次根式的是()
A. B. C. D.
【答案】D
【解析】
【分析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、被开方数含分母,故A不符合题意;
B、被开方数含开的尽的因数,故B不符合题意;
C、被开方数是小数,故C不符合题意;
D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.
【详解】
A、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
B、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
C、 与 的被开方数相同,所以它们是同类二次根式;故本选项正确;
D、 是三次根式;故本选项错误.
故选:C.
【点睛】
本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
【详解】
解:A、 =2 ,故本选项错误;
B、 是最简根式,故本选项正确;
C、 = ,故本选项错误;
D、 = ,故本选项错误.
故选:B.
【点睛】
本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.
12.下列计算正确的是
A. B. C. D.

二次根式易错题汇编附答案

二次根式易错题汇编附答案
【详解】
解:∵二次根式 在实数范围内有意义,
∴a+2≥0,解得a≥-2.
故选B.
【点睛】
本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;
4.把 根号外的因式移到根号内的结果为().
A. B. C. D.
【答案】C
【解析】
【分析】
先判断出a-b的符号,然后解答即可.
【详解】
∵被开方数 ,分母 ,∴ ,∴ ,∴原式 .
二次根式易错题汇编附答案
一、选择题
1.下列二次根式: 、 、 、 、 中,是最简二次根式的有( )
A.2个B.3个C.4个D.5个
【答案】A
【解析】
试题解析: ,是最简二次根式;
= ,不是最简二次根式;
= ,不是最简二次根式;
=2|a| ,不是最简二次根式;
,是最简二次根式.
共有2个最简二次根式.故选A.
【详解】
由题意得

解得:x≥2,
故选B.
【点睛】
本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.
8.如果 ,那么()
A. B. C. D.x为一切实数
【答案】B
【解析】
∵ ,
∴x≥0,x-6≥0,
∴ .
故选B.
9.计算 的结果在()之间.
A.1和2B.2和3C.3和4D.4和5
故选C.
【点睛】
本题考查了二次根式的性质与化简: |a|.也考查了二次根式的成立的条件以及二次根式的乘法.
5.计算 的结果为()
A.±3B.-3C.3D.9
【答案】C
【解析】
【分析】
根据 =|a|进行计算即可.

二次根式单元 易错题难题测试题

二次根式单元 易错题难题测试题

二次根式单元 易错题难题测试题一、选择题1.若2a <,化简()223a --=( ) A .5a - B .5a - C .1a - D .1a -- 2.下列运算中,正确的是 ( ) A .53-23=3B .22×32=6C .33÷3=3D .23+32=55 3.下列计算正确的是( )A .325+=B .1233-=C .326D .1234÷=4.下列计算正确的是( )A .42=±B .()233-=-C .()255-=D .()233-=-5.下列计算正确的是( )A .2+3=5B .8=42C .32﹣2=3D .23⋅=66.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣17.下列二次根式是最简二次根式的是( )A .12B .3C .0.01D .128.下列二次根式中,是最简二次根式的是( )A .12B .0.1C .12D .21a +9.下列各式计算正确的是( )A .532-=B .1236⨯=C .3232+=D .222()-=-10.若ab <0,则代数式可化简为( )A .aB .aC .﹣aD .﹣a11.下列计算正确的是( )A .366=±B .422222÷=C .83266-=D .•a b ab =(a≥0,b≥0) 12.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定二、填空题13.比较实数的大小:(1)5?-______3- ;(2)51 4-_______12 14.化简322+=___________.15.设a ﹣b=2+3,b ﹣c=2﹣3,则a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____.16.已知a ,b 是正整数,若有序数对(a ,b )使得112()a b +的值也是整数,则称(a ,b )是112()a b +的一个“理想数对”,如(1,4)使得112()a b+=3,所以(1,4)是112()a b +的一个“理想数对”.请写出112()a b+其他所有的“理想数对”: __________.17.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.18.已知整数x ,y 满足20172019y x x =+--,则y =__________. 19.已知x 51-,y 51+,则x 2+xy +y 2的值为______. 20.函数y =42x x --中,自变量x 的取值范围是____________. 三、解答题21.计算(1)2213113a a a a a a +--+-+-; (2)已知a 、b 26a ++2b =0.求a 、b 的值(3)已知abc =1,求111a b c ab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】 (1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可. 【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭ =1113a a --+- =()()()()3113a a a a -++-+- =22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ;(3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++, ∴原式=1111a ab ab a ab a ab a ++++++++ =11a ab ab a ++++ =1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.)÷)(a ≠b ). 【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-23.小明在解决问题:已知2a 2﹣8a+1的值,他是这样分析与解的: ∵=2 ∴a ﹣2=∴(a ﹣2)2=3,a 2﹣4a+4=3∴a 2﹣4a=﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===. (2)先对a 1 ,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a - 的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a ===,解法一:∵22(1)11)2a -=-= ,∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+=解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.24.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得【分析】根据整式的运算公式进行化简即可求解.【详解】(()69x x x x +--+=22369x x x --++=6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.25.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值;(2)已知b =,求a 2+b 2的值.【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4,(a-b )2=4,a-b=±2.(2)a ===12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.26.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值. 【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y ==,1122x y ∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-, 22=-,192=-,17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.27.2020(1)-【答案】1【分析】先计算乘方,再化简二次根式求解即可.【详解】2020(1)-=1=1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.29.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.30.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】||a =,然后再根据a 的范围去掉绝对值后即可求解.【详解】|2|=-a ,且2a <,∴|2|2=-=-+a a ,原式|2|3231=--=-+-=--a a a ,故选:D . 【点睛】||a =这个公式是解决本题的关键.2.C解析:C【分析】根据二次根式的加减法对A 、D 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断.【详解】A 、A 选项错误;B 、×=12,所以B 选项错误;C 、3,所以C 选项正确;D 、,不能合并,所以D 选项错误;故选:C .【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.3.B解析:B【解析】解:A ;B ==;C =;D 2===.故选项错误. 故选B .4.C解析:C【分析】直接利用二次根式的性质分别求解,即可得出答案.【详解】解:A ,故A 选项错误;B ,故B 选项错误;C 选项:2=5,故C 选项正确;D 选项:2=3,故D 选项错误,故选:C .【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.5.D解析:D【解析】解:A A 错误;B ==,所以B 错误;C .=C 错误;D ==D 正确.故选D . 6.A解析:A【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A .【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a的大小7.B解析:B【分析】直接利用最简二次根式的定义分析得出答案.【详解】解:ABC0.1,故此选项错误;D2故选:A.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.8.D解析:D【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案.【详解】ABC,不是最简二次根式,故本选项不符合题意;2D故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.9.B解析:B【分析】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据2a a =对D 进行判断 . 【详解】 解:A 、5与3 不能合并,所以A 选项错误;B 、1236⨯=,正确,所以B 选项正确;C 、3与2不能合并,所以C 选项错误;D 、2222-=--=()(),所以D 选项错误.故选:B .【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的加减计算法则.10.C解析:C【解析】【分析】二次根式有意义,就隐含条件b <0,由ab <0,先判断出a 、b 的符号,再进行化简即可.【详解】解:若ab <0,且代数式有意义; 故由b >0,a <0;则代数式故选:C .【点睛】本题主要考查二次根式的化简方法与运用:当a >0时,,当a <0时,,当a=0时,. 11.D解析:D【解析】试题分析:根据算术平方根的意义,可知366=,故A 不正确;根据二次根式的除法,可直接得到42222÷=,故B 不正确;根据同类二次根式的性质,可知C 不正确;根据二次根式的性质·a b ab =(a≥0,b≥0)可知D 正确.故选:D 12.B解析:B【解析】因=,所以a =0,b =1,c =1,即可得2a +999b +1001c =999+1001=2000,故选B. 点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.二、填空题13.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为:,.解析:<<【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<12=∵3=<<1 2故答案为:<,<.【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键.14.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 15.15【解析】根据题意,由a ﹣b=2+,b ﹣c=2﹣,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a2+b2+c2﹣ab ﹣bc ﹣ac=====15.故答案为:15.解析:15【解析】根据题意,由a﹣b﹣c=2,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a 2+b 2+c 2﹣ab ﹣bc ﹣ac=2222222222a b c ab ac bc ++﹣﹣﹣=2222222222a ab b b bc c a ac c +++++﹣﹣﹣=222()()()2a b b c a c -+-+-=222(2(242++=15. 故答案为:15.16.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,当a =412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9). 17.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为18.2018【解析】试题解析:,令,,显然,∴,∴,∵与奇偶数相同,∴,∴,∴.故答案为:2018.解析:2018【解析】 试题解析:y ===令a =b = 显然0a b >≥,∴224036a b -=,∴()()4036a b a b +-=,∵()a b +与()-a b 奇偶数相同,∴20182a b a b +=⎧⎨-=⎩, ∴10101008a b =⎧⎨=⎩, ∴2018y a b =+=.故答案为:2018.19.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 20.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】 本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由,得4-x≥0且x-2≠0. 解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

深圳华师一附中实验学校数学初中九年级二次根式选择题易错题压轴难题练习

深圳华师一附中实验学校数学初中九年级二次根式选择题易错题压轴难题练习

深圳华师一附中实验学校数学初中九年级二次根式选择题易错题压轴难题练习一、易错压轴选择题精选:二次根式选择题1.下列计算或判断:(1)±3是27的立方根;(2)33a =a ;(3)64的平方根是2;(4)22(8)±=±8;(5)165- =65+,其中正确的有( ) A .1个B .2个C .3个D .4个2.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积为()()()S p p a p b p c =---如图,在ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .63C .18D .1923.下列根式中是最简二次根式的是( ) A .23B .10C .9D .3a4.下列运算一定正确的是( ) A .2a a = B .ab a b =⋅C .222()a b a b ⋅=⋅D .()0n m na a m=≥ 5.使式子2124x x ++-成立的x 的取值范围是( ) A .x≥﹣2B .x >﹣2C .x >﹣2,且x ≠2D .x≥﹣2,且x ≠26.化简(﹣3)2的结果是( ) A .±3B .﹣3C .3D .97.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C 24D 0.38.下列计算正确的是( ) A .4333=1B 23=5C .12=22D .322=52+9.下列计算正确的是( )A .234265+=B .842=C .2733÷=D .2(3)3-=-10.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a11.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:()()()S p p a p b p c =---2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A 3154B 3152C 352D 35412.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,2b -|a +b |+|a -c |-222c bc b -+的结果为( )A .2c -bB .2c -2aC .-bD .b13.已知a 227122a a -+的最小值为( ) A .0B .3C .3D .914.设2222222211111111111112233499100+++++++++S 的最大整数[S]等于( ) A .98B .99C .100D .10115.若化简1682+-x x -1x -的结果为5-2x ,则x 的取值范围是( ) A .为任意实数 B .1≤x≤4C .x≥1D .x≤416.若a 3235++b =610,则a b 的值为( )A .12 B .14C .321+D 610+17.设,n k 为正整数,()()1314A n n =+-+,()2154A n A =++()3274A n A =++,()4394A n A =++…()1214k k A n k A -=+++….,已知1002005A =,则n =( ).A .1806B .2005C .3612D .401118.如果关于x 的不等式组0,2223x mx x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为2x >则符合条件的所有整数m 的个数是( ). A .5B .4C .3D .219.已知44220,24,180x y x y >+=+=、.则xy=( )A .8B .9C .10D .1120.如果a ,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或【参考答案】***试卷处理标记,请不要删除一、易错压轴选择题精选:二次根式选择题 1.B 【解析】根据立方根的意义,可知27的立方根是3,故(1)不正确;正确,故(2)正确;由=8,可知其平方根为±,故(3)不正确;根据算术平方根的意义,可知,故(4)不正确;根据分母有理化的意义, 解析:B 【解析】根据立方根的意义,可知27的立方根是3,故(1a =正确,故(2)正,可知其平方根为±3)不正确;根据算术平方根的意义,可知8=,故(4=,故(5)正确. 故选B.2.A 【分析】利用阅读材料,先计算出的值,然后根据海伦公式计算的面积; 【详解】 ,,. , 的面积; 故选A .【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.解析:A【分析】利用阅读材料,先计算出p的值,然后根据海伦公式计算ABC∆的面积;【详解】7a=,5b=,6c=.∴56792p++==,∴ABC∆的面积S=故选A.【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.3.B【分析】根据最简二次根式的条件:①根号下不含能开得尽方的因数或因式;②根号下不含分母,据此逐项判断即可.【详解】解:A、被开方数含分母,故A不符合题意;B、被开方数不含分母;被开方数不含解析:B【分析】根据最简二次根式的条件:①根号下不含能开得尽方的因数或因式;②根号下不含分母,据此逐项判断即可.【详解】解:A、被开方数含分母,故A不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式.,故B符合题意;C被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:B.【点睛】本题考查了最简二次根式,解题的关键是掌握最简二次根式的两个条件.4.C【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.【详解】A.=|a|,故此选项错误;B.若=成立,则a,b均为非负数,故此选项错误;C.a2•b2=(a•解析:C【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.【详解】A|a|,故此选项错误;B.,则a,b均为非负数,故此选项错误;C.a2•b2=(a•b)2,正确;D m n a(a≥0),故此选项错误.故选C.【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键.5.C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:-4,,又∵,∴x≥-2.∴x的取值范围是:x>-2且.解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】≠,解:由题意得:2x-40x∴≠±,2x+≥,又∵20∴x≥-2.x≠.∴x的取值范围是:x>-2且2【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.6.C【分析】根据二次根式的性质即可求出答案.【详解】原式=3,故选C.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.解析:C【分析】根据二次根式的性质即可求出答案.【详解】原式=3,故选C.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.7.B【详解】A.=,与不是同类二次根式,故此选项错误;B.=,与,是同类二次根式,故此选项正确;C.=,与不是同类二次根式,故此选项错误;D.==,与不是同类二次根式,故此选项错误;故选B解析:B【详解】ABCD故选B.【解析】分析:根据二次根式的四则混合运算法则,二次根式的性质与化简逐项进行分析解答即可.详解:A.,故本选项错误;B.不是同类二次根式,不能进行合并,故本选项错误;C.解析:C【解析】分析:根据二次根式的四则混合运算法则,二次根式的性质与化简逐项进行分析解答即可.详解:A.,故本选项错误;B.不是同类二次根式,不能进行合并,故本选项错误;C.正确;D.不是同类二次根式,不能进行合并,故本选项错误.故选C.点睛:本题主要考查二次根式的化简,二次根式的四则运算法则,解题的关键是正确根据相关法则逐项进行分析解答.9.C【分析】根据合并二次根式的法则、二次根式的性质、二次根式的除法法则即可判定.【详解】A、不能合并,故选项A错误;B、,故选项B错误;C、,故选项C正确;D、,故选项D错误;故选:C解析:C【分析】根据合并二次根式的法则、二次根式的性质、二次根式的除法法则即可判定.【详解】A、A错误;B=B错误;C3=,故选项C正确;=,故选项D错误;D3故选:C . 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.10.A 【解析】 ﹣+b= ,故选A.解析:A 【解析】﹣+b=111a a b b a a b b ---+=-+-+= ,故选A.11.A 【分析】根据公式解答即可. 【详解】根据题意,若一个三角形的三边长分别为,,4,则 其面积为故选:A . 【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键解析:A 【分析】根据公式解答即可. 【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b c p +++== ∴其面积为 99999531315()()()(2)(3)(4)22222222S p p a p b p c =---=⨯-⨯-⨯-=⨯⨯⨯ 故选:A . 【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.12.D 【解析】解:∵|a|+a=0,∴|a|=﹣a,∴﹣a≥0,∴a≤0,∵|ab|=ab,∴ab≥0,∴b≤0,∵|c|﹣c=0,∴|c|=c,∴c≥0,∴原式=﹣b+(a+b)﹣(a﹣c)﹣(c解析:D【解析】解:∵|a|+a=0,∴|a|=﹣a,∴﹣a≥0,∴a≤0,∵|ab|=ab,∴ab≥0,∴b≤0,∵|c|﹣c=0,∴| c|=c,∴c≥0,∴原式=﹣b+(a+b)﹣(a﹣c)﹣(c﹣b)=b.故选D.13.B【解析】根据题意,由==,可知当(a﹣3)2=0,即a=3时,代数式的值最小,为=3.故选B.解析:B【解析】=a﹣3)2=0,即a=3故选B.14.B【分析】由,代入数值,求出S=+++ …+=99+1-,由此能求出不大于S的最大整数为99.【详解】∵==,∴S=+++ …+===100-,∴不大于S的最大整数为9解析:B【分析】1111n n =+-+,代入数值,求出=99+1-1100,由此能求出不大于S 的最大整数为99. 【详解】∵==()211n n n n ++=+ =111+1n n -+, ∴=1111111+11122399100-++-+++- =199+1100- =100-1100,∴不大于S 的最大整数为99. 故选B. 【点睛】1111n n =+-+是解答本题的基础.15.B 【解析】 【分析】根据完全平方公式和=|a|,先把多项式化简为|x-4|-|1-x|,然后根据x 的取值范围分别讨论,求出符合题意的x 的值即可.【详解】解:原式=-=|x-4|-|1-x|,解析:B【解析】【分析】先把多项式化简为|x-4|-|1-x|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】-=|x-4|-|1-x|,解:原式1x当x≤1时,此时1-x≥0,x-4<0,∴(4-x)-(1-x)=3,不符合题意,当1≤x≤4时,此时1-x≤0,x-4≤0,∴(4-x)-(x-1)=5-2x,符合题意,当x≥4时,此时x-4≥0,1-x<0,∴(x-4)-(x-1)=-3,不符合题意,∴x的取值范围为:1≤x≤4故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.16.B【解析】【分析】将a乘以可化简为关于b的式子,从而得到a和b的关系,继而能得出的值.【详解】a=•=.∴.故选:B.【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理解析:B【解析】【分析】将ab 的式子,从而得到a 和b 的关系,继而能得出a b 的值.【详解】a==b 44=.∴14a b =. 故选:B .【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b 的形式.17.A【解析】【分析】利用多项式的乘法把各数开方进行计算,然后求出A1,A2,A3的值,从而找出规律并写出规律表达式,再把k=100代入进行计算即可求解.【详解】∵(n+3)(n -1)+4=n解析:A【解析】【分析】利用多项式的乘法把各数开方进行计算,然后求出A 1,A 2,A 3的值,从而找出规律并写出规律表达式,再把k=100代入进行计算即可求解.【详解】∵(n+3)(n-1)+4=n 2+2n-3+4=n 2+2n+1=(n+1)2,∴A 11n =+∵(n+5)A 1+4=(n+5)(n+1)+4=n 2+6n+5+4=n 2+6n+9=(n+3)2,∴A 23n +∵(n+7)A 2+4=(n+7)(n+3)+4=n 2+10n+21+4=n 2+10n+25=(n+5)2,∴A 35n =+⋯⋯依此类推,A k =n+(2k-1)∴A 100=n+(2×100-1)=2005解得,n=1806.故选A.【点睛】本题是对数字变化规律的考查,对被开方数整理,求出A 1,A 2,A 3,从而找出规律写出规律的表达式是解题的关键.18.C【分析】先求出两个不等式的解集,根据不等式组的解集为可得出m≤2,再由式子的值是整数,得出|m|=3或2,于是m=-3,3,-2或2,由m≤2,得m=-3,-2或2.【详解】解:解不等式得解析:C【分析】先求出两个不等式的解集,根据不等式组的解集为2x >可得出m ≤2的值是整数,得出|m|=3或2,于是m=-3,3,-2或2,由m ≤2,得m=-3,-2或2.【详解】 解:解不等式02x m ->得x >m , 解不等式223x x --<-得x >2, ∵不等式组解集为x >2,∴m ≤2,则|m|=3或2,∴m=-3,3,2或-2,由m ≤2得,m=-3,-2或2.即符合条件的所有整数m 的个数是3个.故选:C .【点睛】本题考查了解一元一次不等式组以及二次根式的性质,熟练运用一元一次不等式组的解法是解题的关键.19.D【分析】利用完全平方公式、平方差公式化简第二个等式即可.【详解】配方得将代入得:计算得:故选:D.【点睛】本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关 解析:D【分析】利用完全平方公式、平方差公式化简第二个等式即可.【详解】44180+=配方得22222180⎡⎤-+⋅=⎣⎦ 222180⎡⎤⎡⎤+=⎣⎦⎣⎦222()180x y +-=22162(2)180xy x xy y +-+=22122()180xy x y ++=将2224x y +=代入得:12224180xy +⨯=计算得:11xy =故选:D.【点睛】本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关键,这两个公式是常考点,需重点掌握.20.C【解析】试题解析:∵a+=1,∵∴1-a≥0,a≤1,故选C .解析:C【解析】试题解析:∵a 1,a∴1-a ≥0,a≤1,故选C.。

期末复习 《二次根式》常考题与易错题精选(45题)(解析版)

期末复习 《二次根式》常考题与易错题精选(45题)(解析版)

期末复习- 《二次根式》常考题与易错题精选(45题)一.选择题(共22小题)1.若是整数,则正整数n的最小值是( )A.4B.5C.6D.7【分析】根据二次根式的定义可得答案.【解答】解:∵=3,∴正整数n的最小值是5;故选:B.【点评】本题考查了二次根式的定义,利用二次根式的乘法是解题关键.2.若是整数,则正整数n的最小值是( )A.2B.3C.4D.5【分析】先化简,然后根据二次根式的定义判断即可.【解答】解:∵=2,∴正整数n的最小值是:5,故选:D.【点评】本题考查了二次根式的定义,熟练掌握二次根式的定义是解题的关键.3.下列式子中,一定属于二次根式的是( )A.B.C.D.【分析】根据二次根式的定义,被开方数大于等于0进行判断即可得到结果.【解答】解:被开方数为非负数,所以A不合题意;x≥﹣2时二次根式有意义,x<﹣2时没意义,所以B不合题意;为三次根式,所以C不合题意;满足二次根式的定义,所以D符合题意.故选:D.【点评】本题考查二次根式的定义,注意选项中各式的形式及未知数取值范围是解本题的关键.4.给出下列各式:;②6;;④(m≤0);⑤;⑥.其中二次根式的个数是( )A.2B.3C.4D.5【分析】根据二次根式的定义即可作出判断.【解答】解:①∵3>0,∴是二次根式;②6不是二次根式;②∵﹣12<0,∴不是二次根式;④∵m≤0,∴﹣m≥0,∴是二次根式;⑤∵a2+1>0,∴是二次根式;⑥是三次根式,不是二次根式.所以二次根式有3个.故选:B.【点评】本题考查的是二次根式的定义,解题时,要注意:一般地,我们把形如(a≥0)的式子叫做二次根式.5.下列各式:、,,,,中,一定是二次根式的有( )A.3个B.4个C.5个D.6个【分析】利用二次根式的定义对每个式子进行判断即可.【解答】解:∵式子(a≥0)是二次根式,∴,,(x≥1),是二次根式,无意义,是三次根式,∴一定是二次根式的有:,,(x≥1),,故选:B.【点评】本题主要考查了二次根式的定义,熟练掌握二次根式的意义是解题的关键.6.已知x、y为实数,且,则x+y的值是( )A.10B.8C.5D.3【分析】根据二次根式(a≥0)可得x﹣2≥0且6﹣3x≥0,从而可得x=2,进而可得y=3,然后把x,y的值代入式子中进行计算即可解答.【解答】解:由题意得:x﹣2≥0且6﹣3x≥0,解得:x≥2且x≤2,∴x=2,∴x+y=2+3=5,故选:C.【点评】本题考查了二次根式的有意义的条件,熟练掌握二次根式(a≥0)是解题的关键.7.若代数式在实数范围内有意义,则x的取值范围是( )A.x≠2B.x≥2C.x≤2D.x>2【分析】根据二次根式(a≥0)可得2x﹣4≥0,然后进行计算即可解答.【解答】解:由题意得:2x﹣4≥0,解得:x≥2,故选:B.【点评】本题考查了二次根式有意义的条件,熟练掌握二次根式(a≥0)是解题的关键.8.已知x,y为实数,且满足++2,则x y的值为( )A.4B.6C.9D.16【分析】根据二次根式(a≥0),可得x=3,从而可得y=2,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:由题意得:x﹣3≥0,3﹣x≥0,∴x=3,∴y=2,∴x y=32=9,故选:C.【点评】本题考查了二次根式有意义的条件,熟练掌握二次根式(a≥0)是解题的关键.9.若分式有意义,则x的取值范围是( )A.x≠4B.x>C.x≥2且x≠4D.x>2且x≠4【分析】根据分式和二次根式有意义的条件即可得出答案.【解答】解:∵x﹣2≥0,x﹣4≠0,∴x≥2且x≠4.【点评】本题考查了分式和二次根式有意义的条件,掌握分式有意义的条件是分母不等于0,二次根式有意义的条件是被开方数是非负数是解题的关键.10.若x,y为实数,且y=2++,则|x+y|的值是( )A.5B.3C.2D.1【分析】根据二次根式有意义的条件列不等式,求出x,代入y=2++求出y,把x、y的值代入|﹣x+y|计算.【解答】解:∵,∴,∴x=3,∴y=2,∴|x+y|=|3+2|=5,故选:A.【点评】本题主要考查了解不等式组、代数式求值、二次根式有意义的条件,掌握根据二次根式有意义的条件列不等式,是解题关键.11.下列各式中,正确的是( )A.B.﹣C.D.【分析】利用二次根式的性质对每个选项进行逐一判断即可得出结论.【解答】解:∵=|﹣3|=3,∴A选项的结论不正确;∵﹣=﹣3,∴B选项的结论正确;∵=|﹣3|=3,∴C选项的结论不正确;∵=3,∴D选项的结论不正确,故选:B.【点评】本题主要考查了二次根式的性质,正确利用二次根式的性质对每个选项进行判断是解题的关键.12.化简得( )A.B.C.D.【分析】根据二次根式的性质化简即可.【解答】解:原式=a•=﹣.故选:D.【点评】本题考查了二次根式的运算,掌握商的算术平方根的性质是解决本题的关键.13.已知|a|=3,=5,且|a+b|=a+b,那么a+b的值是( )A.2或8B.2或﹣8C.﹣2或8D.﹣2或﹣8【分析】根据二次根式的性质与化简,立方根的意义,进行计算逐一判断即可解答.【解答】解:∵|a|=3,=5,∴a=±3,b=±5,∵|a+b|=a+b,∴a+b≥0,∴当a=3,b=5时,a+b=3+5=8,当a=﹣3,b=5时,a+b=﹣3+5=2,综上所述:a+b的值是2或8,故选:A.【点评】本题考查了二次根式的性质与化简,准确熟练地进行计算是解题的关键.14.下列二次根式是最简二次根式的是( )A.B.C.D.【分析】根据最简二次根式的定义,逐一判断即可解答.【解答】解:A、=2,故A不符合题意;B、==,故B不符合题意;C、=2,故C不符合题意;D、是最简二次根式,故D符合题意;故选:D.【点评】本题考查了最简二次根式,熟练掌握最简二次根式的定义是解题的关键.15.已知1<p<2,化简+()2=( )A.1B.3C.3﹣2p D.1﹣2p【分析】根据二次根式的性质进行化简即可.【解答】解:∵1<p<2,∴1﹣p<0,2﹣p>0,∴原式=|1﹣p|+2﹣p=p﹣1+2﹣p=1.故选:A.【点评】本题考查了二次根式的性质与化简,解决本题的关键是掌握二次根式的性质.16.如果ab>0,a+b<0,那么下列各式:①;②;③;④.其中正确的个数是( )A.1个B.2个C.3个D.4个【分析】先根据ab>0,a+b<0得到a<0,b<0,然后利用二次根式的性质和二次根式的乘除运算法则逐个作出判断即可.【解答】解:∵ab>0,a+b<0,∴a<0,b<0.∴,无意义,①错误;,②正确;,③正确;,④错误;正确的有2个,故选:B.【点评】本题主要考查了二次根式的性质和二次根式的乘除法,熟练掌握运算法则是解题的关键.17.下列各式中是﹣a﹣b有理化因式的是( )A.a+b B.b﹣a C.a﹣b D.b﹣a 【分析】利用平方差公式,进行计算即可解答.【解答】解:(﹣a﹣b)(b﹣a)=﹣(b+a)(b﹣a)=﹣(b2x﹣a2y)=﹣b2x+a2y,故选:B.【点评】本题考查了分母有理化,熟练掌握平方差公式是解题的关键.18.计算:的值为( )A.B.3C.D.9【分析】直接利用二次根式的乘除运算法则化简,进而得出答案.【解答】解:=×===.故选:A.【点评】此题主要考查了二次根式的乘除运算,正确掌握相关运算法则是解题关键.19.若最简二次根式与是同类二次根式,则a的值为( )A.0B.8C.2D.2或8【分析】根据同类二次根式的定义,可得2a﹣1=9﹣3a,然后进行计算即可解答.【解答】解:由题意得:2a﹣1=9﹣3a,2a+3a=9+1,5a=10,a=2,故选:C.【点评】本题考查了同类二次根式,熟练掌握同类二次根式的定义是解题的关键.20.下列二次根式中,与是同类二次根式的是( )A.B.C.D.【分析】先把每一个选项的二次根式化成最简二次根式,然后根据同类二次根式的定义,逐一判断即可解答.【解答】解:A、=3,与不是同类二次根式,故A不符合题意;B、=2,与不是同类二次根式,故B不符合题意;C、=,与是同类二次根式,故C符合题意;D、=,与不是同类二次根式,故D不符合题意;故选:C.【点评】本题考查了同类二次根式,熟练掌握同类二次根式的定义是解题的关键.21.下列二次根式中、是同类二次根式的一组是( )A.和B.和C.和D.和【分析】根据二次根式的性质把各个二次根式化为最简二次根式,再根据同类二次根式的概念判断即可.【解答】解:A、=2,与不是同类二次根式,本选项不符合题意;B、=,与是同类二次根式,本选项符合题意;C、=|a|,=|b|,∴与不是同类二次根式,本选项不符合题意;D、与不是同类二次根式,本选项不符合题意;故选:B.【点评】本题考查的是最简二次根式的、同类二次根式,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.22.下列运算正确的是( )A.(﹣x2)3=﹣x6B.C.D.2﹣1+(π﹣3.14)0=2【分析】利用二次根式的加减法的法则,幂的乘方的法则,分式的除法的法则,负整数指数幂对各项进行运算即可.【解答】解:A、(﹣x2)3=﹣x6,故A符合题意;B、,故B不符合题意;C、与2不属于同类二次根式,不能运算,故C不符合题意;D、2﹣1+(π﹣3.14)0=,故D不符合题意;故选:A.【点评】本题主要考查二次根式的加减法,幂的乘方,分式的除法,解答的关键是对相应的运算法则的掌握.二.解答题(共23小题)23.已知y=++3且与互为相反数,求yz﹣x的平方根.【分析】根据算术平方根的非负性及互为相反数的特点列不等式组和方程,确定x,y,z的值,从而结合平方根的概念求解.【解答】解:∵y=++3,∴,解得:x=2,∴y=3,∵与互为相反数,∴1﹣2z+3z﹣5=0,解得:z=4,∴yz﹣x=3×4﹣2=10,∴yz﹣x的平方根为±.【点评】本题考查二次根式有意义的条件,理解二次根式的非负性,掌握立方根和平方根的概念是解题关键.24.已知y=.【分析】根据二次根式的定义,可得x=2,可求得y的值,进而可得x+y的值与它的平方根.【解答】解:∵y=++5有意义,∴,解得x=2,故y=5;则x+y=7,故x+y的平方根为±.【点评】本题考查二次根式的意义,平方根的概念.此类题目是常见的考题,应特别注意.25.计算:= 3 ,= 0.7 ,= 0 ,= 6 ,= ,(1)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来;(2)利用你总结的规律,计算.【分析】根据二次根式的性质=|a|,进行计算即可解答.【解答】解:计算:=3,=0.7,=0,=6,=,故答案为:3;0.7;0;6;;(1)不一定等于a,发现的规律是:=|a|;(2)=|3.14﹣π|=π﹣3.14.【点评】本题考查了二次根式的性质与化简,熟练掌握二次根式的性质=|a|是解题的关键.26.已知数a,b,c在数轴上的位置如图所示:化简:.【分析】先化简各式,然后再进行计算即可.【解答】解:由题意得:c<b<0<a,∴a﹣b>0,c﹣a<0,∴=﹣b﹣(a﹣b)+a﹣c﹣(﹣c)=﹣b﹣a+b+a﹣c+c=0.【点评】本题考查了实数与数轴,二次根式的性质与化简,准确熟练地化简各式是解题的关键.27.数a,b在数轴上的位置如图所示,化简.【分析】根据数轴可得出a,b的取值范围,再化简即可.【解答】解:如图得,﹣2<a<﹣1,1<b<2,∴a﹣b<0,b﹣1>0,a+1<0,∴.=b﹣a+b﹣1﹣(﹣a﹣1),=2b﹣a﹣1+a+1,=2b.【点评】本题考查了二次根式的性质与化简以及实数与数轴,掌握二次根式的化简是解题的关键.28.把二次根式(x﹣1)化为最简二次根式.【分析】根据题意可得:1﹣x>0,从而可得x﹣1<0,然后进行计算即可解答.【解答】解:由题意得:1﹣x>0,∴x﹣1<0,∴(x﹣1)=﹣(1﹣x)=﹣=﹣.【点评】本题考查了最简二次根式,准确熟练地进行计算是解题的关键.29.计算:.【分析】系数先除后乘,被开方数也是按这个顺序运算,把除法化为乘法求出最后结果.【解答】解:原式=12a÷3b2===4.【点评】本题考查了二次根式的乘除法、二次根式的性质与化简,掌握计算时先乘除,后化简,运算顺序是解题关键.30.计算:.【分析】根据二次根式的乘法、除法法则运算,注意结果是最简二次根式.【解答】解:原式===.【点评】本题主要考查了二次根式的乘除法,掌握二次根式的乘除法法则是解题关键.31.已知:m=,n=,求的值.【分析】将m和n的式子分母有理化,在代入所求式子,利用完全平方公式和平方差公式计算即可.【解答】解:∵m===2﹣,n===2+,∴,=,=,=.【点评】本题考查了二次根式的化简求值,掌握运算法则,平方差公式与完全平方公式是解题的关键.32.计算:(1)+()﹣2﹣|﹣2|;(2)+2﹣(﹣).【分析】(1)先化简各式,然后再进行计算即可解答;(2)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答.【解答】解:(1)+()﹣2﹣|﹣2|=2+9﹣(2﹣)=2+9﹣2+=3+7;(2)+2﹣(﹣)=2+2﹣3+=3﹣.【点评】本题考查了实数的运算,二次根式的加减法,负整数指数幂,准确熟练地进行计算是解题的关键.33.计算:(1);(2)[(﹣ab2)2﹣2b⋅a2b3]÷a2b.【分析】(1)先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变;(2)先算中括号乘方与乘法.再合括号内并同类项,最后算除法.【解答】解:(1)原式=﹣+2﹣5+=﹣6+3;(2)原式=(a2b4﹣2a2b4)÷a2b=﹣a2b4÷a2b=﹣b3.【点评】本题主要考查了二次根式的加减法、幂的乘方与积的乘方、单项式与单项式相乘,掌握这三种运算法则是解题关键.34.计算:(1);(2);(3);(4).【分析】(1)利用分母有理化进行计算,即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(4)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)==﹣;(2)=1+(﹣2)+﹣5﹣2=1﹣2+3﹣5﹣2=﹣6;(3)=3﹣2+=;(4)=﹣(5﹣2)=﹣3=1﹣3=﹣2.【点评】本题考查了二次根式的混合运算,零指数幂,负整数指数幂,分母有理化,平方差公式,准确熟练地进行计算是解题的关键.35.已知A,B都是关于x的多项式,且A=2x2﹣5x+4,A﹣B=2x+1.(1)求B;(2)若,求B的值.【分析】(1)根据已知可得B=A﹣(2x+1),然后把A=2x2﹣5x+4代入式子中,进行计算即可解答;(2)根据已知可得2x+1=,从而可得:x=,然后把x的值代入(1)的结论进行计算,即可解答.【解答】解:(1)∵A=2x2﹣5x+4,A﹣B=2x+1,∴B=A﹣(2x+1)=2x2﹣5x+4﹣(2x+1)=2x2﹣5x+4﹣2x﹣1=2x2﹣7x+3;(2)∵,∴2x+1=,解得:x=,当x=时,B=2×()2﹣7×+3=﹣+3=,∴B的值为.【点评】本题考查了二次根式的混合运算,整式的加减,准确熟练地进行计算是解题的关键.36.计算:.【分析】先计算二次根式的乘法,再算加减,即可解答.【解答】解:=4﹣2+3+(﹣1)=3+.【点评】本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.37.已知x=+1,y=﹣1,求x2+xy的值.【分析】利用因式分解进行计算,即可解答.【解答】解:∵x=+1,y=﹣1,∴x2+xy=x(x+y)=(+1)(+1+﹣1)=(+1)×2=10+2,∴x2+xy的值为10+2.【点评】本题考查了二次根式的化简求值,准确熟练地进行计算是解题的关键.38.(1)先化简,再求值:(﹣)÷,其中m=+1,n=﹣1;(2)已知a=,b=,求值:+.【分析】(1)先利用异分母分式加减法法则计算括号里,再算括号外,然后把m,n的值代入化简后的式子进行计算,即可解答;(2)先利用分母有理化化简a,b的值,然后再求出a+b与ab的值,从而利用完全平方公式进行计算即可解答.【解答】解:(1)(﹣)÷=•=•=•=,当m=+1,n=﹣1时,原式===;(2)∵a===﹣,b===+,∴a+b=﹣++=2,ab=(﹣)(+)=7﹣5=2,∴+======12.【点评】本题考查了二次根式的化简求值,分式的化简求值,分母有理化,准确熟练地进行计算是解题的关键.39.已知x=2+,y=2﹣,求代数式x2+2xy+y2的值.【分析】根据二次根式的加法法则求出x+y,根据完全平方公式把原式变形,把x+y的值代入计算即可.【解答】解:∵x=2+,y=2﹣,∴x+y=2++2﹣=4,∴x2+2xy+y2=(x+y)2=42=16.【点评】本题考查的是二次根式的化简求值,掌握二次根式的加法法则、完全平方公式是解题的关键.40.已知a=3+2,b=3﹣2,求a2b﹣ab2的值.【分析】利用因式分解,进行计算即可解答.【解答】解:∵a=3+2,b=3﹣2,∴ab=(3+2)(3﹣2)=(3)2﹣(2)2=18﹣12=6,a﹣b=3+2﹣(3﹣2)=3+2﹣3+2=4,∴a2b﹣ab2=ab(a﹣b)=6×4=24.【点评】本题考查了二次根式的化简求值,熟练掌握因式分解是解题的关键.41.如图,从一个大正方形中裁去面积为4cm2和25cm2的两个小正方形,求留下的阴影部分的面积.【分析】根据开方运算,可得阴影的边长,根据乘方,可得大正方形的面积,根据面积的和差,可得答案.【解答】解:∵大正方形的边长=,∴大正方形的面积为49cm2,∴阴影部分的面积=49﹣4﹣25=20(cm2).【点评】本题考查了算术平方根,根据小正方形的面积得到边长,进而得到大正方形的边长是解题的关键.42.如图,正方形ABCD的面积为8,正方形ECFG的面积为32.(1)求正方形ABCD和正方形ECFG的边长;(2)求阴影部分的面积.【分析】(1)根据正方形的面积公式求得边长;(2)先求出直角三角形BFG、ABD的面积,然后用两个正方形的面积减去两个直角三角形的面积,这就是阴影部分的面积.【解答】解:(1)正方形ABCD的边长为:BC=,正方形ECFG的边长为:CF=;(2)∵BF=BC+CF,BC=2,CF=4,∴BF=6;∴S△BFG=GF•BF=24;又S△ABD=AB•AD=4,∴S阴影=S正方形ABCD+S正方形ECFG﹣S△BFG﹣S△ABD=8+32﹣24﹣4,=12.【点评】本题主要考查了二次根式的应用,正方形的性质,三角形的面积.第(2)题关键是把阴影部分面积转化为正方形与三角形的面积进行计算.43.据研究,从高空抛物时间t(秒)和高度h(米)近似满足公式(不考虑风速影响).(1)从50米高空抛物到落地所需时间t1的值是多少?(2)从100米高空抛物到落地所需时间t2的值是多少?(3)t2是t1的多少倍?【分析】(1)将h=50代入t1=进行计算即可;(2)将h=100代入t2=进行计算即可;(3)计算的值即可得出结论.【解答】解:(1)当h=50时,t1=(秒);(2)当h=100时,t2=(秒);(3)∵,∴t2是t1的倍.【点评】本题主要考查了二次根式的应用,二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.44.某居民小区有块形状为矩形ABCD的绿地,长BC为米,宽AB为米,现在要矩形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为米,宽为米.(1)求矩形ABCD的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?【分析】(1)根据矩形的周长=(长+宽)×2计算即可;(2)先求出通道的面积,再算钱数即可.【解答】解:(1)(+)×2=(8+5)×2=13×2=26(米),答:矩形ABCD的周长为26米;(2)×﹣2×(+1)×(﹣1)=8×5﹣2×(13﹣1)=80﹣24=56(平方米),6×56=336(元),答:购买地砖需要花费336元.【点评】本题考查了二次根式的应用,最简二次根式,掌握=•(a≥0,b≥0)是解题的关键.45.阅读材料:如果一个三角形的三边长分别为a,b,c,记p=,那么这个三角形的面积S=.这个公式叫“海伦公式”,它是利用三角形三条边的边长直接求三角形面积的公式.中国的秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦秦﹣﹣﹣九韶公式”完成下列问题:如图,在△ABC中,a=7,b=5,c=6.(1)求△ABC的面积;(2)设AB边上的高为h1,AC边上的高为h2,求h1+h2的值.【分析】(1)根据题意先求p,再将p,a,b,c的值代入题中所列面积公式计算即可;(2)按照三角形的面积等于×底×高分别计算出h1和h2的值,再求和即可.【解答】解.(1)根据题意知p==9所以S===6∴△ABC的面积为6;(2)∵S=ch1=bh2=6∴×6h1=×5h2=6∴h1=2,h2=∴h1+h2=.【点评】本题考查了二次根式在三角形面积计算中的应用,读懂题中所列的海伦公式并正确运用,是解题的关键.。

2020-2021学年八年级数学人教版下册第16章《二次根式》易错题(解析版)

2020-2021学年八年级数学人教版下册第16章《二次根式》易错题(解析版)

2020-2021学年八年级数学人教版下册第16章《二次根式》易错题学校:___________姓名:___________班级:___________考号:___________一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列运算正确的是()A=.(22=C+=2=-【答案】B【分析】利用二次根式的加减法对A、C进行判断;根据二次根式的性质对B、D进行判断.【详解】解:A A选项错误;B、(22=,所以B选项正确;C C选项错误;=-D选项错误.D、原式22故选:B.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.下列二次根式能与)A.B C D【答案】A【分析】能与【详解】解:.A =,被开方数与A 正确;B =,被开方数与B 错误;C =,被开方数与C 错误;D =,被开方数与D 错误. 故选择:A .【点睛】本题考查了同类二次根式,几个二次根式化成最简二次根式后被开方数相同,这几个二次根式叫同类二次根式,同类二次根式可以进行合并,熟练掌握同类二次根式的定义是解题的关键.3.若|2013|a a -=,则22013a -的值是( )A .2012B .2013C .2014D .无法确定【答案】C【分析】根据二次根式的被开方数是非负数、将其代入求值即可.【详解】解:∵a -2014≥0,∵a≥2014,-=a ,=2013,∵a -2014=20132,∵a -20132=2014.故选:C .【点睛】a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.已知||5a =7=b a =-,则a b +=( )A .2B .12C .2或12D .2-或12-【答案】C【分析】先根据绝对值性质和二次根式的性质得出a 、b 的值,再分别代入计算可得.【详解】解:∵|a|=57=,∵a=±5,b=±7,又b a =-,∵a -b≤0,即a≤b ,则a=-5,b=7或a=5,b=7,当a=-5,b=7时,a+b=-5+7=2;当a=5,b=7时,a+b=5+7=12;综上,a+b 的值为2或12,故选C .【点睛】本题主要考查二次根式的性质与化简,解题的关键是掌握绝对值性质和二次根式的性质.5.下列计算中正确的是( )A .1=B =C .5=±D 761=-= 【答案】B【分析】根据二次根式的性质和减法运算分别判断.【详解】解:A 、=,故错误,不符合;B 223)2332,故正确,符合;C 5=,故错误,不符合;D 13,故错误,不符合;故选B .【点睛】 本题考查了二次根式的性质,二次根式的减法运算,解题的关键是掌握运算法则. 6.当x在实数范围内有意义( ) A .1x >B .1≥xC .1x <D .1x ≤ 【答案】A【分析】根据分式的分母不等于0的条件及二次根式非负性解答.【详解】由题意得:x-1>0,解得x>1,故选:A.【点睛】此题考查未知数的取值范围的确定,掌握分式的分母不等于0的条件及二次根式非负性是解题的关键.7的结果估计在()A.10到11之间B.9到10之间C.8到9之间D.7到8之间【答案】D【分析】先根据二次根式的乘法计算得到原式为4+的范围,即可得出答案.【详解】===+,解:原式4∵34<<,∵748<+<,故选:D.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.8.如x为实数,在“1)□x”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x不可能是()A.1B1C.D.1【答案】C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】-=,故选项A不符合题意;解:A、1)1)0⨯=,故选项B不符合题意;B、1)1)2C1与C符合题意;+=,故选项D不符合题意.D、1)(10故选:C.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.9.已知m、n是正整数,则满足条件的有序数对(m,n)为()A.(2,5)B.(8,20)C.(2,5),(8,20)D.以上都不是【答案】C【分析】根据二次根式的性质分析即可得出答案.【详解】解:m 、n 是正整数, ∵m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20),故选:C .【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.10.当x =()20193419971994x x --的值为( ).A .1B .1-C .20022D .20012-【答案】B【解析】【分析】 由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.【详解】∵12x +=,()2211994x ∴-=,即24419930x x --=,()()32241997199444199344199311x x x x x x x ∴--=--+---=-. ∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化.二、填空题(本大题共7小题,每小题3分,共21分) 114132-⎛⎫-+-= ⎪⎝⎭__________________. 【答案】-13【分析】根据二次根式的运算、负指数幂及绝对值可直接进行求解.【详解】解:原式=16313+-=-;故答案为13-.【点睛】本题主要考查二次根式的运算及负指数幂,熟练掌握二次根式的加减运算及负指数幂是解题的关键.12.已知1,1a b ==,则ab =_____,a b b a+=_____. 【答案】1 6【分析】(1)运用平方差公式计算;(2)先通分,然后a 、b 的值代入计算.【详解】解:1,1a b ==,221)11ab ∴==-=,a b b a+ 22a b ab+= 2()2a b ab ab-+== 6=.故答案为1,6.【点睛】本题考查了二次根式、分式的化简求值,熟练掌握求解的方法是解题的关键.13.如果点A (x ,y 80y -=,则点A 在第_____象限.【答案】二【分析】根据非负性求出x 、y 的值,即可判断A 所在的象限.【详解】80y -=根据二次根式和绝对值的非负性可知x =﹣2,y=8.则A(﹣2,8),应在第二象限.故答案为:二.【点睛】本题考查非负性的应用,坐标点与象限的关系,关键在于利用非负性解出x ,y .14.下列各式:=;==a >0,b≥0);①=-,其中一定成立的是________(填序号). 【答案】∵∵∵【分析】根据二次根式的性质及运算法则逐项分析即可.【详解】∵00,a b ≥>≠,故不一定;=00,a b ≥>; ∵当00,a b >≥时,22231633333b b b a ab a a a aa ===,故一定成立; ∵3a 成立时,0a ≤3a a a a a ,故一定成立;故答案为:∵∵∵.【点睛】本题考查二次根式的性质以及乘除远算法则,熟练掌握基本性质计算法则是解题关键.15.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2-=※________.【答案】1-【分析】先将新定义的运算化为一般运算,再计算二次根式的混合运算即可.【详解】解:2※=2=2-2=43-=1-故答案为:1-【点睛】本题考查新定义的实数运算,二次根式的混合运算.能根据题意将新定义运算化为一般运算是解题关键.16.数轴上有A ,B ,C 三点,相邻两个点之间的距离相等,其中点A 表示,点B 表示1,那么点C 表示的数是________.【答案】1--或12或2【分析】分点C 在点A 的左侧、点C 在点A 、B 的中间、点C 在点B 的右侧三种情况,再分别利用数轴的定义建立方程,解方程即可得.【详解】设点C 表示的数是x ,由题意,分以下三种情况:(1)当点C 在点A 的左侧时,则AC AB =,即1(x =-,解得1x =--(2)当点C 在点A 、B 的中间时,则AC BC =,即(1x x -=-,解得12x =; (3)当点C 在点B 的右侧时,则AB BC =,即1(1x -=-,解得2x =;综上,点C 表示的数是1--或2故答案为:1--12或2+. 【点睛】本题考查了实数与数轴、一元一次方程的应用,熟练掌握数轴的定义是解题关键.17.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.【答案】21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而【详解】∵10a b c ++=∵100a b c ---=∵2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∵2221)2)3)0++=∵123===∵111429a b c -=⎧⎪-=⎨⎪-=⎩∵2511a b c =⎧⎪=⎨⎪=⎩∵2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.三、解答题(本大题共6小题,共49分)18.计算:(1)101(3)|2|2π-⎛⎫--+- ⎪⎝⎭ (22【答案】(1)3;(2(1)根据负指数幂、零指数幂和绝对值的概念直接计算即可;(2)根据二次根式的运算进行计算即可.【详解】解:(1)101(3)|2|2π-⎛⎫--+- ⎪⎝⎭2123=-+=(2222=-【点睛】 本题考查了负指数幂、零指数幂的计算,二次根式的计算,熟练掌握运算法则是解题的关键.19.计算题:(1;(2;(3))()2331⨯-【答案】(1)(2)8;(3)【分析】(1)先利用二次根式的性质进行化简,再利用二次根式的乘除法运算法则计算即可; (2)先利用二次根式的性质进行化简,再利用二次根式的运算法则计算即可;(3)先利用完全平方公式和平方差公式进行计算,再利用二次根式的加减运算法则计算即可.【详解】(1====(2=102=-8=(3)23)(31)+---2(31)=+--22223211⎡⎤=---+⎣⎦9531=--+=.【点睛】本题主要考查二次根式的混合运算,解题的关键是正确化简二次根式,熟练掌握二次根式的运算法则.20.先化简,再求值:2241244x x x x x -⎛⎫-÷ ⎪--+⎝⎭,其中2x =-+【答案】22x -+, 【分析】首先计算括号里面分式的减法,然后再计算括号外分式的除法,化简后,再代入x 的值可得答案.【详解】 解:2241244x x x x x -⎛⎫-÷ ⎪--+⎝⎭22(2)22(2)(2)x x x x x x x --⎛⎫=-⨯ ⎪--+-⎝⎭ 2222x x x --=⨯-+ 22x =-+,当2x =-+== 【点睛】本题考查了分式的化简求值,二次根式的混合运算.分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式. 21.阅读下列简化过程:1===;==== ……解答下列问题:(1)请用n (n 为正整数)表示化简过程规律________;(2; (3)设a =,b =c =,比较a ,b ,c 的大小关系.【答案】(1==(2)1;(3)c b a >>【分析】(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a 、b 、c 分别化简,比较结果即可.【详解】(1== (2+1=1=1=.(3)a ==2b ==+2c ==, 22>,a b ∴>, 又53>b c ∴>,c b a ∴>>.【得解】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.22.已知x =y = (1)求222x xy y ++的值. (2【答案】(1)40;(2)6-【分析】(1)先将x 、y 进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x 、y 进行计算即可.【详解】 (1)310x ==,3y ==, x y ∴+=6-=x y ,22222()40x xy y x y ∴++=+==.(2)103x =,3y =,20x ∴->,10y+>,21(2)(1)x y x x y y -+=--+ 11x y=-=-=33=-.6【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质及分母有理化的方法、完全平方公式的变形等知识点.23.阅读下列材料,然后回答问题.①一样的式子,其实我们====还可以将其进一步化简:1以上这种化简的步骤叫做分母有理化.①学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a+b=2,ab =-3 ,求a2 + b2.我们可以把a+b和ab看成是一个整体,令x=a+b ,y = ab ,则 a 2+ b2= (a + b)2- 2ab = x2- 2y = 4+ 6=10.这样,我们不用求出a,b,就可以得到最后的结果....+(1b 2a2+ 1823ab + 2b2=(2)已知m 是正整数,a2019 .求m.(31=【答案】(1(2)2;(3)9【分析】(1)先将式子的每一项进行分母有理化,再计算即可; (2)先求出,a b ab +的值,再用换元法计算求解即可;(31=【详解】解:(1)原式12019+2222=+++12019122+++==(2)∵a,b∵2(21),1a b m ab +==+= ∵2a 2+ 1823ab + 2b 2 = 2019∵222()18232019a b ++=∵2298a b +=∵24(21)100m +=∵251m =±- ∵m 是正整数∵m=2.(31=得出21==20∵2281=+=≥≥=.9【点睛】本题考查的知识点是分母有理化以及利用换元思想求解,解此题的关键是读懂题意.理解分母有理化的方法以及利用换元方法解题的方法.试卷第21页,总21页。

二次根式单元 易错题难题提高题检测

二次根式单元 易错题难题提高题检测

一、选择题1.下列运算正确的是( ) A .732-= B .()255-=-C .1232÷=D .03812+=2.下列二次根式中,是最简二次根式的是( ) A .15B .8C .13D .263.下列根式中,最简二次根式是( ) A .13B .0.3C .3D .84.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A . B .C .D .5.计算:()555+=( )A .55+B .555+C .525+D .1056.要使2020x -有意义,x 的取值范围是( ) A .x≥2020B .x≤2020C .x> 2020D .x< 20207.已知()()44220,24,180x y x y x yx y>+=++-=、.则xy=( )A .8B .9C .10D .118.若a =3235++,b =2+610-,则a b 的值为( )A .12 B .14C .321+D .1610+9.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,那么化简代数式2b -|a +b |+|a -c |-222c bc b -+的结果为( )A .2c -bB .2c -2aC .-bD .b10.下列计算不正确的是 ( )A .35525-=B .236⨯=C 7742=D 363693=+==二、填空题11.能力拓展:1:2121A -=+;2:3232A -=+;3:4343A -=+;4:54A -=________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A∵32+________21+∴32+________21+ ∴32-________21-()3同理,我们可以比较出以下代数式的大小:43-________32-;76-________54-;1n n +-________1n n --12.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则2b c +=________.13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.14.观察下列等式: 第1个等式:a 12112=+, 第2个等式:a 23223=+, 第3个等式:a 332+3, 第4个等式:a 45225=+, …按上述规律,回答以下问题: (1)请写出第n 个等式:a n =__________. (2)a 1+a 2+a 3+…+a n =_________15.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.16.把1m m-_____________. 17.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行 13154 1732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 18.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=1332=_____.19.如果332y x x --,那么y x =_______________________. 20.下列各式:2521+n ③24b 0.1y 是最简二次根式的是:_____(填序号)三、解答题21.观察下列各式子,并回答下面问题. 211-222-233-244-(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1 该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.22.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.23.先化简,再求值:a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.24.先化简,再求值:(()3369x x x x --+,其中21x =.【答案】化简得6x+6,代入得2 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()3369x x x x +--+=22369x x x --++ =6x+6 把21x =代入原式=621)2【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.25.观察下列一组等式,然后解答后面的问题21)(21)1=,(32)(32)1=, (43)(43)1=, (54)(54)1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数).(2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为1=;(2)原式111019==-=;-==,(3<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式. 26.(1)已知a2+b2=6,ab=1,求a﹣b的值;b=,求a2+b2的值.(2)已知【答案】(1)±2;(2)2.【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a2+b2=6,ab=1,得a2+b2-2ab=4,(a-b)2=4,a-b=±2.a===(2)1b===,2222+=+-=-=-= ()22312 a b a b ab⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.27.计算(1))(121123-⎛⨯-- ⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值.【答案】(1)28-;(2)17. 【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得. 【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y∴+=+=,()11119112224xy =⨯=⨯-=,则()222x xy y x y xy ++=+-,22=-,192=-, 17=. 【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.28.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =, 由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案. 【详解】解:A A错误;=,故B错误;B5C2==,故C正确;D01213=+=,故D错误;故选:C.【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.2.D解析:D【分析】根据最简二次根式的特点解答即可.【详解】A,故该选项不符合题意;B=C、D不能化简,即为最简二次根式,故选:D.【点睛】此题考查最简二次根式,掌握最简二次根式的特点:①被开方数中不含分母;②被开方数中不含能再开方的因式或因数,牢记特点是解题的关键.3.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.4.D解析:D【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件. 5.B解析:B【分析】根据乘法分配律可以解答本题.【详解】)5=5+故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.6.A解析:A【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∴x-2020≥0,解得:x≥2020;故选:A.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.7.D解析:D【分析】利用完全平方公式、平方差公式化简第二个等式即可.44180+=配方得22222180⎡⎤+-+⋅=⎣⎦222180⎡⎤⎡⎤+=⎣⎦⎣⎦222()180x y +-=22162(2)180xy x xy y +-+=22122()180xy x y ++=将2224x y +=代入得:12224180xy +⨯=计算得:11xy =故选:D.【点睛】本题考查了完全平方公式、平方差公式的综合应用,熟记公式是解题关键,这两个公式是常考点,需重点掌握. 8.B解析:B【解析】【分析】将a可化简为关于b 的式子,从而得到a 和b 的关系,继而能得出a b 的值.【详解】a=b 44=.∴14a b =. 故选:B .【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b 的形式.9.D解析:D【解析】解:∵|a |+a =0,∴|a |=﹣a ,∴﹣a ≥0,∴a ≤0,∵|ab |=ab ,∴ab ≥0,∴b ≤0,∵|c |﹣c =0,∴|c |=c ,∴c ≥0,∴原式=﹣b +(a +b )﹣(a ﹣c )﹣(c ﹣b )=b .故选D .10.D【解析】根据二次根式的加减法,合并同类二次根式,可知=故正确;=根据二次根式的性质和化简,=,故正确;根据二次根式的加减,不是同类二次根式,故不正确.故选D.二、填空题11.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.12.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123===∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.13.﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换. 14.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a11=,第2个等式:a2=,第3个等式:a3,第4个等式:a42=,……∴第n==(2)123(21)(32)(23)(1) na a a a n n+++=-+-+-+++-=121n+++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题15.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.a=a+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.16.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.17.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n (n ≥3且n 是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.18.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.19.【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x≥0,∴x=3,∴y=﹣2,∴.故答案为:.【点睛】 解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.20.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】② ③ 是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】是最简二次根式, 故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

二次根式较难易错题

二次根式较难易错题

二次根式较难易错题(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二次根式易错题11080n 是整数,则满足条件的最小正整数n 为( ) A .2 B .3C .30D .1202、现有边长AB =10,BC =5的矩形纸片ABCD ,对角线BD 。

在AB 上取一点G ,以DG 为折痕,使DA 落在DB 上,则AG 的长是: ( ) A 、5552 B 、55102 C 、5552 D 、551023、已知a<b ,化简二次根式b a 3-的正确结果是( ) A .ab a -- B .ab a - C .ab a D .ab a -4.下列各式中,一定能成立的是( )。

A .22)5.2()5.2(=- B .22)(a a = C .122+-x x =x-1 D .3392+⋅-=-x x x5.若x+y=0,则下列各式不成立的是( ) A .022=-y x B .033=+y x C .022=-y x D .0=+y x6.当3-=x 时,二次根7522++x x m 式的值为5,则m 等于( ) A .2 B .22C .55D .57.已知253=-+-x x ,则化简()()2251x x -+-的结果是( )B.x 26-C.4-D.62-x 8、若实数x 、y 满足x 2+y 2-4x -2y+5=0,则x +y 3y -2x的值是( )A 、1B 、32+ 2 C 、3+2 2 D 、3-2 29、的结果为则化简根式若1449612,121222++++-++-≤≤-x x x x x x x ( ) A.、3 B 、4 C 、5 D 、6 10、已知xy>0,化简二次根式x-yx2 的正确结果为( ) A 、y B 、-y C 、-y D 、--y 二、填空:1、求下列二次根式的取值范围。

x -1 3-x 12x - 13a -- 55x x +--1、若a 、b 都为实数,且b =2009a a -+-220102,a = ,a b = . 2、已知x =1a- a ,则4x+x 2= 。

(易错题精选)初中数学二次根式易错题汇编及答案(1)

(易错题精选)初中数学二次根式易错题汇编及答案(1)

(易错题精选)初中数学二次根式易错题汇编及答案(1)一、选择题1.下列各式中,是最简二次根式的是( )A B C D【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A被开方数含分母,错误.(2)B满足条件,正确.(3) C被开方数含能开的尽方的因数或因式,错误.(4) D被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.2.下列计算错误的是()A=B=C.3=D=【答案】C【解析】【分析】根据二次根式的运算法则逐项判断即可.【详解】解:==,正确;==C. =D. ==故选:C.【点睛】本题考查了二次根式的加减和乘除运算,熟练掌握运算法则是解题的关键.3.已知n是整数,则n的最小值是().A.3 B.5 C.15 D.25【解析】【分析】【详解】解:=Q也是整数,∴n的最小正整数值是15,故选C.4.x的取值范围是()A.x<1 B.x≥1C.x≤﹣1 D.x<﹣1【答案】B【解析】【分析】根据二次根式有意义的条件判断即可.【详解】解:由题意得,x﹣1≥0,解得,x≥1,故选:B.【点睛】本题主要考查二次根式有意义的条件,熟悉掌握是关键.5.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.6.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=- C .(51)(51)4-+=D .()422a a -=【答案】C【解析】【分析】 根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误; C 、(51)(51)514-+=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.7.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可: ∵由数轴可知,b >0>a ,且 |a|>|b|,()2a a b a a b b +=-++=.故选C .考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.8.已知25523y x x =--,则2xy 的值为( )A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由3y =,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<< 【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.11.下列二次根式中的最简二次根式是()B C DA【答案】A【解析】【分析】根据最简二次根式的概念判断即可.【详解】ABC,不是最简二次根式;D,不是最简二次根式;2故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.12.下列计算错误的是( )A.BC D【答案】A【解析】【分析】【详解】选项A,不是同类二次根式,不能够合并;选项B,原式=2÷=选项C,原式=选项D,原式==.故选A.13.下列计算或化简正确的是( )A.=BC3=-D3= 【答案】D【解析】解:A .不是同类二次根式,不能合并,故A 错误;B=,故B 错误;C3=,故C 错误;D3===,正确.故选D .14.下列各式中是二次根式的是( )ABCDx <0)【答案】C【解析】【分析】根据二次根式的定义逐一判断即可.【详解】A3,不是二次根式;B1<0,无意义;C的根指数为2,且被开方数2>0,是二次根式;D的被开方数x <0,无意义;故选:C .【点睛】a≥0)叫二次根式.15.2a =-,那么( )A .2x <B .2x ≤C .2x >D .2x ≥【答案】B【解析】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质2(0) 0(0)(0)a aa a aa a><⎧⎪===⎨⎪-⎩可求解.16.实数,a b在数轴上对应的点位置如图所示,则化简22||a ab b+++的结果是()A.2a-B.2b-C.2a b+D.2a b-【答案】A【解析】【分析】2,a a=再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a bQ<<>0,a b∴+<22||a ab b a a b b∴++=+++()a ab b=--++a ab b=---+2.a=-故选A.【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.17.当实数x2x-41y x=+中y的取值范围是()A.7y≥-B.9y≥C.9y<-D.7y<-【答案】B【解析】【分析】根据二次根式有意义易得x的取值范围,代入所给函数可得y的取值范围.【详解】解:由题意得20x-≥,解得2x≥,419x∴+≥,即9y≥.故选:B.【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x的取值是解决本题的关键.18.下列根式中属最简二次根式的是()A.21a+B.12C.8D.2【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式19.使代数式23xx--有意义的x的取值范围()A.x>2 B.x≥2C.x>3 D.x≥2且x≠3【答案】D【解析】试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数.根据题意,得20{30xx-≥-≠解得,x≥2且x≠3.考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件20.下列各式中,不能化简的二次根式是()A 12B0.3C30D18【答案】C【解析】【分析】A、B选项的被开方数中含有分母或小数;D选项的被开方数中含有能开得尽方的因数9;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【详解】解:A 122=,被开方数含有分母,不是最简二次根式;B300.3=,被开方数含有小数,不是最简二次根式;D ,被开方数含有能开得尽方的因数,不是最简二次根式;所以,这三个选项都不是最简二次根式.故选:C.【点睛】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.。

二次根式单元 易错题难题提高题检测试卷

二次根式单元 易错题难题提高题检测试卷

一、选择题1.下列计算正确的是()A=B.3=C2=D2.下列各式计算正确的是()AB.C=3 D.3.在实数范围内有意义,则x的取值范围是()A.x>3 B.x>-3 C.x≥-3 D.x≤-34.已知:x,y1,求x2﹣y2的值()A.1 B.2 C D.5.化简二次根式)A B C D6.实数a,b,c,满足|a|+a=0,|ab|=ab,|c|-c=0,a+b|+|a-c|-()A.2c-b B.2c-2a C.-b D.b7.下列说法中正确的是()A±5 B.两个无理数的和仍是无理数C.-3没有立方根. D.8.有意义,则实数m的取值范围是()A.m>﹣2 B.m>﹣2且m≠1C.m≥﹣2 D.m≥﹣2且m≠1 9.x≥3是下列哪个二次根式有意义的条件()A B C Dx-=成立的x的值为()10.230A.-2 B.3 C.-2或3 D.以上都不对二、填空题a>化成最简二次根式为________.11.若0m3﹣m2﹣2017m+2015=_____.12.若m13.若2x﹣x2﹣x=_____.14.已知实数m 、n 、p 满足等式,则p =__________.15.计算:2015·2016=________.16.计算:20082009⋅-=_________.17.x 的取值范围是______.18.,3,,,则第100个数是_______.19.如果2y ,那么y x =_______________________.20.3y =,则2xy 的值为__________.三、解答题21.阅读下面问题:阅读理解:==1;==2==-.应用计算:(1(2(n 为正整数)的值.归纳拓展:(398++【答案】应用计算:(12 归纳拓展:(3)9.【分析】由阅读部分分析发现式子的分子、分母都乘以分母的有理化因式,为此(1分母利用平方差公式计算即可,(2(3)根据分母的特点各项分子分母乘以各分母的有理化因式,分母用公式计算化去分母,分子合并同类项二次根式即可.【详解】(1(2(3+98+,(+98+,++99-, =10-1,=9.【点睛】本题考查二次根式化简求值问题,关键找到各分母的有理化因式,用平方差公式化去分母.22.先阅读下列解答过程,然后再解答:,a b ,使a b m +=,ab n =,使得22m +==)a b ==>7,12m n ==,由于437,4312+=⨯=,即:227+=,=2===+。

(易错题精选)初中数学二次根式难题汇编附答案

(易错题精选)初中数学二次根式难题汇编附答案
【详解】
解:∵ |2a-1|,
∴|2a-1|=1-2a,
∴2a-1≤0,
∴ .
故选:C.
【点睛】
此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.
6.若式子 在实数范围内有意义,则x的取值范围是()
A.x≥ B.x> C.x≤ D.x<
【答案】B
【解析】
【分析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
B、 ,正确;
C、 ,故此选项错误;
D、 =3,故此选项错误;
故选:B.
【点睛】
此题主要考查了二次根式的加减以及二次根式的性质,正确掌握二次根式的性质是解题关键.
12.下列计算正确的是
A. B.
C. D.
【答案】B
【解析】
【分析】
根据二次根式的混合运算顺序和运算法则逐一计算可得.
【详解】
A. ,此选项计算错误;
【详解】
根据题意得: ,
解得:x≥0且x≠1.
故选:B.
【点睛】
此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.
8.如果 ,那么()
A. B. C. D.x为一切实数
【答案】B
【解析】
∵ ,
∴x≥0,x-6≥0,
∴ .
故选B.
9.下列各式中计算正确的是()
B. ,此选项计算正确;
C. ,此选项计算错误;
D. ,此选项计算错误;
故选:B.
【点睛】
本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.
13.式子 有意义,则实数a的取值范围是()

(易错题精选)初中数学二次根式难题汇编(1)

(易错题精选)初中数学二次根式难题汇编(1)

(易错题精选)初中数学二次根式难题汇编(1)一、选择题1.下列计算正确的是( )A .3=B =C .1=D 2= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;BC 、22=⨯=D 2==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.2.已知n 是整数,则n 的最小值是( ).A .3B .5C .15D .25【答案】C【解析】【分析】【详解】解:=Q 也是整数,∴n 的最小正整数值是15,故选C .3.若x 、y 4y =,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C【解析】由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12,∴x =12, y =4, ∴xy =12×4=2. 故答案为C.4.=) A .0x ≥B .6x ≥C .06x ≤≤D .x 为一切实数 【答案】B【解析】=∴x ≥0,x-6≥0,∴x 6≥.故选B.5.下列运算正确的是( )A B .1)2=3-1 C D 5-3 【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.6.已知实数a 、b 在数轴上的位置如图所示,化简|a +b )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】 2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 2a .7.5130.5a 22a b -22x y +中,是最简二次根式的有( )A .2个B .3个C .4个D .5个 【答案】A【解析】 5 133 0.5a 22a ,不是最简二次根式; 22ab -b ,不是最简二次根式;22x y +是最简二次根式.共有2个最简二次根式.故选A.点睛:最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8.2-2()的结果是A .-2B .2C .-4D .4【答案】B【解析】22=-=故选:B9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<<【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数, 则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10.a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A 项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.11.下列根式中属最简二次根式的是( )A.21a+B.12C.8D.2【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式12.下列各式中,是最简二次根式的是( )A 12B5C18D2a【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A被开方数含分母,错误.(2)B满足条件,正确.(3) C被开方数含能开的尽方的因数或因式,错误.(4) D被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.13.下列计算错误的是( )A.22B82C236D82-2【答案】A【解析】【分析】【详解】选项A,不是同类二次根式,不能够合并;选项B,原式=2222÷=选项C,原式236⨯=选项D ,原式==.故选A.14.有意义时,a 的取值范围是( ) A .a ≥2B .a >2C .a ≠2D .a ≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a ﹣2≥0,解得:a ≥2,根据分式有意义的条件:a ﹣2≠0,解得:a ≠2,∴a >2.故选B .15.a 的取值范围是( )A .a >1B .a ≥1C .a =1D .a ≤1 【答案】B【解析】【分析】根据二次根式有意义的条件可得a ﹣1≥0,再解不等式即可.【详解】由题意得:a ﹣1≥0,解得:a≥1,故选:B .【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.16.在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.17.当实数x 41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.18.若a b > )A .-B .-C .D .【答案】D【解析】【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a 3b≥0∵a >b ,∴a >0,b <0=,故选:D .【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.19.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.20的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式易错题难题
1、当a 时, 有意义
2、计算:
3、计算:
4、计算: (a >0,b >0,c >0)
5、计算: = =
6、
7、 则 2006个3 2006个4
8、
9、观察以下各式:
利用以上规律计算:
10、已知 一、选择题
11、若32+x 有意义,则 ( ) A 、 B 、 C 、 D 、
12、化简 的结果是 ( ) A 、0 B 、2a -4 C 、4 D 、4-2a
13、能使等式 成立的条件是 ( ) A 、x ≥0 B 、x ≥3 C 、x >3 D 、x >3或x <0 14、下列各式中,是最简二次根式的是 ( ) A 、x 8 B 、b a 25 C 、2294b a + D 、
15、已知 ,那么 的值是 ( ) A 、1 B 、-1 C 、±1 D 、4 16、如果 ,则a 和b 的关系是 ( ) A 、a ≤b B 、a <b C 、a ≥b D 、a >b 17、已知xy >0,化简二次根式 的正确结果为 ( ) A 、 B 、 C 、 D 、 18、如图,Rt △AMC 中,∠C=90°, ∠AMC=30°,AM ∥BN ,MN=2 cm , BC=1cm ,则AC 的长度为 ( ) A 、23cm B 、3cm C 、3.2cm D 、
19、下列说法正确的个数是 ( ) ①2的平方根是 ;② 是同类二次根式; ③ 互为倒数;④ A 、1 B 、2 C 、3 D 、4
20、下列四个算式,其中一定成立的是 ( )
① ; ② ; ③ ④ A 、①②③④ B 、①②③ C 、①③ D 、①
三、解答题
21、求 有意义的条件(5分) 22、已知 求3x +4y 的值
23、化简625①- ②627-
24、在实数范围内将下列各式因式分解
① ② ③

25、已知实数a 满足 ,求a -20052的值 26设长方形的长与宽分别为a 、b ,面积为S
①已知 ;②已知S= cm 2,b = cm,求 a
27、①已知 ; ②已知x = 求x 2-4x -6的值
28、已知Rt △ABC 中,∠ACB=90°,AC=22cm , BC=10cm ,求AB 上的高CD 长度
29、计算:
30、已知 ,求① ;② 的值
()
=-2
31)(a -1()
=2
232)(=⎪⎪⎭

⎝⎛⎪⎭⎫ ⎝⎛--2511)(()
=-262)(=-⨯)()(273
11=c b a 2382)(73)1(a
38
)2(=->2,0xy xy 化简如果=
+=+=+222222444333443343,,=
+22444333 =+-2006
2005)12()12(343
41
2323112121-=+-=+-=+,,()
=
+⎪⎭⎫ ⎝⎛++++++++120062005200613412311
21 =
⎪⎭⎫

⎛-⎪⎪⎭⎫ ⎝⎛+-=+=x y y x 11111313,则,2
3
-≥
x 23-≤x 32-≥x 3
2-≤x 2)2(2
-
+-a a 3
3-=-x x x x 2
y 5
1
=+x
x x
x 1-
1212
2-=+-⋅-b ab a b
a 2x
y
x -y y -y -
y --3M A N B
C
cm 32
3
a a 2.05与
21212+-与3223--的绝对值是11222+=+a a )(a a =2)(0>⋅=ab b a ab 1
1)1)(1(-⋅+=-+x x x x 1
1
+-x x 2
1
442
2
-+-+-=x x x y 3
322
+-x x 752-x 44-x 44
+x a
a a =-+-200620057250S cm
b cm a ,求,1022==11
322
+--=x x x ,求10
2-C A
B D
()()()()
1
21123131302-+-
+---+2
32
32323+-=-+=y x ,y x 11+y x x y +。

相关文档
最新文档