经典力学时空观伽利略变换
伽利略变换式 牛顿的绝对时空观

同时不同地
2 Δx 0 Δt 0
同地不同时 ------不同时
第十一章 狭义相对论
25
物理 (工)
11-3
狭义相对论的时空观
讨论
v Δt 2 Δx c Δt ' 2 1
S系 S′系 3 Δx 0 Δt 0 ------同时 同时同地 4 Δx 0 Δt 0 ------不同时 不同时不同地 v t 2 x 时 ---同时 c
T
G M1 G
s
l l t1 cv cv
v
v2 Δ ct l 2 c
第十一章 狭义相对论
8
物理 (工)
11-1 M2 M1
伽利略变换 G M2
c 2 v2
经典力学的时空观 M2
s
T
G
v
c
-v
c
-v
G
c 2 v2
(从 s ' 系看)
GM 2 GM 1 l
s
y
o
y
vt
s'
y'
y'
v
x'
o'x
( x ' , y' , z ' )
z z
z'z'
x' x
3
第十一章 狭义相对论
物理 (工)
11-1
伽利略变换
经典力学的时空观
加速度变换
a ax x ay a y
az az
s
y
o
y
vt
s'
y'
y'
v
x'
伽利略变换关系牛顿绝对时空观

1.爱因斯坦(美籍德国人,1921*),2.牛顿(英国),3.麦克斯韦 (英国), 4. 玻尔(丹麦,1922), 5.海森伯(德国,1932),6.伽 利略(意大利),7.费因曼(美国,1965), 8.狄拉克(英国,1933), 9.薛定谔(奥地利,1933), 10.卢瑟福(新西兰)
经典力学的成就和局限性
三 能量的连续性与能量量子化 经典物理中,宏观物体的能量是连续变化的,但
近代物理的理论证明,能量的量子化是微观粒子的重 要特性 . ➢ 普朗克提出一维振子的能量
Enh(n1 ,2,3 )
➢ 爱因斯坦认为光子能量 h
量子力学指出,物体(微观粒子)的位置和动量
相互联系,但不能同时精确确定,并且一般作不连续
a' a z
z 牛顿伽运利略动变换定关律系牛具顿绝有对时相空同观 的形式.
位置坐标逆变换公式
速度逆变换公式
xxut y y'
zz'
t t'
S
加速度逆变换公式 S
vx v'xu vy vy
vz vz
m
a
F
m a F
F F m m a a
ax ax
牛顿运动定律具有伽利略变换的不变性
ay ay
爱因斯坦的哲学观念:自然界应 当是和谐而简单的.
理论特色:出于简单而归于深奥.
伽利略变换关系牛顿绝对时空观
1895年(16岁):追光假想实验(如果我以速 度c追随一条光线运动,那么我就应当看到, 这样一条光线就好象在空间里振荡着而停 滞不前的电磁场。可是无论是依据经验, 还是按照麦克斯韦方程,看来都不会有这 样的事情。从一开始,在我直觉地看来就 很清楚,从这样一个观察者来判断,一切 都应当象一个相对于地球是静止的观察者 所看到的那样按照同样一些定律进行。)
第十四章 狭义相对论基础

u
在一艘没有窗户的船舱内
u 0
u C
所作的一切力学实验结果都相同。 无法通过力学实验的方法判断船是静止还是匀速直线运动。
伽利略相对性原理 (经典力学的相对性原理): 力学规律对于一切惯性系都是等价的。
四. 牛顿运动定律具有伽利略变换的不变性
S S
在牛顿力学中
m
m
a a
在所有惯性系中,一切物理学定律都是相同,都具有相 同的数学表达形式。
或者说:对于描述物理现象的规律而言,所有惯性系是等价的。
结论 (1)爱因斯坦相对性原理 是 经典力学相对性原理的发展
一切物理规律 力学规律
(2) 光速不变原理与伽利略的速度合成定理针锋相对
(3) 时间、长度、质量的测量: 经典力学----与参考系无关.
大学物理学
近代物理基础
第14章 狭义相对论基础
三、时间间隔的相对性
研究的问题是: 在某系中,同一地点先后发生的两个事件的时间 间隔,与另一系中,这两个事件的时间间隔的关系。
固有 时间 运动 时间
一个物理过程用相对于它静止的惯性系上的时 钟测量到的时间。用 0表示。也叫静止时。 一个物理过程用相对于它运动的惯性系上的时 钟测量到的时间。用 表示。
速度的逆变换式?
从S系变换到S系
从S系变换到S系
vx u v x 1 uv x c 2
正 变 换 )
Байду номын сангаас
v x u vx 2 1 uv c x
逆 变 换
2 2 v y 1 u c vy 2 1 uv x c
2 2 v 1 u c vz z 2 1 uv x c
某时刻,发生(事件)P
伽利略变换关系 牛顿的绝对时空观

三百年前,牛顿站在巨人的肩膀上,建立了动力学三 大定律。
这三大定律是构 成经典力学的理论基 础,是解决机械运动 问题的基本理论依据。
伊萨克·牛顿爵士 静静地躺在这里。 他以超人的智慧, 第一个证明了, 行星的运动和形状, 彗星的轨道和海洋的潮汐。 他孜孜不倦地研究 光线的各种不同的折射角, 颜色产生的种种性质。 对于自然,历史和圣经 他是一位勤勉,敏锐而忠实的诠释者。 他以自己的哲学证明了上帝的庄严, 并在他举止中表现了福音的淳朴 让人类欢呼吧, 曾经存在过这样一位 伟大的人类之光。
一、伽利略变换式 牛顿的绝对时空观
狭义相对论基础
一、伽利略变换式 牛顿的绝对时空观
引言: 什么是相对论? 关于空间、时间和物质运动之间相互关系的现
代物理理论
自然和自然规律隐藏在黑暗之中, 上帝说“让牛顿降生吧”, 一切就有了光明。 三百年前,牛顿建立了动力学三大定律。
这三大定律是构成 经典力学的理论基础, 是解决机械运动问题的 基本理论依据。
v
v
u
加速度
变换公式
ax
ax
du dt
ay ay
az az
一、伽利略变换式 牛顿的绝对时空观
加速度变换公式
a'x ax a'y ay
a'z az
a a'
s y s' y'
y y'
vt
o
z z
o' z' z'
u
x'
x
P(x, y, z) * (x', y', z')
第四章 狭义相对论

大学物理学
第四章 狭义相对论
4.1 伽利略变换和经典力学时空观 4.2 狭义相对论的基本原理 洛仑兹变换 4.3 狭义相对论的时空观 4.4 狭义相对论动力学
2
大学物理学
第四章 狭义相对论
4.1 伽利略变换和经典力学时空观
一、伽利略变换
u
1. 伽利略坐标变换
y y'
K' 系相对于 K 系沿 x 轴匀速 运动,当 t = t' = 0 时, O 与
在 S' 系中看来:
事件 1 发生的位置 x1' ( x1 u t1 ) 事件 2 发生的位置 x2' ( x2 u t2 )
所以有 x' (x ut)
由Δt = 0,则有
x'
u2
x
x' 1 c2
18
大学物理学
l l0
1
u2 c2
第四章 狭义相对论
物体在运动方向上的长度收缩 为固有长度的γ分之一。
——长度收缩效应
注意 ① l < l0 长度沿着运动方向收缩了。
② 若把尺子静止放置在 S 系,在 S' 系测量尺 子的长度,同样出现长度收缩效应。
③ 空间长度具有相对意义。
19
大学物理学
第四章 狭义相对论
例4.1 一火箭相对地球以速率 u = 0.6 c 做直线 运动,以火箭为参考系测得火箭长度为 15m, 则以地球为参考系测得的火箭长度是多少?若 火箭相对地球运动的速率为 u = 0.995 c,问在 地球上测得的火箭长度又是多少?
p
ud p
0
pu
u
u
d( pu) pdu pu
狭义相对论基础

问题二 迈克尔孙 莫雷实验 问题二:迈克尔孙-莫雷实验
著名的否定性实验( 1881~1887 ) 动摇了经典物理学的基础 动摇了经典物理学的基础。 u u c M E t2
M1 M2
90o
实验原理如图,光源发出 S 的光束被分成两束后,被镜片 反射,其往返时间分别为 l l 2l 1 t1 2 u cu cu c 1 2 c
Y O Z
Y
u
O X X
由于时空的均匀性,新的时空关系必须是线性的,故可设
x a11 x a12 t
t a21 x a22 t (3)
显然,如图,在K系中观测到 K 系的 x 0, 各点(K系中的 坐标为x)的速度为u,沿x轴方向,即 x 0 点, dx/dt=u; 然而,根据式(3),若 x 0,则有
根据干涉原理,由此引起的干涉条纹的移动数目为 考虑地球公转速率和光速,可估计移动0.4个条纹。但实际 观察的数目却仅为0 01个条纹 在实验误差范围内 实验得到 观察的数目却仅为0.01个条纹,在实验误差范围内。实验得到 的负结果困扰了当时的科学界. 引起物理学界广泛的讨论和探索 引起物理学界广泛的讨论和探索: 1892 年爱尔兰的菲兹哲罗和荷兰的洛仑兹独立 提出了运动长度收缩的概念 提出了运动长度收缩的概念; 1899年洛仑兹提出运动物体上的时间间隔将变长 及洛仑兹变换; 及洛仑兹变换 1904年庞加莱提出物体所能达到的速度有一最大 值-真空光速; 值 真空光速; 1905年爱因斯坦建立了狭义相对论。
[7]
第十一章 狭义相对论基础
Y
Y
u
P X
二、洛仑兹变换
洛仑兹变换的时空变换关系 正变换: x ( x ut ) y y z z u t (t 2 x ) c 说明: 1) 2) 3) 4) 逆变换: Z x ( x ut ) y y z z u t (t 2 x ) c O
相对论1(伽利略变换 经典时空观)

S
r Yu
S′ B A
vx −u X O ′= vx = 0.994c u r r r 1− 2 vx vAB = vA地 + v地B c vABx = vA地 + v地B =1.8c (2)由矢量合成法则: 由矢量合成法则: 由矢量合成法则
例:质点相对于地球以速率0.80C向北运动, 宇宙飞船 质点相对于地球以速率0.80C向北运动, 0.80C向北运动 相对于地球以速率0.98C向东飞行, 0.98C向东飞行 相对于地球以速率0.98C向东飞行,问飞船中的观察者 测得这一质点的速度如何? 测得这一质点的速度如何? r r v 解: 地球 地球---S系 飞船 系 飞船---S’系 系
s
G T
v v
v c
v -v
v -v
G
c2 −v2
v c
c2 − v2
系看) (从 s'系看) 以太”参考系为S系 设“以太”参考系为 系,实验室为 s' GM 2 = GM 1 = l 系 G M1 G G M2 G T
s
G M1
2l l l M t2 = t1 = + 2 2 c 1− v c c −v c + v v 2 2 v ∆ = c∆t ≈ l v ∆N = 2 ∆ ≈ 2l v 2 λ λc 2 c
2
l = 10 m , λ = 500 nm , v = 3 × 10 m/s 仪器可测量精度 ∆N → 0.01 ∆N ≈ 0.4
4
v ∆N = ≈ 2l 2 λ λc
2∆
2
实验结果
∆N = 0
未观察到地球相对于“以太”的运动 观察到地球相对于“以太”的运动. 人们为维护“以太”观念作了种种努力, 人们为维护“以太”观念作了种种努力, 提出了 各种理论 ,但这些理论或与天文观察,或与其它的实 但这些理论或与天文观察, 验相矛盾,最后均以失败 失败告终 验相矛盾,最后均以失败告终 .
伽利略变换

§2、2 伽利略变换2、2、1 伽利略变换(1) 如图2-2-1所示,有两个惯性 系S 和'S , 它们对应的坐标轴相互平行,且当t ='t =0时,两系的坐标原点'O 与O 重合。
设'S 系相对于S 系沿x 轴正方向以速度u 运动。
同一质点P 在某一时刻在S 系中的时空坐标为(x,y,z,t),在S`系中的时空坐标为 (x’,y’,z’,t’)⎪⎪⎩⎪⎪⎨⎧===-=t t zz y y ut x x '''' 即t u r r -='或 (1) x=x '+ut ⎪⎩⎪⎨⎧==='''t t z z y y 即 t u r r+='式(1)称为伽利略时空坐标变换公式。
(2)将式(1)中的空间坐标分别对时间求一次导数得:图2-2-1⎪⎪⎪⎩⎪⎪⎪⎨⎧====-=-==z z y y x x v dt dz v v dt dy v u v u dt dxdt dx v '''''' 即u v v -= ' 或⎪⎪⎪⎩⎪⎪⎪⎨⎧======+=+==z z y yx x v dt dz dt dz v v dt dy dt dy v u v u dt dx dt dx v '''''1即u v v '+'= (2)式(2)称为伽利略速度变换公式。
(3)将式(2)再对时间求一次导数得⎪⎪⎪⎩⎪⎪⎪⎨⎧=='='=='='=='='z z z z y y y y x x xxa dt dv dt v d a a dt dv dt v d a a dt dv dt v d a 即a a ='⎪⎩⎪⎨⎧'='='=z z y y x x a a a a a a a a'= (3) 式(3)表明在伽利略变换下加速度保持不变。
伽利略变换关系牛顿的绝对时空观

自然界和自然界的规律隐藏在黑暗中, 上帝说:“让牛顿去吧,”于是一切都成为光明。 后人续写道: 上帝说完多少年之后, 魔鬼说:“让爱因斯坦去吧,”于是一切又回到黑暗中。
15 - 1 伽利略变换式 牛顿力学相对性原理遇到的困难
三 理解狭义相对论中质量、动量与速度的 关系,以及质量与能量间的关系.
15 - 1 伽利略变换式 牛顿力学相对性原理遇到的困难
爱因斯坦成就 (1905年)
解释光电效应,提出光子说 布朗运动,分子的存在 狭义相对论
质能关系式E = mc2
相对论的时空观念与人们固有的时空观念
差别很大,很难被普通人所理解。人们都称赞
迈克耳逊 莫雷实验的零结果否定了“以太”的存在
1901年,考夫曼发现 粒子荷质比与粒子运动速度
有关的实验结果。
根据伽利略变换会得到许多反常现象。
15 - 1 伽利略变换式 牛顿力学相对性原理遇到的困难
试计算球被投出前后的瞬间,球所发出的光波达 到观察者所需要的时间. (根据伽利略变换)
球 投 出 前A
分别在S,S’系中测量同一 物体(细棒)的长度:
在两惯性系中,测得细棒 两端点坐标分别为
( x1, x2 ), ( x '1, x '2 )
根据伽利略变换,有
s
y
s'
y' v
L '
x'1
x'2 x'
o
z
o'
z'
x1
x2 x
x '1 x1 vt, x '2 x2 vt
两式相减得 x2 x1 x '2 x '1
1 伽利略变换关系 牛顿的绝对时空观

实践已证明 , 绝对时空观是不正确的.
伽利略变换式
牛顿的绝对时空观
相对论
对于不同的惯性系,电磁现象基本规律的形式 是一样的吗 ? 真空中的光速
c
1
0 0
2.998 108 m/s
对于两个不同的 惯性参考系 , 光速满 足伽利略变换吗 ?
s
o
y
s'
o' z'
y'
v c
c ' c v?
伽利略变换式
牛顿的绝对时空观
相对论
蟹状星云还是强红外源、紫外源、X射线源和 γ射线源。它的总辐射光度的量级比太阳强几万 倍。1968年发现该星云中的射电脉冲星,它的脉 冲周期是0.0331秒,为已知脉冲星中周期最短的一 个。目前已公认,脉冲星是快速自旋的中子星,有 极强的磁性,是超新星爆发时形成的坍缩致密星。 蟹状星云脉冲星的质量约为一个太阳质量,其发 光气体的质量也约达一个太阳质量,可见该星云 爆发前是质量比太阳大若干倍的大天体。星云距 离约6300光年,星云大小约12光年×7光年。
s'
y'
当
t t' 0
时
y'
v
x'
x
o 与 o'重合
位置坐标变换公式
vt
o' z' z'
P( x, y, z) * ( x ', y ', z ')
x' x vt
z z
x' x
z' z
t' t
y' y
经典力学认为:1)空间的 量度是绝对的,与参考系无关; 2)时间的量度也是绝对的,与 参考系无关 .
第8章狭义相对论

l 1 v2 c2
运动参考系中测得杆的长度:
l l0 1 v 2 c 2
长度测量与被测物体相对于观察者的运动有关,物体在 运动方向长度缩短了。
19
l l0 1 v 2 c 2
说明:长度收缩只发生在运动的方向上。 当
v c
l l0
现代物理实验为相对论的时间延缓效应和长度收缩 效应提供了有力的证据。
当物体作低速运动时并不需要考虑长度的收缩效应, 经典力学的时空观仍然是足够的精确。
21
§8-4 相对论速度变换公式
dx S系: u x dt dx S´系: u x dt
洛伦兹变换微分 :
dy uy dt dy u y dt
dz uz dt dz u z dt
8-1-1 伽利略变换 经典力学相对性原理
原点O与O´重合时,作 为计时起点,t = t´= 0
y
S
Px, y, z, t
Px, y , z , t
vt
x x
y S P
x
v
x
z
o
z
o
3
伽利略变换:
x x vt y y z z t t
t1 0 t t 2
固有时间间隔:在相对静止的参考系中同一地点先后发生 两个事件的时间间隔, 用 0表示。 S系中测得事件于t1,t2 时刻发生,
由洛伦兹变换: t1 v( x x ) c 2 t2 t t t 2 t1 2 2 1 v c 1 v2 c2
第8章 狭义相对论
1
§8-1 伽利略变换 经典时空观
1687年,牛顿在他的《自然哲学的数学原理》一书中 对时间和空间作如下表述 : 绝对的、真实的、纯数学的时间,就其 自身和其本质而言,是永远均匀流动的, 不依赖于任何外界事物。 绝对的空间,就其本性而言,是与外界 事物无关而永远是相同和不动的。
13.1 经典力学的伽利略变换与时空观

F ma
F ma
结论:牛顿运动定律对任何惯性系都是成立的
推广:对于所有的惯性系,牛顿力学的规律都应有
相同的形式——力学相对性原理。
6
大学物理 第一版
12.1 经典力学的伽利略变换与时空观
二 经典力学时空观 绝对空间:空间与运动无关,空间绝对静止. 空间的度量与惯性系无关,绝对不变. 绝对时间: 时间均匀流逝,与物质运动无关 ,所有惯性系有统一的时间.
大学物理 第一版
12.1 经典力学的伽利略变换与时空观
经典物理
物理学 现代物理
力学 经典物理学的辉煌成就 热学 电磁学 经典力学 牛顿 、拉格郎日等 热力学与统计力学 克劳修斯、开 光学 相对论 量子论 电动力学 安培、法拉第、麦克斯韦 非线性 光学 牛顿、惠更斯、杨氏、菲涅尔
尔文、玻尔兹曼
从经典物理学到近代物理过渡时期的重要实验事实 • • • • • 迈克尔逊——莫雷实验:否定了绝对参考系的存在; 经典物理学解释热辐射现象时:出现“紫外灾难”; 放射性现象的发现:原子是可分的。 光电效应 原子的线状光谱
12.1 经典力学的伽利略变换与时空观
A 点光线到达 地球所需时间 B 点光线到达 地球所需时间
l tA cv l tB c
物质飞散速度 v 1500km/s
A B
cv
c
l = 5000 光年
18
大学物理 第一版
12.1 经典力学的伽利略变换与时空观
理论计算观察到超新星爆发的强光 的时间持续约 t t B t A 25年 .实际持 续时间约为 22 个月, 这怎么解释 ?
t1 t2
15
大学物理 第一版
12.1 经典力学的伽利略变换与时空观
第十九章狭义相对论基础

第十九章 狭义相对论基础§15-1相对论运动学【基本内容】一、洛仑兹变换1、伽利略变换和经典力学时空观(1)力学相对性原理:一切惯性系,对力学定律都是等价的。
理解:该原理仅指出:力学定律在一切惯性系中,具有完全相同的形式。
对其它运动形式(电磁运动、光的运动)并未说明。
(2)伽利略变换分别在两惯性系S 和S '系中对同一质点的运动状态进行观察,P 点的坐标为:),,(:),,,(:z y x S z y x S ''''S 系中: S '系中t t t u x x '='+'=tt utx x ='-='上式S 与S '的坐标变换关系叫伽利略坐标变换。
(3)经典力学时空观在伽利略变换下:(1)时间间隔是不变量t t '∆=∆。
(2)空间间隔是不变量r r ∆='∆。
在任何惯性系中,测量同一事件发生的时间间隔和空间间隔,测量结果相同。
经典力学时空观: 时间和空间是彼此独立,互不相关的,且独立于物质的运动之外的东西。
2、洛仑兹变换 (1)爱因斯坦假设相对性原理:物理学定律与惯性系的选择无关,一切惯性系都是等价的。
光速不变原理:一切惯性系中,真空中的光速都是c 。
(2)洛仑兹变换在两惯性系S 和S '下中,观察同一事件的时空坐标分别为:),,(:),,,(:z y x S z y x S ''''洛仑兹正变换:洛仑兹逆变换)()(2x c ut t t u x x '+'='+'=γγ)()(2x c u t t ut x x -='-='γγ其中22/1/1c u -=γ 或2/11γ-=c u二、狭义相对论的时空观1.一般讨论设有两事件A 和B ,其发生的时间和地点为:S 系中观测:S /系中观测:)(,A A x t A)(,B B x t B)(,A A x t A '' )(,B B x t B ''时间间隔: A B t t t -=∆A B t t t '-'='∆空间间隔:A B x x x -=∆A B x x x '-'='∆目的:寻求的关系与和与x x t t '∆∆'∆∆ 方法:由洛仑变换和逆变换可得其关系。
伽利略变换.

s
y
y
s'
y'
y'
v
*P(x, y, z)
F
ay ay
az az
a
ma
a
F
vt
x'
o
o'x
zz z'z'
( x', y', z')
x'
x
ma 经典物理:m m
牛顿定律在一切惯性系中具有相同的 数学表达形式. ——力学相对性原理
4
二、力学相对性原理 力学定律在所有惯性系中都具有相
伽利略变换 中隐含了绝 对时空观念
1、绝对时间 伽利略变换 t t 或 t t
时钟的走时与运动无关,与惯性系无关
时间测量与运动无关,与惯性系选择无关
7
2、绝对空间 (1)、长度的测量: 长度 = 在与长度方向平行的坐标轴上,物体 两端坐标值之差。
注意:当物体运动时,两端坐标必须同时记录。
2
伽利略速度变换
ux ux v
uy u y
ax ax
ay ay
ቤተ መጻሕፍቲ ባይዱ
uz uz
az az
u
u
v
or
:
u
u
v
s y s' y' v
o
o'
*P(ux ,uy ,uz ) (ux' , uy' , uz' )
x x'
z z'
3
加速度变换
x
z z'
15-1 伽利略变换关系 牛顿的绝对时空观

z' z
y' y
t't x ' x vt
x z z 时间的测量是绝对的 若沿 x 轴放一细棒,求 S和 S 系中的长度
o
vt
o' z' z'
1
x' 2
( x, y , z , t ) P* ( x ', y ', z ', t )
x' x
, x2 ), S ( x1 , x2 ) 棒两端的坐标为: S ( x1
c' c v?
伽利略变换 相对性原理 电磁规律
不和谐
15-1
伽利略变换式 牛顿力学相对性原理遇到的困难
第十五章
相对论
试计算球被投出前后的瞬间,球所发出的光波达 到观察者所需要的时间. (根据伽利略变换) 球 投 出 前 球 投 出 后
c
A
d
d t1 c B
v c v
A
d t 2 cv
t1 t 2
B
结果:观察者先看到投出后的球,后看到投出前的球.
x
x' x
伽利略相 对性原理
质点的速度与惯性系有关 3. 加速度变换公式
a'x a x
a' y a y
F ma
a a'
F ma '
a'z az
在两相互作匀速直线运动的惯性 系中,牛顿运动定律具有相同的形式.
15-1
伽利略变换式 牛顿力学相对性原理遇到的困难
引言
19世纪末,以牛顿力学(经典力学)、麦克斯韦电 磁场理论(经典电动力学)为代表的经典物理学发展到 了相当完善的程度,在实际应用中取得了空前的成功。 1900年著名的英国物理学家开尔文,这样展望着 二十世纪的物理学:“在物理学晴朗天空的远处,还 有两朵令人不安的乌云 ”。 迈克尔孙莫雷实验 建立了狭义相对论 黑体辐射 实验 建立了量子力学
4-1 伽利略变换和经典力学时空观

实践已证明 , 绝对时空观是不正确的.
第4章 相对论
4–1 伽利略变换和经典力学时空观
试计算球被投出前后的瞬间,球所发出的光波达 到观察者所需要的时间. (根据伽利略变换)
球 投 出 前 球 投 出 后
第4章 相对论
c
d
d t1 c
v cv
d t2 cv
t1 t 2
L L
空间长度是绝对的
第4章 相对论
'
4–1 伽利略变换和经典力学时空观
3
二 伽利略相对性原理
力学规律对一切惯性系都是等价的.这就是力学的相对 性原理,也称伽利略相对性原理,或经典相对性原理.
v vx u ' v y v y ' vz vz
' x
加 速 度 变 换 关 系
结果:观察者先看到投出后的球,后看到投出前的球.
问:相对于绝对时空观 绝对时空概念:时间和空间的量度和参考系无 关 , 长度和时间的测量是绝对的.
绝对时间: 所有惯性系有统一的时间.
绝对空间:空间与运动无关,空间是绝对静止的.
第4章 相对论
4–1 伽利略变换和经典力学时空观
“绝对的真实的数学时间 , 就其本质而言, 是永远均 匀地流逝着, 与任何外界无关 .” “绝对空间就其本质而言 是与任何外界事物无关的,它 从不运动, 并且永远不变.” 牛顿的绝对时空观 牛顿力学的相对性原理
4–1 伽利略变换和经典力学时空观
1
一 伽利略变换
经典力学时空观
在同一时刻,同一物体 的坐标从一个坐标系变 换到另一个坐标系,叫 做坐标变换.联系这两组 坐标的方程,叫做坐标 变换方程. x ' x ut ' y y 或 ' z z t ' t
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r r a′ = a
ax ' = ax ay ' = ay az ' = az
不同惯性系下, 不同惯性系下, 描写同一质点的 加速度相同。 加速度相同。
F′ m′ a′ F′ = m′a′
在惯性系中所有力学规律相同——牛顿的力学相对性 牛顿的力学相对性 在惯性系中所有力学规律相同 原理
4
二、力学相对性原理
经典力学时空观 伽利略变换
1
一、伽利略变换
设有两个参照系S系和S 系 设有两个参照系S系和S’系,各 坐标轴相互平行。 系相对S 坐标轴相互平行。 S’ 系相对S系沿 ox 轴以 u 运动。 运动。 坐标轴原点O 坐标轴原点O与O’点重合时作为公共计 点重合时作为公共计 t 时起点。 时起点。 = 0时两坐标重合 x = x ' = 0 时刻,物体在P 看成一事件) t时刻,物体在P点(看成一事件)
S'系
在两个惯性系中 牛顿力学中: 质量的测量与运动无关。 牛顿力学中: 质量的测量与运动无关。 相互作用是客观的,分析力与参照系无关。 相互作用是客观的,分析力与参照系无关。 r r r r S F m a F = ma 经典时空中牛顿第二定 r r r r 律适用于任何惯性系。 律适用于任何惯性系。 ′ S
x = x'+ut y = y' z = z' t = t'
逆
u P
o
o' z'
x
x'
z
vx ' = vx − u源自vy ' = vy
v x = v x '+u
vz ' = vz
vy = vy ' vz = vz '
3
3)伽利略加速度变换 3)伽利略加速度变换 由速度变换公式对时间求导
ax = ax ' S系 a y = a y ' az = az '
与经典力学相对应的变换就是伽利略变换。 与经典力学相对应的变换就是伽利略变换。
三、经典的时空观
时间是绝对的,空间是绝对的,时间和空间是 时间是绝对的,空间是绝对的, 彼此独立,没有任何联系。从而同时也是绝对的。 彼此独立,没有任何联系。从而同时也是绝对的。 绝对空间是指长度的量度与参照系无关 是指长度的量度与参照系无关, 绝对空间是指长度的量度与参照系无关,绝对时 是指时间的量度与参照系无关。 间是指时间的量度与参照系无关。 同样两点的距离或同样的前后两个事件之间的 时间间隔无论在哪个惯性系中测量都是一样的, 时间间隔无论在哪个惯性系中测量都是一样的,而 且时间和空间是彼此独立、没有任何联系的。 且时间和空间是彼此独立、没有任何联系的。
r 速度和加速度为: 速度和加速度为:v ′( x′, y′, z′, t ′),
r a′(x' , y' , z' , t' )
2
1)伽利略坐标变换 1)伽利略坐标变换 正变换
S
S'
y
y'
逆变换
x' = x − ut y' = y z' = z t' = t
2)伽利略速度变换 2)伽利略速度变换 正
y
o
S
y'
S'
u
o'
P
x x'
z
z'
r 系看来,该事件的时空坐标为: 在S系看来,该事件的时空坐标为: r ( x, y, z, t ) r r 速度和加速度为: 速度和加速度为: ( x, y, z, t ), a( x, y, z, t ) v r 系看来, 在S’系看来,该事件的时空坐标为: r ′( x′, y′, z′, t ′) 系看来 该事件的时空坐标为:
6