2019-2020学年度下学期高二期末文科数学试卷答案一
2019-2020年高二下学期期末统一考试数学(文)试题 含答案
北京市朝阳区xx学年第二学期期末考试高二数学(文科)xx.7 2019-2020年高二下学期期末统一考试数学(文)试题含答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知是虚数单位,则A.B.C.D.2.已知集合,,则A.B.C.D.3.若,则是A.第一或第二象限角B.第一或第三象限角C.第一或第四象限角D.第二或第四象限角4.已知函数,为函数的导函数,那么等于A.B.C.D.5.设,,,则A.B.C.D.6.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7. 若不等式组1,0,26,axyx yx y⎧⎪⎪⎨+⎪⎪+⎩≥≥≤≤表示的平面区域是一个三角形,则实数的取值范围是A.B.C.D.8.已知定义在上的函数的对称轴为,且当时,.若函数在区间()上有零点,则的值为A.或B.或C.或D.或二、填空题:本大题共6小题,每小题5分,共30分. 请把答案填在答题卡的相应位置上.9.已知,则;.10.函数的定义域是.11.已知平面向量,,若与垂直,则实数.12.在中,角的对边分别为.若,则;的面积.13.在数列中,已知,,且数列是等比数列,则.14.已知函数的定义域是,关于函数给出下列命题:①对于任意,函数存在最小值;②对于任意,函数是上的减函数;③存在,使得对于任意的,都有成立;④存在,使得函数有两个零点.其中正确命题的序号是.三、解答题:本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤.请把答案填在答题卡的相应位置上.15.(本小题满分12分)在等差数列中,,.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.16.(本小题满分13分)已知函数.(Ⅰ)求的最小正周期和最大值;(Ⅱ)求的单调递增区间.17.(本小题满分12分)已知函数,.(I)当时,求曲线在点处的切线方程;(II)讨论的单调性.18.(本小题满分13分)已知是由所有满足下述条件的函数构成的集合:①方程有实数根;②函数的导函数为,且对定义域内任意的,都有.(Ⅰ)判断函数是否是集合中的元素,并说明理由;(Ⅱ)若函数是集合中的元素,求实数的取值范围.北京市朝阳区xx 学年第二学期期末考试高二数学文科答案 xx.7 一、选择题(满分40分)二、填空题(满分30分) (注:两空的填空,第一空3分,第二空2分) 三、解答题(满分50分)15.(本小题满分12分) 解:(1)设等差数列的首项为,公差为. 因为所以 ……………………………………………………………4分解得 ……………………………………………………………6分 所以通项公式为:.………………………………………8分(Ⅱ)因为, ……………………………………………………………9分 所以=. ……………………12分 16.(本小题满分13分)解:(Ⅰ) ………………………4分, …………………6分所以函数的最小正周期为. …………………7分 当,即时取得最大值为.…………9分(Ⅱ)令 ,得 .故函数的单调增区间为. ………………13分17. (本小题满分12分)解:(I )当时,,,曲线在点(1,)处的切线方程为:所以切线方程为:. ………………4分 (II )函数的定义域为. ………………5分………………7分 (i )若恒成立,则在上单调递减. ……9分 (ii )若,令,则.当变化时,与的变化情况如下表:所以在上单调递减,在上单调递增. ……………12分18.(本小题满分13分)(Ⅰ)解:因为,当时,不符合条件②,所以函数不是集合中的元素. ……………..4分(Ⅱ)因为是集合中的元素,所以对于任意均成立.即恒成立,即.令,依题意,是集合中的元素,必满足.当时,对任意恒成立,所以在上为增函数.又=.,所以方程有实根, 也符合条件① .当时,在时,与条件②矛盾.综上.…………. …………. …………. ………….……………..13分。
2019-2020年高二下学期期末联考文科数学试题含答案.doc
9.D
【解析】
试题分析:本题给出的函数可以描述为 中取较小的值。
可以先大致画出题目中的函数图象,
如图:图中的细线分别是 的图象,
粗线为 的图像。
从图象中可以判断D正确。
下边说明各个选项:A中1包含于值域之内,则在 至少有一个为1,并且是较小的那个。令 这与其取法矛盾,A错误。
A.向右平移 个单位B.向左平移 个单位
C.向右平移 个单位D.向左平移 个单位
第II卷(非选择题)
评卷人
得分
二、填空题
13.已知 是第二象限的角, ,则 .
14.化简计算: _.
15.数列 的首项为 ,前n项和为 ,若 成等差数列,则
16.若θ角的终边与 的终边相同,则在[0,2π]内终边与 角的终边相同的角是_____.
点评:中档题,在等差数列中,若 则 。本题较为典型。
6.B
【解析】 是两直线不平行;则两直线平行的条件是 ,解得 故选B
7.C
【解析】
试题分析:因为,奇函数 上为增函数,
所以当
时 ;
故选C。
考点:函数的奇偶性、单调性
点评:简单题,此类问题往往借助于函数图像分析。奇函数的图象关于原点成中心对称。
8.C
评卷人
得分
三、解答题
17.在 中,内角 、 、 的对边分别为 、 、 ,已知 、 、 成等比数列,且 .
(Ⅰ)求 的值;
(Ⅱ)设 ,求 、 的值.
18.(本小题满分13分)
已知椭圆C的对称轴为坐标轴,且短轴长为4,离心率为 。
(Ⅰ)求椭圆C的方程;
2019-2020年高二下学期数学文科期末考试题及答案
2019-2020年高二下学期数学文科期末考试题及答案一、 选择题(本大题共10小题,每小题5分,共50分,在每小题列出的四个选项中,选出符合题目要求的一项。
) 1.已知全集 集合,,下图中阴影部分所表示的集合为( ) A .B .C .D .2.设复数满足,其中为虚数单位,则=( )A .B .C .D .3.下面四个条件中,使成立的充分不必要条件是( ) A . B . C . D . 4.下列函数中,既是偶函数,又在区间上单调递减的函数是( ) A . B . C . D . 5.三点,,的线性回归方程为( ) 参考公式:线性回归方程为:,,,其中:311223313222221231()()()3()3()()ii i ii x x y y x y x y x y x ybx x x x x x ,.A .B .C .D .6.右图中的图像所对应的函数解析式为( ) A . B . C . D .7.已知函数)3(log )(22a ax x x f +-=在[ A . B . C . D .8.已知是定义在上的偶函数,且,若在上单调递减,则在上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数 9.设小于,则3个数:,,的值中( )A .至多有一个不小于B .至多有一个不大于C .至少有一个不小于D .至少有一个不大于10.已知函数⎪⎪⎨⎧>≤=)1(log )1(2)(1x x x x f x ,则函数的图象是( )(13题图)第Ⅱ卷(非选择题 共100分)二、 填空题(本大题共5小题,每小题5分,共25分。
) 11.命题“,”的否定是 . 12.已知在上是奇函数,且满足,当时,,则_____________. 13.按右图所示的程序框图运行后,输出的结果是63,则判断框中 的整数的值是 . 14.设函数,观察:21()(())34xf x f f x x ==+32()(())78xf x f f x x ==+43()(())1516xf x f f x x ==+ ……根据以上事实,由归纳推理可得: 当,且时, . 15.已知集合22{()()()()(),,}Mf x f x f y f x y f x y x y R ,有下列命题:①若则;②若,则;③若的图象关于原点对称; ④若,则对任意不等的实数、,总有;⑤若,则对任意的实数、,总有1212()()()22x x f x f x f .其中是正确的命题有 (写出所有正确命题的编号).三、 解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。
2019-2020年高二下学期期末考试 数学文 含答案
2019-2020年高二下学期期末考试 数学文 含答案一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则,则A .B .C .D .2.已知为虚数单位,复数z=,则复数的虚部是A .B .C .D .3. 如右图所示的程序框图的输出值,则输入值的取值范围为A .B .C .D .4.下列有关命题的说法中错误的是....A .若“”为假命题,则、均为假命题B .“”是“”的充分不必要条件C .“”的必要不充分条件是“”D .若命题:“实数,使”,则命题为“对于都有”5. 已知点是边长为1的等边的中心,则等于A .B .C .D .6. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为A .B .C .D .7. 等差数列的公差,且,则该数列的前项和取得最大值时,A .B .C .或D .或8.已知函数22cos sin sin 21cos 21)(22+--=x x x x x f ,则A. 在时取得最小值,其图像关于点对称B. 在时取得最小值,其图像关于点对称C.在单调递减,其图像关于直线对称D .在单调递增,其图像关于直线对称9.函数的图象是A .B .C .D .10.已知是同一球面上的四个点,其中是正三角形,平面则该球的表面积为A.B.C.D.11. 过双曲线的左焦点,作圆:的切线,切点为,延长交双曲线右支于点,若,则双曲线的离心率为A.B.C.D.12.已知函数的两个极值点分别为且记分别以为横、纵坐标的点表示的平面区域为,若函数的图象上存在区域D内的点,则实数a的取值范围为A.B.C.D.试卷Ⅱ(共90 分)二、填空题:本大题共4小题,每小题5分, 共20分.13.某市有A、B、C三所学校共有高二学生1500人,且A、B、C三所学校的高二学生人数成等差数列,在进行全市联考后,准备用分层抽样的方法从所有高二学生中抽取容量为120的样本进行成绩分析,则应从B校学生中抽取_____人.14.已知,,且,,成等比数列,则的最小值是_______.15.如图,是边长为的正方形,动点在以为直径的圆弧上,则的取值范围是 . 16.已知函数,给出如下四个命题:①在上是减函数;②的最大值是2;③函数有两个零点;④在上恒成立.其中正确的序号是.三、解答题:本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤.17. (本题满分12分)设的内角A、B、C所对的边长分别为、、,已知,(Ⅰ)求边长的值;(Ⅱ)若的面积,求的周长.18.(本小题满分12分)以下茎叶图记录了甲组3名同学寒假假期中去图书馆学习的次数和乙组4名同学寒假假期中去图书馆学习的次数. 乙组记录中有一个数据模糊,无法确认,在图中以表示. (Ⅰ)如果,求乙组同学去图书馆学习次数的平均数和方差;(Ⅱ)如果,从学习次数大于8的学生中选两名同学,求选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率.19. (本小题满分12分)如图所示,和是边长为2的正三角形,且平面平面,平面,.(Ⅰ)证明:;(Ⅱ)求三棱锥的体积.EDC A20.(本小题满分12分)如图,已知椭圆C :的左、右焦点分别为F 1、F 2,离心率为,点A 是椭圆上任一点,△AF 1F 2的周长为.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点任作一动直线l 交椭圆C 于M ,N 两点,记,若在线段MN 上取一点R ,使得,则当直线l 转动时,点R 在某一定直线上运动,求该定直线的方程.x 8 2 9 乙组 第18题图21.(本小题满分12分)已知函数,(其中实数,是自然对数的底数).(Ⅰ)当时,求函数在点处的切线方程;(Ⅱ)求在区间上的最小值;( Ⅲ) 若存在..,使方程成立,求实数的取值范围. 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,直线过圆心,交⊙于,直线交⊙于,(不与重合),直线与⊙相切于,交于,且与垂直,垂足为,连结.求证:(Ⅰ) ; (Ⅱ).23. (本小题满分10分) 选修4-4:坐标系与参数方程已知直线的参数方程为 (为参数),曲线的极坐标方程(Ⅰ)求曲线的普通方程;(Ⅱ)求直线被曲线截得的弦长.24.(本小题满分10分)选修4—5:不等式选讲设函数.(Ⅰ)解不等式;(Ⅱ)对于实数,若,求证.答案选择题1-16DBDCD DCDBC AB13.40 14. 15. 16.①③④17.解:(Ⅰ), ……………3分……………5分……………6分(Ⅱ) ……………8分由余弦定理可得:, ……………10分 ……………12分18. 解:(Ⅰ)当x =7时,由茎叶图可知,乙组同学去图书馆学习次数是:7,8,9,12,所 以平均数为 ……………3分 方差为.27])912()99()98()97[(4122222=-+-+-+-=s ……………6分(Ⅱ)记甲组3名同学为A 1,A 2,A 3,他们去图书馆学习次数依次为9,12,11;乙组4名同学为B 1,B 2,B 3,B 4,他们去图书馆学习次数依次为9,8,9,12;从学习次数大于8的学生中人选两名学生,所有可能的结果有15个,它们是:A 1A 2,A 1A 3,A 1B 1,A 1B 3,A 1B 4,A 2A 3,A 2B 1,A 2B 3,A 2B 4,A 3B 1,A 3B 3,A 3B 4,B 1 B 3,B 1B 4, B 3B 4. ……………9分 用C 表示:“选出的两名同学恰好在两个图书馆学习且学习的次数和大于20”这一事件,则C 中的结果有5个,它们是:A 1B 4,A 2B 4,A 2B 3,A 2B 1,A 3B 4, ……………11分 选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20概率为……………12分19.(Ⅰ)证明:取的中点为,连结AF,EF,BD∵△BCE 正三角形,∴EFBC, ……………1分 又平面ABC 平面BCE,且交线为BC,∴EF⊥平面ABC , ……………2分 又AD⊥平面ABC∴AD∥EF,∴共面, ……………3分又易知在正三角形ABC 中,AF⊥BC, ……………4分 ∴平面, ……………5分又平面 故; ……………6分(Ⅱ)由(Ⅰ)知EF//AD 所以有 ……………9分所以,所以 ……………11分即 ……………12分20.解(Ⅰ)∵△AF 1F 2的周长为,∴即. ……………………(1分)又解得………………(3分)∴椭圆C 的方程为………………………………(4分)(Ⅱ)由题意知,直线l 的斜率必存在,设其方程为由得则……………………………………(6分)由,得∴∴.……………………………………(8分)设点R的坐标为(),由,得∴解得112122121211224424().41()814xx xx x x x x x xxx x xxλλ++⋅-+++===+-++++………………(10分)而22121222264432824()24,141414k kx x x xk k k--++=⨯+⨯=-+++∴故点R在定直线上. ………………………………………………(12分)21.解:(Ⅰ)当时,…………1分故切线的斜率为…………2分所以切线方程为:,即…………3分(Ⅱ),令,得………… 4分①当时,在区间上,,为增函数,所以……………5分②当时,在区间上,为减函数在区间上,为增函数……………6分所以……………7分(Ⅲ) 由可得……………8分令,1单调递减极小值(最小值)单调递增…………… 10分,,……………11分实数的取值范围为 ……………12分22.解析 (Ⅰ)连结BC,∵AB 是直径,∴∠ACB=90°,∴∠ACB=∠AGC=90°. ∵GC 切⊙O 于C,∴∠GCA=∠ABC.∴∠BAC=∠CAG. ………………5分 (Ⅱ)连结CF,∵EC 切⊙O 于C, ∴∠ACE=∠AFC.又∠BAC=∠CAG,∴△ACF ∽△AEC.∴,∴AC 2=AE ·AF. ………………10分23.解析:(Ⅰ)由曲线,得,化成普通方程为.① ………………5分 (Ⅱ)方法一:吧直线参数方程化为标准参数方程为(为参数)②, 把②代人①得:,整理,得.设其两根为,则从而弦长为12t t -====.…………10分 方法二:把直线的参数方程化为普通方程为, 代人,得.设直线与曲线交于,,则,,AB ===10分 24.解:(Ⅰ)令,则作出函数的图象,它与直线的交点为和.所以的解集为. ………………5分(Ⅱ)因为 ()()()()2112112211221x y x y x y x y -+=---≤-+-+≤-+-+ ,所以 . ………………10分。
2019-2020年高二下学期期末数学试卷(文科)含解析
2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。
2019-2020年高二下学期期末考试数学含答案
2019-2020年高二下学期期末考试数学含答案一、填空题:本大题共14小题,每小题5分,共计70分。
1. 已知集合6,2,0,4,2,1B A ,则B A _________。
2. 如果复数mi i 11是实数,则实数m _________。
3. 已知2053cos x x ,则x 2sin 的值为_________。
4. 若以连续掷两次骰子分别得到的点数n m,作为点P 的横、纵坐标,则点P 在直线5y x 上的概率为_________。
5. 已知函数0,log 0,22xx x x x f ,则2f f 的值为_________。
6. 执行下边的程序框图,若4p ,则输出的S _________。
7. 直线b x y平分圆082822y x y x 的周长,则b __________。
8. 等比数列n a 的各项均为正数,31a ,前三项的和为21,则654a a a __________。
9. 已知实数y x,满足2211y x y x xy ,若y x z 3在y x,处取得最小值,则此时y x,__________。
10. 在R 上定义运算⊙:a ⊙b b a ab 2,则满足x ⊙02x 的实数x 的取值范围是__________。
11. 在△ABC 中,∠BAC=90°,AB=6,D 为斜边BC 的中点,则AD AB 的值为__________。
12. 已知函数2,0,6sin 2x x x f ,则该函数的值域为__________。
13. 把数列n 21的所有项按照从大到小,左大右小的原则写成如图所示的数表,第k 行有12k 个数,第k 行的第s 个数(从左数起)记为s k,,则20121可记为__________。
14. 如图放置的边长为1的正三角形PAB 沿x 轴滚动,设顶点y x P ,的纵坐标与横坐标的函数关系式是x f y ,x f y 在其两个相邻零点间的图象与x 轴所围区域的面积记为S ,则S=__________。
2019-2020年高二下学期期末联考数学(文)试题 含答案
2019-2020年高二下学期期末联考数学(文)试题 含答案一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合{|10},{|24}xM x x N x =+≥=<,则A .B .C .D .2、复数的虚部为A .2B .-2C .D .3、下列函数中,及时偶函数又在区间上单调递减的是A .B .C .D .、4、由直线与圆相切时,圆心与切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是A .类比推理B .演绎推理C .归纳推理D .传递推理5、极坐标方程所表示的曲线是A .一条直线B .一个圆C .一条抛物线D .一条双曲线6、函数的图象是7、已知结论:“在正三角形ABC 中,若D 是BC 的中点,G 是三角形ABC 的中心,则”,若把该记录推广到空间,则有结论:“在棱长都相等的四面体ABCD 中,若BCD 的中心为M ,四面体内部一点O 到四面体各个面的距离都相等”,则A .1B .2C .3D .48、已知:命题是当时,的充分必要条件,命题:2000:,20q x R x x ∃∈+->则下列命题正确的是A .命题是真命题B .命题是真命题C .命题是真命题D .命题是真命题9、若,且,则A .B .C .D .10、已知()1222,1log (1),1x x f x x x -⎧-≤=⎨-+>⎩,且,则A .B .6C .-10D .11、将的图象向右平移个单位后得到函数,则具有性质A .最大值为1,图象关于直线对称B .在上单调递增,为奇函数C .在上单调递增,为偶函数D .周期为,图象关于点对称12、是定义在非零实数集上的函数,为其导函数,且时,,记0.2220.222(log 5)(2)(0.2),,20.2log 5f f f a b c ===,则A .B .C .D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
2019—2020高二下学期期末文科数学试题与答案
2019-2020学年高二第二学期期末考试数学(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}32,41P <<=<<=x x Q x x ,则=Q P ( )A {}21≤<x xB {}32<<x xC {}43<≤x xD {}41<<x x 2. 已知R a ∈,若i a a )2(1-+-(i 为虚数单位)是实数,则=a ( ) A 1 B -1 C 2 D -2 3. 函数)32sin()(π+=x x f 的最小正周期为( )A π4B π2C π D2π4. 函数12)2()(2+-+=x m x x f 为偶函数,则m 的值是( ) A 1 B 2 C 3 D 45.下列函数中,在区间),(∞+0上单调递增的是( ) A 21x y = B x y -=2 C x y 21log = D xy 1=6.已知向量→a ,→b ,满足1=→a ,则1-=•→→b a ,则=-•→→→)2(b a a ( ) A 0 B 2 C 3 D 47. 圆2)1(22=++y x 的圆心到直线3+=x y 的距离为( ) A 1 B 2 C2 D 228. 某三棱柱的底面为正三角形,其三视图如图所示, 该三棱柱的表面积为( ) A 36+ B 326+ C 312+ D 3212+9. 已知135)sin(=-απ,则)2cos(απ+等于( ) A 135 B 1312 C 135- D 1312-10. 等比数列{}n a 中,已知26=a ,则9876543a a a a a a a =( ) A 52 B 62 C 72 D 82 11. 已知1,0,0=+>>b a b a ,则ba 11+的取值范围是( ) A ),2(+∞ B [)+∞,2 C ),4(+∞ D [)+∞,4 12. 设方程a x =-32的解的个数为m ,则m 不可能等于( ) A 1 B 2 C 3 D 4二、填空题:本题共 4 小题,每小题 5 分,共 20 分. 13. =- 15sin 45cos 15cos 45sin 14. 甲乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率是15. 若y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≤-≥+-0220201y x y x y x ,则y x z +=的最大值为16.已知2,1,,b a 的中位数为3,平均数为4,则=ab三、解答题、共70分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知数列{}n a 是公差为d 的等差数列,.9,331==a a (Ⅰ)求通项n a ;(Ⅱ)数列{}n b 满足n a b n 2=),3,2,1(⋅⋅⋅=n ,求数列{}n b 的前项和n S .18.(本小题满分12分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.已知13,5,22===c b a . (Ⅰ)求角C 的大小; (Ⅱ)求A sin 的值; (Ⅲ)求)42sin(π+A 的值.19. (本小题满分12分)如图,三棱锥ABC P -中,PA PC PC PB PB PA ⊥⊥⊥,,,2===PC PB PA ,E 是AC 的中点,点F 在线段PC 上. (Ⅰ)求证:AC PB ⊥;(Ⅱ)若//PA 平面BEF ,求四棱锥APFE B -的体积.( 参考公式:锥体的体积公式Sh V 31=,其中S 是底面积,h 是高 )20. (本小题满分12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对商场的(Ⅰ)服务满意的概率;(Ⅱ)能否有%95的把握认为男、女顾客对商场服务的评价有差异?附:))()()(()(22d b c a d c b a bc ad n K ++++-=,其中d c ba n +++=.21.(本小题满分12分) 已知函数.cos )(x x e x f x -=(Ⅰ)求曲线)(x f y =在点))0(,0(f 处的切线方程; (Ⅱ)求函数)(x f 在区间⎥⎦⎤⎢⎣⎡2,0π上的最大值和最小值.22.(选修4-4,本小题满分12分)在平面直角坐标系xOy 中,圆C 的方程为25)6(22=++y x .(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是)(sin cos 为参数t t y t x ⎩⎨⎧==αα,l 与C 交于B A ,两点,10=AB ,求l 的斜率.2019-2020学年高二第二学期期末考试数学(文科)参考答案一、选择题二、填空题 (每小题4分,共20分)13. 21 14. 65 15. 2316. 3617.(10分)(1)由已知可得等差数列{}n a 的公差3=d ,首项31=a , 所以n a n 3=……………………………………………………5分 (2)由(1)可得nn n a b 232⋅==,所以{}n b 是首项为6,公比为2的等比数列.所以62621)21(6-⋅=--=n n n S ………………………………10分 18. (12分)(1)在△ABC 中,由余弦定理及13,5,22===c b a 有,222cos 222=-+=ab c b a C 又因为),0(π∈C ,所以4π=C …………………………………………4分(2)在△ABC 中,由正弦定理及13,,22,4===c a C π,可得13132sin sin ==c C a A ……………………………………………8分 (3)由c a <及13132sin =A ,可得13133sin 1cos 2=-=A A , 故有1351cos 22cos ,1312cos sin 22sin 2=-===A A A A A ,所以, 26217221352213124sin2cos 4cos2sin )42sin(=⨯+⨯=+=+πππA A A……………………………………….12分19. (12分)ACPB PAC AC PB P PC PAPC PAC PA PC PB PB PA ⊥∴⊂⊥∴=⊂⊂⊥⊥,.PAC ,,,,)1(平面又平面平面平面 ……………………………………………4分.//,,,//2EF PA EF PAC BEF PAC PA BEF PA ∴=⊂平面平面平面平面)(.中点为的中点,为又PC F AC E ∴PAC FEC PAC APEF S S S S ∆∆∆=-=∴43四边形 22221,2,=⨯⨯=∴==⊥∆PAC S PC PA PA PC.23=∴APEF S 四边形由(1)得,PAC PB 平面⊥ 的高,是四棱锥APFE B PB -=∴2 12233131=⨯⨯=⋅=∴-PB S V APFE APFE B 四边形四棱锥 ………………………………………………………12分20.(12分)(1)由调查数据,男顾客中对该商场服务满意的比率为8.05040= 因此男顾客对该商场服务满意的概率的估计值为0.8 女顾客中对该商场服务满意的比率为6.05030= 因此女顾客对该商场服务满意的概率的估计值为0.6………………6分(2)762.430705050)10302040(10022≈⨯⨯⨯⨯-⨯=K 由于841.3762.4>,故有%95的把握认为男、女顾客对该商场服务的评价有差异………………………………………….12分21.(12分)(1)因为.cos )(x x e x f x-=, 所以.0)0(,1)sin (cos )(='--='f x x e x f x .又因为1)0(=f ,所以曲线)(x f y =在点))0(,0(f 处的切线方程为1=y ………………4分 (2)设1)sin (cos )(--=x x e x h x,则.sin 2)cos sin sin (cos )(x e x x x x e x h x x -=---='当)2,0(π∈x 时,0)(<'x h ,所以)(x h 在区间⎥⎦⎤⎢⎣⎡2,0π上单调递减. 所以对任意⎥⎦⎤⎝⎛∈2,0πx 有)0()(h x h <,即)(x f '<0 所以函数)(x f 在区间⎥⎦⎤⎢⎣⎡2,0π上单调递减. 因此)(x f 在区间⎥⎦⎤⎢⎣⎡2,0π上的最大值为1)0(=f ,最小值为2)2(ππ-=f . …………………………………………………………….12分22. (12分)(1)由θρθρsin ,cos ==y x 可得圆的极坐标方程为.011cos 122=++θρρ……………………………4分(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为)(R ∈=ραθ.设B A ,所对应的极径分别为21,ρρ,将l 的极坐标方程代入C 极坐标方程,得.011cos 122=++αρρ.于是11,cos 122121=-=+ρραρρ..44cos 1444)(22122121-=-+=-=αρρρρρρAB由10=AB ,得315tan ,83cos 2±==αα.所以l 的斜率为315或.315-…………………………12分 (其它解法同样给分)。
2019-2020年高二下学期期末考试数学(文)试题 含答案(V)
2019-2020年高二下学期期末考试数学(文)试题含答案(V)一、选择题(每小题5分)1.已知集合U-R,集合 A={} ,集合B={},B={3,4},则(C u A)∩B) =( )2.已知函数,则的值为()A.-1B.0C.1D.23.执行如图所示的程序框图,若输入n的值为4,则输出S的值是()A.1B.2C.4D.74.设是方程的解,则属于区间()A. (0,1)B. (1,2)C. (2,3)D. (3,4)5.下列四种说法正确的是()①函数的定义域是R,则“”是“函数为增函数”的充要条件②命题“”的否定是“”③命题“若x=2,则”的逆否命题是“若,则x=2”④p:在△ABC中,若cos2A=cos2B,则A=B;q:y-sinx在第一象限是增函数。
则为真命题A.①②③④B.①③C.①③④D.③6.把函数的图像向右平移个单位,再把得到的函数图象上各点的横坐标变为原来的,纵坐标不变,所得函数的解析式为()A. B.C. D.7.已知在实数集R上的可导函数,满足是奇函数,且,则不等式的解集是()A.(-∞,2)B.(2,+∞)C.(0,2)D.(-∞,1)8.已知函数1)<n<m (||||)(+--=o n x mx x f ,若关于x 的不等式的解集中的整数恰有3个,则实数m 的取值范围为()A.3<m <6B. 1<m <3C. 0<m <1D.-1<m <0二、填空题(每小题5分)9.若复数(为虚数单位),则||= . 10.已知1)tan(,2tan -=+=βαα,则 .11.如图,P 是⊙O 的直径AB 延长线上一点,PC 与⊙O 相切于点C 。
∠APC 的角平分线交AC 于点Q ,则∠AQP 的大小为 .12.定义在R 上的函数)()4(,0)()(x f x f x f x f =+=+- 满足 ,且 时,,则 。
13.不等式 对任意及任意恒成立,则实数a 取值范围是 。
2019-2020年高二下学期期末考试数学(文)试题 精校电子版含答案
2019-2020年高二下学期期末考试数学(文)试题精校电子版含答案数学(文史类)测试卷共4页。
满分150分。
考试时间120分钟。
注意事项:1. 答题前,考生务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2. 答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3. 答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4. 所有题目必须在答题卡上作答,在试题卷上答题无效。
5. 考试结束后,将试题卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.(1)函数在点处的切线的斜率为(A)(B)(C)(D)(2)已知函数,则(A)(B)(C)(D)(3)已知幂函数的图象经过点,则的值为(A)(B)(C)(D)(4)将函数的图象先向右平移个单位,再向下平移个单位得到函数的图象,则函数的解析式为(A)(B)(C)(D)(5)已知,“”是“”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(6)一个几何体的三视图如题(6)图所示, 则该几何体的侧面积为(A ) (B )(C ) (D )(7)对给出的下列命题:①;②;③;④若,则.其中是真命题的是 (A )①③ (B )②④ (C )②③(D )③④(8)若函数有小于零的极值点,则实数的取值范围是(A )(B )(C )(D )(9)在某县客车临时停靠站,每天均有上、中、下等级的客车各一辆开往城区.某天李先生准备从该站点前往城区办事,但他不知道客车的车况,也不知道发车的顺序,为了尽可能乘到上等车,他采取如下策略:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,那么李先生乘到上等车的概率为 (A ) (B ) (C )(D )(10)若使成立,则实数的取值范围是(A )(B )(C )(D ) 二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. (11)已知集合,,{(,)|,}U B x y x A y A =∈∈ð,则中元素的个数为 . (12)“函数在上是增函数”的一个充分不必要条件是 .(13)已知映射,其中,对应法则若对实数,在集合中不存在原象,则的取值范围是 . (14)已知函数,若且,则的最小值为 .(15)已知函数满足(2)(1)(3)(0)f f f f >>>,则实数的取值范围为 .三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.2 22 正视图 222侧视图俯视图题(6)图(16)(本小题满分13分)(Ⅰ)解关于的不等式;(Ⅱ)记(Ⅰ)中不等式的解集为,函数的定义域为,求.(17)(本小题满分13分) 已知定义在上函数为奇函数. (Ⅰ)求的值; (Ⅱ)求函数的值域.(18)(本小题满分13分)甲袋中装有个编号分别为的红球,乙袋中装有个编号分别为的白球,个球的大小形状完全相同.(Ⅰ)若从甲、乙两袋中各随机地摸出个球,写出所有可能结果,并求摸出的个球编号相同的概率;(Ⅱ)若把甲袋中的球全部倒入乙袋,再从乙袋中随机地摸出个球,求摸出的个球编号之和为奇数的概率.(19)(本小题满分12分)如题(19)图,正方体的棱长为. (Ⅰ)求证:平面; (Ⅱ)求四面体的体积.题(19)图1C(20)(本小题满分12分)设函数,其中.(Ⅰ)若在其定义域内是单调函数,求的取值范围;(Ⅱ)若在内存在极值,求的取值范围.(21)(本小题满分12分)已知,设椭圆的离心率为,双曲线的离心率为.(Ⅰ)求的范围;(Ⅱ)设椭圆与双曲线的公共点分别为、,、分别是椭圆和双曲线上不同于、的两个动点,且满足:,其中.记直线、、、的斜率分别为,若,求.高xx 级高二下期末考试参考答案(文科)一、选择题 BACCB DDBCC 二、填空题11. 12. (注:填的任一真子集即可) 13. 14. 15. 三、解答题16.(本小题满分13分) 解:(Ⅰ)由题………………6分(Ⅱ)由解得,即,所以.………13分 17.(本小题满分13分)解:(Ⅰ)由为上的奇函数,知,由此解得,故.(Ⅱ)设的值域为,则当且仅当关于的方程有根,当时,根为符合; 当时,,于是且; 综上,值域为.18.(本小题满分13分)解:记甲袋中的3个球为,乙袋中的3个球为(Ⅰ)所有可能结果为:433323423222413121B A B A B A B A B A B A B A B A B A ,,,,,,,,,共9种其中编号相同的有2种,所以所求概率为; …………6分(Ⅱ)所有可能结果除了上述的9种,还要加上434232323121B B B B B B A A A A A A ,,,,,,共15种其中编号之和为奇数的有9种,所以所求概率为.…………13分19.(本小题满分12分)解:(Ⅰ)由1111////BC B C AD B C ⇒⇒平行四边形,,又平面,平面,所以平面……6分 (Ⅱ)11333112143233A CB D V V a a a a a a -=-⨯⨯⨯⨯=-=正方体……………12分20.(本小题满分12分)解:(Ⅰ)x e a ax ax x f )()(132+++=' 在上单调,则当时,,符合;当时,即; ;(Ⅱ)要使在内存在极值,由(Ⅰ)知首先有或,另外还需要方程 0132=+++=a ax ax x g )(的根在内 对称轴 只需解得或 或.21.(本小题满分12分)解:(Ⅰ)易知12e e ===212223e a b e >⇒>=………………5分 (Ⅱ)易知公共点A 、B 坐标为、,令 则、 、(),AQ BQ AP BP λ+=+u u u r u u u r u u u r u u u r Q 得因为P 、Q 分别在椭圆、双曲线上2222111122222122222222221122221121111{{x y x y x a b a b a x y x y a ba b λλλ+=+=∴⇒⇒=--=-= 由于2212225.5y yk k x a x a+=∴+=+-, 即有,可化为11221225x y a x λ=-. 将带入.得=5. 又因为111134221112y y x yk k x a x a x a+=+=+-- ………………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. −2
六月份考试 高二 文科数学试卷
第1页
1
D.
3
共6页
A 7.已知 a = log0.2 2 , b = 0.22 , c = 30.2 ,则( )
A. a < b < c
B. a < c < b
C. c < a < b
D. b < c < a
8.已知 f (x +1) = x2 + 5x ,那么 f (x) = ( B )
2 15.已知幂函数 f (x) 的图象经过 ( 3, 3) ,则函数 f ( 2) = _____ 16.若函数 f (x) =x2 + 2(a −1)x + 2 的单调递减区间是 (−∞, 4] ,则实数 a 的值是 _-_3______.
三、解答题(本题共 6 小题,共 70 分)
17.已知 f ( x) 是定义在 R 上的奇函数,当 x > 0 时, f ( x=) x2 − 4x , (1)求 f ( x) 的解析式; (2)求不等式 f ( x) > x 的解集.
18.(1)求= 函数 f (x) log2x−1 3x − 2 的定义域。 (2)求函数 y = (1) x2 −4x , x ∈[0,5) 的值域。
3
六月份考试 高二 文科数学试卷
第3页
共6页
19.为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:
未发病
发病
总计
未注射疫苗
20
x
A
注射疫苗
月份
1
2
3
4
5
违章驾驶员人数 120
105
100
六月份考试 高二 文科数学试卷
4页
90
85
第
共6页
(Ⅰ)请利用所给数据求违章人数 y 与月份 x 之间的回归直线方程 =y bx + a ;
(Ⅱ)预测该路段 7 月份的不“礼让斑马线”违章驾驶员人数.
( ) n
n
∑ ∑ xi yi − nxy
( xi − x ) yi − y
2
A. (1 , 3) 2
B. (−2, 1 ) 2
C. (1 ,+ ∞) 2
D. (−∞,1 ) 2
11.函数 f= (x) ln x − ( 1 )x 的零点个数为(C) 2
A.0 个
B.1 个
C.2 个
D.3 个
12.设偶函数 f ( x)( x ∈ R) 的导函数是函数 f ′( x), f (2) = 0 ,当 x < 0 时, xf ′( x) − f ( x) > 0 ,则使得 f ( x) > 0 成立的 x 的取值范围是( B )
A. (−∞, −2) (0, 2)
B. (−∞, −2) (2, +∞)
C. (−2,0) (2, +∞)
D. (0, 2) (−2, 0)
六月份考试 高二 文科数学试卷
第
共6页
2页
二、填空题(本题共 4 小题,共 20 分)
1
13.计算: 3log32 + 273 + lg 200 − lg 2 = __7____. 14.某程序框图如图所示,若 a = 3 ,则该程序运行后,输出的 x 值为_3_1____.
六月份考试 高二 文科数学试卷
第5页
共6页 6页
六月份考试 高二 文科数学试卷
第
共6页
2019—2020 学年度下学期期末考试
高二 文科数学试卷
2020-06
考试时间:120 分钟
满 分:150 分
一、选择题(本题共 12 小题,共 60 分)
{ } { } 1.已知集合=A x x2 − x − 2 < 0 , B = x 1 < 2x < 8 ,则( D )
A. A B = (2,3) B. A ∩ B = (0,3) C. A ∪ B = (−∞,3)
P(K 2 ≥ k0 ) 0.05
0.01
0.005
0.001
k0
3.841
6.635
7.879
10.828
20.平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第 90 条规定:所有
主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让
行人,违反者将被处以100 元罚款,记 3 分的行政处罚.如表是本市一主干路段监控设备 所抓拍的 5 个月内,机动车驾驶员不“礼让斑马线”行为统计数据:
A. x2 + 3x + 4
B. x2 + 3x − 4
C. x2 + 3x
D. x2 + 5x
9.函数=y loga (−x) ( a > 0 且 a ≠ 1)与函数 y = ax ( a > 0 且 a ≠ 1)在同一直角坐标 系内的图象可能是( A )
A.
B.
C.
D.
( ) 10.函数=y log1 −x2 + x + 6 的递增区间为(A )
∑ ∑ ( ) 参= 考= 公式: b i= 1n= x2 − nx2 i 1 n xi − x 2
, a=
i=1 i
i =1
y − b x .
21.已知函数 f (x) = 1 x3 − bx2 + 2x + a , x = 2 是 f (x) 的一个极值点. 3
(1)求 f (x) 的单调递增区间;
5.已知偶函数 f ( x) 满足 f ( x + 3) =− f ( x) ,且 f (1) = −1,则 f (5) + f (13) 的值为( A )
A.-2
B.-1
C.0D.26.若函数f(x)=
3x
log 1
+
1 3x
(x+
,x≤0
2), x >
0
,则
f
(
f
(0))
=
(
c
)
2
A. 2
B.1
A.命题“若 x2 − x − 2 =0 ,则 x = −1 ”的逆否命题为“若 x ≠ −1 ,则 x2 − x − 2 ≠ 0 ”
B.“ x2 + x − 2 =0 ”是“ x = 1 ”成立的必要不充分条件
C.对于命题 p : ∃x0 ∈ R ,使得 x02 − x0 +1 < 0 ,则 ¬p : ∀x ∈ R ,均有 x2 − x +1 ≥ 0 D.若 p ∨ q 为真命题,则 ¬p 与 q 至少有一个为真命题
D. A ∪ B =(−1,3)
2.复数 z = 1+ i ,则|z |= ( C ) 1−i
A.1
B. 2
C. 2
D. 2 2
3.下列函数中,既是奇函数又在定义域上是增函数的为( D ).
A. y = 2x
B. y = −2x2
4.以下有关命题的说法错.误.的是( D )
C. y = 1 x
D. y = x
30
y
B
总计
50
50
100
2
现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为 .
5
(1)求 2 × 2 列联表中的数据 x , y , A , B 的值;
(2)能够有多大把握认为疫苗有效?
(参考公式 K 2 =
n(ad − bc)2
,n= a+b+c+d )
(a + c)(b + d )(a + b)(c + d )
(2)若当 x ∈[1, ?3] 时, f (x) − a2 > 2 恒成立,求实数 a 的取值范围. 3
( ) 22.已知函数 f (x)= 1 x3 − ax + b ,在点 M 1, f (1) 处的切线方程为 9x + 3y −10 = 0 , 3
求:
(1)实数 a, b 的值;
(2)函数 f ( x) 在区间[0,3] 上的最值.