压力容器设计中的应力分类
压力容器应力分析与安全设计
钢制压力容器 用材料许用应 力的取值方法
碳素钢或低合金钢>420℃,铬钼合金钢>450℃, 奥氏体不锈钢>550℃时,同时考虑基于高温蠕变极限
或持久强度
的许用应力
即
或
压力容器应力分析与安全设计
表9-2 钢制压力容器用材料许用应力的取值方法
材料
许用应力 取下列各值中的最小值/MPa
压力容器应力分析与安全设计
3. 对边缘应力的处理
若用塑性好的材料制造筒体,可减少容器发生破坏的危险 性。 正是由于边缘应力的局部性与自限性,设计中一般不 按局部应力来确定厚度,而是在结构上作局部处理。但对 于脆性材料,必须考虑边缘应力的影响。
压力容器应力分析与安全设计
第二节 压力容器的安全设计
压力容器设计是保障压力容器安全的首要环 节。压力容器设计从安全角度包括强度安全设计和 结构安全设计,两者都离不开正确选材,不同材料 的容器的承载能力与结构可靠程度是不同的。
碳素钢、低合金 钢、铁素体高合
金钢
奥氏体高合金钢
压力容器应力分析与安全设计
4、焊接接头系数——焊缝金属与母材强度的比值,反映容器 强度受削弱的程度。
焊缝缺陷
夹渣、未熔透、 裂纹、气孔等
焊缝热影响区晶粒粗大
薄弱环节
母材强度或塑性降低
影响因素
接头形式 无损检测要求及长度比例
压力容器应力分析与安全设计
焊缝系数的大小与材料的焊接性能、被焊母材的厚度、焊接 结构、坡 口型式、焊接方法、焊缝无损检测长度比例以及焊前 预热处理及焊后热处理等因素有关。目前我国《钢制压力容器》 中的焊缝系数主要依据焊缝结构、坡口型式、无损检测的要求等 确定。焊缝系数的选择见下表。
一次应力,二次应力,峰值应力
薄膜应力:沿截面均匀分布的应力成分,它等于沿所考虑截面厚度的 应力平均值。 一次总体薄膜应力:影响范围遍及整个结构的一次薄膜应力。 一次局部薄膜应力:影响范围仅限于结构局部区域的一次薄膜应力, 通常其应力水平大于一次总体薄膜应力。 一次弯曲应力:由内压力或其他机械荷载所引起的沿截面厚度线性分 布的应力。一次弯曲应力不能简单理解为由弯矩引起的应力,它实 际上是值 沿厚度线性变化的那一部分应力。 另外在分析设计中还提出了峰值应力的概念,其定义如下。 峰值应力:由局部结构不连续或局部热应力影响而引起的附加于一次 加二次应力的应力增量。它不是应力集中处最大应力的全值,而是 扣除一次应力与二次应力之后的增量部分。峰值应力的基本特征是 局部性与自限性。 在压力容器分析设计中采用的强度理论是最大剪应力理论。最大剪应 力理论的当量应力是第一主应力与第三主应力之差,在压力容器分 析设计中,将这一当量应力定义为应力强度。 压力容器分析设计中各类应力的校核条件为: 1) 一次总体薄膜应力强度 ≤ σ m 2) 一次局部薄膜应力强度 ≤1.5σm 3) 一次薄膜应力加一次弯曲应力强度 ≤1.5σm 4) 一次加二次应力强度 ≤ 3σ m
在压力管道应力分析中,一次应力和二次应力的概念与压力容器分析设计中的定 义基本相同,只是不再分为一次总体薄膜应力、一次局部薄膜应力和一次弯 曲应力,也没有峰值应力的概念。这主要是压力管道应力分析中采用了薄壁 压力管道应力分析中采用了薄壁 假设,各应力沿壁厚均匀分布以及不进行详细的局部应力分析的缘故。 假设,各应力沿壁厚均匀分布以及不进行详细的局部应力 压力管道应力分析的重点是整个管系的应力和柔性,管道系统采用梁模型进行模 拟,对于几何不连续处的应力集中,压力管道应力分析中采用应力增大系数 的方法进行处理。 总体来讲,工艺管道应力校核条件具有以下主要特点(以ASME B31.3为代表) 1、工艺管道一次应力的校核条件只校核管道纵向应力,不遵循最大剪应力理论 和其它强度理论。二次应力校核条件中采用了最大剪应力理论,但在计算当 量应力时只考虑弯矩和扭矩的作用不考虑管道轴向力的影响; 2、工艺管道应力分析中,不计算局部薄膜应力和弯曲应力,因此一次应力就是 一次总体薄膜应力。其一次应力的校核条件,相当于压力容器分析设计的一 次总体薄膜应力的校核条件; 3、工艺管道二次应力的校核条件来源于结构的安定性条件,其理论基础与压力 容器一次加二次应力的校核条件完全相同,满足结构安定性条件可以防止低 周疲劳; 4、压力管道应力分析中,为防止高周疲劳,在二次应力校核条件中引入了应力 范围减小系数f,当循环次数较高时,对允许应力变化范围进一步加以限制, 从而防止疲劳破坏的发生。
压力容器设计方法对比与应力分类
压力容器设计方法对比与应力分类压力容器是用于贮存或运输气体、液体或蒸汽的设备。
压力容器在化工、石油、航空航天等领域中广泛应用,因此其设计和制造至关重要。
在设计压力容器时,工程师需要考虑材料选择、设计方法和应力分类等许多因素。
本文将对不同的压力容器设计方法进行对比,并介绍常见的应力分类。
一、压力容器设计方法对比1. 牛顿法牛顿法是最简单、最常见的设计方法之一,用于计算压力容器的壁厚。
它基于材料的抗拉强度和设计压力来确定壁厚。
牛顿法适用于一些简单的压力容器设计,但对于复杂的容器来说,往往需要更加精确的方法。
2. ASME标准ASME(美国机械工程师学会)发布的压力容器设计规范是工程师设计压力容器时参考的标准之一。
ASME标准涵盖了压力容器的设计、制造、检验和安全要求,可以确保压力容器的安全性和可靠性。
ASME标准考虑了诸多因素,如材料强度、焊接、腐蚀等,适用于各种不同类型的压力容器。
3. 有限元分析有限元分析是一种先进的设计方法,通过建立复杂的数学模型来模拟压力容器在不同工况下的受力情况。
有限元分析可以更精确地计算应力分布,帮助工程师发现潜在的问题,并进行优化设计。
有限元分析需要借助计算机软件,并且对工程师的要求更高,但可以提供更加精确的设计方案。
4. 材料弹性理论材料弹性理论是一种基于材料力学性质进行压力容器设计的方法。
通过对材料的本构关系和应力应变关系进行分析,可以得到压力容器在不同载荷下的应力和变形情况。
材料弹性理论考虑了材料的非线性特性和弹塑性行为,适用于各种复杂工况下的压力容器设计。
二、应力分类在压力容器的设计和制造过程中,应力是一个非常重要的参数。
应力分类是将应力分为不同类型,并根据不同类型的应力进行分析和设计。
常见的应力分类主要有以下几种:1.轴向应力轴向应力是指垂直于截面的应力,是压力容器中常见的一种应力类型。
轴向应力的大小取决于容器的载荷和几何形状,对容器的稳定性和强度有重要影响。
关于压力容器分析设计中的应力分类方法
关于压力容器分析设计中的应力分类方法发布时间:2021-12-28T08:54:25.672Z 来源:《中国科技人才》2021年第22期作者:李玲俐贾雪梅侯玮[导读] 并运用实例对应力分类展开了计算,最后提出一些意见,希望给压力容器分析设计中的应力分类带来积极的作用。
巴克立伟(天津)液压设备有限公司天津西青300385摘要:按照压力容器分析设计的标准,可把二维以及三维实体弹性有限元的计算应力分为三类,即一次应力、二次应力与峰值应力,于是本文就着重对这三类应力的原理展开了研究,并运用实例对应力分类展开了计算,最后提出一些意见,希望给压力容器分析设计中的应力分类带来积极的作用。
关键词:压力容器;分析设计;应力分类1 引言压力容器分析方法中的应力分类法最早是由 ASME 机械工程师协会于上世纪 60 年代纳入ASME VIII-2 中的。
我国最早也是在 JB4732-1995 中正式颁布了压力容器分析设计标准。
随着计算机技术的发展,使用有限元分析软件来进行分析设计已经被广泛普及和应用。
应力分类法主要以板壳理论中的应力分析作为根据,通过以线弹性分析的方法解决弹塑性结构的失效问题。
因为压力容器分析设计引入了应力分类,所以当设计人员计算好应力之后,还需根据结果进行分类,分为一次应力、二次应力以及峰值应力,每种应力的失效机制以及极限值均不同。
虽然具有特殊载荷在局部区域的应力分类,不过此分类主要是壳体理论的,无法直接用于二维以及三维实体弹性有限元当中。
目前二维以及三维实体有限元的应力分类方法还没有标准的原则,为此后文将通过对比分析法对几种应力分类进行综合阐述。
2 应力分类方法2.1 弹性补偿法(ECM)弹性补偿法也被称为减少模量法(RMM),此方法的应用原理为:降低高应力单元弹性模量、增加低应力单元弹性模量。
此方法是最先用于管道系统的应力分类方法,后来应用在压力容器当中。
减少模量法(RMM)在弹性有限元计算应力当中主要就是把模拟的非弹性响应和带有一次、二次特征的理想模型展开比较,进而分成一次应力与二次应力。
压力容器设计中的应力分析与优化
压力容器设计中的应力分析与优化摘要:压力容器作为储存和运输压力物质的设备,在工业生产中扮演着重要角色。
由于其特殊性和复杂工作环境,容器壁面常受高压力和负荷作用,容易出现应力集中和应力腐蚀等问题,从而导致容器失效和严重事故的发生。
为确保压力容器的安全性和可靠性,应力分析与优化成为关键的设计环节。
本文探讨了压力容器设计中的应力分析方法,包括有限元法、解析法和试验方法,并提出了相应的优化策略,包括材料选择、结构设计、加强筋设计和压力分布均衡等方面。
强调了数值仿真与实验验证在优化策略中的重要性,通过综合运用这些方法,可以有效提高压力容器的性能和可靠性,确保其在各种复杂工况下安全运行。
关键字:压力容器,应力分析,优化策略,有限元法,解析法一、引言随着工业技术的不断发展和应用的不断扩大,压力容器作为一种重要的储存和运输压力物质的设备,在各行各业都扮演着不可或缺的角色。
由于压力容器的特殊性和工作环境的复杂性,容器壁面常常受到高压力和负荷的作用,导致应力集中和应力腐蚀等问题。
这些问题会导致容器的失效,从而引发严重的事故,对人员和环境安全造成严重威胁。
二、应力分析方法在压力容器设计中,应力分析是评估容器壁面应力分布和变形情况的关键步骤。
准确的应力分析可以揭示潜在的应力集中区域,为后续优化设计提供依据。
在应力分析中,常见的方法包括有限元法、解析法和试验方法。
2.1 有限元法:有限元法是目前最为广泛应用的应力分析方法。
它将复杂的容器结构离散为有限个简单单元,通过数值模拟的方式求解得出容器的应力分布。
有限元法能够考虑材料的非线性特性、几何的非线性变形以及复杂的边界条件,适用于各种复杂结构的压力容器。
在有限元分析中,需要建立容器的几何模型,将其划分为有限元网格。
根据材料特性、加载条件和边界条件,设定模拟参数。
通过迭代计算,求解得到容器内部应力和变形的数值结果。
有限元法具有高精度和较好的灵活性,可以在设计过程中快速验证多种设计方案的性能,是压力容器设计中不可或缺的分析手段。
应力分类
和
SV
(1) 一次总体薄膜应力强度 SⅠ (2) 一次局部薄膜应力强度 SⅡ (3) 一次薄膜(总体或局部)加一次弯曲应(PL+Pb) 强度 SⅢ (4) 一次加二次应力( PL+Pb +Q)强度 SⅣ (5) 峰值应力强度 SⅤ(由PL+Pb +Q+F算得)
应力强度限制 :
(1)一次总体薄膜应力强度S1
求得筒体与封头主体Sm=153.7MPa;裙座结构Sm1= 115.5MPa。
校核线0-0:
校核线0-0通过筒体最大应力处,方向沿壁厚方向,远 离结构不连续处。
圆筒壳体薄膜应力理论解: Pm=PR/S =146.7MPa 与有限元结果相对误差为2.7% 球壳薄膜应力理论解: Pm=PR/2S =122.1MPa 与有限元结果相对误差为0.2%
——相邻部件的约束或结构的自身约束所引起 的正应力或切应力 基本特征:自限性
① 总体结构不连续处的弯曲应力 ② 总体热应力
(三)峰值应力 F
——由局部结构不连续和局部热应力的影响而叠 加到一次加二次应力之上的应力增量
应力强度计算 :
应力强度: 该点最大主应力与最小主应力之差 五类基本的应力强度:
S I , S II , S III , S IV
JB4732中提到:符号Pm 、 PL、Pb 、 Q和F不是只表示一个 量,而是表示σx 、 σy 、 σz 、 τxy 、 τyz 、 τzx一组共六个应 力分量。叠加是指每种分量各自分别叠加。
路径1-1应力分类结果:
路径 1-1 MEMBRANE 73.80 PL=SⅡ TOTAL 151.0 PL+Pb +Q+F=SⅤ
压力容器应力分类及其在边界效应中的应用
相连 的零 件变形不可 能完全一致 ( 称为变
一
椭 圆封头 在半径 方 向变形 很 小。 于是 , 制 ,结果 筒身在 连接 处 附近地 区将产 生
于边缘 力0 .边 缘力矩 M 作用 的结 果 。 o ̄ f o
形 ,但 是 由于弹 性变 形过 大 ,也会 使其 力测量 技术 的不 断完 善 ,特 别是 电子计
身 伤 亡 ; 核 电 站 用 反 应 堆 压 力 容 器 如 发 生 事 故 ,就 会 使 放 射 性 物 质 外 逸 ,造成 更为严 重 的后果 。因此 ,
防止 压力容 器发 生事 故始 终是压 力 图1尿 素合成塔装置
9 PP0 0 4 PM 1 6 20
石油石化物资采购
压 力 容 器 的 理 论 和 实 验 应 力 分 析 技 件 对 压 力 容 器 的 设 计 、 制 造 、 检 验 和 使 的 连 接 等 。 容 器 整 体 承 压 时 , 在 这 些 连
术进行 了更加 广泛 深入 的研 究 。应 Байду номын сангаас 等 各 个 方 面 提 出 具 体 和 必 须 遵 守 的 规 接 部 位 会 导 致 变 形 不 协 调 。 由此 而 产 生
力是根据 各种 应力 对 导致设 备失效 定。 压 力 容 器 边 缘 问题 ( 称 边 缘 效 应 , 或 的 附 加 应 力 , 有 时 是 很 大 的 , 必 须 在 设 备 结 构 设 计 时 , 尽 量 减 少 两 个 元 件 连 接
类 方法 是分 为一次应 力 、二 次应力
这一局 部地 区将产 生较 大 的弯 曲应力 ,
这种 应 力 要 比薄 膜 应 力 大 得 多 。
以进 一步 弄清 各类 应力对 容器 强度 的影
6.5压力容器的应力分析设计-II 对各类应力强度的限制
6.5化工容器的应力分析设计-Ⅱ各类应力强度的限制
13
第二节 化工容器的应力分析设计
三、分析设计法对各类应力强度的限制
(三) 安定性准则
(3)
1=2y 这是安定与不安定的界限。第一次加载
卸载的应力应变回线为OABC,这是不出现反向屈服 的最大回线,以后的加载卸载的应力应变循环均沿一 条最长的BC线变化,不再出现新的塑性变形,表现出 最大的弹性行为,即达到安定状态。与此对应的虚拟 应力1正好为2y,因此1≤2y 即为出现安定的条件。
3
第二节 化工容器的应力分析设计
三、分析设计法对各类应力强度的限制
(一)应力强度及基本许用应力强度 2.基本许用应力强度Sm
6.5化工容器的应力分析设计-Ⅱ各 类应力强度的限制
4
第二节 化工容器的应力分析设计
三、分析设计法对各类应力强度的限制
(一)应力强度及基本许用应力强度 3.应力强度的限制条件
10
第二节 化工容器的应力分析设计
三、分析设计法对各类应力强度的限制 (三) 安定性准则
含二次应力(Q)的组合应力强度若仍采用由极限载荷准则导出的1.5Sm来
限制则显得很保守。这是由于二次应力具有自限性, 只要首先满足对一次应力强度的限制条件(Pm≤Sm及PL+Pb≤1.5Sm),则二 次应力的高低对结构承载能力并无很显著的影响。 在初始几次加载卸载循环中产生少量塑性变形,在以后的加载卸载循环 中即可呈现弹性行为,即结构呈安定状态。 但若载荷过大,在多次循环加载时可能导致结构失去安定。丧失安定后 的结构并不立即破坏,而是在反复加载卸载中引起塑性交变变形,材料 遭致塑性损伤而引起塑性疲劳。 此时结构在循环应力作用下会产生逐次递增的非弹性变形,称为“棘轮 现象”(Ratcheting)。
《压力容器应力分析》课件
未来的发展趋势与展望
智能化和自动化技术的应用
随着人工智能、大数据和云计算等技术的发展,压力容器应力分析将 更加智能化和自动化,能够提高分析的精度和效率。
多物理场耦合分析的深入研究
未来将进一步加强对多物理场耦合效应的研究,以更准确地预测压力 容器的复杂行为。
实验法能够提供实际工况下的应力数据,但实验条件难 以完全模拟实际运行环境,成本较高。
有限元法适用于复杂形状和边界条件的压力容器分析, 计算精度较高,应用广泛。
根据实际需求和条件选择合适的分析方法,综合运用多 种方法进行压力容器应力分析是发展趋势。
03
压力容器应力分析的步骤
确定分析目的
确定压力容器应力分析的目的,是为 了评估容器的强度、刚度和稳定性, 还是为了优化设计或解决特定问题。
案例三:某压力容器优化设计
案例概述
某压力容器在设计阶段,需要进行优化设计 以提高其性能和安全性。
结果展示
通过图表和数据,展示优化后的压力容器在 性能和安全性方面的提升情况。
分析方法
采用优化设计方法,对压力容器的结构、材 料和工艺进行多目标优化。
结论
根据分析结果,评估优化设计的可行性和效 果,并提出相应的改进建议。
案例一:某压力容器应力分析
案例概述
某压力容器在正常工作条件下,需要进行全 面的应力分析以确保其安全运行。
分析方法
采用有限元分析方法,对压力容器的各个部 件进行详细的应力分布计算。
结果展示
通过图表和数据,展示压力容器在正常工作 条件下各部件的应力分布情况。
结论
根据分析结果,评估压力容器的安全性能, 并提出相应的优化建议。
压力容器设计方法比较和应力分类准则
以美国的 ASME 锅炉压力容器规范第 VIII 卷第二册的诞生为标志,压力容器的设计方 法发生了一次革命,从传统的按规则设计的方法过渡到以详细的应力分析与评定的设计基准 的更高阶段。分析设计从设计思想上来说,就是放弃了传统的“弹性失效”准则,而采用以 极限载荷、安定载荷和疲劳寿命为界限的“塑性失效”与“弹塑性失效”准则,允许结构出 现可控的局部塑性变形区,允许对峰值应力部位作有限寿命设计,采用这个准则,可以较好 地解决前述的矛盾,合理地放松了对计算应力过严限制,适当的提高了许用应力值,但又保 证了结构的安全性。由于分析设计采用了塑性失效准则,因而安全系数相对降低,许用应力 相对提高。而常规设计的安全系数相对较大,其原因主要就是为了弥补前项的某些不足之处。
常规设计内容一般是以材料力学及板壳薄膜理论的简化公式为基础,加上一些经验系数 组成的,未对容器某些区域的实际应力进行严格而详细的计算,而是通过加大相应安全系数 来保证压力容器的安全工作。对于高温情况,要把热应力控制在传统标准允许的水平之下有 时是做不到的。在高温、高压的容器中热应力与内压应力之和已超过传统的允许值,无论加 厚或减薄壁厚均不能满足传统标准要求,因为两者对壁厚大小的要求是相反的,对于一些弹 性元件(如膨胀节)对壁厚要求也属于这类问题(强度与柔度的矛盾)。若按常规设计的原 则与方法,就无法得到十分合理的设计,在实际运行中的设备中出现的疲劳裂纹是反复加载 条件下结构的一种破坏形式,静载荷设计和产品水压试验都不能对此作出合理的评定和预 测。因此,人们在生产实践中发现,常规设计在某些场合暴露出一些细节上的问题。尽管如 此,实际生产证明常规设计还是合理且安全的。
计算方法
平衡机械载荷 整体(总体) 无自限性 静力强度失效
一次加载
压力容器中的薄膜应力弯曲应力和二次应力
1.24 2
“-”:圆板上表面旳应力 “+”:圆板下表面旳应力
38
最大弯曲应力出目前板旳 四面:
M max
( r,M
)rR
0.75
pR2
2
“-”:圆板上表面旳应 力
“+”:圆板下表面旳应
力
39
二 弯曲应力与薄膜应力旳比较和结论
M max
K
pD2
2
M max
2K
D
pD
2
2K
D
结论:直径较小旳容器
边沿离开,焊后热处理等。
2.利用自限性——确保材料塑性 ——能够使边界应力不会过大,防止产生裂 纹。
50
低温容器,以及承受疲劳载荷旳压力容器,更要注 意边沿旳处理。
对大多数塑性很好旳材料,如低碳钢、奥氏体不锈 钢、铜、铝等制作旳压力容器,一般不对边沿作特 殊考虑。
51
3.边界应力旳危害性 边界应力旳危害性低于薄膜应力。
环向薄膜应力:
pDi
2
15
2 经向薄膜应力m
N/
介质内压力p作用于封头内表面所产生旳轴向
合力 N为/ :
N / Di2 p
4
16
作用在筒壁环形横截面上旳内力 T /为:
T / D m
其中:中径 D Di 根据力旳平衡条件 N / T / 可得:
Di 2 4
p
D
m
经向薄膜应力:
(1)小位移假设。壳体受压变形, 各点位移都不大于壁厚。简化计算。
(2)直法线假设。沿厚度各点法向 位移均相同,即厚度不变。
(3)不挤压假设。沿壁厚各层纤维 互不挤压。
8
二 回转壳体中旳拉伸应力及其应力特点
第七章压力容器中的薄膜应力、弯曲应力与二次应力
第七章压力容器中的薄膜应力、弯曲应力与二次应力章小结本章介绍了容器承压时器壁内存在的三种性质不同的应力,即一次薄膜应力,一次弯曲应力和边界应力。
这三种应力在容器的强度计算中将不同程度的涉及。
其中一次薄膜应力是最基本的,在下一章中容器强度计算的讨论基本上是以薄膜应力为基础展开的,所以在三种应力中,薄膜应力是必须掌握的重点。
一次弯曲应力虽然也是十分重要的,但是在压力容器中以弯曲为主的受压元件较少,所以从强度计算的数量来说远少于薄膜应力。
二次应力由于它的产生原因不同于一次应力,而且又是考虑容器强度问题时不能回避的应力,所以对于二次应力的产生原因、性质特点、限制条件我们都作了定性的分析讨论。
通过这种讨论应该了解在什么情况下以及为什么可以不考虑二次应力而在另外一些情况下又为什么必须考虑二次应力。
有了这个基础,才能够理解下一章将要讨论的压力容器强度计算与结构设计中对一些问题的处理。
7.1 回转壳体中的薄膜应力1.容器是化工生产所用各种设备外部壳体的总称。
2.容器一般是由筒体、封头、法兰、支座、接管及人孔等元件构成。
筒体和封头是容器的主体。
3.压力容器壳体除平板形封头外都是回转壳体。
4.以任何直线或平面曲线为母线,绕其同平面曲线为母线,绕其同平面内的轴线旋转一周后形成的曲面,称为回转曲面。
5.过球形壳体上任何一点和球心,不论从任何方向将球形壳体截开两半,都不可以利用受力平衡条件求得截面上的薄膜应力为σ=pD/4δ。
6.与圆筒形壳体相比,球形壳体上的薄膜应力只有圆筒形壳体上最大薄膜应力值得一半。
7.圆锥形壳体中间面的母线虽然也是直线,但它不是平行于回转轴,而是与回转轴相交,其交角称为圆锥形壳体的半锥角。
正是由于这个缘故,圆锥形壳体中面上沿其母线上各点的回转半径不相等。
因此,圆锥形壳体上的薄膜应力从大端到小端是不一样的。
7.2边界区内二次应力1.筒体与封头在连接处所出现的这种自由变形的不一致,必然导致在这个局部的边界地区产生相互约束的附加内力,即边界应力。
第二章 压力容器应力分析2.1-2.2
2.2 回转薄壳应力分析
2.2 回转薄壳应力分析
2.2.1 薄壁圆筒的应力 2.2.2 回转薄壳的无力矩理论 2.2.3 无力矩理论的基本方程 2.2.4 无力矩理论的应用 2.2.5 回转薄壳的不连续分析
过程设备设计
40
2.2 回转薄壳应力分析
2.2.3 无力矩理论的基本方程
过程设备设计
求解思路
制造安装 正常操作
开停工 压力试验
检修 等等
正常操作工况 特殊载荷工况 意外载荷工况
根据不同载荷工况,分别计算载荷
21
2.1 载荷分析
过程设备设计
1、正常操作工况
载荷
设计压力 液体静压力 重力载荷 风载荷 地震载荷 其他载荷
隔热材料、衬里、内件、物 料、平台、梯子、管系、支 承在容器上的其他设备重量 等
绝对压力
以绝对真空为 基准测得的压 力。 通常用于过程 工艺计算。
表压
以大气压为基准 测得的压力。 压力容器机械设 计中,一般采用 表压。
8
2.1 载荷分析
压力容器中的压力来源
过程设备设计
1
流体经泵或压 缩机,通过与 容器相连接的 管道,输入容 器内而产生压 力,如氨合成 塔、尿素储罐 等。
2
3
加热盛装液体 的密闭容器, 液体膨胀或汽 化后使容器内 压力升高,如 人造水晶釜。
30
2.2 回转薄壳应力分析
过程设备设计
B点受力分析
B点
内压P
轴向:经向应力或轴向应力σφ 圆周的切线方向:周向应力或环向应力σθ 壁厚方向:径向应力σr
σθ 、σφ >>σr 三向应力状态
二向应力状态
31
2.2 回转薄壳应力分析
第七章压力容器中的薄膜应力、弯曲应力和二次应力
第七章_压力容器中的薄膜应力、弯曲应力和二次应力第七章压力容器中的薄膜应力、弯曲应力和二次应力在压力容器设计中,薄膜应力、弯曲应力和二次应力是三种主要的应力类型,对容器的结构和稳定性有着至关重要的影响。
了解和掌握这三种应力的性质和计算方法,对于设计者来说是至关重要的。
一、薄膜应力薄膜应力是一种主要的应力类型,通常发生在压力容器表面。
它是由容器内外的压力差引起的。
在压力容器设计中,薄膜应力是必须考虑的重要因素之一。
它可以通过薄膜应力强度因子进行计算,这个强度因子通常由经验公式和实验数据确定。
对于圆形平盖和球形封头,薄膜应力的计算公式可以分别简化为对圆板和球壳的薄膜应力计算公式。
对于其他更复杂的形状,如椭圆或锥形,则需要使用更复杂的公式进行计算。
二、弯曲应力弯曲应力通常发生在压力容器的部分区域,例如在容器壁的局部区域或连接处。
这种应力是由于容器内外的压力差和容器结构的自重引起的。
弯曲应力的计算通常需要考虑多种因素,如材料的弹性模量、泊松比、压力以及容器的几何形状和尺寸等。
在压力容器设计中,弯曲应力可以通过有限元分析等方法进行计算和评估。
这种方法可以更准确地模拟容器的实际结构和载荷条件,从而得到更精确的弯曲应力结果。
三、二次应力二次应力是由于局部区域的薄膜应力和弯曲应力的组合而产生的。
它通常发生在压力容器的某些特定区域,如连接处或容器壁的局部区域。
二次应力的计算需要考虑多种因素,如材料的弹性模量、泊松比、压力以及容器的几何形状和尺寸等。
在压力容器设计中,二次应力的计算通常需要通过有限元分析等方法进行。
这种方法可以更准确地模拟容器的实际结构和载荷条件,从而得到更精确的二次应力结果。
同时,二次应力的分布和大小也需要通过实验进行验证和校核。
四、设计建议在压力容器设计中,为了降低薄膜应力、弯曲应力和二次应力对容器结构的影响,以下一些建议可以作为参考:1.优化容器的几何形状和尺寸:通过改变容器的几何形状和尺寸,可以降低应力集中程度,从而降低薄膜应力、弯曲应力和二次应力的大小。
压力容器的应力分析
按应用情况
反应压力容器(R)完成物理、化学反应,如反应器、反应釜、分解锅、聚合釜、变换炉等; 换热压力容器(E)热量交换,如热交换器、管壳式余热锅炉、冷却器、冷凝器、蒸发器等; 分离压力容器(S)流体压力平衡缓冲和气体净化分离,如分离器、过滤器、缓冲器、吸收塔、干燥塔等; 储存压力容器:(C,球罐为B)储存、盛装气体、液体、液化气体等介质,如各种形式的贮罐、贮槽、高位槽、计量槽、槽车等。
图片
压力容器的结构图
零部件的二个基本参数:公称直径DN
对于用钢板卷制的容器筒体而言,其公称直径的数值等于筒体内径。 当容器筒体直径较小时,可直接采用无缝钢管制作时,这时容器的公称直径等于钢管的外径。 管子的公称直径(通径)既不是管子的内径也不是管子的外径,而是一个略小于外径的数值。 见P181 表14-1压力容器的公称直径DN
球形壳体
球壳R1=R2=D/2,得: 直径与内压相同,球壳内应力仅是圆筒形壳体环向应力的一半,即球形壳体的厚度仅需圆筒容器厚度的一半。 当容器容积相同时,球表面积最小,故大型贮罐制成球形较为经济。
圆锥形壳体
圆锥形壳半锥角为a,A点处半径为r,厚度为d,则在A点处:
圆锥形壳体
锥形壳体环向应力是经向应力两倍,随半锥角a的增大而增大;a角要选择合适,不宜太大。 在锥形壳体大端r=R时,应力最大,在锥顶处,应力为零。因此,一般在锥顶开孔。
工程上常用的应力分析方法:
有力矩理沦:不仅承受拉应力,还承受弯矩和弯曲应力; 无力矩理沦:只承受拉压应力,不能承受力矩的作用 无力矩理沦有近似性和局限性,其误差在工程计算允许的范围内,计算方法大大简化,该方法常被采用。 应用条件:
圆筒的应力计算
作用力: 由内压作用在端盖上产生轴向拉应力 ,称为经向应力或轴向应力; 由内压作用使圆筒向外均匀膨胀,在圆周切线方向所产生的拉力称为环形应力或周向应力,用表示 常为薄壁容器,筒壁较薄, 可认为 是均匀分布的,径向应力 可忽略不计
压力容器应力分析
r——平行圆半径; R1(经线在B点的曲率半径)——第一曲率半径; R2(与经线在B点处的切线相垂直的平面截交回转曲面得一平面曲线,该
平面曲线在B点的曲率半径)——第二曲率半径,R2=r/sinφ 考虑 壁厚,含纬线的正交圆锥面能截出真实壁厚,含 平行圆的横截面不能截出真实壁厚。
t
gx
, 则
(0 gx)R
t
注:容器上方是封闭的
23
p0
t
R
σφ
σφ
径向朝外的p0相互抵消,产生σθ而与σφ无关,朝下的p0由筒底承担, 筒底将力又传给支座和基础,朝上的p0与σφ相平衡:
2πRtσφ=πR2p0
则
p0R 2t
若容器上方是开口的,或无气体压力(p0=0)时,σφ=0
cos
将R1、R2代入混合方程得:σθ=2σφ
代入区域方程得:
pr , 2t cos
则
pr
t cos
可见:① 平行圆半径 r 越小,应力σφ、σθ也越小,锥顶处应力
为零
② 倾角α越小,应力σφ、σθ也越小,α=0时,与圆筒应
力相同,α=90°时,与平板应力相同
18
压力容器应力分析
14
图2-6中:mom′——由纬经锥面mdm′截取的部分壳体,称 为区域壳体。
rm——纬线mm′的平行圆半径 σφ——意义同前 α——σφ方向线与回转轴oo′的夹角,α=90°-φ,
sinφ=r/R2 nn——由两个正交锥面切割得到的、经向宽度为
dl的环带
r 、dr ——nn 环带的平行圆半径及其增量
11
在图b中:因壳体沿经线的曲率常有变化,故Nφ随φ变化,因 abcd是微元体,故Nφ随φ的变化量很小,可忽略, 则σφ+dσφ≈σφ;Nφ+dNφ≈Nφ
压力容器分析设计的应力分类法与塑性分析法
压力容器分析设计的应力分类法与塑性分析法压力容器在石油化工行业的应用非常广泛,通过分析压力容器分析设计的应力分类法与塑性分析法的发展,可以实现压力容器应用前景的扩大,并为其良好运行提供参考意见。
进一步推动压力容器在石油化工行业的应用,有效提高压力容器的经济效益。
标签:压力容器;应力分类法;塑性分析法近年来很多研究学者对压力容器的工作原理、性能等方面进行研究,并取得了显著效果。
以往的压力容器在设计过程中,都是采用薄膜应力的方式进行设计,将其他应力影响包括在安全系数之中。
但是在实际应用过程中,压力容器及承压部件中,除去介质压力所形成的薄膜应力之外,还会受到热胀冷缩变形而导致的温差应力以及局部应力,因此,在进行压力分析设计时,需要利用应力分类法和塑性分析法,才能够明确不同应力对压力容器安全性的影响,从而有效提高压力容器的科学性和合理性。
1应力分类法1.1一次应力一次应力是指压力容器因为受到外载荷的影响,压力容器部件出现剪应力。
一次应力超过材料屈服极限时压力容器就会发生变形破坏。
主要可以分为以下几种情况:第一,总体薄膜应力。
因压力容器受到内压的影响在壳体上出现薄膜应力,总体薄膜应力会在整个壳体上均匀分布,当应力超过材料屈服极限时,壳体壁厚的材料会发生变形。
第二,局部薄膜应力。
是指压力容器的局部范围内,应受到机械载荷或者压力所导致的薄膜应力,其中主要包括支座应力以及力距所形成的薄膜应力。
第三,一次弯曲应力。
由于压力容器受到内压作用的影响,在平板盖中央位置会出现弯曲引力,随着载荷的不断增加,应力会进行重新调整。
1.2二次应力二次应力是指压力容器部件受到约束而出现的剪应力。
二次应力满足变形条件。
例如,在压力容器的半球形封头以及薄壁圆筒的连接位置,由于受到压力容器内压的作用,两者会出现不同的径向位移,因此两者的连接部位会形成相互约束关系,出现变形协调情况。
在这种情况下,连接部位会附加剪力应力,从而形成二次应力。
第七章 压力容器中的薄膜应力、弯曲应力、二次应力n
b a=2b a
σm
b a=2b
σθ a
pa
pa 2
7.1 回转壳体的薄膜应力
7.1 回转壳体的薄膜应力
中间面:居内、外表面之间,且与内外表面等距离的面 回转壳体:以回转曲面为中间面的壳体 纵截面:用过壳体上的某点和回转轴截开壳体得到的截 面称作壳体的纵截面。显然回转壳体上所有的纵截面都是 一样的。
纵截面
中间面
7.1 回转壳体的薄膜应力
锥截面:用过壳体上的某点并与回转壳体内表面正交的 倒锥面截开壳体得到的截面称作壳体的锥截面。
7.1 回转壳体的薄膜应力
第二类压力容器:
具有下列情况之一的,为第二类压力容器:
a.中压容器; b.低压容器(仅限毒性程度为极毒和高度危害介质);
c.低压反应容器和低压储存容器(仅限易燃介质或毒 性程度为中度危害介质);
d.低压管壳式余热锅炉;
e.低压搪玻璃压力容器。
第一类压力容器:
除上述规定以外的低压容器为第一类压力容器。
铜及其合金—深冷容器。
铸铁—不承压塔节等。 b. 非金属:玻璃钢、化工搪瓷、化工陶 瓷等,多作衬里
7.1 回转壳体的薄膜应力
3. 容器的几何特点
容器的主体是由回转曲面形成的。 回转曲面:以任何直线或平面曲线为母线,绕其同平面 内的轴线(回转轴)旋转一周形成的曲面。 母线:绕轴线(回转轴)回转形成回转曲面的平面曲线 或直线。
σθ
Di
D0
p l
作用于任一曲面上介质压力所产生的合力等于介质压 力与该曲面沿合力方向所得投影面积的乘积,与曲面形 状无关。
7.1 回转壳体的薄膜应力
2)合力T
环向薄膜应力的合力 T 2 l (δ:壁厚) σθ
压力容器设计方法对比与应力分类
压力容器设计方法对比与应力分类压力容器是工业生产中不可少的组成部分。
在设计压力容器时,需要考虑到很多因素,如材料选择、壁厚计算、强度校核等。
在本文中,我们将对比常见的压力容器设计方法,并介绍压力容器的应力分类。
常见的压力容器设计方法有以下几种:1. ASME Boiler and Pressure Vessel CodeASME是美国机械工程师学会的缩写,ASME Boiler and Pressure Vessel Code是针对设计、制造和检验压力容器的标准。
这个标准对于压力容器的安全性和可靠性有着很高的要求,因此常被用于设计和制造要求高的压力容器。
2. EN13445EN13445是欧洲压力容器标准,类似于ASME标准,但设计和制造要求略有不同。
EN13445标准要求对材料、制造、检验和标记等方面做出详细的规定。
3. API 620API 620标准是针对大型液态贮罐的设计和制造的。
这个标准要求对安全性、可靠性和完整性做出了详细的规定,并需遵循材料选择、制造、安装和测试等方面的准则。
虽然这三种标准有着相同的目的和原则,但其设计和制造的要求有所不同。
在选择标准时,需要根据具体的设计要求和使用条件进行选择。
压力容器的应力分类主要有以下三种:1. 内压应力在容器内灌入高压气体或液体时,容器壁会受到内压的作用,从而产生内压应力。
内压应力是通过容器壁的弹性变形来分散压力的。
2. 外部应力外部应力是指容器表面受到的外力作用,如风力、重力等。
外部应力会对容器壁产生弯曲和撕裂等形变。
当容器表面温度发生变化时,容器壁会产生热膨胀或收缩。
如果热膨胀或收缩过大,就会对容器壁产生热应力。
热应力可能导致容器开裂或失去原有的强度。
因此,在设计压力容器时,需要充分考虑这些应力,并采取相应的措施来确保容器的安全性和可靠性。
总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.破坏应力循环次数: 为高周疲劳。
使用期内循环次数超过 就应进行疲劳计算。
另:1奥氏体不锈钢波纹管破坏循环次数范围N= ,或许用循环次数范围【N】=50—5000次,GB16749-1997选用N=450000,【N】=3000次。
2.碳素钢和低合金钢制膨胀节不考虑低周疲劳的问题。
产生原因
平衡压力或机械载荷
满足中面的变形协调(自平衡)
满足表面的变形协调
分部范围
整体
相邻元件连接部位(温差应力除外)
细部尖角处(更局部)
特征
无自限性
自限性
自限性
破坏型式
静力强度失效
失去安定(失去安定后的大应变疲劳破坏)
疲劳破坏
与破坏相联系的加载方式
一次加载
多次加载
频繁加载
计算方法
壳:薄膜理论
板:薄板理论(0.01<δ/D<0.2)
应力分类:(所有应力产生原因1.平衡机械载荷。2.满足变形协调)
应力类别
内容
一次应力P
二次应力Q(自限应力)
峰值应力F
定义
由平衡压力与其他机械载荷所必须的内力或内力矩产生的法向应力或剪应力
外部载荷下,相邻构件间约束或构件自身约束引起,需满足中面变形连续条件的应力,包括法向应力和切应力
由局部结构不连续和局部热应力引起叠加到一次+二次应力上的应力增加量(比一次+二次应力高出的部分)
3.一次弯曲应力Pb。
与一次应力的区别:二次应力不会在一次加载的情况下发生破坏。
疲劳设计概念:频繁开停车或经受较大温生;裂纹的扩展;断裂。
峰值应力的强度是以应力峰值(一次+二次+峰值应力)来计算的。
为一次二次应力两个计算元件漏计的应力。
不连续分析
三维弹性分析(有限元)
控制应力
总体:1【σ】
局部:1.5【σ】(锥封小端等)
弯曲:1.5【σ】
3【σ】
按加载次数确定许用应力
备注
1.一次总体薄膜应力Pm
2.一次局部薄膜应力PL:指局部应力区薄膜应力的总量,即在局部应力区Pm为PL的组成部分(局部应力区:沿经线方向延伸距离不大于 ,应力强度超过1.1Sm的区域。例如壳体与固定支座或接管连接处由外载荷引起的薄膜应力,)