振弦式传感器的工作原理及其特点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振弦式传感器的工作原理及其特点
1. 概述
振弦式传感器是目前国内外普遍重视和广泛应用的一种非电量电测的传感器。由于振弦传感器直接输出振弦的自振频率信号,因此,具有抗干扰能力强、受电参数影响小、零点飘移小、受温度影响小、性能稳定可靠、耐震动、寿命长等特点。与工程、科研中普遍应用的电阻应变计相比,有着突出的优越性:
(1)振弦传感器有着独特的机械结构形式并以振弦频率的变化量来表征受力的大小,因此具有长期零点稳定的性能,这是电阻应变计所无法比拟的。在长期、静态测试传感器的选择中,振弦传感器已成为取代电阻应变计、而广泛应用于工程、科研的长期原观的测试手段。(2)随着电子、微机技术的发展,从实现测试微机化、智能化的先进测试要求来看,由于振弦传感器能直接以频率信号输出,因此,较电阻应变计模拟量输出能更为简单方便地进行数据采集、传输、处理和存储,实现高精度的自动测试。
为此,振弦传感器得到了迅速的发展和应用。在国外,德国的MAlHAK、法国的TELEMAL、美国的SINCO和FOXBORO、英国的SCHLUBERGER及挪威等多家公司,都有振弦传感器的系列产品。国内从60年代起,先后研制开发了适合各种测试目的的多种振弦传感器的系列产品,如振弦式压力计、土压力计、空隙水压力计、应变计、测力(应力)计、钢筋计、扭力计、位移计、反力计、吊重负荷计、倾斜计等等。它们广泛应用于港口工程、土木建筑、道路桥梁、矿山冶金、机械船舶、水库大坝、地基基础等测试,已成为工程、科研中一种不可缺少的测试手段,显示出了其广阔应用和发展的前景。
2. 工作原理
振弦式传感器由受力弹性形变外壳(或膜片)、钢弦、紧固夹头、激振和接收线圈等组成。钢弦自振频率与张紧力的大小有关,在振弦几何尺寸确定之后,振弦振动频率的变化量,即可表征受力的大小。
现以双线圈连续等幅振动的激振方式,来表述振弦式传感器的工作原理。如图l所示,工作时开启电源,线圈带电激励钢弦振动,钢弦振动后在磁场中切割磁力线,所产生的感应电势由接收线圈送入放大器放大输出,同时将输出信号的一部分反馈到激励线圈,保持钢弦的振动,这样不断地反馈循环,加上电路的稳幅措施,使钢弦达到电路所保持的等幅、连续的振动,然后输出的与钢弦张力有关的频率信号。
振弦这种等幅连续振动的工作状态,符合柔软无阻尼微振动的条件,振弦的振动频率可由下式确定;
式中,f 0 ——初始频率;
L——钢弦的有效长度i
p一-钢弦材料密度;
σ o ——钢弦上的初始应力。
由于钢弦的质量m、长度L、截面积S、弹性模量E可视为常数,因此,钢弦的应力与输出频率f 0 建立了相应的关系。当外力F未施加时,则钢弦按初始应力作稳幅振动,输出初频f 0 ;当施加外力(即被测力——应力或压力)时,则形变壳体(或膜片)发生相应的拉伸或压缩,使钢弦的应力增加或减少,这时初频也随之增加或减少。因此,只要测得振弦频率值f,即可得到相应被测的力——应力或压力值等。
3. 振弦的激振方式
振弦式传感器的振弦是钢弦,通过激振产生振动。振弦激振的方式分为间歇触发激振和等幅连续激振。
3.1 问歇触发激振
目前,单线圈形式的振弦传感器,均采用间歇触发的激振方式。如图2所示,由张驰振荡器产生激振脉冲,当脉冲信号发出,则吸动继电器,通过常开触头,将触发电压加于振弦传感器的激振线圈上,产生电磁力,吸动钢弦;当脉冲终止时,继电器释放,松开钢弦,从而产生自由振动并切割磁力线,在激振线圈中产生感应电势,通过继电器常闭触头输入测试仪器,测得钢弦的振动频率。
3.2 等幅连续激振
采用这种激振方式的振弦传感器具有激励和接收两组带磁钢的电磁线圈,与放大电路、反馈和稳幅电路组成等幅的振荡器。在开启电源时激励钢弦,钢弦切割磁力线而在接收线圈中产生感应电势,将其输出放大,并反馈到激励线圈补足能量,不断循环。在稳幅电路限制的反馈量下,达到等幅连续振荡的激振方式,萁振动频率即为钢弦的自振频率。
两种技术的构成不同,带来一些性能上的差异。一般而言,“拨振”-单线圈方式由于在传感器内的电子部件降低到最低限度,传感器的可靠性及耐恶劣环境性都更好一些;同时,由于只采用一个线圈,传感器的体积可以做得很小(而自动谐振式传感器需要更长的钢弦以便容纳两个线圈);此外,由于单线圈振弦仪器只需两芯电缆,总体费用也更便宜。而“自动谐振”-双线圈方式的优点是可通过高速计数技术或把频率转换成电压方式在一定范围可进行动态应变测量(通常动态信号输人频率限制在大约1OOHz内,这主要取决于传感器的谐振频率)。自动谐振”技术的另一优点是可以使用通用的频率计和数据记录仪即可读取其它制造商的自动谐振传感器的数据。
4. 振弦式传感器的特性
4.1 非线性
由(1)式可知,振弦式传感器的特性曲线是非线性的,测试的量值需用查对率定曲线的办法进行判定,是相当麻烦的。因此,必须进行线性回归,作线性化处理。在选择了较佳的传感器工作频段时,从实测数据对比,其线性误差可小于2‰,能较为简便地适应自动测试分析,也能保证较高的测试精度。
4.2 灵敏度
由(1)式可知,灵敏度与弦长L成反比,将(1)式平方,取对数再求导数,
上式表示相应于单位应力增量引起基频的改变量,称为振弦的灵敏度。由上式可见,要提高灵敏度最有效的办法是缩短弦长,同时在保证振弦能稳定起振的情况下,钢弦应力尽可能小些。此外,采用细弦,减小抗弯刚度,也可以提高灵敏度。但振弦应满足柔软无阻尼振动运动微分方程,故钢弦不能过短,弦长与直径之比应大于200,—般在300-400之间为宜。
4.3 温度影响
由于传感器零件的金属材料膨胀系数的不同,造成了温度误差。为减小这一误差,在零件材料选择上,除尽量考虑达到传感器机械结构自身的热平衡外,并从结构设计和装配技术上不断调整零件的几何尺寸和相对固定位置,以取得最佳的温度补偿结果。实践结果表明,传感器在-10 -55℃使用温度范围内时,温度附加误差仅有1.5Hz/lO℃。