《电磁场与电磁波》2009期末考试试卷三及答案详解
电磁场与电磁波期末考试复习试题4套(部分含答案)
电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。
2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。
3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。
4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。
5.已知球坐标系中单位矢量 。
6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。
7.点电荷q 在自由空间任一点r 处电场强度为 。
8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。
9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
10.已知任意一个矢量场A ,则其旋度的散度为 。
11.真空中静电场的基本方程的微分形式为 、 、 。
12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。
13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。
14.任意一个标量场u ,则其梯度的旋度为 。
15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。
16.介质中静电场的基本方程的积分式为 , , 。
17.介质中恒定磁场的基本方程的微分形式为 、 、 。
18.介质中恒定磁场的基本方程的积分式为 , , 。
19.静电场中两种介质分界面的边界条件是 , 。
20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。
21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。
22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。
《电磁场与电磁波》期末复习题及答案
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁场与电磁波期末试题2009A答案
北京工业大学电控学院2008――2009学年第 2 学期《电磁场与电磁波》 课程试题答案一、(12分)研究矢量场的散度和旋度的意义何在? 已知位置矢量为:x y z r e x e y e z =++,求:(1) r ∇•;(2)r ∇⨯;(3)(),k r k ∇•是常矢量。
解:根据亥姆霍兹定理,一个矢量场所具有的性质可以由它的散度和旋度来确定。
所以只要知道了一个矢量场的散度和旋度,就可以完全确定了这个矢量。
()11130(,,)()x y z x y z xy z x y z x y z r e e e e x e y e z xy z e e e r x y z xyzk ae be ce a b c k r e e e kx y z ⎛⎫∂∂∂∇•=++•++=++= ⎪∂∂∂⎝⎭∂∂∂∇⨯==∂∂∂=++⎛⎫∂∂∂∇•=∇•++• ⎪∂∂∂⎝⎭(1)(2)(3)令为常数(ax+by+cz )=(ax+by+cz )=二.(15分)(1)写出麦克斯韦方程组的微分形式;(2)导出稳态场(场量不随时间变化)的电场和磁场的场方程。
(3) 在无源的理想介质空间中,J=0,ρ=0,导出电场和磁场的波动方程。
(提示:E E E2)(∇-•∇∇=⨯∇⨯∇)解:(1)0D H J tBE tB D ρ∂∇⨯=+∂∂∇⨯=-∂∇•=∇•=(2)00 00(3) (a) (b)0 (c)D H J E E D H JB B EH t HE tH ρρεμ⎧∇•=∇⨯=⎨∇⨯=∇⨯=⎩⇒∇•=⎧∇⨯=⎨∇•=∇•=⎩∂∇⨯=∂∂∇⨯=-∂∇•=∇•由于是稳态场,其磁场和电场不随时间变化所以麦氏方程变为无源场的麦氏方程为()()2222222220 (d)b ()()0E E H tE E EE E HtEE H tE E t t EE t HH t μμεμεμεμε=∂∇⨯∇⨯=-∇⨯∂∇⨯∇⨯=∇∇•-∇∂∴∇∇•-∇=-∇⨯∂∂∇•=∇⨯=∂⎛⎫∂∂∴-∇=- ⎪∂∂⎝⎭∂∇-=∂∂∇-=∂∴对()两边取旋度有又,又,电场的波动方程为同理可导出磁场的波动方程电场222222221010=EE v t H H v t ∂∇-=∂∂∇-=∂和磁场的波动方程为其中v三、(15分)(1).写出至少三种求解静电场问题的方法,简要说明其各自特点。
(完整版)电磁场与电磁波试题及答案.
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
2009-2010华师电磁场与电磁波试题及答案
物理与电信工程学院2009 /2010学年(2)学期期末考试试卷《电磁场与电磁波》 试卷(A 卷)专业 年级 班级 姓名 学号题号 一 二 三 总分 得分一、 单项选择题 (每小题2分,共20分)1 两个矢量的矢量积(叉乘)满足以下运算规律( ) A 交换律; B 分配率;C 结合率;D 以上均不满足。
2 以下关于边界条件的描述,正确的是( )A 电场强度切向分量连续;B 电位移矢量切向分量连续;C 电场强度法向分量连续;D 电位移矢量法向分量连续。
3 对于像电荷,下列说法正确的是( )A 像电荷是虚拟电荷,必须置于所求区域之内;B 像电荷是虚拟电荷,必须置于所求区域之外;C 像电荷是真实电荷,必须置于所求区域之内;D 像电荷是真实电荷,必须置于所求区域之外。
4 磁场的散度恒等于零,即0B ∇⋅=,这说明( )A 磁场线有头有尾;B 磁荷是存在的;C 存在磁单极;D 通过任一闭合曲面的磁通量恒等于零。
5时变电磁场的特点是( )A 时变电磁场各自独立;B 时变电磁场是一个不可分离的整体;C 时变电磁场不随时间变化;D 时变电磁场是保守场。
6 下列关于媒质的说法正确的是( )A 均匀、线性、各向异性的无耗媒质一定是色散媒质;B 均匀、线性、各向异性的无耗媒质不一定是色散媒质;C 有损耗导电媒质一定是非色散媒质;D 有损耗导电媒质一定是色散媒质。
7 一平面电磁波从一理想介质斜入射到一理想导体的表面,则在理想介质中传播的是( )A 纯驻波;B 在法线方向上合成波的场量是驻波;C 在法线方向上合成波的场量是行波;D 是均匀平面波。
8 对于处于静电平衡状态的导体,下列说法不正确的是( ) A 导体为等位体; B 导体内部电场为0;C 导体表面切向电场为0;D 导体内部可能存在感应电荷。
9 自由空间中所传输的均匀平面波,是( )A TE 波;B TM 波;C TEM 波;D 以上都不是。
10 电偶极子所辐射的电磁波,在远区场其等相位面为( ) A 球面; B 平面;C 柱面;D 不规则曲面。
电磁场与电磁波试题3及答案
《电磁场与电磁波》试题3一、填空题(每小题 1 分,共 10 分)1.静电场中,在给定的边界条件下,拉普拉斯方程或方程的解是唯一的,这一定理称为唯一性定理。
2.在自由空间中电磁波的传播速度为m/s 。
3.磁感应强度沿任一曲面S 的积分称为穿过曲面S 的。
4.麦克斯韦方程是经典理论的核心。
5.在无源区域中,变化的电场产生磁场,变化的磁场产生,使电磁场以波的形式传播出去,即电磁波。
6.在导电媒质中,电磁波的传播速度随频率变化的现象称为。
7.电磁场在两种不同媒质分界面上满足的方程称为。
8.两个相互靠近、又相互绝缘的任意形状的可以构成电容器。
9.电介质中的束缚电荷在外加电场作用下,完全脱离分子的部束缚力时,我们把这种现象称为。
10.所谓分离变量法,就是将一个函数表示成几个单变量函数乘积的方法。
二、简述题(每小题 5分,共 20 分)11.已知麦克斯韦第一方程为t D J H ∂∂+=⨯∇,试说明其物理意义,并写出方程的积分形式。
12.试简述什么是均匀平面波。
13.试简述静电场的性质,并写出静电场的两个基本方程。
14.试写出泊松方程的表达式,并说明其意义。
三、计算题(每小题10 分,共30分)15.用球坐标表示的场225ˆr eE r = ,求 (1) 在直角坐标中点(-3,4,5)处的E;(2) 在直角坐标中点(-3,4,5)处的x E 分量16.矢量函数z y x e x e y ex A ˆˆˆ2++-=,试求(1)A ⋅∇(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A穿过此正方形的通量。
17.已知某二维标量场22),(y x y x u +=,求(1)标量函数的梯度;(2)求出通过点()0,1处梯度的大小。
四、应用体(每小题 10分,共30分)18.在无源的自由空间中,电场强度复矢量的表达式为jkz x e E e E -=03ˆ(1) 试写出其时间表达式; (2) 判断其属于什么极化。
(完整word版)电磁场与电磁波波试卷3套含答案
《电磁场与电磁波》试卷1一. 填空题(每空2分,共40分)1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 .另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 .2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。
3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。
4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件.第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。
第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。
在每种边界条件下,方程的解是 唯一的 。
5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ⋅-=,12()s n H H J ⨯-=.6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。
二.简述和计算题(60分)1.简述均匀导波系统上传播的电磁波的模式。
(10分)答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波.(2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。
因为它只有纵向电场分量,又成为电波或E 波.(3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。
因为它只有纵向磁场分量,又成为磁波或M 波。
电磁场与电磁波期末考试题库
电磁场与电磁波期末考试题库一、选择题1.静电场是指:– A. 电荷在电场中不断运动的状态– B. 电荷在电场中静止的状态– C. 电场中没有电荷存在的状态– D. 电场中电势为零的状态2.电场强度的定义式是:– A. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r^2}$– B. $E = \\varepsilon_0\\frac{q}{r^2}$– C. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r}$– D. $E = \\varepsilon_0\\frac{q}{r}$3.电场线的特点是:– A. 线的密度表示电场强度的大小– B. 线的颜色表示电场强度的大小– C. 线的方向表示电场强度的方向– D. 线上的点表示电场强度的大小4.关于电场线的说法正确的是:– A. 电场线一定是直线– B. 电场线一定是曲线– C. 电场线既可以是直线也可以是曲线– D. 电场线没有特定的形状5.电场中的带电粒子受到的力是由以下哪些因素决定的?– A. 粒子的电荷大小– B. 粒子所处位置的电场强度– C. 粒子的质量– D. 粒子的电荷大小和所处位置的电场强度二、填空题1.电场强度的单位是\\\\。
2.静电势能的单位是\\\\。
3.感应电场的方向与引起它的磁场的变化方式\\\\。
4.麦克斯韦方程组包括\\\_\_个方程。
三、计算题1.一根长为10cm的直导线通有1A的电流,求导线周围某点的磁场强度。
2.一个带电粒子在电场中受到的力为5N,电荷大小为2C,求电场强度的大小。
3.两个带电粒子相距1m,电荷分别为1C和-2C,求它们之间的电势能。
四、问答题1.什么是电磁场?2.什么是电磁波?3.静电场和感应电场有什么区别?4.麦克斯韦方程组描述了什么?五、实验题设计一个实验,验证库仑定律。
以上是《电磁场与电磁波期末考试题库》的题目内容,包括选择题、填空题、计算题、问答题和实验题。
《电磁场与电磁波》期末复习题及答案
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁波与电磁场期末复习题(试题+答案)
电磁波与电磁场期末复习题(试题+答案)电磁波与电磁场期末试题一、填空题(20分)1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。
2.在理想导体与介质分界面上,法线矢量n r由理想导体2指向介质1,则磁场满足的边界条件:01=?B n ρρ,s J H n =?1ρρ。
3.在静电场中,导体表面的电荷密度σ与导体外的电位函数?满足的关系式n ??=?εσ-。
4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ?-?=σ。
5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。
6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。
7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。
8.表征时变场中电磁能量的守恒关系是坡印廷定理。
9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为谐振腔。
10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E = 24r Qπε;无限长线电荷(电荷线密度为λ)E =r2。
11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合,而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。
在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。
12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。
二、判断题(每空2分,共10分)1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
(×)2.一个点电荷Q 放在球形高斯面中心处。
如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。
(×)3.在线性磁介质中,由IL ψ=的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。
电磁场与电磁波试题与答案
电磁场与电磁波试题与答案一、选择题(每题10分,共40分)1. 以下哪个选项是描述电磁场波动性的基本方程?A. 高斯定律B. 法拉第电磁感应定律C. 麦克斯韦方程组D. 洛伦兹力定律2. 下列哪个物理量表示电磁波的传播速度?A. 介电常数B. 磁导率C. 电磁波频率D. 波长3. 在电磁波传播过程中,以下哪个说法是正确的?A. 电磁波的电场和磁场相互垂直B. 电磁波的传播方向与电场和磁场方向相同C. 电磁波的传播速度与频率成正比D. 电磁波不能在真空中传播4. 在电磁波传播过程中,以下哪个因素会影响电磁波的衰减?A. 传播距离B. 电磁波频率C. 介质类型D. 所有以上选项二、填空题(每题20分,共60分)5. 电磁波在真空中的传播速度为______。
6. 电磁波的频率与波长之间的关系为______。
7. 麦克斯韦方程组由______个方程组成。
8. 在电磁波传播过程中,电场强度和磁场强度之间的关系为______。
答案:一、选择题1. C. 麦克斯韦方程组2. D. 波长3. A. 电磁波的电场和磁场相互垂直4. D. 所有以上选项二、填空题5. 3×10^8 m/s6. c = λf(其中c为光速,λ为波长,f为频率)7. 4个方程8. E = cB(其中E为电场强度,B为磁场强度,c为光速)以下为电磁场与电磁波试题解析:一、选择题1. 麦克斯韦方程组是描述电磁场波动性的基本方程,包括高斯定律、法拉第电磁感应定律等。
故选C。
2. 电磁波的传播速度v = c/√(εμ),其中c为光速,ε为介电常数,μ为磁导率。
波长λ = v/f,其中f为频率。
故选D。
3. 电磁波的电场和磁场相互垂直,且传播方向与电场和磁场方向垂直。
故选A。
4. 电磁波传播过程中,传播距离、电磁波频率和介质类型都会影响电磁波的衰减。
故选D。
二、填空题5. 电磁波在真空中的传播速度为3×10^8 m/s。
6. 电磁波的频率f与波长λ之间的关系为c = λf,其中c 为光速。
电磁场与电磁波试题及答案
电磁场与电磁波试题及答案一、选择题1. 下列哪种场称为保守场?A. 电场B. 磁场C. 安培场D. 非保守场答案:A2. 在真空中,电磁波的传播速度是多少?A. 3×10^5 km/sB. 3×10^8 m/sC. 3×10^5 m/sD. 3×10^8 km/s答案:B3. 下列哪种物理量描述了电磁波的能量?A. 电场强度B. 磁场强度C. 频率D. 波长答案:C4. 在电磁波传播过程中,哪个方向的电磁场强度与传播方向垂直?A. 横向电磁波B. 纵向电磁波C. 任意方向的电磁波D. 无法确定答案:A5. 电磁波的哪个特性决定了它的传播速度?A. 电场强度B. 磁场强度C. 频率D. 波长答案:C二、填空题1. 电磁波是由____和____交替变化而产生的。
答案:电场;磁场2. 电磁波在真空中的传播速度等于____。
答案:光速3. 电磁波的传播方向垂直于____平面。
答案:电场;磁场4. 电磁波的能量与____成正比。
答案:频率5. 电磁波的波长、频率和____之间存在固定关系。
答案:传播速度三、简答题1. 请简要说明电磁波产生的原理。
答案:电磁波是由电场和磁场交替变化而产生的。
变化的电场产生磁场,变化的磁场产生电场,二者相互作用,形成电磁波。
2. 请简要说明电磁波在真空中的传播特点。
答案:电磁波在真空中以恒定速度传播,速度等于光速,与电磁波的频率、波长无关。
传播方向垂直于电场和磁场平面。
3. 请简要说明电磁波的能量传递过程。
答案:电磁波的能量通过电场和磁场的相互作用传递。
电场能量转化为磁场能量,磁场能量再转化为电场能量,从而实现能量的传递。
四、计算题1. 已知电磁波在真空中的频率为f=10^9 Hz,求该电磁波的波长。
答案:λ=c/f=3×10^8 m/s / 10^9 Hz = 0.3 m2. 一束电磁波在空气中的传播速度为3×10^8 m/s,频率为f=10^9 Hz,求该电磁波在空气中的波长。
《电磁场与电磁波》2009期末考试试卷三及答案详解
长沙理工大学考试试卷………………………………………………………………………………………………………课程名称(含档次) 《电磁场与电磁波A 》课程代号 002587专业 电信、光电 层次(本部、城南) 本部 考试方式(开、闭卷) 闭卷一、选择题(6小题,共18分)(3分)[1]一半径为a 的圆柱形铁棒在均匀外磁场中磁化后,棒内的磁化强度为0z M e ,则铁棒表面的磁化电流密度为A 、0m z J M e =B 、0m J M e ϕ=C 、0m J M e ϕ=-(3分)[2]恒定电流场中,不同导电媒质交界面上自由电荷面密度0σ=的条件是A 、1122γεγε=B 、1122γεγε>C 、1122γεγε< (3分)[3]已知电磁波的电场强度为(,)cos()sin()x y E z t e t z e t z ωβωβ=---,则该电磁波为A 、左旋圆极化波B 、右旋圆极化波C 、线椭圆极化波(3分)[4]比较位移电流与传导电流,下列陈述中,不正确的是:A. 位移电流与传导电流一样,也是电荷的定向运动B. 位移电流与传导电流一样,也能产生涡旋磁场C. 位移电流与传导电不同,它不产生焦耳热损耗(3分)[5]xOz 平面为两种媒质的分界面,已知分界面处z y x e e e H 26101++=, z y e e H 242+=,则分界面上有电流线密度为:A 、10S z J e =B 、104S x z J e e =+C 、10S z J e =(3分)[6]若介质1为完纯介质,其介电常数102εε=,磁导率10μμ=,电导率10γ=;介质2为空气。
平面电磁波由介质1向分界平面上斜入射,入射波电场强度与入射面平行,若入射角/4θπ=,则介质2 ( 空气) 中折射波的折射角'θ为A 、/4πB 、/2πC 、/3π二、填空题(5小题,共20分)(4分)[1]静电比拟是指( ), 静电场和恒定电流场进行静电比拟时,其对应物理量间的比似关系是( )。
电磁场与电磁波试题及答案
电磁场与电磁波试题及答案一、选择题1. 以下哪个物理量描述了电场线的密度?A. 电场强度B. 电势C. 电通量D. 电荷密度答案:A. 电场强度2. 在电磁波传播过程中,以下哪个说法是正确的?A. 电磁波的传播速度与频率成正比B. 电磁波的传播速度与波长成正比C. 电磁波的传播速度与频率无关D. 电磁波的传播速度与波长成反比答案:C. 电磁波的传播速度与频率无关3. 在真空中,以下哪个物理量与磁感应强度成正比?A. 磁场强度B. 磁通量C. 磁导率D. 磁化强度答案:A. 磁场强度二、填空题4. 在电场中,某点的电场强度大小为200 V/m,方向向东,则该点的电场强度可以表示为______。
答案:200 V/m,方向向东5. 一个电磁波在空气中的波长为3 m,频率为100 MHz,则在空气中的传播速度为______。
答案:300,000,000 m/s6. 一个长直导线通过交流电流,其周围产生的磁场是______。
答案:圆形磁场三、计算题7. 一个平面电磁波在真空中的电场强度为50 V/m,磁场强度为0.2 A/m。
求该电磁波的波长和频率。
解题过程:根据电磁波的基本关系,电场强度和磁场强度满足以下关系:\[ E = c \times B \]其中,\( c \) 为光速,\( E \) 为电场强度,\( B \) 为磁场强度。
代入数据:\[ 50 = 3 \times 10^8 \times 0.2 \]解得:\[ c = 1.25 \times 10^7 m/s \]根据电磁波的波长和频率关系:\[ c = \lambda \times f \]代入光速和波长关系:\[ 1.25 \times 10^7 = \lambda \times f \]假设频率为 \( f \),则波长为:\[ \lambda = \frac{1.25 \times 10^7}{f} \]由于波长和频率的乘积为光速,可以求出频率:\[ f = \frac{1.25 \times 10^7}{3 \times 10^8} = 0.0417 \text{ GHz} \]将频率代入波长公式,求出波长:\[ \lambda = \frac{1.25 \times 10^7}{0.0417\times 10^9} = 3 m \]答案:波长为3 m,频率为0.0417 GHz8. 一个半径为10 cm的圆形线圈,通过频率为10 MHz的正弦交流电流,求线圈中心处的磁场强度。
电磁场与波期末考试试题3套含答案(大学期末复习资料)
莆田学院期末考试试卷 (A )卷2011 — 2012 学年第 一 学期课程名称: 电磁场与波 适用年级/专业: 09/电信 试卷类别 开卷( ) 闭卷(√) 学历层次 本科 考试用时 120分钟《.考生注意:答案要全部抄到答题纸上,做在试卷上不给分.........................》.一、填空题(每空2分,共30分)1.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ① ,矢量B A ⋅= ② 。
2.高斯散度定理的积分式为 ① ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
3.已知任意一个矢量场A ,则其旋度的散度为 ① 。
4.介质中恒定磁场的基本方程的积分式为 ① , ② , ③ 。
5.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ① ,位置位于 ② ;当点电荷q 向无限远处运动时,其镜像电荷向 ③ 运动。
6.标量场2),,(x xyz z y x +=ψ通过点P(1,1,2)的梯度为① 。
7.引入位移电流的概念后,麦克斯韦对安培环路定律做了修正,其修正后的微分式是 ① ,其物理含义是: ② 。
8.自由空间传播的电磁波,其磁场强度)sin(z t H a H m y βω-=,则此电磁波的传播方向是 ① ,磁场强度复数形式为 ② 。
二、单项选择题(每小题2分,共20分)1.自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为 。
A .)ln(1aaD C -=πε B. )ln(201aa D C -=πε C. )ln(2101a a D C -=πε2.如果某一点的电场强度为零,则该点的电位为 。
A.一定为零 B.不一定为零 C.为无穷大3.真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为 。
兰州大学信息院2000-2009学年《电磁场与电磁波》期末试题及答案(史上最全)
2000-2001学年第(1)学期考试试题(A )- 兰州大学信息学院课程名称 电磁场理论 年级98级 专业 无线电、电子学 学号 姓名 . 题 号 一 二 三 四 合 计得 分一. 判断题(每小题4分,5小题,共20分。
正确的打√,不对的打×。
)1. 若半径为a 的导体球表面的电势为φ,则其外部空气中的电场强度是r e ra 2φ( ); 2. 位于Z =0的平面上有一无限大导体平板,在直角坐标(1,2,3)处有一点电荷,则其镜像点电荷位于直角坐标(1,2,-3)处( );3. 自由空间中的电场强度矢量为j t z E E m ωβsin cos =,则其对应的位移电流密度矢量为j t z E J m D ωβεc o s c o s 0=( );4. 由位于平面x = 0, a 和y =0, b 上的四块良导体薄板所构成的矩形波导中为空气,其传输电磁波的电场强度矢量为j z t a x E E )cos(sin 0βωπ-=,则y =b 的导体板内表面上的感应电荷面密度)sin(sin 00z t a x E s βωπερ-=( );5. 磁偶极子的远区辐射场为00200sin Z H e Z rS I E r k j θϕθλπ-==-,其辐射功率是22024320⎪⎪⎭⎫ ⎝⎛λπS I ( ).二. 选择题(每小题4分,5小题,共20分。
选择一正确答案的字母填上。
)1. 半径为a 、带电荷线密度为l ρ的直导体圆柱外部的电势是( );A . a r l ln 20περ,B . r a l ln 20περ,C . r a l ln 40περ,D .ar l ln 40περ. 2. 同轴电容器中的介质是非理想的,其漏电导率为σ,则其两极板之间单位长的漏电阻是( );A . σπa D ln ,B . πσ2ln12r r , C . 21124r r r r πσ-, D . Sd σ. 3. 正弦电磁场矢量势的达朗贝尔方程是( );A . J A t v μ-=⎪⎪⎭⎫ ⎝⎛∂∂-∇22221, B . J A t μεμ-=⎪⎪⎭⎫⎝⎛∂∂+∇222, C . ()J A k μ-=+∇22, D . ()J A k μ-=-∇22.4. 沿+Z 方向传播的右旋圆极化波( );A . z k j e j j i E E --=)(0 ,B . z k j e j j i E E -+=)(0 ,C . z k j e j i E E --=)(0 ,D . z k j e j iE E -+=)(0 .5. 对称半波振子的最大方向性系数是( ).A . 1.4 ,B . 1.5 ,C . 1.54 ,D . 1.64 .三. 填空题(每小题4分,6小题,共24分)1. 平行板电容器两极板间的电压为U 、间距为d ,则其间介电常数为ε的介质中电场的能量密度是 ;2. 半径为a 、载有电流I 的非磁性无限长直导体圆柱内磁场的能量密度是 ;3. 无源空间中时变电磁场的能流连续性方程是 ;4. 电场强度的复矢量式z j m e E E β-= 所对应的瞬时值式是;5. 一水平极化的均匀平面电磁波从空气中入射到相对介电常数3=r ε的半无限大非磁性的理想介质平面上,则其无反射全透射的入射角即布儒斯特角为 ;6. 电基本振子辐射场的方向图函数为 。
电磁波期末考试题集及答案详解
电磁场与电磁波练习1、 一半径为a 的均匀带电圆环,电荷总量为q ,求圆环轴线上离环中心o 点为z 处的电场强度E 。
解:(1)如图所示,环上任一点电荷元dq 在P 点产生的场强为204RdqE d πε=由对称性可知,整个圆环在P 点产生的场强只有z 分量,即()23220204cos z a zdq Rz R r dq E d E d z +===πεπεθ 积分得到()()()()2322023220232202322042444za qza za z dlza z dq za z E lz +=+=+=+=⎰⎰πεππελλπεπε2、 半径为a 的圆面上均匀带电,电荷面密度为δ,试求:(1)轴线上离圆心为z 处的场强,(2)在保持δ不变的情况下,当0→a 和∞→a 时结果如何?(3)在保持总电荷δπ2a q =不变的情况下,当0→a 和∞→a 时结果如何?解:(1)如图所示,在圆环上任取一半径为r 的圆环,它所带的电荷量为δπdr dq 2=由习题2.1的结果可知该回环在轴线上P 点处的场强为()()23222322024zrrdrz zr zdq E d +=+=εδπε则整个均匀带电圆面在轴线上P 点出产生的场强为()⎪⎪⎭⎫⎝⎛+-=+=⎰220023220122z a zzr rdr z E a z εδεδ (2)若δ不变,当0→a 时,则0)11(20=-=εδz E ; 当∞→a ,则002)01(2εδεδ=-=z E(3)若保持δπ2a q =不变,当0→a 时,此带电圆面可视为一点电荷。
则204z q E z πε=。
当∞→a 时,0→δ,则0=z E。
3、 有一同轴圆柱导体,其内导体半径为a ,外导体内表面的半径为b ,其间填充介电常数为ε的介质,现将同轴导体充电,使每米长带电荷λ。
试证明储存在每米长同轴导体间的静电能量为a b W ln 42πελ=。
证:在内外导体间介质中的电场为)(2b r a rE <<=πελ沿同轴线单位长度的储能为abdr r e dVE edV D E W ln 422222122πελππελ=⎪⎭⎫ ⎝⎛==•=⎰⎰⎰4、 在介电常数为ε的无限大约均匀介质中,有一半径为a 的带电q 的导体球,求储存在介质中的静电能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D s
dS
0 E2rl
q, q
r 2l, E
r 2 0
计算柱外电场时,取通过柱外待计算点的半径为 r,高度为 1 的圆柱面为高斯面。对此柱 面使用高斯定理,有
D s
dS
0 E2rl
q, q
a 2l, E
a 2 2r 0
(10 分)[3]解: 1
H 2 4ey 2ez ,则分界面上有电流线密度为:
A、 JS 10ez
B、 JS 10ex 4ez
C、 JS 10ez
(3 分)[6]若介质 1 为完纯介质,其介电常数 1 20 ,磁导率 1 0 ,电导率 1 0 ;介
质 2 为空气。平面电磁波由介质 1 向分界平面上斜入射,入射波电场强度与入射面平行,
(10 分)[1]频率为 1GHz,电场幅度为 1V/m 的均匀平面波,由空气垂直入射到导体铜的平面
上,试求每平方米的铜表面所吸收的平均功率。
(10 分)[2]一个半径为 a 的均匀带电圆柱体(无限长)的电荷密度是 ρ,求圆柱体内,外的
电场强度。
(10 分)[3]根据以下电场表示式说明它们所表征的波的极化形式。
y
|yb 0
(3) |xa 0 , (4) |xa U0
由条件(1),(2)得,第二类齐次边界条件
Y ( y) cos n y, b
且
C0 0
由条件(3)得
X
(x)
sh
n b
(a
x)
由于常数也满足第二类齐次边界条件,通解中含有线性函数项,所以
1
Er z
r ex
jEme jkz
r e
y
jEme jkz
2
Er z,t
r ex Em
sint
kz
r ey Em
cost
kz
3
r Ez
r e
x
E
m
e
jkz
r e
y
jEme jkz
4
Er z,t
r ex Em
sint
E
y
90o ,而波的传
播方向为
z
轴方向,故
r E
z,
t
表征一个左旋圆极化波。
3 Ex 和 E y 的振幅相等, Ex 的相位超前于 E y 90o,而波的传播方向为 z 轴方向,故
r E
z,
t
表征一个右旋圆极化波。
4 Ex 和 E y 的振幅相等,但 Ex 的初相位是 90o, E y 的初相位是 40o,且传播方向为
A0 x B0
n
An cos
n1
b
y sh n b
(a x)
|xa B0
n
An cos
n1
b
y sh n b
a U0
由条件(4)得
B0
U0
n1
n An cos b
y sh n b
a
由条件(3)得
|xa
A0a U0
n
An cos
n1
b
y sh n b
a0
要满足上式,只有
An
0,
A0a
U0
0,即A故0
U0 a
,
=-U 0 a
x
U0
U0 a
(a
x)
)。
(4 分)[3]镜像法的理论根据是(
)。镜像法的基本思想是用集中的镜像电荷代替(
) 的分布。
(4 分)[4]恒定磁场中不同媒质分界面处, H 与 B 满足的边界条件是:(
), (
) 或(
),(
),媒质在( 1 2 或 1 , 2 )条件下,在分界
面一侧 B 线垂直于分界面。
uv (4 分)[5]对于某一标量 u 和某一矢量 A :
E
x
分量和
E
y
分量的初相位都是
90
o
,即
E
x
和
E
y
同相。故
r E
z
表征一
个线极化波,传播方向为 z 轴方向。
2
E
x
和
E
y
的振幅相等,相位差为
90
o
,故
r E
z,
t
表征一个圆极化波。因
r Ex
Em
sint
kz
Em
cost
kz
2
,可见
E
x
的相位滞后于
以在相同的频率下,铜的趋肤效应较铁的明显。
(4 分)[7]半径为 a 的导体球,带电荷的总量为 Q,球心位于介电常ቤተ መጻሕፍቲ ባይዱ分别为 1 与 2 的不同
介质的分界面上,如图所示,则导体球外 1 与 2 介质中距球心为 r 处的电场强度均相等,
且
E1
E2
2
Q r 2 (1
2)
。
四、计算解答题(4 小题,共 40 分)
uv
( u )=(
); ( A )=(
)
三、判断题(7 小题,共 22 分) (3 分)[1]麦克斯韦方程组中任何一个方程, 都可以由其余三个方程推导出来
(3 分)[2]图示一长直圆柱形电容器,内、外圆柱导体间充满介电常数为 0 的电介质,当内
外导体间充电到U0 后,拆去电压源,然后将 0 介质换成 x0 ( x 0) 的介质,则两导
棒表面的磁化电流密度为
A、 Jm M 0ez
B、 Jm M 0e
C、 Jm M 0e
(3 分)[2]恒定电流场中,不同导电媒质交界面上自由电荷面密度 0 的条件是
A、 1 1 2 2
B、 1 1 2 2
C、 1 1 2 2
(3 分)[3]已知电磁波的电场强度为 E(z,t) ex cos(t z) ey sin(t z) ,则该电磁
(4 分)[5]0,0
三、判断题(7 小题,共 22 分)
(3 分)[1]×
(3 分)[2]×
(3 分)[3]×
(3 分)[4]√
(3 分)[5]×
(3 分)[6]√
(41 分)[7]√
四、计算解答题(4 小题,共 40 分)
(10
分)[1]解:用
1 2
|
JS
|2
RS
求每平方米的铜表面所吸收的平均功率。
体 间的电压将增加。
(3 分)[3]应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
(3 分)[4]驻波不能传播电磁能量。 (3 分)[5]一个点电荷 Q 放在球形高斯面中心处。如果此电荷被移开原来的球心,但仍在球 内,则通过这个球面的电通量将会改变。
(3 分)[6]已知铜的电导率 1 5.8 107 s / m , 铁的电导率 2 107 s / m ,由于 1 2 , 所
长沙理工大学考试试卷
………………………………………………………………………………………………………
课程名称(含档次) 《电磁场与电磁波 A》
课程代号 002587
专业 卷
电信、光电
层次(本部、城南) 本部 考试方式(开、闭卷) 闭
一、选择题(6 小题,共 18 分)
(3 分)[1]一半径为 a 的圆柱形铁棒在均匀外磁场中磁化后,棒内的磁化强度为 M 0ez ,则铁
8.25 103()
因此
1 2
|
JS
|2
RS
0.1161106W
/ m2
(10 分)[2]解:因为电荷分布是柱对称的,因而选取圆柱坐标系求解。在半径为 r 的柱面上,
电场强度大小相等,方向沿半径方向。计算柱内电场时,取半径为 r,高度为 1 的圆柱面
为高斯面。在此柱面上,使用高斯定理,有
若入射角 / 4 ,则介质 2 ( 空气) 中折射波的折射角 ' 为 A、 / 4 B、 / 2 C、 / 3
二、填空题(5 小题,共 20 分)
(4 分)[1]静电比拟是指(
), 静电场和恒定电流场进行静电比拟时,其对应物
理量间的比似关系是(
)。
(4 分)[2] 麦克斯韦方程组的微分形式为(
E E,D
(4 分)[2]
J,q
v H
I, v
JC
, v
D t
v E
v B t
v
v
B 0 D V
(4 分)[3]场的唯一性定理;未知电荷
(4 分)[4] en (H1 H2 ) JS ; en (B1 B2 ) 0 ; H2t H1t JS ; B1n B2n
因为 E0 1V / m ,所以
H
0
1 120
A/m
因为
f
1GHz
时,铜对电场的反射系数
|
R
|
1
,所以铜表面的合成磁场强度近似为
2
H
0
,
于是有
|
JS
|
2
H
0
1/ 60
又知表面电阻 RS 为
RS
f
f