黄昆版固体物理学课后答案解析答案

合集下载

固体物理 课后习题解答(黄昆版)第二章

固体物理 课后习题解答(黄昆版)第二章

黄昆 固体物理 习题解答第二章 晶体的结合2.1 证明两种一价离子组成的一维晶格的马德隆常数为α = 2 2n解:设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用 r 表示相邻离子间的距离,于是有α= ∑ ′ ( 1)=2[1 1 1 1 −+−+ ...]r jr ijr 2r 3r 4r前边的因子 2 是因为存在着两个相等距离 的离子,一个在参考离子左面,一个在其右面,i1 1 1故对一边求和后要乘 2,马德隆常数为234α = 2[1− + − + ...] 2 3 4xx xQl n(1 + x ) = −x + − + ... 当 x=1 时,有12 3 4 1 1 1...− + − + = l n2∴ =α 2 2n2 3 42.2 讨论使离子电荷加倍所引起的对 Nacl 晶格常数及结合能的影响(排斥势看作不变)α2e C解: u r ( )= −α2+rrnα2nC1du e nCenC 由| =−= 0 解得=+r e−1 r2n +12n 1( ) (=2)ndrrrrr 0nC11α e于是当 e 变为 2e 时,有 r−1= 4 −1 r e( )(2 ) (=2)nn= − α214α e结合能为 u r( )e (1−) 当 e 变为 2e 时,有4α e 2r0 1nnu e(2 )= −r (2 ) (1 −) = u e( ) 4 −n 1nu r( )= − α+βm n 2.3 若一晶体两个离子之间的相互作用能可以表示为计算: 1) 平衡间距r0解答(初稿)作者季正华- 1 -r r黄昆固体物理习题解答2) 结合能W(单个原子的)3) 体弹性模量4) 若取m = 2, n = 10, r= 0.3 , = 4 eV计算αβ, 的值解:1) 平衡间距r0的计算NαβdU= mαnβU r ( ) = (−+m n) dr0 −r m+1 + r n+1 = 0晶体内能nβ 12 r r平衡条件r r0 即0 0r0= ( )n m所以mα2) 单个原子的结合能W = −1u( )r u r( ) (0= −α+βm n) r nβ 1r r0=( ) n m2 0β−m r r0 αmW = 1 α(1−)( )m n n m2 n mα3)体弹性模量K = ∂2U(2)V⋅V0∂V0晶体的体积V = NAr3—— A 为常数,N 为原胞数目NαβU r ( ) = (−+m n)晶体内能∂=α2nβr rU∂U r∂N m− 1∂V ∂∂r V= 2 ( r m+1 r n+1 ) NAr23∂2 = ∂∂mαnβU N r[( −) 1 ]∂V 2 2 ∂∂V r rm+1 r n+1 3 N Ar2∂2U∂2UN1[2αmn2βmαnβK = (2)V⋅V0 ∂V2= 2 9V2−r m+ r n−r m+ r n]体弹性模量由平衡条件∂U∂V=N mα−V Vnβ 1= 00 0 0 0∂V 2 ( r m+1 r n+1 ) 3NAr2V V0解答(初稿)作者季正华0 0 0- 2 -α=n β∂2UN黄昆 固体物理 习题解答m 2αn 2βm r 0mr 0n ∂V 2V V=1[− 2 9V 02r 0m + r 0n ]体弹性模量 K= ∂2U(2)V⋅V 0∂2U=mn(−U )∂ V∂ V2 V V 9V 2mn K = U 0V 904)若取 m =β12, n = 10, r 0=0.3 ,= 4 eVβ−m计算 α β,的值r = n( ) −n mW = 1 α (1− )( )m n n mαm2 αn mβ =Wr 10α = r 2β+W 2[r 102 ]β =1.2 ×10-95eV ⋅m 103α =−7.5 ×1019eV ⋅ m 22.4 经过 sp 杂化后形成的共价键,其方向沿着立方体的四条对角线 的方向,求共价键之间的夹角。

(完整word版)黄昆固体物理课后习题答案4

(完整word版)黄昆固体物理课后习题答案4

第四章 晶体的缺陷思 考 题1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位, 这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量L L /∆与X 射线衍射测定的晶格常数相对变化量a a /∆存在差异, 是何原因?[解答]肖特基缺陷指的是晶体内产生空位缺陷但不伴随出现填隙原子缺陷, 原空位处的原子跑到晶体表面层上去了. 也就是说, 肖特基缺陷将引起晶体体积的增大. 当温度不是太高时, 肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多. X 射线衍射测定的晶格常数相对变化量a a /Δ, 只是热膨胀引起的晶格常数相对变化量. 但晶体尺寸的相对变化量L L /Δ不仅包括了热膨胀引起的晶格常数相对变化量, 也包括了肖特基缺陷引起的晶体体积的增大. 因此, 当温度不是太高时, 一般有关系式L L Δ>a aΔ.3.KCl 晶体生长时,在KCl 溶液中加入适量的CaCl 2溶液,生长的KCl 晶体的质量密度比理论值小,是何原因?[解答]由于+2Ca 离子的半径(0.99o A )比+K 离子的半径(1.33oA )小得不是太多, 所以+2Ca 离子难以进入KCl 晶体的间隙位置, 而只能取代+K 占据+K 离子的位置. 但+2Ca比+K 高一价, 为了保持电中性(最小能量的约束), 占据+K 离子的一个+2Ca 将引起相邻的一个+K 变成空位. 也就是说, 加入的CaCl 2越多, +K 空位就越多. 又因为Ca 的原子量(40.08)与K 的原子量(39.102)相近, 所以在KCl 溶液中加入适量的CaCl 2溶液引起+K 空位, 将导致KCl 晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道 晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移, 会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, -+B A 离子晶体的热缺陷对导电的贡献只取决于它们的迁移率μ. 设正离子空位附近的离子和填隙离子的振动频率分别为+v A ν和+i A ν, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为+v A E 和+i A E , 负离子空位附近的离子和填隙离子的振动频率分别为-v B ν和-i B ν, 负离子空位附近的离子和填隙离子跳过的势垒高度分别-v B E 为-iB E , 则由(4.47)矢可得 Tk E B A A B v A v v e T k ea /2+++-=νμ,T k E B A A B i A i i e Tk ea /2+++-=νμ, T k E B B B B v B v v e Tk ea /2----=νμ, Tk E B B B B i B i i e T k ea /2----=νμ.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即+v A E <+i A E ,-v B E <-i B E . 由问题 1.已知, 所以有+v A ν<+i A ν, -v B ν<-i B ν. 另外, 由于+A 和-B 的离子半径不同, 质量不同, 所以一般-+≠B A E E , -+≠B A νν. 也就是说, 一般--++≠≠≠i v i vB B A A μμμμ. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数 Tk E u B ae D /)(0222221+-=ν,空位机构自扩散系数Tk E u B ae D /)(0111121+-=ν.自扩散系数主要决定于指数因子, 由问题4.和8.已知, 1u <2u ,1E <2E , 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是N n /1, 平均来说, 填隙原子要跳1/n N 步才遇到一个空位并与之复合. 所以一个填隙原子平均花费T k E u B e n N t /)(0221211+==ντ的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间T k E u u B e n n N P /)(022********++===νττ.由以上两式得2/2n Ne t T k u B ==τ>>1.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时,它才扩散一步, 所需等待的时间是1τ. 但它相邻的一个原子成为空位的几率是N n /1, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间T k E u B e n N t /)(0111111+==ντ.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成RTN T k e a e a D B /20/2002121εενν--==.可以看出, 自扩散系数与原子的振动频率0ν, 晶体结构(晶格常数a ), 激活能(ε0N )三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间τ后变成填隙原子, 又平均花费时间21τn N后被空位复合重新进入正常晶格位置, 其中2τ是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间21ττn N t +=.因为τ>>21τn N ,所以填隙原子自扩散系数近似反比于τ. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间τ, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?[解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.17.-+B A 离子晶体的导电机构有几种?[解答]离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. -+B A 离子晶体中有4种缺陷: +A 填隙离子, -B 填隙离子, +A 空位, -B 空位. 也就是说, -+B A 离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变成了空位. -+B A 离子晶体中, +A 空位附近都是负离子, -B 空位附近都是正离子. 由此可知, +A 空位的移动实际是负离子的移动, -B 空位的移动实际是正离子的移动. 因此, 在外电场作用下, +A 填隙离子和-B 空位的漂移方向与外电场方向一致, 而-B 填隙离子和+A 空位的漂移方向与外电场方向相反.。

黄昆固体物理部分习题解答

黄昆固体物理部分习题解答

《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。

解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a a a i j k a i j k a i j k =-++=-+=-+倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a a b i k a a a aππ⨯==+⋅⨯32()b i j a π=+ 可见由123,,b b b为基矢构成的格子为面心立方格子面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++ 同理22()b i j k a π=-+ 32()b i j k a π=-+可见由123,,b b b为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。

固体物理 课后习题解答(黄昆版)第四章

固体物理 课后习题解答(黄昆版)第四章

4.1,根据 k黄昆 固体物理 习题解答第四章 能带理论= ± π 状态简并微扰结果,求出与 E − 及 E +相应的波函数ψ − 及ψ+?,并说明它 a们的特性.说明它们都代表驻波,并比较两个电子云分布 ψ2说明能隙的来源(假设V n =V n *)。

<解>令 k= + π , k ′ = − π ,简并微扰波函数为ψ=A ψk( ) + B ψk( )a*a⎡E k ( ) − E A V B n= 0( )V A n+ ⎡E k − E B =取 E E +带入上式,其中 E += E k0( )+ V nV(x)<0,V n < 0 ,从上式得到 于是A ⎡ n π− n π ⎤πψ = A ⎡ψ 0( )−ψk0′( )⎤ =ixe a − e i x a =2A sin n x+⎣k⎢ L ⎣⎥ ⎦L a 取 E E − , E −=E k0( )− V nV A n= −V B n,得到A BA ⎡ i nπx−i n πx⎤πψ = A ⎡ψ 0( )−ψk0′( )⎤ =e a − ea=2A cos n x−⎣ k⎦⎢ ⎣L a由教材可知,Ψ+及 Ψ − ν ( ) 为零.产生驻波因为电子波矢n kπ=时,电子波的波长aλ =2π=2a ,恰好满足布拉格发射条件,这kn时电子波发生全反射,并与反射波形成驻波由于两驻波的电子分布不同,所以对应不同代入 能量。

4.2,写出一维近自由电子近似,第 n 个能带(n=1,2,3)中,简约波数 k π= 的 0 级波函数。

2a11r2π1π 2π1i2π1xi mx i x i mx(m+ )ψ* <解>( ) = ikx=eikx ae e= e2a⋅ea= e a 4k L⋅π=L*Lπ1 i2xL第一能带:m0, m = 0,ψ( ) = e a2ab b′则b′ →,k2π⋅= −L2π, m= −1,i2πx i π∴ψ *( )= 13πi xe第二能带:a a即(e a=e )2a k L2a2π2π 1 π2π 1 5π第三能带:c′ →, ⋅=aa即m =,*1,ψk( ) = Li x i xe2a⋅ea= L i xe2a解答(初稿)作者季正华- 1 -4.3 电子在周期场中的势能.黄昆 固体物理 习题解答1 2 2 2 2 m ω ⎡b − −( x na ⎤) ,当na b x na b + V x ( ) =0 ,当(n-1)a+b ≤ ≤x na b −其中 d =4b , ω 是常数.试画出此势能曲线,求其平均值及此晶体的第一个和第二个禁带 度.<解>(I)题设势能曲线如下图所示.(2)势能的平均值:由图可见, V x ( ) 是个以 a 为周期的周期函数,所以V x ( )= 1∫ V x L( )=1∫a( )=1a b( )L a ba ∫−b题设 a = 4b ,故积分上限应为 a b − = 3b ,但由于在 [b b ,3 ] 区间内[− , ] 区间内积分.这时, n = 0 ,于是V x ( ) 0=,故只需在= 1∫b= m ω2∫b22=m ω2 ⎡ 2b− 1x 3b ⎤ = 1m ωb 2V( )b − x dx )( b x ⎢ −b −b⎥ 。

黄昆版固体物理学课后答案解析答案 (2)

黄昆版固体物理学课后答案解析答案 (2)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

固体物理 课后习题解答(黄昆版)第三章

固体物理 课后习题解答(黄昆版)第三章

(2)计算与该频率相当的电磁波的波长,并与 Nacl 红外吸收频率的测量 值 61 μ 进行比较。
w
波矢取值 因此
3.6 计算一维单原子链的频率分布函数 ρ (ω )
解:设单原子链长度 L=Na
q=
w
. e h c 3 . w
-6-
m o c
α e2
r +
β
rn
其中
2π 2π Na q= ×h Na Na ,状态密度 2π 每个波矢的宽度


w
M M

us −1
d 2us = C (Vs −1 − us ) + 10C (Vs − us ) , dt 2 d 2Vs = 10C ( us − Vs ) + C ( us +1 − Vs ) , dt 2
w
a/2
o
vs −1
. e h c 3 . w
c 10c
m o c
o

o

us
vs
解:如上图所示,质量为 M 的原子位于 2n-1, 2n+1, 2n+3 ……
质量为 m 的原子位于 2n, 2n+2, 2n+4 …… 牛顿运动方程:
m μ 2 n = − β (2 μ 2 n − μ 2 n +1 − μ 2 n −1 ) M μ 2 n +1 = − β (2 μ 2 n +1 − μ 2 n + 2 − μ 2 n )
所以可以得到
w
μl +1,m = μ (0) exp{i[(l + 1)k x a + mk y a − ωt ]} μl −1,m = μ (0) exp{i[(l − 1)k x a + mk y a − ωt ]} μl ,m+1 = μ (0) exp[i (lk x a + (m + 1)k y a − ωt )] μl ,m−1 = μ (0) exp[i (lk x a + (m − 1)k y a − ωt )]

黄昆版固体物理学课后答案解析答案 (3)

黄昆版固体物理学课后答案解析答案 (3)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r 同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

《固体物理学(黄昆)》课后习题答案(1)

《固体物理学(黄昆)》课后习题答案(1)


倒格子基矢 b1 = 2π � 2�

� � a × a3 � a1 ⋅ a2 × a3
� � � a3 × a1 b2 = 2π � � � a1 ⋅ a2 × a3 � � � a1 × a2 b3 = 2π � � � a1 ⋅ a2 × a3
倒格子体积 v0 = b1 ⋅ (b2 × b3 )
感谢大家对木虫和物理版的支持! 2
《固体物理》习题解答
� � ��� � � ��� � a � a a3 a3 1 2 CA = − , CB = − h1 h3 h2 h3 ��� � � Gh1h2h3 ⋅ CA = 0 容易证明 � ��� � Gh1h2h3 ⋅ CB = 0 � � � � G = h1b1 + h2b2 + h3b3 与晶面系 (h1h2 h3 ) 正交。
r a/2 a/2 n 1 1 2 4 2 V a3 a3 a3 a3
ρ
π / 6 ≈ 0.52
3π / 8 ≈ 0.68 2π / 6 ≈ 0.74 2π / 6 ≈ 0.74 3π /16 ≈ 0.34
1/ 2
3a / 4
2a / 4
a/2
2a 3 ≈ 1.633
1/ 2
c ⎛3⎞ 1.2 证明理想的六角密堆积结构(hcp)的轴比 = ⎜ ⎟ 2 ⎝8⎠
0 ⎞ ⎟ 0 ⎟ 选择相应的坐标变换 ε 33 ⎟ ⎠
⎛ ε1 0 ⎜ 可得到 ε = ⎜ 0 ε 2 ⎜0 0 ⎝
同理 b2 = 2π � 3�
可见由 b1 , b2 , b3 为基矢构成的格子为面心立方格子 面心立方格子原胞基矢
� � �
� � � a1 = a( j + k ) / 2 � � � a2 = a(k + i ) / 2 � � � a3 = a(i + j ) / 2 � � � a × a3 � a1 ⋅ a2 × a3 � 2π � � � b1 = (−i + j + k ) a

(完整版)黄昆版固体物理学课后答案解析答案

(完整版)黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

固体物理 课后习题解答(黄昆版)第三章

固体物理 课后习题解答(黄昆版)第三章


w
M M

us −1
d 2us = C (Vs −1 − us ) + 10C (Vs − us ) , dt 2 d 2Vs = 10C ( us − Vs ) + C ( us +1 − Vs ) , dt 2
w
a/2
o
vs −1
. e h c 3 . w
c 10c
m o c
o

o

us
vs
当 当
k = k x ,且 k y = 0 时的 ω − k 图,和 kx = k y
时的 ω − k 图,如右图所示。
3.5 已知 Nacl 晶体平均每对离子的相互作用能为 U (r ) = −
马德隆常数 α =1.75,n=9,平均离子间距 r0 = 2.82 Å 。 (1)试求离子在平衡位置附近的振动频率
(b)根据题意,
μl ,m = μ (0) exp[i (lk x a + mk y a − ωt )]
) = c[( μl +1,m + μl −1,m − 2μl ,m ) 的解, dt 2 + ( μl ,m +1 + μl ,m −1 − 2μl ,m )] M(
因为
d 2 μl , m
μl ,m = μ (0) exp[i (lk x a + mk y a − ωt )]
代回到运动方程得到
若 A、B 有非零的解,系数行列式满足:
w
两种不同的格波的色散关系:
w
. e h c 3 . w
-2-
m o c
——第一布里渊区
解答(初稿)作者 季正华

黄昆固体物理习题解答-完整版

黄昆固体物理习题解答-完整版

0⎞ ⎟ 0⎟ ε3 ⎟ ⎠
1.12 比较面心立方晶格、金刚石晶格、闪锌矿晶格、Nacl 晶格的晶系、布拉伐格子、平 移群、点群、空间群。 晶格 面心立方晶格 金刚石晶格 闪锌矿晶格 Nacl 晶格的晶系 晶系 立方 立方 立方 立方 布拉伐格子 面心立方 面心立方 面心立方 面心立方 点群 Oh Oh Td Oh 空间群 Fm3m Fd3m
F43m
Fm3m
感谢大家对木虫和物理版的支持!
5
《固体物理》习题解答
第二章
习 题
2.1.证明两种一价离子组成的一维晶格的马德隆常数为 α = 2 ln 2 . 证 设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子 (这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号) ,用 r 表 示相邻离子间的距离,于是有
3π / 8 ≈ 0.68
2π / 6 ≈ 0.74 2π / 6 ≈ 0.74 3π /16 ≈ 0.34
解 设n为一个晶胞中的刚性原子数,r表示刚性原子球半径,V表示晶胞体积,则致
密度为: ρ = 结构 简单立方 体心立方 面心立方 六方密排 金刚石
4π nr 3 (设立方晶格的边长为a) r取原子球相切是的半径于是 3V
6 a
3a / 2
6 a
2a
1.7
画体心立方和面心立方晶格结构的金属在 (100) , (110) , (111) 面上 解:
原子排列.
感谢大家对木虫和物理版的支持!
3
《固体物理》习题解答
体心立方
面心立方
1.9 指出立方晶格(111)面与(100)面,(111)面与(110)面的交线的晶向 解 (111)面与(100)面的交线的 AB-AB 平移, A 与 O 重合。B 点位矢 RB = −aj + ak (111) 与 (100) 面的交线的晶向 AB = − aj + ak —— 晶 向指数 ⎡011⎤

黄昆固体物理解答

黄昆固体物理解答
0 ⎜ ⎜ 0 ε 22 ⎜ 0 ε 32 ⎝
由上式可得 ε 23 = 0, ε 32 = 0, ε11 = 0
0 ⎞ ⎛ ε11 0 ⎜ 可得六角晶系的介电常数为 ε = ⎜ 0 ε 22 0 ⎟ ⎟ ⎜ 0 ⎟ 0 ε 33 ⎠ ⎝ ⎛ ε1 0 0 ⎞ ⎟ 选择相应的坐标变换即可得到 ε = ⎜ ⎜ 0 ε 2 0 ⎟ ,原命题得证。 ⎜0 0 ε ⎟ 2⎠ ⎝
(2) 体心立方(书P3,图1-3)
r 取 原 子 球 相 切 时 的 半 径 ( 体 对 角 线 的 1/4 ) , r= 3a / 4 ,n=2, V = a 3 所 以
ρ=
n 4π r 3 3 = 3π / 8 V
(3) 面心立方(书P4,图1-7)
r 取 原 子 球 相 切 时 的 半 径 ( 面 对 角 线 的 1/4 ) r= 2a / 4 ,n=4, V = a 3 , 所 以
r
r
0 ⎞ ⎛ ε11 0 ⎜ ε = ⎜ 0 ε 22 ε 23 ⎟ ⎟ ⎜ 0 ε ε 33 ⎟ 32 ⎝ ⎠
将上式代入 ε = Az T ε Az 得
⎛ ⎜ 0 ⎞ ⎜ ⎜ ε 23 ⎟ = ⎟ ⎜− ⎜ ε 33 ⎟ ⎠ ⎜ ⎜ ⎜ ⎝ 1 3 ε11 + ε 22 4 4 3 3 ε11 + ε 22 4 4 3 − ε 32 2 − 3 3 ε11 + ε 22 4 4 3 1 ε11 + ε 22 4 4 1 − ε 32 2 − 3 ⎞ ε 23 ⎟ 2 ⎟ ⎟ 1 − ε 23 ⎟ 2 ⎟ ⎟ ε 33 ⎟ ⎟ ⎠
A
D
C
设想一个由正负两种离子相间排列的无限长的离子键取任一负离子作参考离子这样马德隆常数中的正负号可以这样取即遇正离子取正号遇负离子取负号用表示相邻离子间的距离于是有前边的因子2是因为存在着两个相等距离的离子一个在参考离子左面一个在其右面故对一边求和后要乘2马德隆常数为22讨论使离子电荷加倍所引起的对nacl晶格常数及结合能的影响排斥势看作不变ncdr于是当e变为2e23若一晶体两个离子之间的相互作用能可以表示为平衡间距r0解答初稿作者固体物理习题解答1003的计算晶体内能dudr为常数n为原胞数目固体物理习题解答1003109510191024经过sp杂化后形成的共价的方向求共价键之间的夹sp轨道杂键其方向沿着立方体的四条对角线化过程形成的共体结构容价键如右图所示

黄昆固体物理习题解答

黄昆固体物理习题解答

π
同理
2π (k + i ) a 2π (i + j) b3 = a b2 =
说明体心立方晶格的 与面心立方晶格基矢对比,正是晶格常数为 4π / a 的面心立方的基矢, 倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式 上的,或者说是倒格子空间中的布拉菲格子。 根据定义,面心立方的倒格子基矢为
α = 2[1 − + − + ]
因为
1 1 1 2 3 4
∵ ln(1 + x ) =
x x 2 x3 x 4 − + − + 1 2 3 4
当 x = 1 时,有
1 12 13 14 ∵ ln(1 + 1) = − + − + 1 2 3 4
α = 2 ln 2 所以 (排斥势看作不变) 2.2 讨论使离子电荷加倍引起的对 NaCl 晶格常数及结合能的影响。 解:按照与书中同样的思路,系统内能为
⎡ ε11 ε12 ε =⎢ ⎢ε 21 ε 22 ⎢ ⎣ε 31 ε 32
如果介电常数张量为
ε13 ⎤ ε 23 ⎥ ⎥ ε 33 ⎥ ⎦
将 Ax −π 代入变换关系,而且该变换为对称变换,得
⎡ ε11 ε12 ⎢ε ⎢ 21 ε 22 ⎢ ⎣ε 31 ε 32
所以
ε13 ⎤ ⎡ ε11 −ε12 −ε13 ⎤ ⎢ ε 23 ⎥ ε 23 ⎥ ⎥ = ⎢ −ε 21 ε 22 ⎥ ⎢ ⎥ ε 33 ⎥ − ε ε ε 32 33 ⎦ ⎦ ⎣ 31
= (2π )3
υc
1.5 证明:倒格子矢量 G = h1b1 + h2b2 + h3b3 垂直于密勒指数为 ( h1h2 h3 ) 的晶面系。 证明:根据定义,密勒指数为 ( h1h2 h3 ) 的晶面系中距离原点最近的平面 ABC 交于基矢的截 距分别为

黄昆固体物理习题解答-完整版

黄昆固体物理习题解答-完整版

⎜⎝ε31 ε32 ε33 ⎟⎠ ⎜⎝ − ε31 ε32 ε33 ⎟⎠
⎜⎝ 0 ε32 ε33 ⎟⎠
⎜⎛ ε11 + 3ε 22
− 3ε11 + 3ε 22 − 3ε 23 ⎟⎞

⎜⎛ ε11 ⎜0 ⎜⎝ 0
0 ε 22 ε 32
0 ⎟⎞
⎜ ⎜
ε 23 ⎟ = ⎜ −
ε33 ⎟⎠
⎜ ⎜
⎜⎝
44
3ε11 + 3ε 22
《固体物理》习题解答
第一章 习 题
1.1 如果将等体积球分别排列下列结构,设x表示刚球所占体积与总体积之比,证明
结构 简单立方(书P2, 图1-2) 体心立方(书P3, 图1-3)
面心立方(书P3, 图1-7)
六方密排(书P4, 图1-6)
金刚石(书P5, 图1-8)
x
π / 6 ≈ 0.52 3π / 8 ≈ 0.68
最后,感谢各位虫友一直以来对小木虫物理版的支持!同时也希望,今后能 后更多的虫友来加入物理版,把这里建成大家交流的乐园!
zt978031 2010 年 4 月 7 日
目录
第一章 习 题··························· 1 第二章 习 题··························· 6 第三章 习 题···························10 第五章 习 题···························31 第六章 习 题···························36 第七章 习 题···························42
倒格子基矢 b1
=

a2 × a3 a1 ⋅ a2 × a3

黄昆《固体物理学》习题解析

黄昆《固体物理学》习题解析

s
ε 11 ε 12 ε 21 ε 22 ε 31 ε 32
假设六角晶系的介电常数为
ε 11 ε 12 ε = ε 21 ε 22 ε 31 ε 32
则由 ε = A x εAx .
'

ε 13 ε 11 ε 31 = − ε 21 ε 33 − ε 31
v v v a2 × a3 2π a v v v a v v v 倒格子基矢 b1 = 2π v v v = ⋅ (i − j + k ) × (i + j − k ) a1 ⋅ a2 × a3 v0 2 2 v v v 2π a 2 v v v 2π v v ( j +k) = ⋅ (i − j + k ) × (i + j − k ) = a v0 4 v v v a3 × a1 2π v v 同理 b2 = 2π r r r = (i + k ) a1 ⋅ a2 × a3 a v v v v 2π v v b3 = (i + j ) a
v 2π v v 2π v v 2π v b1 = i , b2 = j , b3 = k a b c
-3-

v v v a ×a b1 = 2π v 2v 3v a1 ⋅ a2 × a3
v v v a ×a b3 = 2π v 1v 2v a1 ⋅ a2 × a3

h k l ( ) 2 + ( )2 + ( )2 ;说明面 a b c
可见由 b1 , b2 , b3 为基矢构成的格子为面心立方格子
-2-
Jo
体心立方格子原胞基矢 a1 =
ne
v v v a2 × a3 解:由倒格子定义 b1 = 2π v v v a1 ⋅ a2 × a3 v

黄昆版固体物理学课后答案解析答案 (1)

黄昆版固体物理学课后答案解析答案 (1)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长波极限情况下 , ,
与一维单原子晶格格波的色散关系一致、
3、3、考虑一双子链的晶格振动,链上最近邻原子间的力常数交错地为 与 ,两种原子质量相等,且最近邻原子间距为 。试求在 处的 ,并粗略画出色散关系曲线。此问题模拟如 这样的双原子分子晶体。
答:(1)
浅色标记的原子位于2n-1,2n+1,2n+3 ……;深色标记原子位于2n,2n+2,2n+4 ……。
第三章固格振动与晶体的热学性质
3、1、已知一维单原子链,其中第 个格波,在第 个格点引起的位移为, , 为任意个相位因子,并已知在较高温度下每个格波的平均能量为,具体计算每个原子的平方平均位移。
<解>任意一个原子的位移就是所有格波引起的位移的叠加,即
(1)
由于 数目非常大为数量级,而且取正或取负几率相等,因此上式得第2项与第一项相比就是一小量,可以忽略不计。所以
体弹性模量
(4)若取
,
,
,
2、6、bcc与fcc Ne的结合能,用林纳德—琼斯(Lennard—Jones)势计算Ne在bcc与fcc结构中的结合能之比值.
<解>
2、7、对于 ,从气体的测量得到Lennard—Jones参数为 计算fcc结构的 的结合能[以KJ/mol单位),每个氢分子可当做球形来处理.结合能的实验值为0、751kJ/mo1,试与计算值比较.
所以,体心立方的倒格子就是面心立方。
1、5、证明倒格子矢量 垂直于密勒指数为 的晶面系。
证明:
因为 ,ห้องสมุดไป่ตู้
利用 ,容易证明
所以,倒格子矢量 垂直于密勒指数为 的晶面系。
1、6、对于简单立方晶格,证明密勒指数为 的晶面系,面间距 满足: ,其中 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。
(1)对于简立方结构:(见教材P2图1-1)
a=2r,V= ,Vc=a3,n=1

(2)对于体心立方:晶胞的体对角线BG=
n=2, Vc=a3

(3)对于面心立方:晶胞面对角线BC=
n=4,Vc=a3
(4)对于六角密排:a=2r晶胞面积:S=6 =
晶胞的体积:V=
n=12 =6个
(5)对于金刚石结构,晶胞的体对角线BG= n=8, Vc=a3
解:简单立方晶格: ,
由倒格子基矢的定义: , ,
倒格子基矢:
倒格子矢量: ,
晶面族 的面间距:
面指数越简单的晶面,其晶面的间距越大,晶面上格点的密度越大,单位表面的能量越小,这样的晶面越容易解理。
1、9、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。
1、2、试证:六方密排堆积结构中
证明:在六角密堆积结构中,第一层硬球A、B、O的中心联线形成一个边长a=2r的正三角形,第二层硬球N位于球ABO所围间隙的正上方并与这三个球相切,于就是:
NA=NB=NO=a=2R、
即图中NABO构成一个正四面体。…
1、3、证明:面心立方的倒格子就是体心立方;体心立方的倒格子就是面心立方。
当X=1时,有
2、3、若一晶体的相互作用能可以表示为
试求:(1)平衡间距 ;
(2)结合能 (单个原子的);
(3)体弹性模量;
(4)若取 ,计算 及 的值。
解:(1)求平衡间距r0
晶体内能
平衡条件 , ,
(2)单个原子的结合能
, ,
(3)体弹性模量
晶体的体积 ,A为常数,N为原胞数目
晶体内能
由平衡条件 ,得
解:质量为 的原子位于2n-1,2n+1,2n+3 ……;质量为 的原子位于2n,2n+2,2n+4 ……。
牛顿运动方程
N个原胞,有2N个独立的方程
设方程的解 ,代回方程中得到
A、B有非零解, ,则
两种不同的格波的色散关系
一个q对应有两支格波:一支声学波与一支光学波、总的格波数目为2N、
当 时 ,
两种色散关系如图所示:
<解>设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r表示相邻离子间的距离,于就是有
前边的因子2就是因为存在着两个相等距离 的离子,一个在参考离子左面,一个在其右面,故对一边求与后要乘2,马德隆常数为
解:
1、(111)面与(100)面的交线的AB,AB平移,A与O点重合,B点位矢: ,
(111)面与(100)面的交线的晶向 ,晶向指数 。
2、(111)面与(110)面的交线的AB,将AB平移,A与原点O重合,B点位矢: ,(111)面与(110)面的交线的晶向 ,晶向指数 。
第二章固体结合
2、1、证明两种一价离子组成的一维晶格的马德隆常数 ,设离子的总数为 。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):
由倒格子基矢的定义:
,
同理可得: 即面心立方的倒格子基矢与体心立方的正格基矢相同。
所以,面心立方的倒格子就是体心立方。
(2)体心立方的正格子基矢(固体物理学原胞基矢):
由倒格子基矢的定义:
,
同理可得: 即体心立方的倒格子基矢与面心立方的正格基矢相同。
<解>以 为基团,组成fcc结构的晶体,如略去动能,分子间按Lennard—Jones势相互作用,则晶体的总相互作用能为:
因此,计算得到的 晶体的结合能为2.55KJ/mol,远大于实验观察值0、75lKJ/mo1.对于 的晶体,量子修正就是很重要的,我们计算中没有考虑零点能的量子修正,这正就是造成理论与实验值之间巨大差别的原因.
由于 就是时间 的周期性函数,其长时间平均等于一个周期内的时间平均值为
(2)
已知较高温度下的每个格波的能量为KT, 的动能时间平均值为
其中L就是原子链的长度, 使质量密度, 为周期。
所以 (3)
因此 将此式代入(2)式有
所以每个原子的平均位移为
3、2、讨论N个原胞的一维双原子链(相邻原子间距为a),其2N个格波解,当 = 时与一维单原子链的结果一一对应。
《固体物理学》习题解答
黄昆原著韩汝琦改编
(陈志远解答,仅供参考)
第一章晶体结构
1、1、
解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体瞧作就是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以瞧作就是相同的小球按点阵排列堆积起来的。它的空间利用率就就是这个晶体原胞所包含的点的数目n与小球体积V所得到的小球总体积nV与晶体原胞体积Vc之比,即:晶体原胞的空间利用率,
相关文档
最新文档