1.1 矩阵的特征值与特征向量

合集下载

矩阵特征值及特征向量教学

矩阵特征值及特征向量教学

矩阵特征值及特征向量教学介绍在线性代数中,矩阵特征值和特征向量是非常重要的概念。

它们不仅在数学领域有广泛的应用,也在物理、工程、计算机科学等领域中发挥着重要作用。

本文将深入探讨特征值和特征向量的概念、性质以及计算方法。

一、特征值与特征向量的定义1.1 特征值的定义给定一个n阶矩阵A,如果存在一个数λ和一个非零向量x使得Ax = λx,那么λ称为矩阵A的特征值,x称为矩阵A的对应于特征值λ的特征向量。

1.2 特征向量的定义特征向量是与特征值相关联的非零向量,通过矩阵与特征向量的乘法可以得到特征值的倍数。

二、特征值与特征向量的计算2.1 计算特征值的方法计算矩阵的特征值可以通过求解特征方程来实现。

特征方程是一个关于特征值的方程,形式为|A-λI|=0,其中A是给定的矩阵,λ是特征值,I是单位矩阵。

步骤: 1. 把矩阵A减去λI,得到一个新的矩阵B。

2. 计算矩阵B的行列式,即|B|。

3. 解方程|B|=0,得到特征值λ的值。

4. 验证特征值的正确性,将得到的λ代入方程(A-λI)x=0,求解x的解。

2.2 计算特征向量的方法计算矩阵的特征向量可以通过将特征值代入方程(A-λI)x=0,并解出x的解。

步骤: 1. 将特征值λ代入方程(A-λI)x=0,得到一个线性方程组。

2. 解线性方程组,求解出x的解。

3. 验证特征向量的正确性,将得到的x代入方程(A-λI)x=0,验证等式是否成立。

三、特征值与特征向量的性质特征值和特征向量有许多重要的性质,下面介绍其中的一些。

3.1 特征值的性质•矩阵A和其转置矩阵A^T具有相同的特征值。

•对于实矩阵,特征值可以是复数,但是它们总是成对出现,共轭复数。

•矩阵的特征值之和等于它的迹(主对角元素之和)。

•矩阵的特征值之积等于它的行列式。

3.2 特征向量的性质•特征向量与对应的特征值共线,即它们是线性相关的。

•特征向量可以通过标量乘法来缩放,缩放因子为特征值的值。

矩阵的特征值、特征向量和矩阵的相似

矩阵的特征值、特征向量和矩阵的相似

特征值和特征向量与矩阵相似的关系
01
特征值和特征向量是矩阵的重要属性,它们与矩阵 的相似性有着密切的联系。
02
如果两个矩阵相似,它们的特征值和特征向量也必 须相同。
03
特征值和特征向量的性质决定了矩阵的稳定性、可 逆性和可约性等重要性质。
特征值和特征向量在矩阵相似中的应用
在解决线性方程组时,可以利用特征值和特征向量的性质,将原方程组转 化为易于求解的形式。
|λ|=√aii,其中aii为矩阵A的对角线元素。
特征值和特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Av=λv来计算特征 值和特征向量。
幂法
通过迭代计算矩阵A的幂,然后观 察幂的迹的变化,从而找到特征 值和特征向量。
谱分解法
将矩阵A分解为若干个简单的矩阵 的乘积,然后通过计算这些简单 矩阵的特征值和特征向量来得到 原矩阵的特征值和特征向量。
矩阵的特征值、特 征向量和矩阵的相 似
目录
• 矩阵的特征值和特征向量 • 矩阵的相似 • 矩阵的特征值、特征向量和矩阵的相似的
关系 • 矩阵的特征值、特征向量和矩阵的相似的
应用
01
CATALOGUE
矩阵的特征值和特征向量
特征值和特征向量的定义
特征值
对于给定的矩阵A,如果存在一个标 量λ和对应的非零向量v,使得Av=λv 成立,则称λ为矩阵A的特征值。
02
CATALOGUE
矩阵的相似
矩阵相似的定义
定义:如果存在一个可逆矩阵P,使 得$P^{-1}AP=B$,则称矩阵A与B相 似。
相似矩阵具有相同的行列式值、迹、 秩和特征多项式。
矩阵相似的性质
01 相似的矩阵具有相同的特征多项式和行列式值。

《线性代数》矩阵的特征值与特征向量

《线性代数》矩阵的特征值与特征向量

《线性代数》矩阵的特征值与特征向量矩阵的特征值与特征向量是线性代数中非常重要的概念。

在许多实际问题的分析和求解中,特征值和特征向量扮演着重要的角色。

本文将从定义、性质和应用三个方面来详细介绍矩阵的特征值与特征向量。

一、定义给定一个n阶方阵A,若存在非零向量x和标量λ,使得满足以下等式:Ax=λx则称λ为矩阵A的特征值,x为矩阵A对应于特征值λ的特征向量。

特征向量是描述线性变换的方向,在变换过程中保持方向不变,特征值是对应于特征向量的缩放因子。

二、性质1.特征值与特征向量的存在性和唯一性对于n阶方阵A,它一定存在n个特征值,但不一定有n个线性无关的特征向量。

每个特征值对应的特征向量也不一定唯一2.特征值的性质(1)特征值的和等于方阵的迹,即λ1 + λ2 + ... + λn =tr(A)。

(2)特征值的积等于方阵的行列式,即λ1 * λ2 * ... * λn = det(A)。

3.特征向量的性质(1)对于同一个特征值λ,存在无穷多个线性无关的特征向量。

(2)特征向量的线性组合仍然是一个特征向量。

三、应用矩阵的特征值与特征向量在多个学科和领域中都有广泛的应用。

1.物理学在量子力学中,特征值与特征向量的概念被用来描述量子态和量子测量。

2.工程学在结构力学中,特征值与特征向量可以用来分析弹性体的振动频率和振动模态。

3.数据分析特征值与特征向量可以用于主成分分析(PCA),以降低数据的维度并提取最重要的特征。

4.图像处理特征值与特征向量可以用于图像压缩和图像恢复等领域。

5.机器学习在机器学习算法中,特征值与特征向量可以用于降维、分类和聚类等任务。

总结:矩阵的特征值与特征向量是线性代数中的重要概念,具有很多实际应用。

通过特征值与特征向量,我们可以分析矩阵的性质、求解特征方程、降低数据维度等。

理解和掌握矩阵的特征值与特征向量对于深入理解线性代数以及在实际问题中的应用都具有重要意义。

矩阵的特征值与特征向量

矩阵的特征值与特征向量

矩阵的特征值与特征向量一、定义与性质:1.特征值:设A是一个n阶方阵,如果存在一个数λ和一个非零列向量X使得AX=λX成立,则称λ为矩阵A的一个特征值,X称为对应于特征值λ的特征向量。

2.重要性质:(1)特征值与特征向量是一一对应的,即一个特征值对应一个特征向量,特征向量的倍数仍为特征向量。

(2) 设λ1,λ2,...,λn是A的n个特征值,则A的特征值的和等于A的主对角线元素之和,即λ1+λ2+...+λn=ΣAii(i=1,2,...,n)。

(3)A的特征值的积等于A的行列式值,即λ1λ2...λn=,A。

二、计算方法:1.方程法:设λ是A的一个特征值,则有,A-λE,=0,其中E是n阶单位矩阵。

将,A-λE,=0展开,可以得到一个n次的多项式,称为特征多项式。

解特征多项式,即可求得特征值。

2.特征向量法:对于方程A-λE=0,将其变形为(A-λE)X=0,其中X是一个n维列向量。

求解(A-λE)X=0可以得到特征向量。

三、应用:1.物理学中的应用:(1)量子力学中的量子态演化过程可以表示为一个特征值问题,特征值对应着能量,特征向量对应着量子态。

(2)电力系统中的节点电压和电流可以用矩阵的特征值和特征向量求解,用于电网稳定性的分析。

2.经济学中的应用:(1)马尔可夫过程中的平稳分布可通过马尔科夫矩阵的特征值和特征向量求解。

(2)输入输出模型中,矩阵表示产出与投入之间的关系,通过求解矩阵的特征值和特征向量,可以得到经济系统的稳定性和发展趋势。

3.图像处理中的应用:(1)图像压缩算法中,可以通过矩阵的特征值和特征向量进行信息提取和图像压缩。

(2)图像识别中,可以通过计算矩阵的特征值和特征向量,进行目标物体的特征提取和分类。

总结:矩阵的特征值与特征向量是线性代数中的重要概念,具有广泛的应用。

它们的计算方法可以通过特征多项式和特征向量方程进行求解。

在物理学、经济学和图像处理等领域都有着重要的应用,可以对实际问题进行分析和求解。

矩阵的特征值与特征向量总结-全文可读

矩阵的特征值与特征向量总结-全文可读
解得特征值为
2•
第二步:对每个特征值 代入齐次线性方程组 求非零解.
齐次线性方程组为 系数矩阵
2•
得基础解系
是对应于
类似可以求得 A的属于特征
值 的全部特征向量分别为
是不为零的常数.
2•
所以
是矩阵f (A)的一个特征值.
2•
3. 特征多项式f )的性质
( 在特征多项式
中有一项是主对角线上元素的连乘积:
f )的展开式的其余各项为
(ቤተ መጻሕፍቲ ባይዱ
2•
设f ) = 0的根
(

,则有
性质1 设 n 阶方阵 A 的 n个特征
值为

称为矩阵A的迹,记为
2•
性质2 若A的特征值是 , X是A的对应于 的特征向量,
(1) kA的特征值是 ;(k是任意常数) k
(m是正整数)
(3) 若A可逆,则A -1的特征值

且X 仍然是矩

-1 , 的特征值是 分别对应于
的特征向量.
2•
为x的多项式, 则f (A)的特征值
为 证
再继续施行上述步骤 m - 2 次, 就

2•
其它请同学们自己证明.
3•
例6 已知三阶方阵A的特征值为1、2、3, 求矩阵 的A行*+列E式.
解 由性质1(2)知
则矩阵A*的特征值 所以矩阵A*的特征值分别是6,3,2,A*+E的特征值
是值A, 的属于特征值 λ = 5的特征向
量;
6•
7•
故由定义4.1知, λ = 5也 1、X2、X3 的特征值, 即是对X于 λ = 5的特征向量是不唯一
的.

矩阵的特征值与特征向量

矩阵的特征值与特征向量
0 0 1 0 0
其基础解系可取为
0 1 0
X
得x1
x3
x1 2 x2
x3
x2
0
0
1 1 0
则矩阵A对应于特征值l3=2的全体特征向量为
C2X2(C20)精选ppt
17
四 特征值与特征向量的性质 • 在复数范围内 n 阶矩阵 A 有 n 个特征值 (重根按重数计算).
证明 用数学归纳法
m=1时 X1≠0 显然成立 设 m=s-1时 X1 X2 Xs-1线性无关
现证明 m=s时 X1 X2 Xs线性无关 设有常数k1 k2 ks
使 k1X1k2X2 ks Xs0
A (k1X1k2X2 ks Xs)0
l1k1X1l2k2X2精选 ppltsks Xs0
第五章 矩阵的特征值与特征向量
在及其应用中 常要求一个方阵的特 征值和特征向量的问题 数学中诸如方 阵的对角化及解微分方程组的问题 也 都要用到特征值的理论
精选ppt
1
引言
• 纯量阵 lE 与任何同阶矩阵的乘法都满足交换律,

(lEn)An = An (lEn) = lAn .
• 矩阵乘法一般不满足交换律,即AB ≠ BA .
定理2 如果X1, X2为矩阵A对应于特征值l的特征向量,
且X1+ X2 ≠0,则X1+ X2也是A对应于特征值l的特征向量,
即:矩阵A对应于同一特征值l的特征向量的非零线性组
合仍然为A对应于l特征向精量选(不pp能t 为0)
6
综上所述,求矩阵A的特征值及特征向量的 步骤如下: 第一步 计算矩阵A特征多项式| lI A| ; 第二步 求出矩阵A的特征方程| lI A|=0的全部 根,即求得A的全部特征值l1, l1,--- ln,(其中可 能有重根)

矩阵的特征值与特征向量

矩阵的特征值与特征向量

矩阵的特征值与特征向量矩阵是线性代数中的重要概念,它在各个领域均有广泛的应用。

在研究矩阵的性质时,特征值与特征向量是一个不可或缺的概念。

本文将详细介绍矩阵的特征值与特征向量,探讨它们在矩阵理论和实际问题中的应用。

1. 特征值与特征向量的定义对于一个 n 阶方阵 A,如果存在一个非零向量 X 和一个实数λ,使得Ax = λX 成立,则称λ 为矩阵 A 的特征值,X 称为特征值λ 对应的特征向量。

2. 计算特征值与特征向量为了计算特征值与特征向量,我们可以使用特征值方程 det(A-λI) = 0。

其中,det() 表示矩阵的行列式,A 是待求特征值与特征向量的矩阵,I 是单位矩阵,λ 是未知数。

解特征值方程得到的λ 值即为矩阵的特征值。

3. 求解特征向量在得到特征值λ 后,我们可以通过代入特征值到方程 (A-λI)X = 0 中,求解出对应的特征向量 X。

需要注意的是,特征向量并不唯一,可以乘以一个非零常数得到不同的特征向量。

4. 特征值与特征向量的性质特征值与特征向量有以下重要性质:- 矩阵 A 的特征值的个数等于矩阵的阶数 n,包括重复的特征值。

- 所有特征值的和等于矩阵的迹(主对角线元素的和)。

- 矩阵 A 的特征向量构成的集合是线性无关的。

5. 矩阵的对角化与相似矩阵如果能找到一个可逆矩阵 P,使得 P^-1AP = D,其中 D 是对角矩阵,则称矩阵 A 是可对角化的。

对角矩阵 D 的对角线上的元素就是矩阵 A的特征值。

P 的列向量组成的矩阵就是 A 的特征向量矩阵。

6. 特征值与矩阵的性质关系矩阵的特征值与矩阵的性质之间存在一定的联系:- 如果矩阵 A 是奇异矩阵,则它的特征值中至少有一个为零。

- 如果矩阵 A 是对称矩阵,则它的特征值都为实数,并且相应的特征向量可以取为正交向量。

- 如果矩阵 A 是正定矩阵,则它的特征值都大于零。

7. 应用举例:主成分分析(PCA)主成分分析是一种常用的统计学方法,用于数据降维和特征提取。

矩阵的特征值与特征向量

矩阵的特征值与特征向量

矩阵的特征值与特征向量矩阵是线性代数中一个重要的概念,而矩阵的特征值与特征向量则是矩阵理论中的基本概念之一,它们在科学计算、物理学、工程学等领域都有着广泛的应用。

本文将对矩阵的特征值与特征向量进行详细的介绍。

一、特征值与特征向量的定义在矩阵理论中,给定一个n阶方阵A,如果存在一个非零n维向量x,使得Ax与x线性相关,即满足下式:Ax = λx其中,λ为非零常数,称为矩阵A的特征值;而向量x称为矩阵A 对应于特征值λ的特征向量。

从定义中可以看出,特征向量并不唯一,一个特征值可以对应多个特征向量,且特征值和特征向量是成对存在的。

二、求解特征值与特征向量的方法求解一个矩阵的特征值与特征向量可以使用多种方法,其中比较常用的有特征值问题的特征多项式法和幂法。

1. 特征多项式法特征多项式法是一种较为直观的方法,其基本思想是通过解矩阵的特征方程来求解特征值。

对于一个n阶方阵A,其特征方程可以表示为:|A-λI| = 0其中,I是n阶单位矩阵,λ是一个未知量。

解特征方程可以得到矩阵A的所有特征值。

解特征方程得到特征值后,再带入Ax = λx中,可以求解对应的特征向量。

2. 幂法幂法是一种迭代的方法,通过不断迭代矩阵的幂次来逼近特征值和特征向量。

算法的基本思想是:(1)选择一个任意的非零向量x0;(2)计算x1 = Ax0;(3)计算x2 = Ax1;......(4)迭代到某一步,得到xk与x(k-1)之间的变化很小时,停止迭代。

在迭代过程中,向量x逐渐趋近于特征向量,而矩阵B = A^k中的最大特征值则逐渐趋近于特征值,因此可以通过幂法来估计特征值与特征向量。

三、特征值与特征向量的性质矩阵的特征值和特征向量具有多个重要性质。

1. 特征值的性质(1)特征值的个数等于矩阵的阶数n;(2)特征值的和等于矩阵的迹(即主对角线上元素之和);(3)特征值的积等于矩阵的行列式;(4)特征值具有可交换性,即两个矩阵AB和BA具有相同的特征值。

矩阵的特征值与特征向量

矩阵的特征值与特征向量

矩阵的特征值与特征向量矩阵在数学和物理学中扮演着重要的角色,特征值与特征向量是矩阵理论中的重要概念。

本文将详细介绍矩阵的特征值与特征向量的定义、性质以及它们在实际问题中的应用。

1. 特征值与特征向量的定义矩阵A的特征值是指存在一个非零向量v使得Av=λv,其中λ是一个标量,v称为矩阵A对应于特征值λ的特征向量。

特征值与特征向量的求解是一个重要的矩阵问题。

2. 求解特征值与特征向量的方法求解特征值与特征向量的方法主要有两种:代数方法和几何方法。

代数方法:通过求解矩阵A的特征方程来确定特征值λ,然后通过解线性方程组(A-λI)v=0来求解特征向量v。

其中I为单位矩阵。

几何方法:考虑矩阵A作用下的线性变换,特征向量表示在该变换下仅仅被拉伸而不改变方向的向量,特征值则表示该变换在相应方向上的拉伸倍数。

3. 特征值与特征向量的性质特征值与特征向量具有以下性质:- 矩阵A的特征值的个数等于其维数。

- A的所有特征值的和等于其主对角线元素之和,即Tr(A)。

- A的所有特征值的乘积等于其行列式,即det(A)。

- 如果A是一个对称矩阵,则其特征向量构成一组正交基。

- 如果A是一个正定矩阵,则所有特征值大于零。

4. 特征值与特征向量在实际问题中的应用特征值与特征向量在许多实际问题中具有广泛的应用,包括但不限于以下几个领域:- 物理学:矩阵的特征值与特征向量在量子力学、振动理论、电路分析等领域中有重要应用。

- 数据分析:特征值与特征向量可用于降维、聚类以及图像处理等方面的数据分析。

- 工程科学:特征值与特征向量在结构动力学、控制系统等工程问题中有着广泛的应用。

总结:矩阵的特征值与特征向量是矩阵理论中的重要概念,它们不仅具有丰富的数学性质,而且在实际问题中有广泛的应用。

通过求解特征值与特征向量,我们可以深入理解矩阵所代表的线性变换的特性,并应用于解决各种实际问题。

了解并掌握特征值与特征向量的求解方法与应用将为我们在数学和科学领域的研究与应用提供有力的工具和思路。

矩阵的特征值与特征向量

矩阵的特征值与特征向量

所以取方程组的基础解系为:
1 1 , 2 0
0 1
0 0 9 对应于 1 9 的全部特征向量为: 2 E 2 7 4 B 2 2 5 k k , k , k 不同时为0.
因此对应于2
4 的全体特征向量为:
k22 k33 , k2 , k3 不同时为0.
2.方阵的特征值与特征向量的性质
性质1.设
A ai j
nn
的特征值为 1 , 2 ,..., n
则有: (1)
1 2 ... n a11 a22 ... ann tr ( A)
2
4 ( 9) 2 ( 3) 0 5
所以B+2E的特征值为: 1 当 1
9(二重根) 2 3
9 时,解
[9E ( B 2E )]X 0
0 x1 0 x2 0 x3 0 即为: 2 x 2 x 4 x 0 就是 x1 x2 2 x3 0 1 2 3 2 x 2 x 4 x 0 1 2 2 3 1
的特征值与特征向量
解: A的特征方程为: | A E | 0
即为:
4 0 0
2 4 2
0 (4 ) (2 ) 2
2
2
0
所以
1 2, 2 4
是矩阵A 的特征值
(1)当 1
2 时,解齐次方程组 ( A 2E) X 0
1 该方程组的基础解系是: 1 0 1
m
m
性质4.如果 性质5.如果
| A || B |
tr ( A) tr ( B) r ( A) r ( B)

矩阵的特征值与特征向量

矩阵的特征值与特征向量

1, 2, …, n), 则 P 可逆, 且 P-1AP=
1,
注: 对于实对称矩阵 A,一定有可逆阵 P,使 P-1AP为对角阵, P 的列向量为 A 的特征向量,对角阵中主对角线上的元素为 A 的特征值,而且也一定有正交阵 Q,使 Q-1AQ 为对角阵. 当 A 的特征 值互异时,其特征向量两两正交,只需将特征向量单位化 ,即可求得正交阵 Q;当 A 有 k 重特征值时,这个k 重特征值 一定对应有 k 个线性无关的特征向量,用施密特正交化方法将其 化为两两正交的向量并单位化,就求出正交阵 Q 来了.
矩阵的特征值与特征向量
一. 特征值与特征向量的求法
1.利用定义求特征值与特征向量
注: 用定义求特征值与特征向量,最重要的是求出特征值. 为此, 首先求出矩阵的特征多项式,并将它按降幂排列,然后通过试根或 因式分解将其化为一次式的乘积,从而求出特征值. 求特征向 量 即求齐次方程组(A- E)X=0 的基础解系.
2.利用公式求特征值与特征向量
二.A 与对角阵相似的解题方法
注: 当矩阵有重特征值时,我们用定理“A 与对角阵相似的充 要条件为 r(A- iE)=n-ri”来判定 A 能否与对角阵相似,其中 ri特征值 i的重数,n 为矩阵 A 的阶数.
注: 矩阵相似对角化的步骤: (1) 求出 A 的所有特征值 1, 2,…
三. 方阵 及其特征值、特征向量的互求
四.An 的求法
五.证明题
n,若
1, 2,…,
n 互异, 则 A 与对角阵相似;若
1, 2,…,
异的为
1, 2,…,
m, 每个
i 的重数为 ri, 当 r(A-
i E)=n-
(i=1,2,…m), A 与对角阵相似;否则 A 不能与对角阵相似

矩阵的特征值与特征向量

矩阵的特征值与特征向量

矩阵的特征值与特征向量矩阵是线性代数中的重要概念之一,特征值与特征向量是矩阵理论中常被提到的概念。

在本文中,我们将详细介绍矩阵的特征值与特征向量,以及它们之间的关系和应用。

一、特征值与特征向量的定义矩阵A是一个n阶方阵,那么非零向量x是矩阵A的特征向量,如果满足以下条件:Ax = λx其中λ为实数,称为矩阵A的特征值。

特征向量是指在变换矩阵作用下,只发生缩放而不改变方向的向量。

特征值则是衡量该变换强度的标量。

二、求解特征值与特征向量的方法1. 特征值的求解要求解特征值,我们需要解方程|A-λI|=0,其中I为单位矩阵。

解这个方程就可以得到矩阵A的特征值。

2. 特征向量的求解当求得特征值λ之后,我们可以将其代入方程(A-λI)x=0中,通过高斯消元法求解得到特征向量。

三、特征值与特征向量的性质1. 特征值的重要性质矩阵A的特征值个数等于其阶数n,且特征值具有唯一性。

2. 特征向量的重要性质特征向量x与特征值λ的关系为:Ax = λx。

这表明特征向量在矩阵A的作用下只发生了缩放,而未改变方向。

3. 特征值与特征向量的关系同一特征值对应的特征向量可由标量倍数唯一确定。

四、特征值与特征向量的应用1. 矩阵的对角化矩阵的特征值与特征向量可以被用于对矩阵进行对角化。

对角化使得矩阵运算更加简单,且能够揭示矩阵的某些性质。

2. 矩阵的相似性特征值与特征向量的概念也被用于定义矩阵的相似性。

相似矩阵具有相同的特征值。

3. 特征值在图像处理中的应用特征值与特征向量的概念在图像处理中有广泛的应用。

例如,它们可以用于图像压缩、边缘检测等领域。

五、总结矩阵的特征值与特征向量是线性代数中的重要概念。

特征值是矩阵的度量,而特征向量则是与特征值相关联的向量。

通过求解特征值和特征向量,我们可以得到揭示矩阵性质的重要信息,并应用于各种实际问题中。

特征值与特征向量的概念在科学领域中有着广泛的应用,如物理学、生物学、经济学等。

它们的理解与掌握对于深入理解矩阵理论以及解决实际问题具有重要的意义。

矩阵的特征值与特征向量

矩阵的特征值与特征向量

矩阵的特征值与特征向量矩阵是线性代数中的基本概念之一,它在许多科学领域中都有广泛的应用。

在矩阵中有两个与之相关的重要概念,即特征值和特征向量。

特征值和特征向量是矩阵在线性变换中非常有用的性质,它们可以帮助我们理解和描述线性变换的特点。

本文将重点探讨矩阵的特征值和特征向量的定义、性质以及应用。

1. 特征值与特征向量的定义矩阵A的特征值是指满足方程Av=λv的非零向量v以及对应的常数λ。

其中v是特征向量,λ是特征值。

换句话说,特征向量是矩阵作用后与自身平行(或成比例)的向量,而特征值则表示该向量在作用后的缩放倍数。

2. 计算特征值与特征向量的方法要计算一个矩阵的特征值与特征向量,需要解决特征值问题,即求解方程|A-λI|=0,其中I是单位矩阵。

解这个方程可以得到特征值的集合。

对于每个特征值λ,再解方程(A-λI)v=0,可以得到特征向量的集合。

3. 特征值与特征向量的性质特征值和特征向量有一些重要的性质:- 特征值与特征向量是成对出现的,一个特征值对应一个特征向量。

- 矩阵的特征值与它的转置矩阵的特征值是相同的。

- 对于n阶矩阵,特征值的个数不超过n个。

- 特征向量可以线性组合,线性组合后的向量仍然是对应特征值的特征向量。

4. 特征值与特征向量的应用特征值与特征向量在许多领域都有广泛的应用,下面列举几个常见的应用:- 特征值分解:通过特征值与特征向量的计算,可以将一个矩阵分解为特征值和特征向量的乘积形式,这在数值计算和信号处理中非常有用。

- 矩阵对角化:特征值与特征向量可以将一个矩阵对角化,使得计算和处理更加简化和高效。

- 特征值的物理意义:在物理学中,特征值可以表示物理系统的某些性质,如量子力学中的能级等。

总结:矩阵的特征值和特征向量是矩阵理论中非常重要的概念。

通过计算特征值与特征向量,可以帮助我们理解和描述线性变换的性质,进行矩阵的对角化处理,以及在数值计算和信号处理中应用。

矩阵的特征值和特征向量是线性代数学习中不可或缺的内容,对于深入理解线性变换和矩阵的性质具有重要的作用。

项目六矩阵的特征值与特征向量

项目六矩阵的特征值与特征向量

项目六 矩阵的特征值与特征向量实验1 求矩阵的特征值与特征向量实验目的学习利用Mathematica(4.0以上版本)命令求方阵的特征值和特征向量;能利用软件计算方 阵的特征值和特征向量及求二次型的标准形.求方阵的特征值与特征向量.例1.1 (教材 例1.1) 求矩阵.031121201⎪⎪⎪⎭⎫ ⎝⎛--=A 的特征值与特值向量.(1) 求矩阵A 的特征值. 输入 A={{-1,0,2},{1,2,-1},{1,3,0}}MatrixForm[A] Eigenvalues[A]则输出A 的特征值{-1,1,1}(2) 求矩阵A 的特征向量. 输入A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigenvectors[A]则输出 {{-3,1,0},{1,0,1},{0,0,0}}即A 的特征向量为.101,013⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-(3) 利用命令Eigensystem 同时矩阵A 的所有特征值与特征向量. 输入A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigensystem[A]则输出矩阵A 的特征值及其对应的特征向量.例1.2 求矩阵⎪⎪⎪⎭⎫ ⎝⎛=654543432A 的特征值与特征向量.输入A=Table[i+j,{i,3},{j,3}] MatrixForm[A](1) 计算矩阵A 的全部(准确解)特征值, 输入Eigenvalues[A]则输出{0, 426-,426+}(2) 计算矩阵A 的全部(数值解)特征值, 输入Eigenvalues[N[A]]则输出{12.4807, -0., -1.34831610-⨯}(3) 计算矩阵A 的全部(准确解)特征向量, 输入Eigenvectors[A]//MatrixForm则输出121172422344220342234421172422344220342234421(4) 计算矩阵A 的全部(数值解)特征向量, 输入Eigenvectors[N[A]]//MatrixForm则输出0.4303620.5665420.7027220.805060.111190.5826790.4082480.8164970.408248(5) 同时计算矩阵A 的全部(准确解)特征值和特征向量, 输入 OutputForm[Eigensystem[A]] 则输出所求结果(6) 计算同时矩阵A 的零空间, 输入NullSpace[A]则输出{{1,-2,1}}(7) 调入程序包<<LinearAlgebra`Orthogonalization`后,还可以做以下的运算:GramSchmidt[ ]:用Gram-Schmidt 过程将向量组单位正交化; Normalize[ ]:将向量组单位化;Projection[vect1,vect2]:求从向量组vect1到vect2的正交映射.输入<<LinearAlgebra ’Orthogonalization ’GramSchmidt[Eigenvectors[N[A]]]//MatrixForm则输出0.4303620.5665420.7027220.805060.111190.5826790.4082480.8164970.408248例1.3 求方阵⎪⎪⎪⎭⎫ ⎝⎛=633312321M 的特征值和特征向量.输入Clear[M];M={{1,2,3,},{2,1,3}{3,3,6}}; Eigenvalues[M] Eigenvectors[M] Eigensystem[M]则分别输出{-1,0,9}{{-1,1,0},{-1,-1,1}{1,1,2}}{{-1,0,9},{{-1,1,0},{-1,-1,1}{1,1,2}}}例1.4 (教材 例1.2) 求矩阵⎪⎪⎪⎭⎫⎝⎛---=2163/115/12/13/13/1A 的特征值和特征向量的近似值.输入A={{1/3,1/3,-1/2},{1/5,1,-1/3},{6,1,-2}}; Eigensystem[A]则屏幕输出的结果很复杂,原因是矩阵A 的特征值中有复数且其精确解太复杂.此时,可采用 近似形式输入矩阵A ,则输出结果也采用近似形式来表达.输入A={{1/3,1/3,-1/2},{1/5,1,-1/3},{6.0,1,-2}}; Eigensystem[A]则输出{{-0.+1.27186i,-0.-1.27186i,0.}, {{0.+0.i,0.+0.I,0.+0.i}, {0.-0.i,0.-0.i,0.+0.i}, {-0.,-0.,-0.}}}从中可以看到A 有两个复特征值与一个实特征值.属于复特征值的特征向量也是复的;属于实 特征值的特征向量是实的.例1.5 (教材 例1.3) 已知2是方阵⎪⎪⎪⎭⎫ ⎝⎛=32131003t A 的特征值,求t .输入Clear[A,q];A={{2-3,0,0},{-1,2-t,-3},{-1,-2,2-3}}; q=Det[A] Solve[q==0,t]则输出{{t →8}}即当8=t 时,2是方阵A 的特征值.例1.6 (教材 例1.4) 已知)1,1,1(-=x 是方阵⎪⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量,求参数b a ,及特征向量x 所属的特征值.设所求特征值为t ,输入Clear[A,B,v,a,b,t];A={{t-2,1,-2},{-5,t-a,-3},{1,-b,t+2}}; v={1,1,-1}; B=A.v;Solve[{B[[1]]==0,B[[2]]==0,B[[3]]==0},{a,b,t}]则输出{{a →-3, b →0, t →-1}}即0,3=-=b a 时,向量)1,1,1(-=x 是方阵A 的属于特征值-1和特征向量.矩阵的相似变换例1.7 (教材 例1.5) 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=222222114A ,求一可逆矩阵P ,使AP P 1-为对角矩阵.方法1 输入Clear[A,P];A={{4,1,1},{2,2,2},{2,2,2}}; Eigenvalues[A]P=Eigenvectors[A]//Transpose则输出{0,2,6}{{0,-1,1},{-1,1,1},{1,1,1}}即矩阵A 的特征值为0,2,6.特征向量为⎪⎪⎪⎭⎫ ⎝⎛-110,⎪⎪⎪⎭⎫ ⎝⎛-111与⎪⎪⎪⎭⎫ ⎝⎛111,矩阵⎪⎪⎪⎭⎫ ⎝⎛--=111111110P . 可验证AP P 1-为对角阵, 事实上,输入Inverse[P].A.P则输出{{0,0,0},{0,2,0},{0,0,6}}因此,矩阵A 在相似变换矩阵P 的作用下,可化作对角阵.方法2 直接使用JordanDecomposition 命令, 输入jor=JordanDecomposition[A]则输出{{{0,-1,1},{-1,1,1},{1,1,1}},{{0,0,0},{0,2,0},{0,0,6}}}可取出第一个矩阵S 和第二个矩阵Λ,事实上,输入jor[[1]] jor[[2]]则输出{{0,-1,1},{-1,1,1},{1,1,1}} {{0,0,0},{0,2,0},{0,0,6}}输出结果与方法1的得到的结果完全相同.例1.8 方阵⎪⎪⎭⎫⎝⎛=1201A 是否与对角阵相似?输入Clear[A]; A={{1,0},{2,1}}; Eigensystem[A]输出为{{1,1},{{0,1}{0,0}}}于是,1是二重特征值,但是只有向量{0,1}是特征向量,因此,矩阵A 不与对角阵相似.例1.9 (教材 例1.6) 已知方阵⎪⎪⎪⎭⎫ ⎝⎛-=11322002x A 与⎪⎪⎪⎭⎫ ⎝⎛-=y B 00020001相似, 求y x ,.注意矩阵B 是对角矩阵,特征值是y ,2,1-.又矩阵A 是分块下三角矩阵,-2是矩阵A 的特 征值.矩阵A 与B 相似,则2-=y ,且-1,2也是矩阵A 的特征值.输入Clear[c,v];v={{4,0,0},{-2,2-x,-2},{-3,-1,1}}; Solve[Det[v]==0,x]则输出{{x →0}}所以,在题设条件,0=x ,2-=y .例1.10 对实对称矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000001101010110A ,求一个正交阵P ,使AP P 1-为对角阵. 输入<<LinearAlgebra\Orthogonalization Clear[A,P]A={{0,1,1,0 },{1,0,1,0},{1,1,0,0},{0,0,0,2}}; Eigenvalues[A] Eigenvectors[A]输出的特征值与特征向量为{-1,-1,2,2}{{-1,0,1,0},{-1,1,0,0},{0,0,0,1},{1,1,1,0}}再输入P=GramSchmidt[Eigenvectors[A]]//Transpose输出为已经正交化和单位化的特征向量并且经转置后的矩阵P{}}{0,1,0,0,31,0,61,21,31,0,32,0,31,0,61,21⎪⎭⎪⎬⎫-⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎭⎪⎬⎫-⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧-为了验证P 是正交阵,以及AP P AP p T =-1是对角阵,输入Transpose[P].PInverse[P].A.P//Simplify Transpose[P].A.P//simplify则输出{{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}} {{-1,0,0,0},{0,-1,0,0},{0,0,2,0},{0,0,0,2}} {{-1,0,0,0},{0,-1,0,0},{0,0,2,0},{0,0,0,2}}第一个结果说明E P P T =,因此P 是正交阵;第二个与第三个结果说明⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==-22111AP P AP P T例1.11 求一个正交变换,化二次型243231212222x x x x x x x f +++=为标准型.二次型的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000001101010110A这恰好是例1.10的矩阵, 因此,用例1.10中的正交矩阵P ,作正交变换PY X =,即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛43214321010031061213103203106121y y y y x x x x将f 化作标准型.输入f=Table[x[j],{j,4}].A.Table[x[j],{j,4}]//Simplify则输出2(x[2]x[3]+x[1](x[2]+x[3])+x[4]2)这是原来的二次型f .把上式中的x[1],x[2],x[3],x[4]用y[1],y[2],y[3],y[4]表示,输入代换命令f/.Table[x[j]→(P.Table[y[j],{j,4}])[[j]],{j,4}]// Simplify则输出-y[1]2-y[2]2+2(y[3]2+y[4]2)这就是二次型f 的标准型.例1.12 (教材 例1.7) 已知二次型3231212322213212422),,(x x x x x x x x x x x x f +-++-=(1)求标准形; (2)求正惯性指数; (3)判断二次型是否正定. 输入A={{1,1,-2},{1,-2,1},{-2,1,1}}Eigenvalues[A]则输出矩阵A 的特征值为{-3,0,3}所以二次型的标准形为222133y y f +=;正惯性指数为1;该二次型不是正定的.例1.13 (教材 例1.8) 求正交变换将二次型43324121242322213212222),,(x x x x x x x x x x x x x x x f -+-++++=化为标准形.输入A={{1,1,0,-1},{1,1,1,0},{0,1,1,-1},{-1,0,-1,1}} MatrixForm[A] X={x1,x2,x3,x4}; Expand[X.A.X]<<LinearAlgebra\Orthogonalization.m P=GramSchmidt[Eigenvectors[A]] P.A.Inverse[P]//MatrixForm则输出所求的正交变换矩阵P 与二次型矩阵A 标准形. 从结果知, 所求二次型的标准型为24232221y y y y g +++-=实验2 层次分析法实验目的通过应用层次分析法解决一个实际问题,学习层次分析法的基本原理与方法;掌握用层次 分析法建立数学模型的基本步骤;学会用Mathematica 解决层次分析法中的数学问题.基本原理层次分析法是系统分析的重要工具之一,其基本思想是把问题层次化、数量化, 并用数学 方法为分析、决策、预报或控制提供定量依据. 它特别适用于难以完全量化, 又相互关联、 相互制约的众多因素构成的复杂问题. 它把人的思维过程层次化、数量化,是系统分析的一中 新型的数学方法.运用层次分析法建立数学模型, 一般可按如下四个基本步骤进行.1.建立层次结构首先对所面临的问题要掌握足够的信息, 搞清楚问题的范围、因素、各因素之间的相互 关系,及所要解决问题的目标. 把问题条理化、层次化, 构造出一个有层次的结构模型. 在这 个模型下,复杂问题被分解为元素的组成部分. 这些元素又按其属性及关系形成若干层次.层 次结构一般分三层:第一层为最高层, 它是分析问题的预定目标和结果, 也称目标层;第二层为中间层, 它是为了实现目标所涉及的中间环节, 如: 准则、子准则, 也称准则 层;第三层为最底层, 它包括了为实现目标可供选择的各种措施、决策方案等, 也称方案层.图2-1决策目标准则1准则2准则n方案1方案2方案m…………注:上述层次结构具有以下特点:(1) 从上到下顺序地存在支配关系, 并用直线段表示;(2)整个层次结构中层次数不受限制.2.构造判断矩阵构造判断矩阵是建立层次分析模型的关键. 假定以上一层的某元素y 为准则,它所支配 的下一层次的元素为n x x x ,,,21 ,这n 个元素对上一层次的元素y 有影响,要确定它们在y 中的比重. 采用成对比较法. 即每次取两个元素i x 和j x , 用ij a 表示i x 与j x 对y 的影响之比, 全部比较的结果可用矩阵A 表示,即.,,2,1,,)(n j i a A n n ij ==⨯ 称矩阵A 为判断矩阵.根据上述定义,易见判断矩阵的元素ij a 满足下列性质:)(,1),(1j i a j i a a ii ijji ==≠=当0>ij a 时,我们称判断矩阵A 为正互反矩阵.怎样确定判断矩阵A 的元素ij a 的取值呢? 当某层的元素n x x x ,,,21 对于上一层某元素y 的影响可直接定量表示时, i x 与j x 对y的影响之比可以直接确定, ij a 的值也可直接确定. 但对于大多数社会经济问题, 特别是比较 复杂的问题, 元素i x 与j x 对y 的重要性不容易直接获得, 需要通过适当的量化方法来解决. 通常取数字1~9及其倒数作为ij a 的取值范围. 这是因为在进行定性的成对比较时, 通常采用 5级制(表1),在每两个等级之间各有一个中间状态, 共1~9个尺度, 另外心理学家认为进行成 对比较的因素太多, 将超出人们的判断比较能力, 降低精确. 实践证明, 成对比较的尺度以 27±为宜, 故ij a 的取值范围是9,,2,1 及其倒数.表1 比较尺度ij a 的取值 97531/ijj i a x x 绝对强很强强较强相等3.计算层次单排序权重并做一致性检验层次单排序是指同一层次各个元素对于上一层次中的某个元素的相对重要性进行排序. 具体做法是: 根据同一层n 个元素n x x x ,,,21 对上一层某元素y 的判断矩阵A ,求出它们对 于元素y 的相对排序权重,记为n w w w ,,,21 ,写成向量形式T n w w w w ),,,(21 =, 称其为A 的层次单排序权重向量, 其中i w 表示第i 个元素对上一层中某元素y 所占的比重, 从而得到层次单排序.层次单排序权重向量有几种求解方法,常用的方法是利用判断矩阵A 的特征值与特征向 量来计算排序权重向量w .关于正互反矩阵A ,我们不加证明地给出下列结果. (1) 如果一个正互反矩阵n n ij a A ⨯=)(满足),,2,1,,(n k j i a a a ik jk ij ==⨯则称矩阵A 具有一致性, 称元素k j i x x x ,,的成对比较是一致的; 并且称A 为一致矩阵.(2) n 阶正互反矩阵A 的最大特征根n ≥max λ, 当n =λ时, A 是一致的. (3) n 阶正互反矩阵是一致矩阵的充分必要条件是最大特征值 n =max λ.计算排序权重向量的方法和步骤设T n w ),,,(21ωωω =是n 阶判断矩阵的排序权重向量, 当A 为一致矩阵时, 根据n阶判断矩阵构成的定义,有⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n n n n n A ωωωωωωωωωωωωωωωωωω212221212111 (2.1) 因而满足,nw Aw = 这里n 是矩阵A 的最大特征根, w 是相应的特征向量; 当A 为一般的 判断矩阵时w Aw max λ=, 其中max λ是A 的最大特征值(也称主特征根), w 是相应的特征向量(也称主特征向量). 经归一化(即11=∑=ni iω)后, 可近似作为排序权重向量, 这种方法称为特征根法.一致性检验 在构造判断矩阵时, 我们并没有要求判断矩阵具有一致性, 这是由客观事物的复杂性 与人的认识的多样性所决定的. 特别是在规模大、因素多的情况下, 对于判断矩阵的每个元 素来说,不可能求出精确的j i ωω/, 但要求判断矩阵大体上应该是一致的. 一个经不起推敲 的判断矩阵有可能导致决策的失误. 利用上述方法计算排序权重向量, 当判断矩阵过于偏离 一致性时, 其可靠性也有问题. 因此,需要对判断矩阵的一致性进行检验, 检验可按如下步骤 进行: (1) 计算一致性指标CI1max --=n nCI λ (2.2)当,0=CI 即n =max λ时, 判断矩阵A 是一致的. 当CI 的值越大, 判断矩阵A 的不一致的程 度就越严重. (2) 查找相应的平均随机一致性指标RI 表2给出了n )11~1(阶正互反矩阵的平均随机一致性指标RI , 其中数据采用了 100~150个随机样本矩阵A 计算得到.(3) 计算一致性比例CRRICI CR =(2.3) 当10.0<C R 时, 认为判断矩阵的一致性是可以接受的; 否则应对判断矩阵作适当修正.4. 计算层次总排序权重并做一致性检验 计算出某层元素对其上一层中某元素的排序权重向量后, 还需要得到各层元素, 特别 是最底层中各方案对于目标层的排序权重, 即层次总排序权重向量, 再进行方案选择. 层次总排序权重通过自上而下地将层次单排序的权重进行合成而得到. 考虑3个层次的决策问题: 第一层只有1个元素, 第二层有n 个元素, 第三层有m 个元 素.设第二层对第一层的层次单排序的权重向量为 Tn w ),,,()2()2(2)2(1)2(ωωω =第三层对第二层的层次单排序的权重向量为n k w w w w T kn k k k ,,2,1,),,,()3()3(2)3(1)3( ==以)3(k w 为列向量构成矩阵:n m nm m mn n n w w w w w w w w w w w w W ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛==)3()3(2)3(1)3(2)3(22)3(12)3(1)3(21)3(11)3()3(2)3(1)3(,,,,,,,,,,,),,,( (2.4) 则第三层对第一层的层次总排序权重向量为 )2()3()3(w W w = (2.5) 一般地, 若层次模型共有s 层, 则第k 层对第一层的总排序权重向量为s k w W w k k k ,,4,3,)1()()( ==- (2.6)其中)(k W 是以第k 层对第1-k 层的排序权向量为列向量组成的矩阵,)1(-k w 是第1-k 层对第 一层的总排序权重向量. 按照上述递推公式, 可得到最下层(第s 层)对第一层的总排序权重 向量为)2()3()1()()(w W W W w s s s -= (2.7)对层次总排序权重向量也要进行一致性检验. 具体方法是从最高层到最低层逐层进行 检验. 如果所考虑的层次分析模型共有s 层. 设第l (s l ≤≤3)层的一致性指标与随机一致性指标分别为)()(2)(1,,,l n l l CI CI CI (n 是第1-l 层元素的数目)与)()(2)(1,,,l n l l RI RI RI , 令)1()(1)(1)(],,[-=l l l l w CI CI CI (2.8) )1()(1)(1)(],,[-=l l l l w RI RI RI(2.9)则第l 层对第一层的总排序权向量的一致性比率为s l RI CI CR CR l l l l ,,4,3,)()()1()( =+=-(2.10) 其中)2(CR 为由(2.3)式计算的第二层对第一层的排序权重向量的一致性比率.当最下层对第一层的总排序权重向量的一致性比率1.0)(<s CR 时, 就认为整个层次结构 的比较判断可通过一致性检验.应用举例问题 在选购电脑时, 人们希望花最少的钱买到最理想的电脑. 试通过层次分析法建立 数学模型,并以此确定欲选购的电脑.1. 建立选购电脑的层次结构模型选择的目标性能价格质量外观售后服务品牌1品牌2品牌3目标层准则层方案层图2-2该层次结构模型共有三层:目标层(用符号z 表示最终的选择目标); 准则层(分别用符号 521,,,y y y 表示“性能”、“价格”、“质量”、“外观”、“售后服务”五个判断准则); 方案层(分别用符号321,,x x x 表示品牌1, 品牌2, 品牌3三种选择方案).2.构造成对比较判断矩阵(1) 建立准则层对目标层的成对比较判断矩阵根据表1的定量化尺度, 从建模者的个人观点出发, 设准则层对目标层的成对比较判断矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=13123/13/113/12/19/113123/12/122/115/139351A(2.11) (2) 建立方案层对准则层的成对比较判断矩阵,113/1113/1331,123/12/115/13511252/1135/13/11,12/15/1213/1531,1252/1135/13/1154321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B B B B B3.计算层次单排序权重向量并做一致性检验先利用Mathematica 计算矩阵A 的最大特征值及特征值所对应的特征向量. 输入<<Miscellaneous\RealOnly.m(*调用只求实数运算的软件包*)A={{1.0,5,3,9,3},{1/5,1,1/2,2,1/2},{1/3,2,1,3,1},{1/9,1/2,1/3,1,1/3},{1/3,2,1,3,1}};(*以小数形式1.0输入进行近似计算, 可避免精确解太长、太复杂*) T=Eigensystem[A]//Chop(*输入//Chop, 把与零非常接近的数换成零*)则输出{{5.00974,Nonreal,Nonreal,0,0},{{0.88126,0.,0.,0.,0.},{0.,Nonreal,Nonreal,Nonreal,Nonreal}, {0.,Nonreal,Nonreal,Nonreal,Nonreal}, {-0.,0,0.,0.,0.},{-0.65676,0,0.57431,0.,-0.}}} (输出中的Nonreal 表示复数)从中得到A 的最大特征值,00974.5max =λ及其对应的特征向量T x )304926.0,0960557.0,304926.0,167913.0,88126.0(=输入Clear[x]; x=T[[2,1]];ww2=x/Apply[Plus,x]则得到归一化后的特征向量T w )173739.0,0547301.0,173739.0,0956728.0,502119.0()2(=计算一致性指标1max --=n nCI λ,其中,00974.5,5max ==λn 故.002435.0=C I 查表得到相应的随机一致性指标 12.1=RI 从而得到一致性比率002174.0)2(==RI CICR 因,1.0)2(<CR 通过了一致性检验,即认为A 的一致性程度在容许的范围之内, 可以用归一 化后的特征向量)2(w 作为排序权重向量. 下面再求矩阵)5,,2,1( =j B j 的最大特征值及特征值所对应的特征向量, 输入B1=B3={{1.0,1/3,1/5},{3,1,1/2},{5,2,1}};B2=Transpose[B1];B4={{1.0,5,3},{1/5,1,1/2},{1/3,2,1}}; B5={{1.0,3,3},{1/3,1,1},{1/3,1,1}}; T1=Eigensystem[B1]//Chop T2=Eigensystem[B2]//Chop T3=Eigensystem[B3]//Chop T4=Eigensystem[B4]//Chop T5=Eigensystem[B5]//Chop则输出 {{3.00369,Nonreal, Nonreal}, {{0.,0.46286,0.},{ Nonreal, Nonreal,0.}, { Nonreal, Nonreal, 0.}}};{{3.00369,Nonreal, Nonreal},{0., Nonreal, Nonreal}, {0., Nonreal, Nonreal}}}{{3.00369, Nonreal, Nonreal}, {{0.,0.46286,0.}, { Nonreal, Nonreal,0.}, { Nonreal, Nonreal,0.}}}{{3.00369, Nonreal, Nonreal}, {{0.,0.,0.},{0., Nonreal, Nonreal}, {0., Nonreal, Nonreal}}} {{3,0,0}, {{0.,0.,0.}, {-0.,0.,0.}, {-0.,-0.,0.}}从上面的输出可以分别得到)5,,2,1( =j B j 的最大特征值000.3,00369.3,00369.3,00369.3,00369.354321=====λλλλλ 以及上述特征值所对应的特征向量TT T TT x x x x x )301511.0,301511.0,904534.0()328758.0,174679.0,928119.0()871137.0,46286.0,163954.0()174679.0,328758.0,928119.0()871137.0,46286.0,163954.0(54321=====其中.5,,2,1),,,(321 ==i x x x x i i i i 为求出归一化后的特征向量, 输入Clear[x1,x2,x3,x4,x5]; x1=T1[[2,1]]; w1=x1/Apply[Plus,x1] x2=T2[[2,1]]; w2=x2/Apply[Plus,x2] x3=T3[[2,1]]; w3=x3/Apply[Plus,x3]w4=x4/Apply[Plus,x4] x5=T5[[2,1]]; w5=x5/Apply[Plus,x5]则输出TT T TT w w w w w )200000.0,200000.0,600000.0()229651.0,12202.0,648329.0()581552.0,308996.0,109452.0()12202.0,229651.0,648329.0()581552.0,308996.0,109452.0(54321===== 计算一致性指标)5,,2,1(1=--=i n nCI i i λ,其中,3=n 输入lamda={T1[[1,1]],T2[[1,1]],T3[[1,1]],T4[[1,1]],T5[[1,1]]} CI=(lamda-3)/(3-1)//Chop则输出0,0018473.0,0018473.0,0018473.0,0018473.054321=====CI CI CI CI CI查表得到相应的随机一致性指标)5,,2,1(58.0 ==i RI i计算一致性比率5,,2,1, ==i RI CI CR iii ,输入CR=CI/0.58则输出.0,003185.0,003185.0,003185.0,003185.054321=====CR CR CR CR CR因),5,,2,1(,1.0 =<i CR i 通过了一致性检验. 即认为)5,,2,1( =j B j 的一致性程度在容许 的范围之内, 可以用归一化后的特征向量作为其排序权重向量.4. 计算层次总排序权重向量并做一致性检验购买个人电脑问题的第三层对第二层的排序权重计算结果列于表3.表3以矩阵表示第三层对第二层的排序权重计算结果为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2.0229651.0581552.012202.0581552.02.012202.0308996.0229651.0308996.06.0648329.0109452.0648329.0109452.0)3(W )3(W 即是第三层对第二层的权重向量为列向量组成的矩阵. 最下层(第三层)对最上层(第一层)的总排序权向量为)2()3()3(w W w =为了计算上式, 输入W3=Transpose[{w1,w2,w3,w4,w5}]; ww3=W3.ww2则从输出结果得到T w )452037.0,272235.0,275728.0()3(= 为了对总排序权向量进行一致性检验, 计算)2(521)3().,,.,.(w I C I C I C CI =输入CI.ww2则从输出结果得到00152635.0)3(=CI 再计算)2(51)3(],,[w RI RI RI =,输入RI=Table[0.58,{j,5}]; RI.ww2则从输出结果得到 58.0.)3(=I R 最后计算 )3()3()2()3(./...I R I C R C R C +=,可得00480575.0.)3(=R C因为,1.0.)3(<R C 所以总排序权重向量符合一致性要求的范围.根据总排序权重向量的分量取值, 品牌3的电脑是建模者对这三种品牌机的首选.实验报告1.根据你的设想购置一台计算机, 需考虑什么样的判断准则? 利用层次分析法及数学软件做出最佳的决策.2.根据你的经历设想如何报考大学, 需要什么样的判断准则? 利用层次分析法及数学软件做出最佳的决策.3.假期到了, 某学生打算做一次旅游, 有四个地点可供选择, 假定他要考虑5个因素: 费用、景色、居住条件、饮食以及旅游条件. 由于该学生没有固定收入, 他对费用最为看重, 其次是旅游点的景色, 至于旅游条件、饮食, 差不多就行, 住什么地方就更无所谓了. 这四个旅游点没有一个具有明显的优势, 而是各有优劣. 该同学拿不定主意, 请用层次分析法帮助他找出最佳旅游点.4. 假设你马上就要从大学毕业, 正面临择业的问题, 你对工作的选择着重考虑下面几个因素: (1)单位的声誉; (2)收入; (3)专业是否对口; (4)是否有机会深造或晋升; (5)工作地点;(6)休闲时间. 对上述各种因素你可以根据自己的具体情况排序,也可以增加或减少所考虑的因素. 现在有四个单位打算你, 但如果用上述标准来衡量,没有一个单位具有明显的优势,请用层次分析法为你自己做一个合理的选择.。

第一节 矩阵的特征值与特征向量

第一节 矩阵的特征值与特征向量

2. 特征值与特征向量的求法
Ax = λ x ⇒ ( A − λ E ) x = 0 或 ( λ E − A) x = 0
已知
x ≠ 0, 所以齐次线性方程组有非零解
⇔ A− λE = 0 或 λE − A = 0
定义2: An×n 定义 :
= aij
( )
λE − A =
, 数λ n×n λ − a11 − a12 L − a 21 λ − a 22 L
*
(
−1
的特征值。 ) 的特征值。
B = A2 − 3 A + E 的特征值和 B 的特征值为1,2,3,求 例: 设矩阵 A 的特征值为 ,
1 −1 1 例:设 A = 2 − 2 2 −1 1 −1 求: (1) A 的特征值和特征向量。 ) 的特征值和特征向量。
x1 = x 2 − x 3
A
1 −1 1 1 − 1 1 = 2 − 2 2 → 0 0 0 − 1 1 − 1 0 0 0
自由未知量: 自由未知量 x 2 , x 3
−1 1 p1 = 0 , p2 = 1 得基础解系 1 0
它的基础解系, 任意 n 个线性无关的向量都是 它的基础解系, 1 0 0 0 1 0 L 取单位向量组 ε 1 = , ε 2 = , , ε n = M M M 0 0 1 作为基础解系。 作为基础解系。
解: 第一步:写出矩阵A的特征方程,求出特征值 第一步:写出矩阵 的特征方程 求出特征值. 的特征方程,
−1 − λ A− λE = −4 1 2 ( 2 − λ ) ( λ − 1) = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定理4
设1,2, ,s是方阵A的互不相同的特征值,
x1, x2, , xs是分别与之对应的特征向量,则 x1, x2, , xs线性无关。 esp .
属于实对称阵的不同特征值的特征向量是正交的。
Statistics Department
矩阵论/矩阵分析 视频公开课
矩阵的特征值与特征向量 (完)
二、特征值与特征向量的性质
设A aij nn Cnn , 称 a11 a22 ann为A的迹,记为
trA,即trA a11 a22 ann. tr: trace
������������������ ⋯ ������������������ ������ = ⋯ ⋯ ⋯

as s

a s1 s 1

对于A Cnn , 规定
f A as As as1As1 称f A为矩阵A的多项式.
a1 a0 ,
a1A a0I
f(λ) 是普通多 项式
Statistics Department
定理3
设A Cnn , A的n个特征值为1,2, ,n,对应的
Statistics Department
定理2
设i是ACnn的ri重特征值 称ri为特征值i的代数重数 ,
对应i有si个线性无关的特征向量(称si为特征值i的
几何重数),则1 si
简单地说,几何 重数不超过代数 重数
定义4
设f 是的多项式
f

矩阵论/矩阵分析 视频公开课
第1章 矩阵的相似变换 §1.1 矩阵的特征值与特征向量 §1.2 矩阵的相似对角化 §1.3 矩阵的Jordan标准形 §1.4 Hamilton-Cayley 定理 §1.5 向量的内积 §1.6 矩阵的酉相似
武汉理工大学 理学院统计学系 金升平
Statistics Department
下一讲内容: 相似矩阵
See you next time
武汉理工大学 理学院统计学系 金升平
Statistics Department
������������������ ⋯ ������������������
定理1 证明从略
设n 阶方阵A aij nn 的特征值为1,2, ,n ,则

1 1+2 + +n a11 a22 ann = trA;
n
2k A A可逆的充要条件是A的特征值非零。
A的对应特征值i的特征向量;
Statistics Department
例1
1 2 2
设A


2
2
4

,
求A的特征值与特征向量。
2 4 2

A的特征多项式为
1 2 2
det I A 2 2 4 22 7
2 4 2
8 2 2 1 0 0.5
7I

A


2
5
4

r


0
1
1

2 4 5 0 0 0
1
得基础解系
x3


2

,
故对应3

7的全部
2
特征向量为 k3x3,k3 0.
Statistics Department
2 2
得基础解系
x1


1

,
x2


0

0
1
所以对应1 2 2的全部特征向量为 k1x1 k2x2 ,
其中k1, k2不同时为0.
Statistics Department
当3 7时,解方程组7I A x 0.由
������������������ ⋮ ������������������ ������������ = ⋮ ⋮ ⋮
������������������ ⋮ ������������������
������������������ ⋮ ������������������ ������������ = ⋮ ⋮ ⋮
k 1
3 AT的特征值是1,2, ,n,
而AH的特征值是1,2, ,n
������������������ ⋮ ������������������
这里复数������ = ������ + ������������的共轭: ������ = ������ − ������������
矩阵论/矩阵分析 视频公开课
本视频内容: 矩阵的特征值与特征向量
武汉理工大学 理学院统计学系 金升平
Statistics Department
§1.1 矩阵的特征值与特征向量
一、特征值与特征向量的概念
1、定义
定义1
设ACnn ,若 C和x Cn , x 0使得 Ax x
则称是A的特征值,x称为A的属于的特征向量。
在上下文清楚 的情况下,也 可简称为特征 向量
简称特征向量
Statistics Department
2、特征多项式
定义2
设A Cnn,称In A为A的特征矩阵,
称detIn A In A 为A的特征多项式,
称 In A 0为A的特征方程。
Notations
1 A的特征值就是A的特征方程的根;
2 n 阶方阵A在复数范围内一定有n个特征值。
Statistics Department
3、特征值与特征向量的求法
设A Cnn
1求 In A 0的n个根1,2,
全部特征值;
, n,它们即为A的
2求解齐次方程组iIn A x 0,其非零解向量即为
所以A的特征值为1 2 2,3 7.
Statistics Department
当1 2 2时,解方程组2I A x 0, 由
1 2 2 1 2 2
2I

A


2
4
4

r


0
0
0

2 4 4 0 0 0
特征向量分别为x1, x2, , xn,又设f 为一多项式, 则f A的特征值为f 1 , f 2 , , f n ,对应的
特征向量分别仍为x1, x2, , xn.
esp .
当 f A =0时,A的任意特征值i都满足f i 0.
Statistics Department
相关文档
最新文档