【高考数学专题复习】专题10.1 随机时间与概率(解析版)

合集下载

2024年高考数学一轮复习(新高考版)《随机事件与概率》ppt课件

2024年高考数学一轮复习(新高考版)《随机事件与概率》ppt课件
则甲、乙都入选的概率为__1_0___.
从甲、乙等 5 名同学中随机选 3 名,有 C35种情况,其中甲、乙都入选 有 C13种情况,所以甲、乙都入选的概率 P=CC3513=130.

二 部 分
探究核心题型
题型一 随机事件
命题点1 随机事件间关系的判断
例1 (1)(多选)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设
射击两次中“至多有一次中靶”即“有一次中靶或两次都不中靶”, 与该事件不能同时发生的是“两次都中靶”.
教材改编题
2.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为
0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的
身高超过175 cm的概率为
A.0.2
知识梳理
性质5:如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A, 因为∅⊆A⊆Ω,所以0≤P(A)≤1; 性质6:设A,B是一个随机试验中的两个事件,有P(A∪B)=_P_(_A_)_+__P_(B__) _-__P_(A__∩__B_)_.
知识梳理
6.频率与概率 (1)频率的稳定性 一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A 发生的频率fn(A)会逐渐 稳定于 事件A发生的概率P(A),我们称频率的这 个性质为频率的稳定性. (2)频率稳定性的作用 可以用频率fn(A)估计概率P(A).
知识梳理
(2)随机事件 ①定义:将样本空间Ω的 子集 称为随机事件,简称事件. ②表示:一般用大写字母A,B,C,…表示. ③随机事件的极端情形: 必然事件 、 不可能事件 .
知识梳理
2.两个事件的关系和运算
包含关系 相等关系 并事件(和事件) 交事件(积事件) 互斥(互不相容) 互为对立

2022-2023学年高三年级新高考数学一轮复习专题-随机事件的概率及其计算(含答案)

2022-2023学年高三年级新高考数学一轮复习专题-随机事件的概率及其计算(含答案)

随机事件的概率及其计算学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共8小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1.衡阳市在创建“全国卫生文明城市”活动中,大力加强垃圾分类投放宣传.某居民小区设有“厨余垃圾”、“可回收垃圾”、“其它垃圾”三种不同的垃圾桶.一天,居民小贤提着上述分好类的垃圾各一袋,随机每桶投一袋,则恰好有一袋垃圾投对的概率为()A. B. C. D.2.北京时间2021年10月16日0时23分,神舟十三号载人飞船在酒泉卫星发射中心成功发射,受到国际舆论的高度关注.为弘扬航天精神、普及航天知识、激发全校学生为国争光的荣誉感和责任感,某校决定举行以“传航天精神、铸飞天梦想”为主题的知识竞赛活动.现有A,B两队报名参加,A,B两队均由两名高一学生和两名高二学生组成.比赛共进行三轮,每轮比赛两队都随机挑选两名成员参加答题,若每位成员被选中的机会均等,则第三轮比赛中被两队选中的四位学生不全来自同一个年级的概率是A. B. C. D.3.梅森素数是指形如2 p-1的素数,其中p也是素数(质数),如27-1=127是梅森素数,211-1=23×89不是梅森素数.长期以来,数学家们在寻找梅森素数的同时,不断提出一些关于梅森素数分布的猜测,1992年中国学者周海中提出一个关于梅森素数分布的猜想,并首次给出其分布的精确表达式,被数学界命名为“周氏猜测”.已知在不超过20的素数中随机抽取2个,则至少含有1个梅森素数的概率为()A. B. C. D.4.甲、乙、丙三人是某商场的安保人员,根据值班需要甲连续工作2天后休息一天、乙连续工作3天后休息一天,丙连续工作4天后休息一天,已知3月31日这一天三人均休息,则4月份三人在同一天工作的概率为()A. B. C. D.5.下列命题中正确的是()A. 事件A发生的概率P(A)等于事件A发生的频率f n(A)B. 一个质地均匀的骰子掷一次得到3点的概率是,说明这个骰子掷6次一定会出现一次3点C. 掷两枚质地均匀的硬币,事件A为“第一枚正面朝上,第二枚反面朝上”,事件B为“两枚都是正面朝上”,则P(A)=2P(B)D. 对于两个事件A、B,若P(A∪B)=P(A)+P(B),则事件A与事件B互斥6.已知a∈{0,1,2},b∈{-1,1,3,5},则函数f(x)=ax2-2bx在区间(1,+∞)上为增函数的概率是( )A. B. C. D.7.袋子中有9个材质与大小都相同的小球,其中6个白球,3个红球.每次从袋子中随机摸出1个球且不放回,则两次都摸到白球的概率是( )A. B. C. D.8.从幂函数y=x,y=x2,y=x3,,y=x-1中任意选取2个函数,其中一个函数是奇函数、另一个函数是增函数的概率等于( )A. B. C. D.二、多选题(本大题共3小题,共15.0分。

核按钮(新课标)高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步

核按钮(新课标)高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步
第五页,共25页。
3.两个计数原理的区别 分类加法计数原理和分步乘法计数原理解决的都是有关做一件事的不 同方法的种数问题,区别在于:分类加法计数原理针对的是“分类”问题, 其中各种方法______________,用其中______________都可以做完这件事; 分步乘法计数原理针对的是“分步”问题,各个步骤中的方法 ______________,只有______________才算做完这件事. 4.两个计数原理解决计数问题时的方法 最重要的是在开始计算之前要进行仔细分析——是需要分类还是需要 分步. (1)分类要做到“______________”.分类后再分别对每一类进行计数, 最后用分类加法计数原理求和,得到总数. (2)分步要做到“______________”,即完成了所有步骤,恰好完成任务, 当然步与步之间要______________,分步后再计算每一步的方法数,最后 根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
(2)分两步:先选教师,共 3 种选法,再选学生,共 6+8=14 种选法.由分步乘法计数原理知总选法数为 3×14=42(种).
(3)老师、男同学、女同学各一人可分三步,每步方法数依次为 3、6、8 种.由分步乘法计数原理知选法数为 3×6×8=144(种).
第十六页,共25页。
类型二 两个原理的综合应用
第十五页,共25页。
有一项活动需在 3 名老师,6 名男同学和 8 名女同学中选 人参加.
(1)若只需一人参加,有多少种不同选法? (2)若需一名老师,一名学生参加,有多少种不同选法? (3)若需老师、男同学、女同学各一人参加,有多少种不同选法?
解:(1)只需一人参加,可按老师、男同学、女同学分三类,各 自有 3、6、8 种选法,总选法数为 3+6+8=17(种).

2022高考数学一轮备考复习第10章概率第1节随机事件的概率课时跟踪检测文含解析新人教B版

2022高考数学一轮备考复习第10章概率第1节随机事件的概率课时跟踪检测文含解析新人教B版

第十章概率第一节随机事件的概率A级·基础过关|固根基|1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( )A.互斥但非对立事件B.对立事件C.相互独立事件D.以上都不对解析:选A 由于每人一个方向,事件“甲向南”与事件“乙向南”不能同时发生,但能同时不发生,故是互斥事件,但不是对立事件.2.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件产品是正品(甲级)的概率为( ) A.0.95 B.0.97C.0.92 D.0.08解析:选C 记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92.3.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别为0.2,0.2,0.3,0.3,则下列说法正确的是( )A.A∪B与C是互斥事件,也是对立事件B.B∪C与D是互斥事件,也是对立事件C.A∪C与B∪D是互斥事件,但不是对立事件D.A与B∪C∪D是互斥事件,也是对立事件解析:选D 由于A,B,C,D彼此互斥,且A∪B∪C∪D是一个必然事件,所以任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.故选D.4.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( )A.17B.1235C.1735D .1 解析:选C 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥,所以P (C )=P (A )+P (B )=17+1235=1735,即任意取出2粒恰好是同一色的概率为1735.故选C.5.设A 与B 是互斥事件,A ,B 的对立事件分别记为A ,B ,则下列说法正确的是( ) A .A 与B 互斥 B .A 与B 互斥C .P (A +B )=P (A )+P (B )D .P (A +B )=1解析:选C 根据互斥事件的定义可知,A 与B ,A 与B 都有可能同时发生,所以A 与B 互斥,A 与B 互斥是不正确的;P (A +B )=P (A )+P (B )正确;A 与B 既不一定互斥,也不一定对立,所以P (A +B )=1是不正确的.6.给出下列三个命题,其中正确命题有________个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.解析:①错,不一定是10件次品;②错,37是频率而非概率;③错,频率不等于概率,这是两个不同的概念.答案:07.种子发芽率是指在规定条件和时间内长成的正常幼苗数占供检种子数的百分率.种子发芽率的测定通常是在实验室内进行,随机取600粒种子置于发芽床上,通常以100粒种子为一个重复,根据不同种类的种子控制相应的温度、水分、光照等条件,再到规定的时间鉴定正常幼苗的数量,最后计算出种子的发芽率.下表是猕猴桃种子的发芽试验结果:解析:由表格中的数据可知,该猕猴桃种子的发芽率约为80%. 答案:80%8.已知随机事件A ,B 发生的概率满足条件P (A ∪B )=34,某人猜测事件A ∩B 发生,则此人猜测正确的概率为________.解析:事件A ∩B 与事件A ∪B 是对立事件,则P (A ∩B )=1-P (A ∪B )=1-34=14.答案:149.某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10道智力题,每道题10分,然后作了统计,结果如下:贫困地区(1)(2)根据频率估计两地区参加测试的儿童得60分以上的概率.解:(1)贫困地区表格从左到右分别为0.53,0.54,0.52,0.52,0.51,0.50;发达地区表格从左到右分别为0.57,0.58,0.56,0.56,0.55,0.55.(2)根据频率估计贫困地区参加测试的儿童得60分以上的概率为0.52,发达地区参加测试的儿童得60分以上的概率为0.56.10.电影公司随机收集了电影的有关数据,经分类整理得到下表:(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)解:(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000,第四类电影中获得好评的电影部数是200×0.25=50.故所求概率为502 000=0.025.(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=56+10+45+50+160+51=372.故所求概率估计为1-3722 000=0.814.(3)增加第五类电影的好评率,减少第二类电影的好评率. B 级·素养提升|练能力|11.掷一个骰子,事件A 为“出现的点数为偶数”,事件B 为“出现的点数小于6”,记事件A ,B 的对立事件为A ,B ,则P (A +B )=( )A.56B.23C.12D.16解析:选B 因为P (A )=36=12,P (B )=56,所以P (A )=1-12=12,P (B )=1-56=16,事件A 为“出现的点数为奇数”,B 为“出现的点数为6”,显然A 与B 互斥,所以P (A +B )=P (A )+P (B )=12+16=23.12.已知随机事件A ,B 互斥,其发生的概率均不等于0,P (A )=2-a ,P (B )=3a -4,则实数a 的取值X 围为________.解析:由题意,得⎩⎪⎨⎪⎧0<2-a <1,0<3a -4<1,2-a +(3a -4)≤1,解得43<a ≤32.答案:⎝ ⎛⎦⎥⎤43,3213.如图,从A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解:(1)由已知得共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),所以用频率估计相应的概率为P=44100=0.44.(2)由题意知选择L1的有60人,选择L2的有40人,故由调查结果得频率为121212选择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,因为P(A1)>P(A2),所以甲应选择L1.同理,P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,因为P(B1)<P(B2),所以乙应选择L2.14.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率) 解:(1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110. 所以P (A )=1-P (A 1)-P (A 2) =1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.。

高考数学总复习 第十章 概率 10.1 随机事件的概率课件 文

高考数学总复习 第十章 概率 10.1 随机事件的概率课件 文

2021/12/12
第二十二页,共四十六页。
3.求解以统计图表为背景的随机事件的频率或概率问题的 关键点
求解该类问题的关键是由所给频率分布表、频率分布直方图 或茎叶图等图表,计算出所求随机事件出现的频数.
2021/12/12
第二十三页,共四十六页。
(2019·沈阳模拟)某超市随机选取 1 000 位顾客,记录了他们购买甲、 乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买, “×”表示未购买.
上年度出 险次数 保费
012
3
4 ≥5
0.85a a 1.25a 1.5a 1.75a 2a
2021/12/12
第十六页,共四十六页。
随机调查了该险种的 200 名续保人在一年内的出险情况,得 到如下统计表:
出险 次数 0 1 2 3 4 ≥5 频数 60 50 30 30 20 10 (1)记 A 为事件:“一续保人本年度的保费不高于基本保 费”.求 P(A)的估计值; (2)记 B 为事件:“一续保人本年度的保费高于基本保费但不 高于基本保费的 160%”.求 P(B)的估计值; (3)求续保人本年度平均保费的估计值.
第四页,共四十六页。
课堂探究 考点突破
2021/12/12
第五页,共四十六页。
考点一 随机事件间的关系
(1)从 1,2,3,4,5 这五个数中任取两个数,其中:①恰有一个是
偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少
有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶
的意义及频率与概率的区别. 对立事件的概率,与事件的频
2.了解两个互斥事件的概率加 率交汇考查.其中随机事件的
法公式.

高中数学第十章概率之随机事件与概率(精讲)(必修第二册)(教师版含解析)

高中数学第十章概率之随机事件与概率(精讲)(必修第二册)(教师版含解析)

10.1 随机事件与概率(精讲)思维导图考法一 有限样本空间与随机事件【例1-1】(2021·全国高一)给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件;②“当x 为某一实数时,可使x 2≤0”是不可能事件;③“明天天津市要下雨”是必然事件;④“从100个灯泡(含有10个次品)中取出5个,5个全是次品”是随机事件.其中正确命题的个数是( )A .0B .1C .2D .3 【答案】C【解析】对于①,三个球全部放入两个盒子,有两种情况:1+2和3+0,故必有一个盒子有一个以上的球,所以该事件是必然事件,①正确;对于②,x =0时x 2=0,所以该事件不是不可能事件,②错误; 对于③,“明天天津市要下雨”是偶然事件,所以该事件是随机事件,③错误;对于④,“从100个灯泡(含有10个次品)中取出5个,5个全是次品”,发生与否是随机的,所以该事件是随机事件,④正确.故正确命题有2个.故选:C .【例1-2】(2020·全国高一)袋子中有4个大小和质地相同的球,标号为1,2,3,4,从中随机摸出一个球,记录球的编号,先后摸两次.(1)若第一次摸出的球不放回,写出试验的样本空间;(2)若第一次摸出的球放回,写出试验的样本空间.【答案】(1)详见解析(2)详见解析 【解析】m 表示第一次摸出球的编号,用n 表示第二次摸出球的编号,则样本点可用(),m n ,{},1,2,3,4m n ∈表示.(1)若第一次摸出的球不放回,则m n ≠,此时的样本空间可表示为()()()()()()()()()()()(){}1,2,1,3,1,4,2,1,,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3Ω=,共有12个样本点.(2)若第一次摸出的球放回,则m ,n 可以相同.此时试验的样本空间可表示为(){}{},,1,2,3,4m n m n Ω=∈,常见考法共有16个样本点.【举一反三】1.(2021·全国高一课时练习)下列事件中,随机事件的个数为( )①连续两次抛掷一枚骰子,两次都出现2点向上;②13个人中至少有两个人生肖相同;③某人买彩票中奖;④在标准大气压下,水加热到90℃会沸腾.A .1个B .2个C .3个D .4个【答案】B【解析】抛掷一枚骰子,每一面出现都是随机的,所以①是随机事件;一年只有12生肖,所以13个人中至少有两个人生肖相同是必然事件,所以②是必然事件;购买彩票号码是随机的,某人买彩票中奖也是随机的,所以③是随机事件;在标准大气压下,水加热到100℃才会沸腾.故④是不可能事件故选:B2.(多选)(2020·全国高一单元测试)下列事件中,是随机事件的是( )A .2021年8月18日,北京市不下雨B .在标准大气压下,水在4C 时结冰C .从标有1,2,3,4的4张号签中任取一张,恰为1号签D .若x ∈R ,则20x ≥【答案】AC【解析】A 选项与C 选项为随机事件,B 为不可能事件,D 为必然事件.故选:AC .3.(2020·全国高一课时练习)写出下列各随机试验的样本空间:(1)采用抽签的方式,随机选择一名同学,并记录其性别;(2)采用抽签的方式,随机选择一名同学,观察其ABO 血型;(3)随机选择一个有两个小孩的家庭,观察两个孩子的性别;(4)射击靶3次,观察各次射击中靶或脱靶情况;(5)射击靶3次,观察中靶的次数.【答案】(1)详见解析(2)详见解析(3)详见解析(4)详见解析(5)详见解析【解析】解:(1)一名同学的性别有两种可能结果:男或女.故该试验的样本室间可以表示为Ω={男,女};(2)一名同学的血型有四种可能结果:A 型、B 型、AB 型、O 型.故该试验的样本空间可表示为{},,,A B AB O Ω=;(3)每个小孩的性别有男或女两种可能,两个小孩的性别情况有四种可能,故该试验的样本空间可表示为{(男、男),(男,女),(女,男),(女,女)};(4)每次射击有中靶或脱靶两种可能,射击3次有八种可能,用1表示中靶,用0表示脱靶,该试验的样本空间可表示为()()()()()()()(){}0,0,0,0,1,0,0,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1,1,1N =;(5)射击3次,中靶的次数可能是0,1,2,3,故该试验的样本空间可以表示为{}0,1,2,3N =.4.(2021·全国高一)写出下列试验的样本空间:(1)设袋中装有4个白球和6个黑球,从中不放回逐个取出,直到白球全部取出为止,记录取球的次数;(2)甲、乙、丙三位同学参加演讲比赛,通过抽签确定演讲的顺序,记录抽签的结果.【答案】(1)详见解析(2)详见解析【解析】(1)从中不放回逐个取出,直到白球全部取出为止,则取球次数为{}4,5,6,7,8,9,10N =;(2)由抽签确定演讲的顺序,抽签的结果即样本空间可表示为{(甲,乙,丙),(甲,丙,乙),(丙,甲,乙),(丙,乙,甲),(乙,甲,丙),(乙,丙,甲)}.考法二 事件的关系与运算【例2-1】(2020·全国高一课时练习)盒子里有6个红球,4个白球,现从中任取3个球.设事件A =“1个红球和2个白球”,事件B =“2个红球和1个白球”,事件C =“至少有1个红球”,事件D“既有红球又有白球”,则:(1)事件D 与事件,A B 是什么关系?(2)事件C 与事件A 的交事件与事件A 是什么关系?【答案】(1)D A B =⋃.(2)事件C 与事件A 的交事件与事件A 相等.【解析】(1)对于事件D ,可能的结果为1个红球和2个白球或2个红球和1个白球,故D A B =⋃.(2)对于事件C ,可能的结果为1个红球和2个白球,2个红球和1个白球或3个红球,故C A A ⋂=,所以事件C 与事件A 的交事件与事件A 相等.【例2-2】(2021·全国高一)掷一枚骰子,给出下列事件:A =“出现奇数点”,B =“出现偶数点”,C =“出现的点数小于3”. 求:(1)A B ,B C ⋂;(2)A B ,B C ⋃.【答案】(1)A B =∅,B C ⋂=“出现2点”. (2)A B =“出现1,2,3,4,5或6点”,B C =∪“出现1,2,4或6点”.【解析】由题意知:A =“出现奇数点”{}1,3,5=,B =“出现偶数点”{}2,4,6=,C =“出现的点数小于3”{}1,2=,(1)AB =∅,{}2BC ⋂==出现2点”; (2){}1,2,3,4,5,6A B ==“出现1,2,3,4,5或6点”,{}1,2,4,6B C ⋃==“出现1,2,4或6点”.【举一反三】1.(2020·全国高一课时练习)用红、黄、蓝三种不同的颜色给大小相同的三个圆随机涂色,每个圆只涂一种颜色.设事件A =“三个圆的颜色全不相同”,事件B =“三个圆的颜色不全相同”,事件C =“其中两个圆的颜色相同”,事件D“三个圆的颜色全相同”.(1)写出试验的样本空间.(2)用集合的形式表示事件,,,A B C D .(3)事件B 与事件C 有什么关系?事件A 和B 的交事件与事件D 有什么关系?并说明理由.【答案】(1)见解析;(2)见解析;(3)事件B 包含事件C ,事件A 和B 的交事件与事件D 互斥.见解析【解析】(1)由题意可知3个球可能颜色一样,可能有2个一样,另1个异色,或者三个球都异色.则试验的样本空间Ω={(红,红,红),(黄,黄,黄),(蓝,蓝,蓝),(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝),(红,黄,蓝)}.(2)A ={(红,黄,蓝)} B ={(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝),(红,黄,蓝)}C ={(红,红,黄),(红,红,蓝),(蓝,蓝,红),(蓝,蓝,黄),(黄,黄,红),(黄,黄,蓝)}.D {(红,红,红),(黄,黄,黄),(蓝,蓝,蓝)}.(3)由(2)可知事件B 包含事件C ,事件A 和B 的交事件与事件D 互斥.2.(2021·全国高一)记某射手一次射击训练中,射中10环、9环、8环、7环分别为事件A ,B ,C ,D ,指出下列事件的含义:(1)A B C ;(2)B C ∩;(3)B C D ∪∪.【答案】(1)射中10环或9环或8环.(2)射中9环.(3)射中10环或6环或5环或4环或3环或2环或1环或0环.【解析】(1)A=射中10环,B=射中9环,C=射中8环,∴A B C=∪∪射中10环或9环或8环. (2)C=射中8环,∴C=射中环数不是8环,则B C=∩射中9环.(3)B C D=∪∪射中9环或8环或7环,则B C D=∪∪射中10环或6环或5环或4环或3环或2环或1环或0环.3.(2021·全国高一)在试验“甲、乙、丙三人各射击1次,观察中靶的情况”中,事件A表示随机事件“甲中靶”,事件B表示随机事件“乙中靶”,事件C表示随机事件“丙中靶”,试用A,B,C的运算表示下列随机事件:(1)甲未中靶;(2)甲中靶而乙未中靶;(3)三人中只有丙未中靶;(4)三人中至少有一人中靶;(5)三人中恰有两人中靶.【答案】(1)A(2)AB(3)ABC(4)ABC(5)()()() ABC ABC ABC【解析】(1)甲未中靶:A.(2)甲中靶而乙未中靶:A B⋂,即AB.(3)三人中只有丙未中靶:A B C,即ABC.(4)三人中至少有一人中靶ABC.(5)三人中恰有两人中靶()()()ABC ABC ABC.考法三互斥与对立【例3】(多选)(2020·全国高一课时练习)袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是( )A.至少有一个白球与都是白球B.恰有一个红球与白、黑球各一个C.至少一个白球与至多有一个红球D.至少有一个红球与两个白球【答案】BD【解析】袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立.在B 中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B 成立;在C 中,至少一个白球与至多有一个红球,能同时发生,故C 不成立;在D 中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D 成立;故选:BD.【举一反三】1.(多选)(2020·全国高一课时练习)一个人连续射击2次,则下列各事件关系中,说法正确的是( )A .事件“两次均击中”与事件“至少一次击中”互为对立事件B .事件“恰有一次击中”与事件“两次均击中”互为互斥事件C .事件“第一次击中”与事件“第二次击中”互为互斥事件D .事件“两次均未击中”与事件“至少一次击中”互为对立事件【答案】BD【解析】对于A ,事件“至少一次击中”包含“一次击中”和“两次均击中“,所以不是对立事件,A 错误 对于B ,事件“恰有一次击中”是“一次击中、一次不中”它与事件“两次均击中”是互斥事件,B 正确 对于C ,事件“第一次击中”包含“第一次击中、第二次击中”和“第一次击中、第二次不中”,所以与事件“第二次击中”不是互斥事件,C 错误 对于D ,事件“两次均未击中”的对立事件是“至少一次击中”,D 正确故选:BD2.(多选)(2020·全国高一课时练习)下面结论正确的是( )A .若()()1P A PB +=,则事件A 与B 是互为对立事件B .若()()()P AB P A P B =,则事件A 与B 是相互独立事件C .若事件A 与B 是互斥事件,则A 与B 也是互斥事件D .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件【答案】BD【解析】对于A 选项,要使,A B 为对立事件,除()()1P A P B +=还需满足()0P AB =,也即,A B 不能同时发生,所以A 选项错误.对于C 选项,A 包含于B ,所以A 与B 不是互斥事件,所以C 选项错误.对于B 选项,根据相互独立事件的知识可知,B 选项正确.对于D 选项,根据相互独立事件的知识可知,D 选项正确.故选:BD3.(2020·全国高一课时练习)在试验E “连续抛掷一枚骰子2次,观察每次掷出的点数”中,事件A 表示随机事件“第一次掷出的点数为1”,事件j A 表示随机事件“第一次掷出的点数为1,第二次掷出的点数为j ,事件B 表示随机事件“2次掷出的点数之和为6”,事件C 表示随机事件“第二次掷出的点数比第一次的大3”,(1)试用样本点表示事件A B 与A B ;(2)试判断事件A 与B ,A 与C ,B 与C 是否为互斥事件;(3)试用事件j A 表示随机事件A .【答案】(1)详见解析(2)事件A 与事件B ,事件A 与事件C 不是互斥事件,事件B 与事件C 是互斥事件.(3)123456A A A A A A A =【解析】由题意可知试验E 的样本空间为Ω=()()()()()(){1,1,1,2,1,3,1,4,1,5,1,6,()()()()()()2,1,2,2,2,3,2,4,2,5,2,6,()()()()()()3,1,3,2,3,3,3,4,3,5,3,6,()()()()()()4,1,4,2,4,3,4,4,4,5,4,6,()()()()()()5,1,5,2,5,3,5,4,5,5,5,6,()()()()()()}6,1,6,2,6,3,6,4,6,5,6,6. (1)因为事件A 表示随机事件“第一次掷出的点数为1”,所以满足条件的样本点有()()()()()()1,1,1,2,1,3,1,4,1,5,1,6,即()()()()()(){}1,1,1,2,1,3,1,4,1,5,1,6A =.因为事件B 表示随机事件“2次掷出的点数之和为6”,所以满足条件的样本点有()()()()()1,5,2,4,3,3,4,2,5,1,即()()()()(){}1,5,2,4,3,3,4,2,5,1B =.所以(){}1,5A B =,()()()()()()()()()(){}1,1,1,2,1,3,1,4,1,5,1,6,2,4,3,3,4,2,5,1A B =.(2)因为事件C 表示随机事件“第二次掷出的点数比第一次的大3”,所以()()(){}1,4,2,5,3,6C =.因为(){}1,5A B =≠∅,(){}1,4A C =≠∅,B C =∅,所以事件A 与事件B ,事件A 与事件C 不是互斥事件,事件B 与事件C 是互斥事件.(3)因为事件j A 表示随机事件“第一次掷出的点数为1,第二次掷出的点数为j ”,所以(){}(){}(){}(){}(){}(){}1234561,1,1,2,1,3,1,4,1,5,1,6A A A A A A ======, 所以123456A A A A A A A =.考法四 古典概型【例4】(2020·全国高一课时练习)在一次语文考试的阅卷过程中,两位老师对一篇作文打出的分数都是两位的正整数,且十位数字都是5,则两位老师打出的分数之差的绝对值小于或等于1的概率为( )A .0.18B .0.2C .0.28D .0.32 【答案】C【解析】用(),x y 表示两位老师的打分,则(),x y 的所有可能情况有1010100⨯=种.当50x =时,y 可取50,51,共2种;当51x =,52,53,54,55,56,57,58时,y 的取值均有3种;当59x =时,y 可取58,59,共2种;综上可得两位老师打出的分数之差的绝对值小于或等于1的情况有28种,由古典概型的概率公式可得所求概率280.28100P ==故选:C. 【举一反三】1.(2020·全国高一课时练习)从数字1,2,3,4中任取两个数,则这两个数中其中一个数为另一个数的整数倍的概率为( )A .14B .12C .13D .23【答案】D【解析】基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6个,其中符合条件的基本事件为(1,2),(1,3),(1,4),(2,4)共4个,所求概率为4263P ==.故选:D 2.(2021·全国高一)把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为( )A .23B .13C .35D .14【答案】B【解析】分三类情况,第一类1,2连号,则甲、乙、丙三个人拿到的卡片可能为()12,3,4,()12,4,3,()3,12,4,()4,12,3,()3,4,12,()4,3,12,有6种分法;第二类2,3连号,则甲、乙、丙三个人拿到的卡片可能为()1,23,4,()4,23,1,()23,1,4,()23,4,1,()1,4,23,()4,1,23,有6种分法;第三类3,4连号,则甲、乙、丙三个人拿到的卡片可能为()1,2,34,()2,1,34,()34,1,2,()34,2,1,()1,34,2,()2,34,1,有6种分法;共有18种分法,则2,3连号的概率为61183P ==. 故选:B .3.(2021·全国高一)为了更好了解某年入伍新兵的身高情况,解放军某部随机抽取100名新兵,分别对他们的身高进行了测量,并将测量数据分为以下五组:[160,165),[165,170),[170,175),[175,180),[180,185]进行整理,如下表所示:组号分组 频数 第1组 [160,165)5 第2组[165,170) 35 第3组 [170,175)30 第4组 [175,180)20 第5组 [180,185]10 合计 100(1)在下面的图纸中,画出频率分布直方图;(2)若在第4,5两组中,用分层抽样的方法抽取6名新兵,再从这6名新兵中随机抽取2名新兵进行体能测试,求这2名新兵来自不同组的概率.【答案】(1)直方图见解析;(2)815.【解析】(1)频率分布直方图如下图所示:(2)因为第4,5组共有30名新兵,所以利用分层抽样从中抽取6名,每组应抽取的人数分别为:4组:206430⨯=名,第5组:106230⨯=名,设第4组抽取的4名新兵分别为1A,2A,3A,4A,第5组抽取的2名新兵分别为1B,2B.从这6名新兵中随机抽取2名新兵,有以下15种情况:12{,}A A,13{,}A A,14{,}A A,11{,}A B,12{,}A B,23{,}A A,24{,}A A,21{,}A B,22{,}A B,34{,}A A,31{,}A B,32{,}A B,41{,}A B,42{,}A B,12{,}B B,这2名新兵来自不同组的情况有以下8种:11{,}A B,12{,}A B,21{,}A B,22{,}A B,31{,}A B,32{,}A B,41{,}A B,42{,}A B,故所求的概率P=815.考法五概率的基本性质【例5-1】(2020·全国高一课时练习)老师讲一道数学题,李峰能听懂的概率是0.8,是指( )A .老师每讲一题,该题有80%的部分能听懂,20%的部分听不懂B .老师在讲的10道题中,李峰能听懂8道C .李峰听懂老师所讲这道题的可能性为80%D .以上解释都不对 【答案】C【解析】概率的意义就是事件发生的可能性大小,即李峰听懂老师所讲这道题的可能性为80%.故选:C 【例5-2】(2020·全国高一课时练习)在学校运动会开幕式上,100名学生组成一个方阵进行表演,他们按照性别(M (男)、F (女))及年级(1G (高一)、2G (高二)、3G (高三))分类统计的人数如下表:1G2G3GM 18 20 14 F17247若从这100名学生中随机选一名学生,求下列概率:()P M =____________,()P F =____________,()P MF =____________,()P MF =____________,()1P G =____________,()2P M G =____________,()3P FG =____________【答案】0.52 0.48 1 0 0.35 0.76 0.07 【解析】()()123182014520.52100100100100P M P MG MG MG ==++==; ()()10.48P F P M =-=; ()1P MF =;()()0P MF P =∅=;()()11118170.35100100P G P MG FG ==+=; ()()()()2220.520.440.200.76P MG P M P G P MG =+-=+-=;()370.07100P FG == 故答案为:(1)0.52;(2)0.48;(3)1;(4)0;(5)0.35;(6)0.76;(7)0.07 【举一反三】1.(2020·全国高一课时练习)在北京消费季活动中,某商场为促销举行购物抽奖活动,规定购物消费每满200元就可以参加一次抽奖活动,中奖的概率为110.那么以下理解正确的是( ) A .某顾客抽奖10次,一定能中奖1次 B .某顾客抽奖10次,可能1次也没中奖 C .某顾客消费210元,一定不能中奖 D .某顾客消费1000元,至少能中奖1次 【答案】B 【解析】中奖概率110表示每一次抽奖中奖的可能性都是110,故不论抽奖多少次,都可能一次也不中奖, 故选:B.2.(2020·全国高一课时练习)某射击运动员平时训练成绩的统计结果如下: 命中环数 6 7 8 9 10 频率0.10.150.250.30.2如果这名运动员只射击一次,以频率作为概率,求下列事件的概率; (1)命中10环;(2)命中的环数大于8环; (3)命中的环数小于9环; (4)命中的环数不超过5环.【答案】(1)0.2 (2)0.5 (3)0.5 (4)0 【解析】用x 表示命中的环数,由频率表可得. (1)(10)0.2P x ==;(2)(8)P x P >=(9x =或10x =)(9)(10)0.30.20.5P x P x ==+==+=; (3)(9)(6)(7)(8)0.10.150.250.5P x P x P x P x <==+=+==++=; (4)(5)1(6)1(0.10.150.250.30.2)0P x P x =-=-++++=.3.(2021·全国高一课时练习)判断下列说法是否正确,若错误,请举出反例 (1)互斥的事件一定是对立事件,对立事件不一定是互斥事件; (2)互斥的事件不一定是对立事件,对立事件一定是互斥事件;(3)事件A 与事件B 中至少有一个发生的概率一定比A 与B 中恰有一个发生的概率大;(4)事件A 与事件B 同时发生的概率一定比A 与B 中恰有一个发生的概率小.【答案】(1)错误,举例见解析;(2)正确;(3)错误,举例见解析;(4)错误,举例见解析. 【解析】(1)错误;(2)正确;(3)错误:(4)错误. 设某试验的样本空间为{1,2,3,4}Ω=.(1)中反例,取{1},{2}A B ==,则A ,B 互斥但不对立. (2)由互斥事件与对立事件的定义可知(2)正确(3)中反例,取{1},A B ==∅,则1()()4P A B P A ⋃==1()()()4P AB AB P AB P A ⋃===. (4)中反例,取{1},{1,2}A B ==,则1()()4P AB P A ==,1()()4P AB AB P AB ⋃==.4.(2020·全国高一课时练习)甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,求下列事件的概率: (1)两人都中靶; (2)恰好有一人中靶; (3)两人都脱靶; (4)至少有一人中靶.【答案】(1)0.72 (2)0.26 (3)0.02 (4)0.98【解析】设A =“甲中靶”, B =“乙中靶”,则A =“甲脱靶”,B =“乙脱靶”,由于两个人射击的结果互不影响,所以A 与B 相互独立,A 与B ,A 与B ,A 与B 都相互独立 由已知可得,()()()()0.8,0.9,0.2,0.1P A P B P A P B ====. (1)AB = “两人都中靶”,由事件独立性的定义 得()()()0.80.90.72P AB P A P B =⋅=⨯= (2)“恰好有一人中靶” ABAB =,且AB 与AB 互斥根据概率的加法公式和事件独立性定义,得()()()P ABAB P AB P AB=+()()()()P A P B P A P B =⋅+⋅ 0.80.10.20.90.26=⨯+⨯=(3)事件“两人都脱靶”AB =, 所以()()()P AB P A P B =⋅()()10.810.90.02=-⨯-=(4)方法1:事件“至少有一人中靶”AB ABAB =,且AB ,AB 与AB 两两互斥,所以()P ABAB AB()()()P AB P AB P AB =++ ()()P AB P ABAB =+0.720.260.98=+=方法2:由于事件“至少有一人中靶”的对立事件是“两人都脱靶” 根据对立事件的性质,得事件“至少有一人中靶”的概率为()110.020.98P AB -=-=5.(2020·全国高一课时练习)已知n 是一个三位正整数,若n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如135,256,345等)现要从甲乙两名同学中,选出一个参加某市组织的数学竞赛,选取的规则如下:从由1,2,3,4,5,6组成的所有“三位递增数”中随机抽取1个数,且只抽取1次,若抽取的“三位递增数”是偶数,则甲参加数学竞赛;否则,乙参加数学竞赛.(1)由1,2,3,4,5,6可组成多少“三位递增数”?并一一列举出来. (2)这种选取规则对甲乙两名学生公平吗?并说明理由. 【答案】(1)见解析;(2)不公平,理由见解析.【解析】(1)由题意知,所有由1,2,3,4,5,6组成的“三位递增数共有20个.分别是123,124,125,126,134,135,136,145,146,156,234,235,236,245,246,256,345,346,356,456.(2)不公平由(1)知,所有由1,2,3,4,5,6组成的“三位递增数”有20个,记“甲参加数学竟赛”为事件A ,记“乙参加数学竞赛”为事件B.则事件A 含有基本事件有:124,134,234,126,136,146,156,236,246,256,346,356,456共13个. 由古典概型计算公式,得13()20A P A ==事件含有的基本事件的个数试验所有基本事件的总数,又A 与B 对立,所以137()1()12020P B P A =-=-=, 所以()()P A P B >.故选取规则对甲、乙两名学生不公平.。

高考数学第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步乘法计数原理理

高考数学第十章计数原理、概率、随机变量及其分布10.1分类加法计数原理与分步乘法计数原理理

2021/12/12
第十六页,共四十二页。
解法 2:a=b 时有 4 种情况,故椭圆个数为 4×8-4=28 个. (2)根据“凸数”的特点,中间的数字只能是 3,4,5,故分三 类,第一类,当中间数字为“3”时,此时有 2 种(132,231); 第二类,当中间数字为“4”时,从 1,2,3 中任取两个放在 4 的 两边,故有 6 种; 第三类,当中间数字为“5”时,从 1,2,3,4 中任取两个放在 5 的两边,故有 12 种; 根据分类加法计数原理,得到由 1,2,3,4,5 可以组成无重复数 字的三位“凸数”的个数是 2+6+12=20.
有 1 个;a=4 时,有 3 个;a=6 时,有 5 个;a=8 时,有 7 个,
共有 1+3+5+7=16 个.
若焦点在 y 轴上,则 b>a,b=3 时,有 1 个;b=4 时,有 1 个;b=5 时,有 2 个;b=6 时,有 2 个;b=7 时,有 3 个;b =8 时,有 3 个.共有 1+1+2+2+3+3=12 个.故共有 16+ 12=28 个.
2021/12/12
第十页,共四十二页。
4.已知某公园有 5 个门,从任一门进,另一门出,则不同的走法
的种数为 __2_0___(用数字作答).
解析:分两步,第一步选一个门进有 5 种方法,第二步再 选一个门出有 4 种方法,所以共有 5×4=20 种走法.
2021/12/12
第十一页,共四十二页。
一个旅游景区的游览线路如图所示,某人从 P 点处进,Q 点处出, 沿图中线路游览 A,B,C 三个景点及沿途风景,则不同(除交汇点 O 外)
的游览线路有____4_8____种.(用数字作答)
2021/12/12

2019届高考数学一轮复习第十章概率10-1随机事件的概率课件文

2019届高考数学一轮复习第十章概率10-1随机事件的概率课件文
nA 数,称事件 A 出现的比例 fn(A)= n 为事件 A 出现的频率.
(2)概率:对于给定的随机事件 A,由于事件 A 发生的频率 fn(A) 随着试验次数的增加稳定于概率 P(A),因此可以用 频率 fn(A) 来 估计概率 P(A).
(3)频率和概率的区别:频率反映了一个随机事件出现的频繁 程度,但是频率是随机的,而 概率 是一个确定的值,通常人 们用 概率 来反映随机事件发生的可能性的大小,有时也用
考点一 随机事件的关系——基础考点 (1)某小组有 5 名男生和 4 名女生,从中任选 4 名同学 参加“教师节”演讲比赛,则下列每对事件是对立事件的是
() A.恰有 2 名男生与恰有 4 名男生 B.至少有 3 名男生与全是男生 C.至少有 1 名男生与全是女生 D.至少有 1 名男生与至少有 1 名女生
5.某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若 生产中出现乙级产品的概率为 0.03,丙级产品的概率为 0.01,则 对成品抽查一件抽得正品的概率为________.
[解析] 记“生产中出现甲级产品、乙级产品、丙级产品” 分别为事件 A,B,C.又事件 A,B,C 彼此互斥.由题意可得, P(B)=0.03,P(C)=0.01.
果如表:
满意情况 不满意 比较满意 满意 非常满意
人数
200
n
2100
1000
根据表中数据,估计在网上购物的消费者群体中对网上购物
“比较满意”或“满意”的概率是( )
7 2 11 13 A.15 B.5 C.15 200-2100-1000=1200,所以 对网上购物“比较满意”或“满意”的人数为 1200+2100= 3300,所以所求概率为34350000=1115.

高考数学一轮复习 必考部分 第十篇 概率 第1节 随机事件的概率课件 文 北师大版

高考数学一轮复习 必考部分 第十篇 概率 第1节 随机事件的概率课件 文 北师大版

【即时训练】 (2015荆门期末)袋内分别有红、白、黑球3,2,1个,从中 任取2个,则互斥而不对立的两个事件是( ) (A)至少有一个白球,都是白球 (B)至少有一个白球,至少有一个红球 (C)恰有一个白球,一个白球一个黑球 (D)至少有一个白球,红、黑球各一个
(A)P(A)≈ m (B)P(A)< m
n
n
(C)P(A)> m (D)P(A)= m
n
n
解析:由于事件 A 发生的频率随着试验次数 n 的增加稳定于概率 P(A),所以
有 P(A)≈ m .故选 A. n
Hale Waihona Puke 4.一名工人维护甲、乙两台独立的机床,在一小时内,甲、乙需要维护
的概率分别为0.9,0.8,则一小时内有机床需要维护的概率为
解析:A中的两个事件是包含关系,故不符合要求; B中的两个事件之间有都包含一名女生的可能性,故不互斥;C中的两 个事件符合要求,它们是互斥且不对立的两个事件;
D中的两个事件是对立事件,故不符合要求.
3.在 n 次重复进行的试验中,事件 A 发生的频率为 m ,当 n 很大时,P(A)与 n
m 的关系是( A ) n
有一个发生 .若A与B为互斥事件,那么P(A+B)= P(A)+P(B) .
(2)对立事件及其概率
若我们用 A 表示事件 A 发生,则事件 A 没有发生称为事件 A 的 对立事件 ,记作 A ,P( A )= 1-P(A) .
夯基自测
1.给出下列四个命题: ①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是 必然事件; ②“存在实数x使x2<0”是不可能事件; ③“2017年的国庆节是晴天”是必然事件; ④“从100个灯泡(有10个是次品)中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是( B ) (A)4 (B)3 (C)2 (D)1

2020年高考数学一轮复习教案:第10章 第1节 随机事件的概率(含解析)

2020年高考数学一轮复习教案:第10章 第1节 随机事件的概率(含解析)

第十章概率第一节随机事件的概率[考纲传真] 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.1.事件的相关概念2.频数、频率和概率(1)频数、频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=n An为事件A出现的频率.(2)概率:对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).3.事件的关系与运算定义符号表示包含关系若事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A,且A⊇B,那么称事件A与事件B相等A=B并事件若某事件发生当且仅当事件A发生或事件B发生,A∪B(或A+B)(1)概率的取值范围:0≤P(A)≤1;(2)必然事件的概率P(A)=1;(3)不可能事件的概率P(A)=0;(4)概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B);(5)对立事件的概率:若事件A与事件B互为对立事件,则P(A)=1-P(B).[常用结论]1.对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,“互斥”是“对立”的必要不充分条件.2.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).[基础自测]1.(思考辨析)判断下列结论的正误(正确的打“√”,错误的打“×”)(1)事件发生的频率与概率是相同的.()(2)在大量重复试验中,概率是频率的稳定值.()(3)两个事件的和事件发生是指两个事件都得发生. ()(4)对立事件一定是互斥事件,互斥事件不一定是对立事件.()[答案](1)×(2)√(3)×(4)√2.(教材改编)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶D[“至少有一次中靶”的对立事件是“两次都不中靶”.]3.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是()A.必然事件B.随机事件C.不可能事件D.无法确定B[抛掷10次硬币正面向上的次数可能为0,1,2,…,10,都有可能发生,正面向上5次是随机事件.]4.(教材改编)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5),2;[15.5,19.5),4;[19.5,23.5),9;[23.5,27.5),18;[27.5,31.5),11;[31.5,35.5),12;[35.5,39.5),7;[39.5,43.5],3.根据样本的频率分布估计,数据落在[27.5,43.5]内的概率约是________.12[由条件可知,落在[27.5,43.5]内的数据有11+12+7+3=33(个),故所求概率约是3366=1 2.]5.(2019·济南模拟)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为________.0.35[∵事件A={抽到一等品},且P(A)=0.65,∴事件“抽到的产品不是一等品”的概率为P=1-P(A)=1-0.65=0.35.]随机事件之间的关系1.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡A[至多有一张移动卡包含“一张移动卡,一张联通卡”,“2张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.]2.对飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B ={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.A与B,A与C,B与C,B与D B与D[设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,B∩C=∅,A∩C=∅,B∩D=∅,故A与B,B 与C,A与C,B与D为互斥事件.而B∩D=∅,B∪D=I,故B与D互为对立事件.][规律方法]判断互斥、对立事件的两种方法(1)定义法:判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.对立事件是互斥事件的充分不必要条件.(2)集合法:①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.②事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.随机事件的概率与频率【例1】(2016·全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出01234≥5(1)记A P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.[解](1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.(3)由所给数据得调查的 1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.随机事件概率的估计值.2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.某保险公司利用简单随机抽样的方法,对投保的车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)0 1 000 2 000 3 000 4 000车辆数(辆)500130100150120(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.[解](1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保额为2 800元,赔付金额大于投保金额的情形是赔付3 000和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主是新司机的有0.1×1 000=100(位),而赔付金额为4 000元的车辆中车主为新司机的有0.2×120=24(位),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率是P(C)=0.24.互斥事件与对立事件概率公式的应用【例2】 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C );(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.[解] (1)P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120.故事件A ,B ,C 的概率分别为11 000,1100,120.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=1+10+501 000=611 000,故1张奖券的中奖概率约为611 000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-⎝ ⎛⎭⎪⎫11 000+1100=9891 000, 故1张奖券不中特等奖且不中一等奖的概率为9891 000.率求和公式计算.(2)间接求法,先求此事件的对立事件的概率,再用公式求解(正难则反),特别是“至多”“至少”型题目,用间接求法就比较简便.某学校在教师外出家访了解学生家长对孩子的学习关心情况活动中,一个月内派出的教师人数及其概率如下表所示:派出人数≤2345≥6概率0.10.460.30.10.04(1)求有4人或(2)求至少有3人外出家访的概率.[解](1)设派出2人及以下为事件A,3人为事件B,4人为事件C,5人为事件D,6人及以上为事件E,则有4人或5人外出家访的事件为事件C或事件D,C,D为互斥事件,根据互斥事件概率的加法公式可知,P(C+D)=P(C)+P(D)=0.3+0.1=0.4.(2)至少有3人外出家访的对立事件为2人及以下,所以由对立事件的概率可知,P=1-P(A)=1-0.1=0.9.。

高考数学专题10.1随机时间与概率原卷版

高考数学专题10.1随机时间与概率原卷版

10.1 随机事件与概率运用一 随机事件判断【例1-1】(2019·河南高一期中)下列事件中是随机事件的个数有①连续两次抛掷两个骰子,两次都出现2点;②在地球上,树上掉下的雪梨不抓住就往下掉;③某人买彩票中奖;④已经有一个女儿,那么第二次生男孩;⑤在标准大气压下,水加热到90℃是会沸腾。

A .1B .2C .3D .4【例1-2】(2020·全国高三专题练习)某小组有5名男生和4名女生,从中任选4名同学参加“教师节”演讲比赛,则下列每对事件是对立事件的是( )A .恰有2名男生与恰有4名男生B .至少有3名男生与全是男生C .至少有1名男生与全是女生D .至少有1名男生与至少有1名女生【例1-3】.(2020·全国高三专题练习)设事件A ,B ,已知()15P A =, ()13P B =,()815P A B =,则A ,B 之间的关系一定为( )A .两个任意事件B .互斥事件C .非互斥事件D .对立事件【举一反三】1.(2019·全国高二单元测试)下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4°C 时结冰.A .1B .2C .3D .42.(2019·全国高二单元测试)下列说法正确的有( ) ①随机事件A 的概率是频率的稳定值,频率是概率的近似值.②一次试验中不同的基本事件不可能同时发生.③任意事件A 发生的概率()P A 总满足()01P A <<.④若事件A 的概率为0,则A 是不可能事件.A .0个B .1个C .2个D .3个3.(2020·全国高三专题练习)若随机事件A 、B 互斥,A 、B 发生的概率均不等于0,且分别为()2P A a =-,()45P B a =-,则实数a 的取值范围是( )A .5,24⎛⎫ ⎪⎝⎭B .53,42⎛⎫ ⎪⎝⎭C .53,42⎡⎤⎢⎥⎣⎦D .54,43⎛⎤ ⎥⎝⎦4(2020·浙江高三专题练习)袋中装有白球3个,黑球4个,从中任取3个,下列各对事件中互为对立事件的是( )A .恰有1个白球和全是白球B .至少有1个白球和全是黑球C .至少有1个白球和至少有2个白球D .至少有1个白球和至少有1个黑球运用二 事件的关系和运算【例2】(1)(2019·辽宁高一期末)已知随机事件A 和B 互斥,且()0.5P AUB =,()0.3P B =.则()P A =( )A .0.5B .0.2C .0.7D .0.8 (2)(2020·浙江高三专题练习)某电视台的夏日水上闯关节目中的前四关的过关率分别为56,45,35,12,只有通过前一关才能进入下一关,其中,第三关有两次闯关机会,且通过每关相互独立.一选手参加该节目,则该选手能进入第四关的概率为()A .725B .25C .1225D .1425【举一反三】1.(2019·重庆高二期末(文))在一次随机试验中,已知A , B , C 三个事件发生的概率分别为0.2, 0.3, 0.5,则下列说法一定正确的是( )A .B 与C 是互斥事件B .A +B 与C 是对立事件 C .A +B +C 是必然事件D .()0.3P A B 0.5≤+≤2.(2019·全国高三专题练习(理))甲、乙两人下棋,结果是一人获胜或下成和棋.已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为______.3.(2020·浙江高三专题练习)眉山市位于四川西南,有“千载诗书城,人文第一州”的美誉,这里是大文豪苏轼、苏洵、苏辙的故乡,也是人们旅游的好地方.在今年的国庆黄金周,为了丰富游客的文化生活,每天在东坡故里三苏祠举行“三苏文化”知识竞赛.已知甲、乙两队参赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,2 3,12,且各人回答正确与否相互之间没有影响.(1)分别求甲队总得分为0分;2分的概率;(2)求甲队得2分乙队得1分的概率.运用三古典概型【例3】(1)(2020·浙江高三专题练习)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110B.35C.310D.25(2)(2020·浙江高三专题练习)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A.23B.35C.25D.15【举一反三】1.(2020·全国高三专题练习)一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.运用四综合运用【例4】(2020·全国高三专题练习)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【举一反三】1.(2020·江西高二期末(文))智能手机的出现,改变了我们的生活,同时也占用了我们大量的学习时间.某市教育机构从500名手机使用者中随机抽取100名,得到每天使用手机时间(单位:分钟)的频率分布直方图(如图所示),其分组是: [](]0,20,20,40,(]]]40,60,(60,80,(80,100.(1)根据频率分布直方图,估计这500名手机使用者中使用时间的中位数是多少分钟? (精确到整数)(2)估计手机使用者平均每天使用手机多少分钟? (同一组中的数据以这组数据所在区间中点的值作代表)(3)在抽取的100名手机使用者中在(]20,40和(]40,60中按比例分别抽取2人和3人组成研究小组,然后再从研究小组中选出2名组长.求这2名组长分别选自(]20,40和(]40,60的概率是多少?2.(2020·黑龙江哈尔滨市第六中学校高二期末(理))40名学生某次数学考试成绩(单位:分)的频率分布直方图如下:(1)求频率分布直方图中a 的值;(2)根据频率分布直方图求出样本数据的中位数 (保留小数点后两位数字)和众数;(3)从成绩在[)50,70的学生中任选3人,求这3人的成绩都在[)60,70中的概率.1.(2020·全国高三专题练习)甲:1A 、2A 是互斥事件;乙:1A 、2A 是对立事件,那么( )A .甲是乙的充要条件B .甲是乙的充分但不必要条件C .甲是乙的必要但不充分条件D .甲既不是乙的充分条件,也不是乙的必要条件2.(2020·浙江高三专题练习)学校将5个不同颜色的奖牌分给5个班,每班分得1个,则事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .不是互斥事件3.(2019·福建高一期末)已知随机事件,,A B C 中,A 与B 互斥,B 与C 对立,且()()0.3,0.6P A P C ==,则()P A B +=( )A .0.3B .0.6C .0.7D .0.94.(2019·贵州高二月考)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A .至少有一个红球与都是红球B .至少有一个红球与都是白球C .恰有一个红球与恰有二个红球D .至少有一个红球与至少有一个白球5.(2019·北京八中高一期末)从装有两个红球和两个黑球的口袋里任取两个球,那么对立的两个事件是( )A .“至少有一个黑球”与“都是黑球”B .“至少有一个黑球”与“至少有一个红球”C .“恰好有一个黑球”与“恰好有两个黑球”D .“至少有一个黑球”与“都是红球”6.(2019·河北鹿泉区第一中学高二开学考试)从含有10件正品、2件次品的12件产品中,任意抽取3件,则必然事件是( )A .3件都是正品B .3件都是次品C .至少有1件次品D .至少有1件正品7.(2019·黄陵中学高新部高二期末(文))一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是()A.命中环数为7、8、9、10环B.命中环数为1、2、3、4、5、6环C.命中环数至少为6环D.命中环数至多为6环8.(2019·陕西高考模拟(文))口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.38,摸出白球的概率是0.32,那么摸出黑球的概率是()A.0.42B.0.28C.0.3D.0.79.(2019·湖南高一期中)从6个篮球、2个排球中任选3个球,则下列事件中,是必然事件的是(). A.3个都是篮球B.至少有1个是排球C.3个都是排球D.至少有1个是篮球10.(2018·湖南省茶陵县第二中学高一单元测试)下列事件中,随机事件的个数是( )①2020年8月18日,北京市不下雨;②在标准大气压下,水在4℃时结冰;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④向量的模不小于0.A.1 B.2 C.3 D.411.(2019·海南高二期末)甲、乙两人进行象棋比赛,已知甲胜乙的概率为0.5,乙胜甲的概率为0.3,甲乙两人平局的概率为0.2.若甲乙两人比赛两局,且两局比赛的结果互不影响,则乙至少赢甲一局的概率为()A.0. 36 B.0. 49 C.0. 51 D.0. 7512.(2019·安徽高一期末(理))某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是A.A和B为对立事件B.B和C为互斥事件C.C与D是对立事件D.B与D为互斥事件13(2020·全国高三专题练习)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为( )A.0.95 B.0.97 C.0.92 D.0.0814.(2020·全国高三专题练习)围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,从中取出2粒都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是( ) A .17 B .1235 C .1735D .1 15.(2020·浙江高三专题练习)一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是( )A .0.3B .0.55C .0.7D .0.7516.(2020·全国高三专题练习)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”( )A .是对立事件B .是不可能事件C .是互斥但不对立事件D .不是互斥事件17.(2020·浙江高三专题练习)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A .110B .310C .35D .91018.(2019·北京高一期末)如果事件A 与事件B 互斥,且()0.2P A =,()0.3P B =,则()P A B = . 19.(2020·全国高三专题练习)经统计,在某储蓄所一个营业窗口排队等候的人数及相应概率如下:(1)至多有2人排队等候的概率是多少?(2)至少有3人排队等候的概率是多少?20.(2020·浙江高三专题练习)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.21.(2020·全国高三专题练习)某商场有奖销售活动中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.22.(2020·北京高一期末)某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.。

(江西版)2013年高考数学总复习 第十章10.1 事件与概率 理 北师大版(含详解)

(江西版)2013年高考数学总复习 第十章10.1 事件与概率 理 北师大版(含详解)

2013年高考第一轮复习数学北师(江西版)理第十章10.1 事件与概率练习一、选择题1.下列说法正确的是( ).A .某事件发生的频率为P (A )=1.1B .不可能事件的概率为0,必然事件的概率为1C .小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D .某事件发生的概率是随着试验次数的变化而变化的A .0.13B .0.39C .0.52D .0.643.抛掷一枚质地均匀的正方体骰子(六个面上分别写有1,2,3,4,5,6),若前3次连续抛到“6点朝上”,则对于第4次抛掷结果的预测,下列说法中正确的是( ).A .一定出现“6点朝上”B .出现“6点朝上”的概率大于16C .出现“6点朝上”的概率等于16D .无法预测“6点朝上”的概率4.一个口袋内装有一些大小和形状都相同的白球、黑球和红球,从中摸出一个球,摸出红球的概率是0.3,摸出白球的概率是0.5,则摸出黑球的概率是( ).A .0.8B .0.2C .0.5D .0.35.甲:A 1,A 2是互斥事件;乙:A 1,A 2是对立事件,那么( ).A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件6.从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g): 492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据样本频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5~501.5 g 之间的概率约为( ). A .0.25 B .0.20 C .0.35 D .0.45二、填空题7.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1小时内断头不超过两次的概率为__________.8.(2012浙江杭州第二次质检)对有n (n ≥4)个元素的总体{1,2,…,n }进行抽样,先将总体分成两个子总体{1,2,…,m }和{m +1,m +2,…,n }(m 是给定的正整数,且2≤m ≤n -2),再从每个子总体中各随机抽取2个元素组成样本.用P ij 表示元素i 和j 同时出现在样本中的概率,则P 1n =__________;所有P ij (1≤i <j ≤n )的和等于__________.9.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.三、解答题10(1)(2)至少3人排队的概率是多少?11.下表为某班的英语及数学成绩,全班共有学生50人,成绩分为1~5分五个档次.例如表中所示英语成绩为4分的学生共14人,数学成绩为5分的共5人.设x,y分别表示英语成绩和数学成绩.(1)x=4的概率是多少?x=4且y=3的概率是多少?x≥3的概率是多少?(2)x=2的概率是多少?a+b的值是多少?12.(2011陕西高考,文20)如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.参考答案一、选择题1.B 解析:概率、频率的值不能大于1,故A 错.小概率事件不一定不发生,大概率事件也不一定发生,故C 错.概率是频率的稳定值,不会随试验次数的变化而变化,故D 错.2.C 解析:样本数据落在(10,40]上的频数为13+24+15=52,故其频率为52100=0.52. 3.C 解析:随机事件具有不确定性,与前面的试验结果无关.由于正方体骰子的质地是均匀的,所以它出现哪一个面朝上的可能性都是相等的.4.B 解析:从中摸出白球、黑球或红球是两两彼此互斥事件,且“摸出黑球”的对立事件是“摸出白球或摸出红球”,所以摸出黑球的概率P =1-(0.3+0.5)=0.2.5.B 解析:由互斥事件、对立事件的定义可知互斥不一定对立,对立一定互斥,即甲是乙的必要不充分条件.6.A 解析:袋装食盐质量在497.5~501.5 g 之间的有5个,故所求概率约为P =520=0.25.二、填空题7.0.97 解析:P =0.8+0.12+0.05=0.97.8.4m (n -m ) 6 解析:P 1n =111122C C C C m n m m n m ----⋅⋅ =4(m -1)(n -m -1)m (m -1)(n -m )(n -m -1)=4m (n -m ); 第二空可分:①当i ,j ∈{1,2,…,m }时,P ij 的和为2222C C C C m n m m n m--=1; ②当i ,j ∈{m +1,m +2,…,n }时,P ij 的和为1;③当i ∈{1,2,…,m },j ∈{m +1,m +2,…,n }时,P ij 的和为m (n -m )×4m (n -m )=4; 所以所有P ij 的和为1+1+4=6.9.5.7% 解析:所抽取的990户普通家庭中有50户拥有3套或3套以上住房,所抽取的100户高收入家庭中有70户拥有3套或3套以上住房,那么99 000户普通家庭中就有5 000户拥有3套或3套以上住房,1 000户高收入家庭中就有700户拥有3套或3套以上住房.那么该地100 000户居民中拥有3套或3套以上住房的家庭占的比例为5 000+700100 000= 5 700100 000=5.7%.三、解答题10.解:记事件在窗口等候人数为0,1,2,3,4,5人及5人以上分别为A ,B ,C ,D ,E ,F .(1)至多2人排队的概率为P (A +B +C )=P (A )+P (B )+P (C )=0.56.(2)解法一:至少3人排队的概率是P (D +E +F )=P (D )+P (E )+P (F )=0.44.解法二:至少3人排队与至多2人排队是对立事件,故至少3人排队的概率是P (D +E +F )=1-P (A +B +C )=0.44.11.解:(1)P (x =4)=1+0+7+5+150=725; P (x =4,y =3)=750, P (x ≥3)=P (x =3)+P (x =4)+P (x =5)=2+1+0+9+350+725+1+3+1+0+150=710. (2)P (x =2)=1-P (x =1)-P (x ≥3)=1-110-710=15. 又∵P (x =2)=1+b +6+0+a 50=15, ∴a +b =3.12.解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),∴用频率估计相应的概率为0.44.(2)选择L 1的有60人,选择L 2的有40人,(3)1212B 1,B 2分别表示乙选择L 1和L 2时,在50分钟内赶到火车站.由(2)知P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5,P (A 1)>P (A 2),∴甲应选择L 1.P (B 1)=0.1+0.2+0.3+0.2=0.8,P (B 2)=0.1+0.4+0.4=0.9,P (B 2)>P (B 1),∴乙应选择L 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.1 随机事件与概率运用一随机事件判断【例1-1】(2019·河南高一期中)下列事件中是随机事件的个数有①连续两次抛掷两个骰子,两次都出现2点;②在地球上,树上掉下的雪梨不抓住就往下掉;③某人买彩票中奖;④已经有一个女儿,那么第二次生男孩;⑤在标准大气压下,水加热到90℃是会沸腾。

A.1 B.2 C.3 D.4【答案】C【解析】由题意,随机事件就是在指定条件下,可能发生,也可能不发生的事件,①连续两次抛掷两个骰子,两次都出现2点可能发生,也可能不发生,所以是随机事件,②在地球上,树上掉下的雪梨不抓住就往下掉,这是一定发生的事件,不是随机事件;③某人买彩票中奖,此事可能发生,也可能不发生,所以是随机事件;④已经有一个女儿,那么第二次生男孩,此事可能发生,也可能不发生,所以是随机事件;⑤在标准大气压下,水加热到90℃是会沸腾,此事一定不发生,不是随机事件.故选C.【例1-2】(2020·全国高三专题练习)某小组有5名男生和4名女生,从中任选4名同学参加“教师节”演讲比赛,则下列每对事件是对立事件的是()A.恰有2名男生与恰有4名男生B.至少有3名男生与全是男生C.至少有1名男生与全是女生D.至少有1名男生与至少有1名女生【答案】C【解析】“恰有2名男生”与“恰有4名男生”是互斥事件,但不是对立事件,排除A项;“至少有3名男生”与“全是男生”可以同时发生,不是互斥事件,排除B项;“至少有1名男生”与“全是女生”不可能同时发生,且必有一个发生,是对立事件,C项正确;“至少有1名男生”与“至少有1名女生”可以同时发生,不互斥,排除D项.故选:C.【例1-3】.(2020·全国高三专题练习)设事件A ,B ,已知()15P A =, ()13P B =,()815P A B =U ,则A ,B 之间的关系一定为( ) A .两个任意事件 B .互斥事件C .非互斥事件D .对立事件【答案】B 【解析】()15P A =Q ,()13P B =, ()()1183515P A P B ∴+=+=又()815P A B =U ()()()P A B P A P B ∴=+UA ∴.B 为互相斥事件故选:B . 【举一反三】1.(2019·全国高二单元测试)下列事件中,随机事件的个数为( ) ①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军; ②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯; ③从标有1,2,3,4的4张号签中任取一张,恰为1号签; ④在标准大气压下,水在4°C 时结冰. A .1 B .2C .3 D .4 【答案】C【解析】①张涛获得冠军有可能发生也有可能不发生,所以为随机事件; ②抽到的学生有可能是李凯,也有可能不是,所以为随机事件; ③有可能抽到1号签也有可能抽不到,所以为随机事件;④标准大气压下,水在4°C 时不会结冰,所以是不可能事件,不是随机事件. 故选C.2.(2019·全国高二单元测试)下列说法正确的有( ) ①随机事件A 的概率是频率的稳定值,频率是概率的近似值. ②一次试验中不同的基本事件不可能同时发生. ③任意事件A 发生的概率()P A 总满足()01P A <<.④若事件A 的概率为0,则A 是不可能事件. A .0个 B .1个C .2个D .3个【答案】C【解析】不可能事件的概率为0,但概率为0的事件不一定是不可能事件,如几何概率中“单点”的长度、面积、体积都是0,但不是不可能事件,∴④不对;抛掷一枚骰子出现1点和出现2点是不同的基本事件,在同一次试验中,不可能同时发生,故②正确;任意事件A 发生的概率P (A )满足()01P A 剟,∴③错误;又①正确.∴选C.3.(2020·全国高三专题练习)若随机事件A 、B 互斥,A 、B 发生的概率均不等于0,且分别为()2P A a =-,()45P B a =-,则实数a 的取值范围是( )A .5,24⎛⎫⎪⎝⎭B .53,42⎛⎫⎪⎝⎭C .53,42⎡⎤⎢⎥⎣⎦D .54,43⎛⎤⎥⎝⎦【答案】D【解析】Q 随机事件A 、B 互斥,A 、B 发生的概率均不等于0, 且分别为()2P A a =-,()45P B a =-,∴0()10()1()()1P A P B P A P B <<⎧⎪<<⎨⎪+⎩„,即0210451331a a a <-<⎧⎪<-<⎨⎪-⎩„,解得5443a <„,即54,43a ⎛⎤∈ ⎥⎝⎦. 故选:D .4(2020·浙江高三专题练习)袋中装有白球3个,黑球4个,从中任取3个,下列各对事件中互为对立事件的是( )A .恰有1个白球和全是白球B .至少有1个白球和全是黑球C .至少有1个白球和至少有2个白球D .至少有1个白球和至少有1个黑球【答案】B【解析】从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,故①恰有1个白球和全是白球,是互斥事件,但不是对立事件,②至少有1个白球和全是黑球是对立事件; ③至少有1个白球和至少有2个白球不是互斥事件, ④至少有1个白球和至少有1个黑球不是互斥事件, 故选:B .运用二 事件的关系和运算【例2】(1)(2019·辽宁高一期末)已知随机事件A 和B 互斥,且()0.5P AUB =,()0.3P B =.则()P A =( ) A .0.5B .0.2C .0.7D .0.8(2)(2020·浙江高三专题练习)某电视台的夏日水上闯关节目中的前四关的过关率分别为56,45,35,12,只有通过前一关才能进入下一关,其中,第三关有两次闯关机会,且通过每关相互独立.一选手参加该节目,则该选手能进入第四关的概率为() A .725B .25C .1225D .1425【答案】(1)D (2)D【解析】(1)A Q 与B 互斥 ()()()P A B P A P B ∴=+U()0.50.30.2P A ∴=-= ()()110.20.8P A P A ∴=-=-=本题正确选项:D(2)第一种情况:该选手通过前三关,进入第四关,所以154326555P =⨯⨯=, 第二种情况:该选手通过前两关,第三关没有通过,再来一次通过,进入第四关, 所以1543341)655525P =⨯⨯-⨯=(. 所以该选手能进入第四关的概率为5435433141655655525⎛⎫⨯⨯+⨯⨯-⨯= ⎪⎝⎭. 故选:D 【举一反三】1.(2019·重庆高二期末(文))在一次随机试验中,已知A , B , C 三个事件发生的概率分别为0.2, 0.3, 0.5,则下列说法一定正确的是( ) A .B 与C 是互斥事件B .A +B 与C 是对立事件C .A +B +C 是必然事件D .()0.3P A B 0.5≤+≤【答案】D【解析】A,B , C 三个事件发生的概率分别为0.2, 0.3, 0.5,不能确定它们之间有任何关系,故选项A 、B 、C 均错,而()()()0.20.30.5P A B P A P B +≤+=+=,()max{(),()}0.3P A B P A P B +≥=,D 正确. 故选D .2.(2019·全国高三专题练习(理))甲、乙两人下棋,结果是一人获胜或下成和棋.已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为______. 【答案】0.5【解析】设甲、乙两人下成和棋P ,甲获胜的概率为()P A ,则乙不输的概率为()1P A -,Q 甲不输的概率为0.8,乙不输的概率为0.7,()0.8P A P ∴+=,()10.7P A -=,1 1.5P ∴+=,解得0.5P =.∴两人下成和棋的概率为0.5.故答案为:0.53.(2020·浙江高三专题练习)眉山市位于四川西南,有“千载诗书城,人文第一州”的美誉,这里是大文豪苏轼、苏洵、苏辙的故乡,也是人们旅游的好地方.在今年的国庆黄金周,为了丰富游客的文化生活,每天在东坡故里三苏祠举行“三苏文化”知识竞赛.已知甲、乙两队参赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且各人回答正确与否相互之间没有影响. (1)分别求甲队总得分为0分;2分的概率; (2)求甲队得2分乙队得1分的概率. 【答案】(1)0分概率127;2分概率49;(2) 1081 【解析】(1)记“甲队总得分为0分”为事件A ,“甲队总得分为2分”为事件B ,甲队总得分为0分,即甲队三人都回答错误,其概率()3211327P A ⎛⎫=-= ⎪⎝⎭;甲队总得分为2分,即甲队三人中有1人答错,其余两人答对,其概率()222431339P B ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭;(2)记“乙队得1分”为事件C ,“甲队得2分乙队得1分”为事件D ; 事件C 即乙队三人中有2人答错,其余1人答对, 则()2212211(1)1(1)332332P C ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯⨯-+⨯-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22151133218⎛⎫⎛⎫⎛⎫+-⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 甲队得2分乙队得1分即事件B 、C 同时发生, 则()()()451091881P D P B P C ==⨯=. 运用三 古典概型【例3】(1)(2020·浙江高三专题练习)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .35C .310D .25(2)(2020·浙江高三专题练习)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23 B .35 C .25D .15【答案】(1)D (2)B【解析】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张, 基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4), 共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=42.105= 故答案为D .(2)设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105,选B.【举一反三】1.(2020·全国高三专题练习)一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.【答案】(1)取出1球为红球或黑球的概率为3.4(2)取出1球为红球或黑球或白球的概率为11.12【解析】(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的球是红球或黑球共有9种结果,∴概率为.(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的一球是红球或黑球或白球共有11种结果,∴概率为.即取出的1球是红球或黑球的概率为;取出的1球是红球或黑球或白球的概率为.运用四综合运用【例4】(2020·全国高三专题练习)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【答案】(1)3,2,2(2)(i)见解析(ii)5 21【解析】(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人. (Ⅱ)(i )从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.(ii )由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 【举一反三】1.(2020·江西高二期末(文))智能手机的出现,改变了我们的生活,同时也占用了我们大量的学习时间.某市教育机构从500名手机使用者中随机抽取100名,得到每天使用手机时间(单位:分钟)的频率分布直方图(如图所示),其分组是: [](]0,20,20,40,(]]]40,60,(60,80,(80,100.(1)根据频率分布直方图,估计这500名手机使用者中使用时间的中位数是多少分钟? (精确到整数) (2)估计手机使用者平均每天使用手机多少分钟? (同一组中的数据以这组数据所在区间中点的值作代表) (3)在抽取的100名手机使用者中在(]20,40和(]40,60中按比例分别抽取2人和3人组成研究小组,然后再从研究小组中选出2名组长.求这2名组长分别选自(]20,40和(]40,60的概率是多少? 【答案】(1) 57分钟. (2)58分钟;(3)35【解析】(1)设中位数为x ,则()0.0023200.01200.015400.5x ⨯+⨯+⨯-= 解得:170573x =≈(分钟) ∴这500名手机使用者中使用时间的中位数是57分钟(2)平均每天使用手机时间为:0.05100.230+0.350+0.270+0.259058⨯+⨯⨯⨯⨯=(分钟)即手机使用者平均每天使用手机时间为58分钟(3)设在(]20,40内抽取的两人分别为,a b ,在(]40,60内抽取的三人分别为,,x y z , 则从五人中选出两人共有以下10种情况:()()()()()()()()()(),,,,,,,,,,,,,,,,,,,a b a x a y a z b x b y b z x y x z y z两名组长分别选自(]20,40和(]40,60的共有以下6种情况:()()()()()(),,,,,,,,,,,a x a y a z b x b y b z∴所求概率63105p == 2.(2020·黑龙江哈尔滨市第六中学校高二期末(理))40名学生某次数学考试成绩(单位:分)的频率分布直方图如下:(1)求频率分布直方图中a 的值;(2)根据频率分布直方图求出样本数据的中位数 (保留小数点后两位数字)和众数; (3)从成绩在[)50,70的学生中任选3人,求这3人的成绩都在[)60,70中的概率. 【答案】(1)0.005a =;(2)77.14,75;(3)16【解析】(1)依题意()23762101a a a a a ++++⨯=,解得0.005a =.(2)最高的小长方形的中点为75,故众数的估计值为75.由于()2310500.25a a a +⨯==,()23710700.6a a a a ++⨯==,设中位数为70x +,则0.2570.5a x +⋅=,解得7.14x ≈,故中位数为7077.14x +=.(3)[)50,70的人数为()40231010a a ⨯+⨯=人,[)50,60与[)60,70人数的比例为2:32:3a a =,即[)50,60中有4人,[)60,70中有6人,从中任选3人,这3人的成绩都在[)60,70中的概率为363102011206C C ==.1.(2020·全国高三专题练习)甲:1A 、2A 是互斥事件;乙:1A 、2A 是对立事件,那么( ) A .甲是乙的充要条件B .甲是乙的充分但不必要条件C .甲是乙的必要但不充分条件D .甲既不是乙的充分条件,也不是乙的必要条件 【答案】C 【解析】当1A 、2A 是互斥事件时,1A 、2A 不一定是对立事件,所以甲是乙的非充分条件. 当1A 、2A 是对立事件时,1A 、2A 一定是互斥事件,所以甲是乙的必要条件. 所以甲是乙的必要非充分条件.故选C.2.(2020·浙江高三专题练习)学校将5个不同颜色的奖牌分给5个班,每班分得1个,则事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是( ) A .对立事件 B .不可能事件C .互斥但不对立事件D .不是互斥事件【答案】C【解析】由题意,1班和2班不可能同时分得黄色的奖牌,因而这两个事件是互斥事件;又1班和2班可能都得不到黄色的奖牌,故这两个事件不是对立事件,所以事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是互斥但不对立事件.故选:C3.(2019·福建高一期末)已知随机事件,,A B C 中,A 与B 互斥,B 与C 对立,且()()0.3,0.6P A P C ==,则()P A B +=( ) A .0.3 B .0.6C .0.7D .0.9【答案】C【解析】因为()0.6P C =,事件B 与C 对立,所以()0.4P B =,又()0.3P A =,A 与B 互斥,所以()()()0.30.40.7P A B P A P B +=+=+=,故选C .4.(2019·贵州高二月考)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.恰有一个红球与恰有二个红球D.至少有一个红球与至少有一个白球【答案】C【解析】从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球和1个白球;1个红球2个白球;3个全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项D中,事件“至少有一个红球”与事件“至少有一个白球”的事件为“2个红球1个白球”与“1个红球2个白球”;选项C中,事件“恰有一个红球”与事件“恰有2个红球”互斥不对立,故选C.5.(2019·北京八中高一期末)从装有两个红球和两个黑球的口袋里任取两个球,那么对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”【答案】D【解析】记两个黑球为,A B,两个红球为1,2,则任取两球的所有等可能结果为:1,2,1,2,,12,A AB B AB,记事件A为“至少有一个黑球”,事件B为:“都是红球”,则51(),()66P A P B==,因为()()1P A P B+=,所以事件A与事件B互为对立事件.6.(2019·河北鹿泉区第一中学高二开学考试)从含有10件正品、2件次品的12件产品中,任意抽取3件,则必然事件是()A.3件都是正品B.3件都是次品C.至少有1件次品D.至少有1件正品【答案】D【解析】从10件正品, 2件次品,从中任意抽取3件A:3件都是正品是随机事件,B:3件都是次品不可能事件,C:至少有1件次品是随机事件,D:因为只有两件次品,所以从中任意抽取3件必然会抽到正品,即至少有一件是正品是必然事件,故选D . 7.(2019·黄陵中学高新部高二期末(文))一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是()A.命中环数为7、8、9、10环B.命中环数为1、2、3、4、5、6环C.命中环数至少为6环D.命中环数至多为6环【答案】C【解析】根据对立事件的定义,可得一个射手进行一次射击,则事件:“命中环数小于6环”的对立事件是“命中环数至少是6环”,故选C.8.(2019·陕西高考模拟(文))口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.38,摸出白球的概率是0.32,那么摸出黑球的概率是()A.0.42B.0.28C.0.3D.0.7【答案】C【解析】∵口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的,摸出红球的概率是0.38,摸出白球的概率是0.32,∵摸出黑球是摸出红球或摸出白球的对立事件,--=.∴摸出黑球的概率是10.380.320.3故应选C.9.(2019·湖南高一期中)从6个篮球、2个排球中任选3个球,则下列事件中,是必然事件的是(). A.3个都是篮球B.至少有1个是排球C.3个都是排球D.至少有1个是篮球【答案】D【解析】从6个篮球、2个排球中任选3个球,A,B是随机事件,C是不可能事件,D是必然事件,故选D.10.(2018·湖南省茶陵县第二中学高一单元测试)下列事件中,随机事件的个数是( )①2020年8月18日,北京市不下雨;②在标准大气压下,水在4℃时结冰;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④向量的模不小于0.A.1 B.2 C.3 D.4【答案】B【解析】①③为随机事件,②为不可能事件,④为必然事件.故选B.11.(2019·海南高二期末)甲、乙两人进行象棋比赛,已知甲胜乙的概率为0.5,乙胜甲的概率为0.3,甲乙两人平局的概率为0.2.若甲乙两人比赛两局,且两局比赛的结果互不影响,则乙至少赢甲一局的概率为()A.0. 36 B.0. 49 C.0. 51 D.0. 75【答案】CP=-⨯=.【解析】乙至少赢甲—局的概率为10.70.70.51故选C12.(2019·安徽高一期末(理))某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是A.A和B为对立事件B.B和C为互斥事件C.C与D是对立事件D.B与D为互斥事件【答案】D【解析】由题意,A项中,事件“击中环数等于4环”可能发生,所以事件A和B为不是对立事件;B项中,事件B和C可能同时发生,所以事件B和C不是互斥事件;C项中,事件“击中环数等于0环”可能发生,所以事件C和D为不是对立事件;D项中,事件B:“击中环数大于4”与事件D:“击中环数大于0且小于4”,不可能同时发生,所以B与D 为互斥事件,故选D.13(2020·全国高三专题练习)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为( )A.0.95 B.0.97 C.0.92 D.0.08【答案】C【解析】因为抽验一件产品只有三种结果,甲、乙、丙三级.利用对立事件的概率公式可知1-5%-3%=92%,即选择C14.(2020·全国高三专题练习)围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,从中取出2粒都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是( )A.17B.1235C.1735D.1【答案】C【解析】设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥,所以P(C)=P(A)+P(B)=17+1235=1735,即任意取出2粒恰好是同一色的概率为17 35.15.(2020·浙江高三专题练习)一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是()A.0.3 B.0.55 C.0.7 D.0.75【答案】D【解析】因为从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是1(0.450.25)0.3-+=,因为从盒子中摸出1个球为黑球或红球为互斥事件,所以摸出黑球或红球的概率0.30.450.75P=+=,故选D.16.(2020·全国高三专题练习)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”()A.是对立事件B.是不可能事件C.是互斥但不对立事件D.不是互斥事件【答案】C【解析】显然两个事件不可能同时发生,但两者可能同时不发生,因为红牌可以分给丙、丁两人,综上,这两个事件为互斥但不对立事件.故选:C.17.(2020·浙江高三专题练习)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310C.35D.910【答案】D【解析】从装有3个红球,2个白球的袋中任取3个球,共有基本事件3510C =种,则全取红球的基本事件只有一种,所以所取3个球中至少有1个白球的概率为1911010-=,故选D. 18.(2019·北京高一期末)如果事件A 与事件B 互斥,且()0.2P A =,()0.3P B =,则()P A B U = . 【答案】0.5【解析】()()0.20.3)0.5(P A P B P A B =+=+=U19.(2020·全国高三专题练习)经统计,在某储蓄所一个营业窗口排队等候的人数及相应概率如下:(1)至多有2人排队等候的概率是多少? (2)至少有3人排队等候的概率是多少? 【答案】(1)0.56;(2)0.44【解析】记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A ,B ,C ,D ,E ,F 互斥.(1)记“至多2人排队等候”为事件G ,则G =A ∪B ∪C ,所以P(G)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2) 记“至少3人排队等候”为事件H ,则H =D ∪E ∪F ,所以P(H)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.20.(2020·浙江高三专题练习)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A 1,但不包括B 1的概率. 【答案】(1)15P =;(2)29P =【解析】(Ⅰ)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有:{}{}{}{}{}{}{}{}{}{}{}{}121323111213212223313233,,,,,,,,,,,,,,,,,,,,,,,,A A A A A A A B A B A B A B A B A B A B A B A B{}{}{}121323,,,,,B B B B B B ,共15个.所选两个国家都是亚洲国家的事件所包含的基本事件有:{}{}{}121323,,,,,A A A A A A ,共3个,则所求事件的概率为:31155P ==. (Ⅱ)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:{}{}{}{}{}{}{}{}111213212223313233,,{,},,,,,,,,,,,,,,A B A B A B A B A B A B A B A B A B ,共9个,包含1A 但不包括1B 的事件所包含的基本事件有:{}{}1213,,,A B A B ,共2个, 所以所求事件的概率为:29P =. 21.(2020·全国高三专题练习)某商场有奖销售活动中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为,求: (1);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 【答案】(1);(2);(3).【解析】(1)∵每1 000张奖券中设特等奖1个,一等奖10个,二等奖50个,∴. (2)设“抽取1张奖券中奖”为事件D ,则P (D )=P (A )+P (B )+P (C )= .(3)设“抽取1张奖券不中特等奖和一等奖”为事件E ,则P (E )=1-P (A )-P (B )=1-.22.(2020·北京高一期末)某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈. (Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率. 【答案】(Ⅰ)男生3人,女生2人;(Ⅱ)35【解析】(Ⅰ)这5人中男生人数为19253320⨯=,女生人数为12852320⨯=. (Ⅱ)记这5人中的3名男生为B 1,B 2,B 3,2名女生为G 1,G 2, 则样本空间为:Ω={ (B1,B2), (B1,B3), (B1,G1), (B1,G2), (B2,B3), (B2,G1), (B2,G2), (B3,G1), (B3,G2),(G1,G2)},样本空间中,共包含10个样本点.设事件A为“抽取的2人中恰有1名女生”,则A={ (B1,G1), (B1,G2), (B2,G1), (B2,G2), (B3,G1), (B3,G2)},事件A共包含6个样本点.从而()63 105P A==所以抽取的2人中恰有1名女生的概率为35.。

相关文档
最新文档