数形结合理解整式的乘法公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数形结合理解整式的乘法

我们已经学习了整式的乘法和乘法公式,并且都知道了字母表示的法则,那么你能了解这些法则的几何意义吗?会验证这些法则吗?为了帮助同学们能熟练掌握,现逐一验证如下,供参考:

一、单项式乘以多项式

如图1,大长方形的面积从整体看为S=m (a +b +c ),同时这个大长方形的面积也可以从局部表示成:S =S 1+S 2+S 3=ma +mb +mc ;于是有m (a +b +c )=ma +mb +mc 。从而验证了单项式与多项式相的法则。

二、多项式乘以多项式

如图2,大长方形的面积从整体可以表示成(a+b )(m+n ),同时这个大长方形的面积也可以从局部表示成S =S 1+S 2+S 3+S 4=ma +mb +na +nb ;于是有(a+b )(m+n )=ma +mb +na +nb .从而验证了多项式与多项式相乘的法则。

三、平方差公式

如图3,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a 2-b 2;若把小长方形S 4旋转到小长方形S 3的位置,则此时的阴影部分的面积又可以看成S 1+S 2+ S 3=(a +b )(a -b )。从而验证了平方差公式(a +b )(a -b )=a 2-b 2。

如图5:将边长为b 的小正方形放到边长为a 的正方形的一角,空白部分的面积从整体计算为a 2-b 2;而如果从局部考试,其面积可以看作为两个梯形S 1+S 2之和,其面积为()()()()))((2

2b a b a b a b a b a b a -+=-++-+。从而也验证了平方差公式(a +b )(a -b )=a 2

-b 2。

四、完全平方公式

如图5,大正方形的面积从整体可以表示为(a +b )2,从局部可以表示为也可以表示为S =S 1+ S 2+ S 3+S 4,同时S =a 2+ab +ab +b 2=a 2+2ab +b 2,从而验证了完全平方公式(a +b )2=a 2+2ab +b 2。

五、一般公式的推理

如图6,从整体看,这个图形的面积为(a+b)(a+2b),从局部我们可以看出,它分为6部分,这6部分的面积之和为a2+3ab+2b2,所以(a+b)(a+2b)= a2+3ab+2b2。

数形结合是一种重要的数学方法,亲爱的同学们,你能利用之种方法把算式(2a+b)(a+2b)的合理性解释清楚吗?

相关文档
最新文档