冷原子吸收法是较灵敏的测汞方法.

合集下载

原子荧光法与冷原子吸收法测定水质汞的方法比较

原子荧光法与冷原子吸收法测定水质汞的方法比较

原子荧光法与冷原子吸收法测定水质汞的方法比较摘要:原子荧光法与冷原子吸收法均是目前比较常用的测定水质汞的常用方式,两种检测方式得到的结果并没有明显的差异,本次研究分析并比较了两种方式测定水质汞的效果,结果发现,与冷原子吸收法相比较而言,原子荧光法测定水质汞的检出限更低,线性范围比较宽,灵敏度较好,准确度比较高,在进行水质汞测定的过程中更加推荐应用此种方式。

关键词:原子荧光法;冷原子吸收法;水质汞在进行水质检验的过程中,汞是及其常规的检测项目之一,同时也是有效评估水质中是否存在有毒元素的重要指标。

目前,在进行水质汞检测的过程中常用的方式比较多,如原子荧光法、双硫腙分光光度法、冷原子吸收法和电感耦合等离子体质谱法,双硫腙分光光度法虽然灵敏度较高,所使用的仪器设备比较简单,操作过程便捷,但是准确度比较低。

电感耦合等离子体质谱法检测费用比较高,检测人员的专业技术要求也比较高,并且检测结果很容易受到多个因素的影响而出现误差。

原子荧光光谱法不但灵敏度高,并且准确度好,检出限低,检测结果基本不会受到其他因素的影响。

相比较而言,冷原子吸收法操作更加简单,灵敏度较高,选择性好,由于原子吸收的谱线只发生在主线系,并且谱线比较窄,所以基本不会受到光谱以及其他因素的干扰,能够在极短的时间内得出准确的结果。

本次研究详细的分析了原子荧光法和冷原子吸收法测定水质汞的方式,并比较了两种不同检测方式得到的效果。

1材料与试剂本次研究中还用到了原子荧光光谱仪,光谱仪的性能指标与GB/T 21191中的相关规定相符合,还用到了汞元素灯,可调温的电热板,温控水浴装置(温控调节温度在±1℃)、抽滤装置(孔径为0.45μm的水系微孔滤膜)、分析天平(精度为0.0001克)、采样容器(包括聚乙烯瓶、聚乙烯桶以及硬质玻璃瓶等)、实验室检验中常用到的其他器皿(各器皿的清洗、消毒情况均经过相关检测后合格)。

应用原子荧光法进行水质汞检测时需要用到双道原子荧光光度计【生产企业:北京海光仪器公司;型号:AFS-2202E】;应用冷原子吸收法进行水质汞检测时用到的仪器为冷原子荧光测汞仪【生产企业:北京吉天仪器有限公司;型号:DCMA-300】。

空气环境中汞污染物测试技术的分析与实践应用

空气环境中汞污染物测试技术的分析与实践应用

空气环境中汞污染物测试技术的分析与实践应用发布时间:2022-10-23T01:58:46.786Z 来源:《科技新时代》2022年9期5月作者:叶青杰[导读] 伴随人们生活水平的提高和环保意识的增强,当前越来越多人开始关注到空气环境中污染物存在造成的影响叶青杰广西华测检测认证有限公司【摘要】伴随人们生活水平的提高和环保意识的增强,当前越来越多人开始关注到空气环境中污染物存在造成的影响,于是各种测试技术投入应用。

本文结合笔者多年的研究与实践,探讨空气环境中汞污染物测试技术的应用实践,以供参考。

【关键词】空气环境;汞污染物;测试技术;实践应用汞也可以称作是水银,在常温下容易蒸发,属于一种液态金属和很强生理毒性的环境污染物,即便其浓度较低,也会对人体、动植物产生较大的毒害作用,因此必须引起高度重视。

随着世界范围内工业化进程的推进,全球环境中汞含量越来越高,这势必带来了日益严重的环境污染问题,严重影响了人们的生活与生存。

1.空气环境汞污染分析1.1空气环境中汞污染来源空气中出现汞污染情况主要是由自然排放所及人为活动造成的。

自然排放主要指火山活动、矿藏等会有大量汞释放,使得水体、土壤以及植物表面的汞元素含量增加,造成严重的空气环境汞污染;人为活动指的是使用燃煤设备、金属冶炼、垃圾焚烧等过程中会释放大量的汞。

依据统计分析数据得知,燃烧煤炭释放的汞达到空气汞含量的30%以上。

经济不断发展,人们物质生活水平也日益提高,但与之相应的却是对环境的不断破坏。

汞的排放量正在逐年增长,目前累计汞排放量早已超出2 493.8 t。

工业生产和生活中,原材料处理、汞燃料燃烧、矿物冶炼等行为都会造成汞污染,人为活动排放到环境中的汞9.1×105~6.2×106 kg/a;火山以及矿藏释放等汞的排放量是1.0×105~4.9×106 kg/a。

电子、冶金以及化工业制汞的排汞量超过含汞废气的排放标准,形成十分严重的环境污染。

海水汞的测定冷原子吸收光谱法

海水汞的测定冷原子吸收光谱法

FHZDZHS0002 海水汞的测定冷原子吸收光谱法F-HZ-DZ-HS-0002海水—汞的测定—冷原子吸收光谱法1 范围本方法适用于大洋、近岸及河口区海水中汞的测定。

检出限:1×10-3μg/L。

1 原理水样经硫酸一过硫酸钾消化,在还原剂氯化亚锡的作用下,汞离子被还原为金属汞,采用气一液平衡开路吸气系统,在253.7nm波长测定汞原子特征吸收值。

3 试剂除非另作说明,本法所用试剂均为分析纯,水为无汞纯水或等效纯水。

3.1 过硫酸钾(K2S2O8)。

3.2 无水氯化钙(CaCl2):用于装填干燥管。

3.3 低汞海水:表层海水经滤纸过滤,汞含量应低于0.005μg/L。

3.4 硝酸(1+19)。

3.5 硫酸(1+1)。

3.6 硫酸(0.5mol/L):在搅拌下将28ml硫酸(ρ1.84g/mL)缓慢地加到水中,并稀释至1L。

3.7 盐酸(1+1)。

3.8 盐酸羟胺溶液(100g/L):称取25g盐酸羟胺(NH2OH·HCI)溶于水中,并稀释至250mL。

3.9 氯化亚锡溶液:称取100g氯化亚锡(SnCl2)置于烧杯中,加入500mL盐酸(1+1),加热至氯化亚锡完全溶解,冷却后盛于试剂瓶中,临用时加等体积水稀释。

汞杂质高时,通入氮气除汞,直至汞含量检不出。

3.10 汞标准溶液3.10.1 称取0.1354g氯化汞(HgCl2,预先在硫酸干燥器中干燥)于10mL烧杯中,用硝酸(1+19)溶解,移入100mL容量瓶中,用硝酸(1+19)稀释至刻度,摇匀。

盛于棕色硼硅玻璃试剂瓶中。

此溶液1mL含1.00mg汞。

保存期为一年。

3.10.2 移取1.00mL汞标准溶液(1mL含1.00mg汞)于100mL容量瓶中,加硝酸(1+19)稀释至刻度,摇匀。

此溶液1.00mL含10.0μg汞,保存期一星期。

3.10.3 移取1.00mL汞标准溶液(1.00mL含10.0μg汞)于100mL容量瓶中,加0.5mol/L硫酸并稀释至刻度,摇匀。

冷原子吸收光谱法和冷原子荧光光谱法测定水样中的汞

冷原子吸收光谱法和冷原子荧光光谱法测定水样中的汞

冷原子吸收光谱法和冷原子荧光光谱法是两种常用的分析方法,用于测定水样中的汞。

汞是一种重金属,具有较高的毒性和易积累性,因此对于水样中的汞浓度进行准确监测和分析至关重要。

本文将从原理、方法步骤、应用、优缺点等方面对这两种方法进行深入探讨。

1. 原理冷原子吸收光谱法是一种利用原子在特定波长光照射下发生原子吸收的分析方法。

当汞原子处于基态时,会吸收特定波长的紫外光,从而使原子跃迁至激发态,然后快速退激发并发光。

而冷原子荧光光谱法是利用原子在激发态下发生自发辐射的分析方法。

通过对样品进行前处理,将水样中的汞转化为气态汞原子,然后在特定温度下冷却,使得原子能量较低,从而利用吸收光谱或荧光光谱进行测定。

2. 方法步骤将水样中的汞通过适当的前处理方法转化为气态汞原子。

将气态汞原子冷却至较低温度,使其处于基态或激发态。

使用特定波长的紫外光照射样品,观察汞原子的吸收光谱或发射光谱。

根据吸收或发射的强度,可以准确测定水样中的汞浓度。

3. 应用这两种方法在环境监测、地质勘探、化工生产等领域具有广泛的应用。

特别是在水质监测中,可以准确、快速地测定水样中的汞浓度,保障水环境的安全。

4. 优缺点冷原子吸收光谱法和冷原子荧光光谱法在测定水样中的汞具有灵敏度高、准确度高、选择性强等优点。

而在操作上,需要严格控制实验条件,对仪器要求较高,且前处理方法较为繁琐。

个人观点:在分析汞等重金属元素时,冷原子吸收光谱法和冷原子荧光光谱法是两种非常有效的分析方法。

它们在监测水质中的汞浓度方面具有明显的优势,能够准确、快速地进行分析。

但是在操作上需要非常小心谨慎,确保实验条件的准确性和稳定性。

总结回顾:通过本文的介绍,我们了解到冷原子吸收光谱法和冷原子荧光光谱法在测定水样中的汞具有重要的应用价值。

它们的原理和方法步骤虽有些复杂,但在分析汞元素时能够提供准确、可靠的数据支持。

应用中需要严格控制实验条件,以确保准确性和可重复性。

对于水质监测和环境保护而言,这两种方法无疑起着重要的作用。

微波消解—冷原子吸收法测定粮食中汞

微波消解—冷原子吸收法测定粮食中汞

的作 用下 由 于酸 的 氧 化 及 活 性 增 加 可 使 样 品在 较 短 的 时 间 内被 消解 ,使 分 子 电离 成 离 子 ,粮 食 中 汞 以离 子 状 态存 在于试液中。
2 试 剂 | Ogm 0 p / |汞 标 准 溶 液 ( S G 2  ̄ 一 9 : O G B6( K 0)
本 法 经 多 次 实 验 认 为 , 采 用 O 0% E T 一 %H c 5 D A0 2 A 混 合 溶 液 作提 取 液 但 对 糖 精 钠 、苯 甲酸 、 山 梨 酸 的 测 定
效 液 相 色谱 法 双 渡 长 同时 测 定 维 生 素 c、苯 甲 酸 山梨 酸 糖 精 钠 的 含 量 ,不 但 快 建 准 确 而 且 干 扰 小 、 灵敏 度 高 .
毕 .实 验 证 明 车 法精 密 度 准 确 度 、灵 敏 度 均 能 满 足 分 析 要 求 ,现 报 告 如下 。
42 测 定 .
取 2m 5 l比 色管 分 别 准 确 加 ^ 汞 标 准 使 用 液 0 、
l 、加 、5 、 lOg 0 0 On ,纯 水 稀 至 2a 5d.摇 匀 将 仪 器 工 作 条
能 太 强 ,否 则 会 影 响 糖 精 钠 、苯 甲 醇 、 山梨 酸 的 测 定 , 同 时应 于 暗 室 中 避 光 操 作 , 样 品 处 理 漓 应 快 速 进 样 为 宜 ,
以 防维 生 素 c氧 化 损 失 。 车 法 采 用 甲醇 / 2 o/ 0 0 m LL醋 酸 铵 为 流 动 相 . 反 相 高
0 0 2 、0 0 2 、 0O 1 ; 变 异 系 数 c % 分 别 为 3 9 、 02 0 3 0 9 v % 2 2 、2 3 、】9 。可 见 方 法 的重 现 性 是 夸 』 满 意 的 % % 僵 、

水质 总汞的测定 冷原子吸收分光光度法

水质 总汞的测定 冷原子吸收分光光度法
一般实验室仪器和以下专用仪器
其载气净化系统 可根据不同测汞仪特点及具体条件 参考下图进行连接
2
所有玻璃仪器及盛样瓶 均用仪器洗液(3.20)浸泡过夜 用蒸馏水冲洗干净 4.1 测汞仪 4.2 台式自动平衡记录仪 量程与测汞仪匹配 4.3 汞还原器 总容积分别为 50 75 100 250 500mL 具有磨口 带莲蓬形多孔吹气头 的玻璃翻泡瓶 4.4 U 形管(Ø 15 110mm) 内填变色硅胶(3.18)60~80mm 长 4.5 三通阀 4.6 汞吸收塔 250mL 玻璃干燥塔 内填经碘化处理的柱状活性碳(3.19) 5 实验室样品保存 5.1 盛样容器 采用硼硅玻璃瓶或高密度聚乙烯塑料壶 样品尽量充满容器 以减少器壁吸 附
该方法特别适用于清洁地面水 或地下水 饮用水 也适用于含有机物(特别是洗净剂) 较少的生活污水与工业废水 6.2.1 将实验室样品(5.3)充分摇匀 立即准确分取 10~50mL 注入 100mL 容量瓶 取样少于 50mL 时 应补加适量水(3.1) 再加 2.5mL 浓硫酸(3.2) 2.5mL 溴化剂(3.9) 加塞 摇匀 20
以上室温放置 5min 以上 样品中应有橙黄色溴释出 否则可适当补加溴化剂(3.9) 但每 50mL 样品中最大用量不应超过 8mL 若仍无溴释出 则该方法不适用 可改用方法 6.1.2 进 行消解 6.2.2 临测定前 边摇边滴加盐酸羟胺溶液(3.10)还原过剩的溴 立即用稀释液(3.17)稀至标 线 分取适量试份进行测定
1Hale Waihona Puke 3.9 溴酸钾(0.1mo1/L) 溴化钾(10g/L)溶液(简称溴化剂) 用水(3.1)溶解 2.784g(准确到 0.001g)溴酸钾(KBrO3 优级纯) 加入 10g 溴化钾(KBr) 用

水质 总汞的测定 冷原子吸收分光光度法

水质 总汞的测定 冷原子吸收分光光度法
用吸管(A 级)吸取汞标准中间溶液(3.15)10.00mL 注入 1000mL 容量瓶(A 级) 用固定液 (3.13)稀释至标线 摇匀 室温阴凉处放置 可稳定 100 天左右 此溶液 lmL 含 0.100ìg 汞 3.17 稀释液
将 0.2g 重铬酸钾(3.4)溶于 972.2mL 水(3.1)中 再加入 27.8mL 硫酸(3.2) 3.18 变色硅胶 Ø3 4mm 干燥用 3.19 经碘化处理的活性碳
一般实验室仪器和以下专用仪器
其载气净化系统 可根据不同测汞仪特点及具体条件 参考下图进行连接
2
所有玻璃仪器及盛样瓶 均用仪器洗液(3.20)浸泡过夜 用蒸馏水冲洗干净 4.1 测汞仪 4.2 台式自动平衡记录仪 量程与测汞仪匹配 4.3 汞还原器 总容积分别为 50 75 100 250 500mL 具有磨口 带莲蓬形多孔吹气头 的玻璃翻泡瓶 4.4 U 形管(Ø 15 110mm) 内填变色硅胶(3.18)60~80mm 长 4.5 三通阀 4.6 汞吸收塔 250mL 玻璃干燥塔 内填经碘化处理的柱状活性碳(3.19) 5 实验室样品保存 5.1 盛样容器 采用硼硅玻璃瓶或高密度聚乙烯塑料壶 样品尽量充满容器 以减少器壁吸 附
1
3.9 溴酸钾(0.1mo1/L) 溴化钾(10g/L)溶液(简称溴化剂) 用水(3.1)溶解 2.784g(准确到 0.001g)溴酸钾(KBrO3 优级纯) 加入 10g 溴化钾(KBr) 用
水(3.1)稀释到 1000mL 置棕色试剂瓶中保存 若见溴释出 则应重新配制 3.10 200g/L 盐酸羟胺溶液
酐[(CH3CO)2O] 40mL36 乙酸(CH3COOH) 0.3mL 浓硫酸(3.2) 充分混匀 冷却至室温后 加入 30g 长纤维脱脂棉 铺平 使之浸泡完全 用水冷却 待反应热散去后 加盖 放入 40

原子荧光法与冷原子吸收法测定水质汞的比较分析

原子荧光法与冷原子吸收法测定水质汞的比较分析

原子荧光法与冷原子吸收法测定水质汞的比较分析发布时间:2022-11-11T07:36:41.213Z 来源:《新型城镇化》2022年21期作者:杜婷婷[导读] 汞(Hg)及其化合物属于剧毒物质,并可在人体内蓄积,对健康造成危害。

环境水样中汞元素的分析方法,国标推荐采用的共有三种,分别为冷原子吸收法、冷原子荧光法和双硫腙光度法。

新疆维吾尔自治区有色地质勘查局测试中心新疆乌鲁木齐 830026摘要:目的比较原子荧光法与冷原子吸收法测定水中汞的含量。

方法采用原子荧光法与冷原子吸收法测定水中汞的含量,并进行比较。

原子荧光法的检出限大大提高,线性范围宽,节省试剂,简单快速,优于冷原子吸收法,精密度、回收率结果亦令人满意,在实际工作中有很大的推广价值,是一种很好的分析方法。

关键词:原子荧光法;冷原子吸收法;水;汞汞(Hg)及其化合物属于剧毒物质,并可在人体内蓄积,对健康造成危害。

环境水样中汞元素的分析方法,国标推荐采用的共有三种,分别为冷原子吸收法、冷原子荧光法和双硫腙光度法。

双硫腙分光光度法是测定多种金属离子的通用方法,但是所需试剂多,操作繁琐,干扰离子较多;冷原子荧光法最早是间断式冷原子荧光法测汞,也存在手工操作精密度差的缺点,而且还存在着严重的液相干扰,荧光池易被污染,记忆效应明显,基线易于漂移,线性范围窄等问题,而现在有单位用氢化物发生双光道荧光光度计作为专用测汞仪,该仪器可以解决以前仪器所存在的一系列问题,但价格相对昂贵,而且要求一定的实验室环境;冷原子吸收法测汞,仪器稳定较好,操作简单。

1.原子荧光法原子荧光法测定水质中的汞含量,由于该法灵敏度高、精密度好、检出限低、共存元素干扰小、线性范围宽、操作快速简便等优点而得到了广泛的应用,尤其是在环境监测分析中的应用。

为了提高原子荧光法测定出水质中汞含量的准确性,多家环境监测机构和其他机构对测量条件进行过探究,梁桂莲、翟爱萍通过实验确定了消解酸浓度、载流酸浓度等最佳实验条件,韦丽群、朱亮等也通过实验讨论了灯电流、炉高等仪器工作条件的选择。

冷原子荧光法和热原子荧光法测定汞的比较

冷原子荧光法和热原子荧光法测定汞的比较

363二○一二年第三十期华章Magnificent Writing楚臻君,河南省平顶山市环境监测中心站。

作者简介:冷原子荧光法和热原子荧光法测定汞的比较楚臻君(河南省平顶山市环境监测中心站,河南平顶山467000)[摘要]测汞的方法很多,有双硫腙分光光度法,冷原子吸收法和原子荧光法。

目前,原子荧光法因为干扰因素少,灵敏度高,成为分析水中痕量汞的特效方法。

[关键词]冷原子;热原子;荧光法原子荧光法在水中汞的测定时,又有冷原子荧光法和热原子荧光法两种,它们的区别在于氢化物发生法产生的氢与氩气是否燃烧形成氩氢火焰,下面就两法测试水中汞进行比较。

1、实验部分1.1原理。

在一定酸度下,溴酸钾与溴化钾反应生成溴,可将试样消解使水中所含汞全部转化为二价汞,用盐酸羟胺还原过剩的氧化剂,再用硼氢化钾将二价汞还原为原子态汞,用氩气作载气将其带入原子化器,在特制汞空心阴极灯的照射下,基态汞原子被光辐射激发,产生共振荧光,在低浓度范围内,荧光强度与汞的含量成正比。

1.2仪器。

AFS-930型双道原子荧光光度计(北京吉天仪器公司)。

汞编码空心阴极灯。

1.3试剂及材料;纯水:蒸馏去离子水;盐酸(优级纯);硝酸(优级纯);氢氧化钾(优级纯);硼氢化钾(分析纯);硼氢化钾溶液:称取一定量的氢氧化钾,溶于纯水中,配成5g/L 的氢氧化钾溶液。

然后分别称取一定量的硼氢化钾,溶于上述氢氧化钾溶液中,分别配成10g/L (热法)、0.1g/L (冷法)的硼氢化钾溶液,注意配置前后顺序,临用现配。

溴酸钾——溴化钾溶液:称取2.784g 无水溴酸钾和10g 溴化钾,溶于纯水中并定容至1000mL ,置棕色瓶中冰箱保存。

盐酸羟胺溶液:称取10g 盐酸羟胺,溶于纯水稀释至100mL 。

汞标准固定液:将0.5g 重铬酸钾(优级纯)溶于950mL 纯水中,再加50mL 硝酸。

汞标准使用液:准确吸取一定量的汞标准储备液[g/mL 。

载流:5%(v/v )盐酸。

食品中汞的测定方法

食品中汞的测定方法

食品中汞的测定方法冷原子吸收光谱法1.原理样品经过硝酸-硫酸、硝酸-硫酸-五氧化二钒或硝酸-过氧化氢高压消解,使样品中的汞转为离子状态,在强酸性中以氯化亚锡为还原剂,将离子状态的汞定量的还原为汞原子。

在常温下易蒸发为汞原子蒸气,以氮气或干燥清洁空气为载气,将汞吹出。

而汞原子对波长253.7nm 的共振线具有强烈的吸收作用,在一定浓度范围其吸收大小与汞原子浓度的关系符合比尔定律,与标准系列比较定量。

最低检出浓度为0.11-0.30ng/ml ,最低检出量为0.002mg/kg 。

该方法适用于各类食品中总汞的测定。

2.试剂除特别注明外,本标准所用试剂均为分析纯试剂,水均为去离子水。

玻璃对汞有吸附作用,因此测汞所用一切器皿需用硝酸溶液(1+3 )浸泡,洗净后备用。

(1)硝酸(优极纯)(2)硫酸(优极纯)(3)30% 过氧化氢(4)300g/L 氯化亚锡溶液:称取30g 氯化亚锡(SnCl2·2H2O ),加少量水,再加2ml 硫酸使溶解后,加水稀释至100ml ,放置冰箱保存。

(5)变色硅胶:干燥用。

(6)硫酸+硝酸+水混合酸液(1+1+8):量取10ml 硫酸,再加入10ml 硝酸,慢慢倒入80ml 水中,混匀后冷却。

(7)五氧化二钒。

(8)50g/L 高锰酸钾溶液:配好后煮沸10min ,静置过夜,过滤,贮于棕色瓶中。

(9)200g/L 盐酸羟胺溶液。

(10)汞标准储备溶液:精密称取0.1354g 于干燥器干燥过的二氯化汞,加混合酸(1+1+8 )溶解后移入100ml 容量瓶中,并稀释至刻度,混匀,此溶液每毫升相当于1mg 汞。

**为了避免在配制稀汞标准溶液时玻璃对汞的吸附,最好先在容量瓶内加进部分底液,再加入汞贮备液。

为保证汞贮备液稳定性,通常在溶液中加少量重铬酸钾。

配制方法:取0.5g 重铬酸钾,用水溶解,加50ml 优极纯硝酸,加水至1L 。

用此保存液来配制汞标准贮备溶液(1ml 含10μg 汞)可保存2 年不变,若配制汞标准应用液(1ml 含0.1 μg汞),置于冰箱中保存10 天不变。

冷原子吸收测汞仪的测量原理和技术特点是怎样的

冷原子吸收测汞仪的测量原理和技术特点是怎样的

冷原子吸收测汞仪的测量原理和技术特点是怎样的双光束冷原子测汞仪,是将单片机,数据存储,自动绘制工作曲线等功能合为一起的功能强大的汞检测仪,本仪器采用冷原子吸收法,基于元素汞在室温下,不加热的条件下,就可挥发成汞蒸气,并对波长253.7nm的紫外线具有强烈的吸收作用,在一定的范围内,汞的浓度和吸收值成正比,符合比尔定律。

直接测量出汞的含量、直接读取测量浓度。

技术指标1.测量原理:双光束冷原子法。

2.自动计算直接读取汞的浓度、不需要用户换算。

3.测量范围:0-10ng/ml(高于10ng/ml时要稀释即可测量)。

4.检出下限:0.2ng/ml5.线性相关系数:R≥0.9956.同时显示:汞浓度ng/ml,温度、湿度*。

7.彩色触摸显示屏,时间日期记忆功能*。

8.有数据查询功能,数据存储256组。

9.仪器有工作曲线标定功能,根据用户需要自动保存工作曲线,下次开机直接使用上次曲线直接测量。

10.流量范围:1.5L/min11.电源电压:220V+10%12.仪器外形尺寸:360×320×160mm313.使用环境温度:0-40℃冷原子吸收测汞仪测量原理:冷原子吸收测汞仪基于元素汞在室温下,不加热的条件下,就可挥发成汞蒸气,并对波长253.7nm的紫外线具有强烈的吸收作用,在一定的范围内,汞的浓度和吸收值成正比,符合比尔定律。

应用冷原子吸收原理,采用朗伯一比耳定律,在翻泡瓶中加入氧化型水样,插入管芯,在管芯上部入口处加入氯化亚锡,把水样中的汞离子还原成元素汞。

抽气泵用载气(如空气等)将翻泡瓶内氯化亚锡与水样反应逸出的汞蒸汽带入比色池中,接收器接收光信号,根据光强的变化测定汞蒸汽的浓度。

冷原子吸收测汞仪主要特点:仪器灵敏度高、测量范围宽、重现性好。

使用化学试剂品种少、数量少;使用器具器件少;不使用惰性气体。

特制的翻泡瓶非常简易,操作中没有汞的损失。

独特的电路设计使仪器具有较高的稳定性和灵敏度,基线几乎无漂移。

冷原子吸收法测定空气中汞含量

冷原子吸收法测定空气中汞含量

汞是一种重要的重金属,在众多方面都有广泛的应用。

而在汞的应用场所的空气中往往含有较多的汞及其化合物的蒸汽。

汞及其化合物不仅具有剧毒,而且具有挥发性和生物传递特性,因此其对环境的污染破坏和对人体的毒害作用尤其巨大,应当予以足够的重视。

气态汞不但可经由人的呼吸进入肺部,对肺部造成感染,还可经由皮肤的毛孔进入到人身体器官内部,在人的身体内部的器官作祟。

汞在人体内的吸附性和滞留性很强,一旦一进入人体的某一器官就很难被正常的新陈代谢将它们快速排泄掉,相反,却会一点点地侵入到人体的细胞或大脑中。

汞对人的大脑的危害是十分严重的,且汞在人的大脑内既不能被排出,更会干扰和损伤神经系统,以人体慢性中毒危及人的健康。

因此,汞对人体的毒性作用一向很被重视,与汞有接触的工作环境尤其要重视空气检测,国家制定有专门的特殊工作环境空气中及其汞化合物含量的标准,并定期进行空气中汞及其化合物含量的监测。

1对冷原子吸收法测定空气中汞含量的实验方法与过程的描述定量测定的依据:对所要测量的环境中汞含量的提取依据是:以高锰酸钾溶液来吸取和氧化空气中的汞成分,使之成为离子状态,再将汞离子进行还原,使之成为汞蒸气,汞蒸气的气体膨胀和升腾作用可促使其从仪器原子嘴中迅速喷发,通过波长为253.7nm的低压汞灯发出的强光照射迅速喷发的汞蒸气,这时的基态汞原子呈现为高能状态,当高能状态的汞原子向着基态汞原子再次回归时,在这个过程中会辐射出共振荧光,共振荧光就是测定所要索取的物质,因为共振荧光的强度会与汞浓度呈线性关系,所要进行的汞的定量测定的依据就建立在这样的状态下,这样的状态也即最容易取得标准值的机会。

测定仪器和试剂的选取:测定仪器气体采样器;大型气泡吸收管;ZYG-Ⅱ型测汞仪。

试剂采用的是吸收液,将C(1/5KMnO4)=0.1mol/ L的高锰酸钾溶液与1+99的硫酸溶液等体积进行混合,配置时间必须把握好,也即需要现用现配,配后即用;汞保存液:称取0.1g重量的重铬酸钾溶解于1L的1+19的硝酸溶液中;盐酸羟胺溶液:200g/ L;氯化亚锡溶液:称取10g重量的氯化亚锡溶解于1+99的硫酸溶液中,然后稀释到50ml,也必须在临用前配置,配后即用;汞标准溶液:称取0.1354g重量的氯化汞溶解于汞保存液中,转移至100ml的容量瓶内,稀释到刻度,此溶液浓度为1g/L。

利用冷原子吸收法和原子荧光法测定水中汞的差异性比较

利用冷原子吸收法和原子荧光法测定水中汞的差异性比较

2020年1月 海峡科学 January 2020 第1期 总第157期 Straits Science No.1, Total 157th·39·利用冷原子吸收法和原子荧光法测定水中汞的差异性比较陈竞颖(福建省莆田环境监测中心站,福建 莆田 351100)[摘要] 从检出限、精密度、准确度及稳定性等指标,比较分析冷原子吸收法与原子荧光法在测定水质汞中受外界干扰的程度,判断实验结果的可信度。

结果表明,原子荧光法受温湿度影响较大,只有当温度处于20~30°C 、湿度在50%~60%之间时,仪器的荧光值才能处于较平稳的状态。

而冷原子吸收测汞仪对实验室环境的要求不高,因此在无法控制温湿度的情况下,建议使用冷原子吸收法测定水体中的汞,不仅得出的数据稳定性好,而且也无需对仪器进行长时间的预热,实验周期短。

[关键词] 水中汞 测定差异 原子荧光法 冷原子吸收法[中图分类号] X781.2;X703 [文献标识码] A [文章编号] 1673-8683(2020)01-0039-05汞是环境中一种生物毒性极强的重金属污染物,它进入生物体后很难被排出,严重威胁人类健康[1]。

在过去的十几年间,环境中汞的浓度持续上升,已经引起各国政府和环保组织的极大关注,成为继气候变化问题后的又一全球环境问题。

伴随着工业的发展,汞的用途越来越广,生产量急剧增加,从而使大量的汞随着人类活动而进入环境。

现阶段汞的测定方法有原子荧光法、冷原子吸收法、ICP 和ICP-MS 法等[2]。

本文主要比较分析常用的原子荧光法和冷原子吸收法,通过相应的检出限、精密度等分析得出结论。

1 实验原理 1.1 冷原子吸收法样品中所含汞全部转化为二价汞,用盐酸羟胺将过剩的氧化剂还原,再用氯化亚锡将二价汞还原成金属汞。

在室温下通入氩气,将汞蒸气载入冷原子吸收汞分析仪,于253.7nm 波长处测定响应值,汞的含量与响应值成正比。

冷原子吸收法测定汞原理

冷原子吸收法测定汞原理

冷原子吸收法测定汞原理汞是一种有害的重金属,在环境中的汞污染问题一直备受关注。

为了有效地监测和治理环境中的汞污染,需要开发出一种高灵敏度、高精度的汞检测方法。

目前,冷原子吸收法(cold vapor atomic absorption spectroscopy, CVAAS)已经成为一种广泛应用的汞检测技术。

冷原子吸收法是利用光谱仪测量汞原子的吸收热蒸气的能力来定量测定汞的方法。

冷原子吸收法适用于测定空气、水、土壤、废弃物及口腔中的总汞和甲基汞等形态的汞。

本文将介绍冷原子吸收法测定汞的原理。

1. 汞化反应:将样品中存在的汞物质转化为汞原子,是冷原子吸收法测定汞的关键步骤。

汞化反应一般采用亚硝酸钾和氢氯酸作为还原剂,将汞物质还原为汞离子和汞原子的混合物。

2. 冷降解:汞化反应后的样品要进行冷降解,使汞离子和汞原子稳定存在于水溶液中,此过程是通过加入氢氧化钠(NaOH)和钾氰化物(KCN)实现的。

氢氧化钠可以调节样品中的pH值,使样品中的汞离子和汞原子稳定存在于溶液中。

而钾氰化物会将样品中的游离汞离子化合为配合物,从而提高汞原子在分子中的稳定性,有助于提高冷原子吸收法的检测灵敏度。

3. 冷蒸气发生器:冷蒸气发生器是将样品中产生的汞原子转化为汞蒸气的过程。

将样品溶液注入冷蒸气发生器中,在室温下通过氩气(Ar)气化汞原子,生成汞蒸气。

冷蒸气发生器内的气氛要充分的干燥,以减少汞原子和氧气的反应,会产生汞氧化物,降低检测精度。

4. 吸收光谱仪:吸收光谱仪是进行汞测定的关键设备。

经过冷蒸气发生器中的氩气携带,汞原子进入吸收光谱仪的采样室中。

在采样室中,利用一个半导体激光器或一个低压汞灯发光源激发吸收室中的汞原子,汞原子吸收激光的能量,从而使得激光通过吸收室的光强发生变化。

吸收室内的光通过光电倍增管转换成电信号,被记录下来,根据吸收的光强可以计算出对应的汞原子浓度。

1. 与其他检测方法相比较,冷原子吸收法检测汞的灵敏度和准确度更高。

原子荧光法与原子吸收法测定水质汞的对比分析

原子荧光法与原子吸收法测定水质汞的对比分析

原子荧光法与原子吸收法测定水质汞的对比分析目的:探讨原子荧光法与冷原子吸收法测定水质汞的优劣。

方法:选取浓度一样的水质汞标准样品,采取原子荧光法、冷原子吸收法对其内含量进行测量,分析其差异、精密度以及检出限。

结果:原子荧光法当浓度介于0.1μg/L和1.0μg/L 之间时,相关系数0.9995,检出限是0.0079μg/L,精密度是1.93%;冷原子吸收法当浓度介于0.50μg/L和 2.5μg/L之间时,相关系数是0.9997,检出限是0.081μg/L,精密度是2.37%。

结论:原子荧光法和冷原子吸收法测定水质汞的结果差异不明显,其中,原子荧光法因具有准确性好、检出限低、灵敏度高、线性范围较宽等特点,更合适分析水质汞的痕量。

标签:原子荧光法;冷原子吸收法;水质汞汞及其化合物都是剧毒物质,在天然水中含量甚微,在水质检验中属于常规检测项目,是一项十分关键的毒理指标。

当人体内汞的含量超标时将会损害人体的神经系统,并对肾脏功能、肝脏功能造成不利影响。

目前对水质汞的测定方法主要有原子荧光法、双硫腙分光光度法、冷原子吸收法、电感耦合高骈等离子体等。

本文对原子荧光法和冷原子吸收法测定水质汞进行对比分析,具体报道如下。

1材料与方法1.1仪器与工作参数①原子荧光法,仪器:北京海光仪器公司AFS-2202E行双道原子荧光光度计。

负高压:260V;灯电流:20mA;原子化器高度:10mm;载气流量:400ml/min;屏蔽气流量:900ml/min;测定方法:标准曲线法;读数方式:峰面积。

②冷原子吸收法,仪器:杭州大成光电仪器有限公司生产的ZYC-II智能冷原子荧光测汞仪;负高压:380V;载气流量:60ml/min,测定方法:工作曲线定量。

1.2试剂硝酸、盐酸是优级纯,其他的试剂是分析纯,使用18.2Ω·cm去离子水作为试验用水,实验用器皿要经过1+1硝酸浸泡过夜之后洗干净再使用。

硼氢化钾(20g/L)-氢氧化钠(2g/L),盐酸[5%(v/v)],氯化亚锡(100g/L),盐酸羟胺(100g/L),溴酸钾-溴化钾溶液(把溴化钾2.784g和溴化钾10g在纯水中溶和,并把其稀释到1000ml),重铬酸钾(0.05%)-硝酸溶液(5%),国家标准物质中心提供的1000μg/ml汞标准贮备液。

原子荧光法和冷原子吸收光谱法测汞

原子荧光法和冷原子吸收光谱法测汞

1.引言汞是唯一在常温常压下为液态的金属元素。

它有三种基本的形态: 以液态或气态形式存在的金属汞、无机汞化合物(包括氯化亚汞、氯化高汞、乙酸汞和硫化汞)以及有机汞化合物(如苯基汞、烷基汞)。

地壳中约含80 pg kg-1汞[1], 空气中汞主要来源于岩石的风化、火山爆发及水中汞的蒸发等;水中的汞来自大气及工农业生产的污染, 如氯碱工业用汞作阴极电解食盐, 除汞蒸气的挥发外, 大量的汞和氯化汞从废水中排出;食物中的汞, 通常以甲基汞的形式存在, 甲基汞能积聚在水生生物中, 参加食物链, 使汞在鱼体内富集浓缩, 达到极高浓度。

此外,医学上采用汞齐合金作牙科材料,其中汞量可达45 %〜50 %(质量分数, 下同)。

毒理试验指出, 摄入过量的汞可引起慢性汞中毒或急性汞中毒, 慢性汞中毒能使汞被血液吸收并送到大脑, 严重损害了中枢神经系统。

急性汞中毒会危害呼吸系统、消化系统和泌尿系统。

无机汞的中毒是可逆的, 一定时间后可以通过各种途径从体内排出, 危害较轻。

有机汞对人类健康危害极大, 其中以烷基汞毒性最大(如甲基汞、乙基汞), 这类化合物易溶入细胞膜和脑组织的类脂中, 一旦进入脑细胞则很难排出, 从而损伤中枢神经系统。

因此汞的检测具有现实意义。

汞的测定方法主要有分光光度法、气相色谱法、液相色谱法、原子光谱法及电化学分析法、原子荧光光谱法等。

本文主要介绍原子荧光法和冷原子吸收法测汞的原理和其应用。

2.原子荧光法测汞2.1原子荧光法的原理是利用汞离子与硼氢化钾在酸性介质中反应生成原子态汞蒸气,被氩气载入原子化器中,在汞空心阴极灯照射下,基态汞原子被激发至高能态,再由高能态回到基态时,它会发射出特征波长的荧光,而荧光强度在一定范围内与汞的浓度成正比。

原子荧光测汞仪仪器装置主要包括激发光源,聚光系统,原子化器,单色片(滤光片)和检测器等部分。

2图1原子茨光測耒仪示意图H光源.2.聚光a, 3.僚子化器.4.单色仪或滤光片.5.光电倍増管,6.放大器,7.读数电表或电子电他差计.光源:原子荧光侧汞法要求光源强度高而稳定,一般的汞空心阴极灯不适用,因荧光强度很弱.常用的有笔型汞灯、低压汞灯、汞无极放电灯和汞蒸汽放电灯,这几种光源中以前二种最好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汞冷原子吸收法是较灵敏的测汞方法,干扰因素较少。

双硫腙比色法在严格遵守规定的条件下,也可能得到较满意的结果,但灵敏度较低。

一、冷原子吸收法1、应用范围1.1 本方法适用于测定饮用水及其水源水中总汞的含量。

1.2 本法的最低检测量和最低检测浓度承受不同型号的测汞仪而定。

一些常用的国产测汞仪,最低检测量为0.01μg汞。

若取50ml水样测定,则最低检测浓度为0.2μg/L。

2、原理汞蒸气对波长252.7nm的紫外光具有最大吸收,在一定的汞浓度范围内,吸收值与汞蒸气的浓度成正比。

水样经消解后加入氯化亚锡将化合态的汞转为元素汞,用载气带入原子吸收仪的光路中,测定吸收值。

3、仪器本法使用的玻璃仪器,包括试剂瓶和采水样瓶,均须用1+1硝酸浸泡过夜,再依次用自来水、纯水冲洗洁净。

3.1 100ml三角瓶。

3.2 50ml容量瓶。

3.3 汞蒸气发生管。

3.4 冷原子吸收测汞仪。

4、试剂应采用汞含量尽可能低的试剂,配制试剂和稀释样品用的纯水为去离子蒸馏水或经全玻璃蒸馏器蒸馏的重蒸馏水。

4.1 0.100mg/ ml汞标准贮备溶液:称取0.1353g氯化汞(HgC12),溶于含0.05%重铬酸钾的5+95硝酸溶液中,并用含0.05%重铬酸钾的5+95硝酸溶液定容至1000ml。

此溶液1.00ml 含0.100mg汞。

4.2 0.05μg/ml汞标准溶液:临用前吸取汞标准贮备溶液10.00ml于100ml容量瓶中,用含0.05%重铬酸钾的5+95硝酸溶液定容至100ml。

此溶液1.00ml含汞10.00μg,再吸取此溶液5.00ml,用含0.05%重铬酸钾的5+95硝酸溶液定容至1000ml.此溶液1.00ml含0.05μg 汞。

4.3 5%高锰酸钾溶液:称取5g高锰酸钾(KMnO4),加热溶于纯水中,并稀释至1000ml。

放置过夜,取上清液使用。

注:高锰酸钾中含有微量汞时很难除去,选用时要注意。

4.4 盐酸羟胺-氯化钠溶液:称取12g盐酸盐酸羟胺(NH2OH·HCI)和12g氯化钠(NaCL),溶于纯水中并稀释至100ml。

如果试剂空白高,以每分钟2.5L的流量通入氮气或净化过的空气30min。

4.5 10%氯化亚锡溶液。

称取10g氯化亚锡(SnCl2.2H2O),先溶于10ml浓盐酸中,必要时可稍加热,然后用纯水稀释至100ml。

如果试剂空白高,以每分钟2.5L的流量通入氮气或净化过的空气30 min。

4.6 浓硫酸。

4.7 溴酸钾-溴化钾溶液:称取2.784g无水溴酸钾(KBrO3)和10g(KBr),溶于纯水中并稀释至1000ml。

5、步骤5.1 预处理:受到污染的水样采用硫酸-高锰酸钾消化法;清洁水样可采用溴酸钾-溴化钾消化法。

5.1.1 硫酸-高锰酸钾消化法5.1.1.1 于100ml 三角瓶中,加入5%高锰酸钾溶液2ml 及50.0ml 水样。

5.1.1.2 另取100ml 三角瓶8个,各加入5%高锰酸钾溶液2ml ,然后分别加入0.05μg/ml 汞标准溶液0、0.20、0.50、1.00、2.00、3.00、4.00、5.00ml ,各加入纯水至50ml 。

5.1.1.3 向水样瓶及标准系列瓶中各滴加2ml 浓硫酸,混匀,置电炉上加热煮沸5min ,取下放冷。

注:经试验证明,地面水用硫酸和高锰酸钾作氧化剂,直接加热分解,有机汞(包括氯化甲基汞)的回收入率可达96~103%,无机汞为102%。

高锰酸钾用量应根据水样中还原性物质的含量多少而增减。

当地面水的耗氧量(酸性高锰酸钾法测定结果)在20mg/L 以下时,每50ml 水样中加入2ml5%高锰酸钾溶液已足够。

加热分解时须加入数粒玻璃珠,并在近沸时不时摇动三角瓶,以防止受热不均匀而引起爆沸。

5.1.1.4 逐滴加入盐酸羟胺-氯化钠溶液(4.4)至高锰酸钾紫红色褪尽,放置30min 。

分别移入50ml 容量瓶中,加纯水至刻度。

注:盐酸羟胺还原高锰酸钾过程中产生氯气,必须在振摇后静置30min 使氯气逸失,以防止干扰汞蒸气的测定。

5.1.2 溴酸钾-溴化钾消化法5.1.2.1 吸取50.0ml 水样于100ml 三角瓶中。

5.1.2.2 另取100ml 三角瓶8个,分别加入0.05μg/ml 汞标准溶液0、0.20、0.50、1.00、2.00、3.00、4.00、5.00ml ,各加入纯水至50ml 。

5.1.2.3 向水样及标准系列溶液中,各加2ml 浓硫酸,摇匀,加入4ml 溴酸钾-溴化钾溶液(4.7),摇匀后放置10min 。

5.1.2.4 滴加几滴盐酸羟胺-氯化钠溶液(4.4),至黄色褪尽为止(中止溴化作用)。

5.2 测定:按照仪器说明书调整好测汞仪。

从样品及标准系列瓶中逐个吸取25.0ml 溶液于水蒸气发生管中,加入2ml 10%氯化亚锡溶液,迅速塞紧瓶塞。

开启仪器气阀,此时汞蒸气被送入吸收池,待指针至最高读数时,记录吸收值。

注:影响汞蒸气发生的因素较多,如载气流量、温度、酸度、反应容器、气液体积比等。

因此每次测定均应同时测定标准系列。

5.3 绘制校准曲线,从曲线上查出所测定的样品管中的汞含量。

6、计算 C=VM ×1000 式中:C ——水样中汞(Hg )的浓度,mg/L ;M ——从校准曲线上查得样品管中砷的含量,μg ;V ——水样体积,ml 。

7、精密度与准确度有26个实验室用本法测定含汞5.1μg/L 的合成水样,其他各金属浓度(μg/L )分别为:铜,26.5;镉,29;铁,150;锰,130;锌,39。

测定汞的相对标准差为 5.8%,相对误差为2.0%。

二、双硫腙分光光度法1、应用范围1.1 本法适用于测定生活饮用水及其水源水中总汞的含量。

1.2 1000μg 铜、20μg 银、10μg 金和5μg 铂对汞的测定均无干扰。

把干扰测定,但它在一般水样中很少存在。

1.3 本法适最低检测量为0.25μg 。

若取250ml 水样测定,则最低检出浓度为1μg/L 。

2、原理汞离子与双硫腙在0.5mol/L硫酸的酸性条件下能迅速定量螯合,生成能溶于氯仿、四氯化碳等有机溶剂的橙色螯合物,用碱液洗去过量的双硫腙,于485nm 波长下比色定量。

于水样中加入高锰酸钾和硫酸并加热,可将水中有机汞和低价汞氧化成高价汞,且能消除有机物的干扰。

铜、银、金、铂、钯等金属离子在酸性溶液中同样可被双硫腙溶液萃取,但提高溶液酸度和碱性洗液浓度,并在碱性洗液中加入乙二胺四乙酸二钠,可消除一定量前四种金属离子的干扰,但不能消除钯的干扰。

3、仪器本法所用玻璃仪器,包括试剂瓶和采样瓶,均须用1+1硝酸溶液浸泡过夜,再用纯水冲洗洁净。

3.1 500ml具塞三角瓶。

3.2 500ml分液漏斗。

3.3 125ml分液漏斗。

3.4 分光光度计。

4、试剂本法所用试剂含汞、铜等离子应尽可能少,配制试剂及稀释样品的纯水应用去离子蒸馏水或重蒸馏水。

4.1 汞标准贮备溶液:0.100mg/ml4.2 1.00μg/ml汞标准溶液:将汞标准贮备溶液加5+95硝酸稀释成1.00ml含1.00μg汞。

4.3 0.1%双硫腙氯仿贮备溶液:称取0.10g双硫腙(C13H12N4S,又名二苯基硫代卡巴腙,铜试剂等),溶于氯仿中,并稀释至100ml,贮存于棕色瓶中,置冰箱内保存。

4.4 吸光度0.40(透光率40%)的双硫腙氯仿溶液:临用前将0.1%双硫腙氯仿贮备溶液用氯仿稀释(约20倍)成吸光度为0.40(波长500ml,1cm比色皿)。

4.5 盐酸羟胺-氯化钠溶液:称取12g盐酸盐酸羟胺(NH2OH·HCI)和12g氯化钠(NaCL),溶于纯水中并稀释至100ml。

如果试剂空白高,以每分钟2.5L的流量通入氮气或净化过的空气30min。

4.6 5%高锰酸钾溶液:称取5g高锰酸钾(KMnO4),加热溶于纯水中,并稀释至1000ml。

放置过夜,取上清液使用。

4.7 浓硫酸。

4.8 20%亚硫酸钠溶液:称取20g亚硫酸钠(Na2SO3·7H2O),溶于纯水中,并稀释至100ml。

4.9 碱性洗液:称取10g氢氧化钠(NaOH),溶于500ml纯水中,加入10g乙二胺四乙酸二钠(C10H14N2O8Na2·2H2O),再加浓氨水至1000ml。

5、步骤5.1 水样预处理5.1.1 于500ml具塞三角瓶中放入5%高锰酸钾溶液10ml,如水样中有机物过多,可多加5~10ml,然后再加入250ml水样。

5.1.2 另取同样三角瓶9个,各先加5%高锰酸钾溶液10ml,然后分别加入1.00μg/ml 汞标准溶液0、0.25、0.50、1.00、2.00、3.00、4.00、6.00、8.00及10.00ml,各加纯水至250ml。

5.1.3 向水样及标准瓶中各加20ml浓硫酸,置电炉上加热煮沸5min。

5.1.4 将溶液冷却至室温,滴加盐酸羟胺溶液(4.5)至高锰酸钾褪色,剧烈振荡,开塞放置30min。

注:盐酸羟胺还原高锰酸钾过程中产生大量氯气与氮氧化物,为防止萃取过程中氧化双硫腙,必须开塞静置30min ,使其大部分逸散。

5.2 测定5.2.1 将溶液倾入500ml 分液漏斗中,各加20%亚硫酸钠溶液1ml 及10.0ml 双硫腙溶液(4.4),剧烈振摇1min ,静置分层。

5.2.2 将双硫腙溶液放入另一套已盛有20ml 碱性洗液(4.9)的125ml 分液漏斗中,剧烈振摇半分钟,静置分层。

用少量脱脂棉塞入分液漏斗颈内,将氯仿相放入干燥的10ml 比色管中。

5.2.3 于485nm 波长下,用2cm 比色皿,以氯仿为参比,测定样品和标准系列溶液的吸光度。

5.2.4绘制校准曲线,从曲线上查出所测定的样品管中的汞含量。

6、计算 C=VM ×1000 式中:C ——水样中汞(Hg )的浓度,mg/L ;M ——从校准曲线上查得样品管中砷的含量,μg ;V ——水样体积,ml 。

7、精密度与准确度有12个实验室用本法测定含汞5.1μg/L 的合成水样,其他各金属浓度同上含汞5.1μg/L 的合成水样。

测定汞的相对标准差为40.3%,相对误差为13.7%。

相关文档
最新文档