原子结构氢原子光谱理解玻尔理论对氢原子光谱的解释共45页
3433第三十四讲氢原子光谱的实验规律玻尔理论
1913年, 28岁的研究生 玻尔将普朗克、爱因斯坦的 量子理论推广到卢瑟福的原 子有核模型中,并结合原子 线光谱的实验规律,提出了 关于氢原子模型的三个假设, 奠定了原子结构的量子理论 基础。为此他获得1922年诺 贝尔物理学奖。
一、氢原子光谱的实验规律 不同原子的辐射光谱特征是完全不同的,研究
原子光谱的规律是为研究原子结构,氢原子是结构 最简单的原子,对氢原子光谱规律研究发现,在可 见光和紫外区氢原子的谱线如图。
连 续
H
紫 H 青 H 深绿 H
红H
氢原子巴耳末系谱线图
一、氢原子光谱的实验规律 1.氢原子光谱 1)是彼此分离的线光谱, 每条谱线有确定波长。
连 续
H
紫 H 青 H 深绿 H
对应一个 m 就构成一个谱线系。
令:
T(m)
R m2
,
T (n)
R n2
称为光谱项。
里兹组合原则: T(m) T(n)
普芳德系 布喇格系 帕邢系
巴耳末系
赖曼系
波长 5.0 4.0 3.0 2.0 1.0
红
外
线
0.8 0.6 0.4 0.2
mm
可见光 紫外线
1
R
1 m2
rn
+e
部分质量都集中于原子核。
M核 me
由牛顿二定律: 由库伦定律:
Fn
Fn
man
m
e2
vn2 rn
4 0rn2
由假设2): L mn rn
nh 2π
e2
4 0rn2
m
氢原子光谱 玻尔理论
20 世纪经典物理遇到的困难普朗克能量子假说爱因斯坦光量子假说经典物理学在进入20世纪以后,受到了冲击。
经典理论在解释一些新的试验结果上遇到了严重的困难。
玻尔在原子结构中引入量子化解释氢原子光谱很早人们就知道,气态原子被火花、电弧或其他方法激发可以发光,经棱镜分光后,能得到不连续的线状光谱。
气态原子棱镜屏幕看似杂乱无章的光谱线是否有规律??Rydberg 提出以一个经验的公式:22111=H R c n mm n νλ⎛⎫=-> ⎪⎝⎭其中,R H =1.09677576×107m -1是氢的Rydberg 常数。
经验公式背后的物理意义??原子结构=1m =2m =3m =4m =5m =6m根据卢瑟福的原子核式结构模型,氢原子中核外电子会绕原子核做圆周运动。
是否能解释发光的物理机制?原子坍塌灾难根据经典电磁理论,电子加速运动,要辐射电磁波,电子能量减小,圆周运动半径减小。
(1)定态轨道(2)定态跃迁1913年,时年28岁丹麦人玻尔在卢瑟福实验室做博士后,就原子结构模型提出了两点假设:r n =L r p =⨯r μυ=⨯r μυ=n r μυ=质量为,速度为υμ(1)定态轨道电子只能处在特定的轨道上绕原子核转动,并不往外辐射能量。
电子的这种稳定的状态叫做定态。
轨道必须满足量子化条件:电子的角动量L 只能取的整数倍,即( n=1,2,3, … )L n=4222s n e E n μ=- =电子在定态轨道上的能量2212se E r μυ=-电子做圆周运动的向心力是库仑力提供的2222204s e Ze r r r μυπε==向心力库仑力联立两式,可得2s e n υ=222s n r e μ=r n =L r p =⨯r μυ=⨯r μυ=n r μυ=质量为,速度为υμ(2)定态跃迁电子可以从一个能级E n 跃迁到另一个较低(高)的能级E m ,同时将发射(吸收)一个光子。
4.4氢原子光谱和玻尔的原子模型课件ppt—高二下学期物理人教版选择性必修第三册6
轨道图
能级图
量子数:按能级由低到高为1、2、3…n(n为 整数) 如:氢原子各能级可表示为
激发态
其他的状态
—— 基态 能量最低的状 态 ( 离核最近 )
跃迁假设(频率条件) 跃迁:原子由一个能量态变为另一个能量态的过程称为跃迁。 电子从低能级向高能级跃迁
电子从基态向激发态跃迁,电 子克服库仑引力做功, 增大电势能,原子的能量增加 ,要吸收能量
巴耳末公式中的n应该是电子 从量子数分别为n=3,4,5…… 的能级向量子数为2的能级跃 迁时发出的光谱线
巴 耳 末 系
氢原子能级跃迁与光谱图
玻尔理论与巴耳末公式
请同学们用这几个公式推出巴耳末公式
结果与实验值符合的很好
玻尔理论与巴耳末公式
Hδ
Hγ
Hβ
Hα
n=2n=1 n=3 n=4
n=5
n=6
玻尔理论与巴耳末公式
波尔的原子结构假说
玻尔
轨道量子化
玻尔原子 理论的基 能量量子化 本假设
跃迁假说
轨道量子化
1、轨道量子化:针对原子核式结构模型提出
分立轨道
围绕原子核运动的电子轨道 半径只能是某些分立的数值 ,即电子的轨道是量子化的 。电子在这些轨道上绕核的转动 是稳定的,不产生电磁辐射 。
能量量子化(定态)
原子的能量:原子的能量值是核外电子绕原子核运动时的动能 与原子所具有的电势能的总和。原子的不同能量状态
由不连续的亮线组成的光谱叫线状谱。由波长连续分布的光组成的 连在一起的光带叫连续谱。 原子的发射光谱时线状光谱。不同原子的发射光谱不相同
问题与练习
根据巴耳末公式,指出氢原子光谱在可见光范围内波长最长的两条谱 线所对应的n,它们的波长各是多少?氢原子光谱有什么特点?
氢原子光谱玻尔氢原子理论
根据电子绕核作圆周运动的模型及角动量 量子化条件可以计算出氢原子处于各定态时的 电子轨道半径。
玻尔的氢原子理论
rn n2 (m0he22 ),n 1,2,3,
r1 0.5291010m 玻尔 半径
电子处在半径为 rn的轨道上运动时,可以计
算出氢原子系统的能量 En为
En
1 n2
பைடு நூலகம்
(8m0e2h4 2 ), n
● 量子化条件的引进没有适当的理论解释。 ● 对谱线的强度、宽度、偏振等无法处理。
氢原子光谱
例题18-6 在气体放电管中,用能量为12.5eV的电子通 过碰撞使氢原子激发,问受激发的原子向低能级 跃迁时,能发射那些波长的光谱线?
解: 设氢原子全部吸收电子的能量后最高能激发到第n
个能级,此能级的能量为
态跃迁到另一能量为 Ek的定态时,就要发射
或吸收一个频率为 kn 的光子。
kn
En
Ek h
玻尔频率公式
玻尔的氢原子理论
(3)量子化条件 在电子绕核作圆周运动中,
其稳定状态必须满足电子的角动量 L等于 h
的整数倍的条件。
2
L n h , n 1,2,3,
2
n为量子数
角动量量子化条件
3. 氢原子轨道半径和能量的计算
§18-4 氢原子光谱 玻尔的氢原子理论
1. 氢原子光谱的规律性
原子发光是重要的原子现象之一, 光谱学 的数据对物质结构的研究具有重要意义。
氢原子谱线的波长可以用下列经验公式表示:
~
R(
1 k2
1 n2
)
~ 1
k 1,2,3, n k 1, k 2, k 3,
波数
R 1.096776 107 m-1 里德伯常量
氢原子的能级与光谱.
氢原子的能级与光谱·爱因斯坦1905年提出光量子的概念后,不受名人重视,甚至到1913年德国最著名的四位物理学家(包括普朗克)还把爱因斯坦的光量子概念说成是“迷失了方向”。
可是,当时年仅28岁的玻尔,却创造性地把量子概念用到了当时人们持怀疑的卢瑟福原子结构模型,解释了近30年的光谱之谜。
§1 氢原子的能级与光谱一、玻尔的氢原子理论(一)玻尔的基本假设1.定态假设:原子只可能处于一系列不连续的能量状态E1, E2, E3,…。
处于这些状态的原子是稳定的,电子虽作加速运动,但不辐射电磁波。
2.频率条件:原子从某一定态跃迁至另一定态时,则发射(或吸收)光子,其频率满足玻尔在此把普朗克常数引入了原子领域。
(二)玻尔的氢原子理论 1.电子在原子核电场中的运动(1)基本情况:核不动;圆轨道;非相对论。
(2) 用经典力学规律计算电子绕核的运动·电子受力:·能量:得f f = - 14πε0 ( )Ze 2r 21 ε0 ( ) Ze2 r = m ( )υ2r1 2E = m υ2 - 1 4πε0 ( ) Ze2 r E = -Ze 28πε0r2.轨道角动量量子化条件玻尔假定:在所有圆轨道中,只有电子的角动量满足下式的轨道才是可能的。
玻尔引进了角动量的量子化。
3.轨道和速度 ·r n = n 2r 1 ,(玻尔半径) r 1= 0.529 Å· υn= υ1/n ,4πε0h 2 r 1 = ( me 2 )( ) 1 Z 4πε0hυ1 = Ze 2)可见, 随n↑⇒r n↑,υn↓4.能级---能量量子化将r n代入前面E式中,有n = 1,2,3,…)R:里德伯常数(见后)基态能量:E1= -13.6 eV可见,随n↑⇒E n↑,∆E n↓*玻尔的理论是半经典的量子论:对于电子绕核的运动,用经典理论处理;对于电子轨道半径,则用量子条件处理。
氢原子光谱和波尔的原子结构模型
我们知道了核外电子排布,那核外电子 是如何运动的呢?
模
型
原子中心有一个带正电荷的核,它的质量几 乎等于原子的全部质量,电子在它的周围沿着不同 的轨道运转,就象行星环绕太阳运转一样。
卢瑟福的原子结构理论遇到的问题
根据已经知道的电磁运动的规律,电子在运动的时候会放出电 磁波(能量)。因此,绕着原子核旋转的电子,因为能量逐渐减小 ,应当沿着一条螺旋形的轨道转动,离中心的原子核越来越近,最 后碰在原子核上。这样一来,原子就被破坏了。
100年后:汤姆逊用发现了电子,并且在各种元素的 原子中都有电子。这样看来,原子就不是不可再分的 了!也就是说,原子不是最最基本的物质粒子了!
1903
汤 姆 逊( 原 子年 模) 型
原子是一个平均分布着正电荷的粒子,其中镶嵌 着许多电子,中和了正电荷,从而形成了中性原子。
1911
卢
瑟
福(
原
子
年 )
3、洪特规则
在能量相同的轨道上排布时,电子尽可能分占不 同的轨道,且自旋状态相同
练习:写出:碳、硫、钛(22Ti)的轨道表示式
练习:请写出下列元素原子的电子排布图。
钪21Sc, 铬24Cr, 铁26Fe, 铜29Cu, 砷33As
洪特规则的特例:
对于能量相同的轨道(同一电子亚层),当电子排布处 于全满(s2、p6、d10、f14)、半满(s1、p3、d5、f7)、全 空(s0、p0、d0、f0)时比较稳定,整个体系的能量最低。
【现学现用】焰火、霓虹灯探密
用镁粉、碱金属盐及碱土金属盐等可以做成焰火。燃放 时,焰火发出五颜六色的光,请用原子结构的知识解释 发光的原因: __燃__烧__时__,__电__子__获__得__能__量__,__从__能__量__较__低__的__轨__道__向__能__量__较__ _高__的__轨__道__跃__迁__,__跃__迁__到__能__量__较__高__的__轨__道__的__电__子__处__于__一___ _种__不__稳__定__的__状__态__,__它__随__即__就__会__跃__达__到__能__量__较__低__的__轨__道___ _,__并__向__外__界__以__光__能__的__形__式__释__放__能__量_。
氢原子光谱、玻尔理论、德布罗意波
~ = R( 1 − 1 ) ν 赖曼系 12 n2 ~ = R( 1 − 1 ) 帕邢系 ν 32 n2 ~ = R( 1 − 1 ) 布喇开系 ν 42 n2 ~ 普芳德系 ν = R( 1 − 1 ) 52 n2
巴尔末系
~ = 1 = R( 1 − 1 ) , v λ 22 n2
态能量 态能量 ( n > 1)
E n = E1 n
2
基态 n =1
−13.6
(47)氢原子光谱、玻尔理论、德布罗意波 47)氢原子光谱、玻尔理论、
玻尔理论对氢原子光谱的解释
hν = Ei − E f
4
E1 En = 2 n
~ = 1 = ν = E1 ( 1 − 1 ) v c hc n 2 n i2 λ f 其中 ni > n f
在可见光范围内的谱线即为所求。 在可见光范围内的谱线即为所求。 可见光的谱线为巴耳末线系。 可见光的谱线为巴耳末线系。 在此为m=4和m=3跃迁到 在此为 和 跃迁到 n=2的两条,波长为: 的两条, 的两条 波长为:
n =4 n =3 n =2 n =1
λ42 = 486.1nm
m λ32 = 656.3n
E m e 1 = 2 3 = .097×107 m−1 ≈ R 里德伯常量) (里德伯常量) 1 hc 8 0 h c ε 氢 n=∞ E∞ = 0 原 n=4 子 与光 布 n=3 能 谱 n=2 级
跃 迁 系
n =1
E
(47)氢原子光谱、玻尔理论、德布罗意波 47)氢原子光谱、玻尔理论、
(1)将一个氢原子从基态激发到 )将一个氢原子从基态激发到n=4的激发态需要 的激发态需要 多少能量? 多少能量?(2)处于 )处于n=4的激发态的氢原子可发出 的激发态的氢原子可发出 多少条谱线? )其中多少条为可见光谱线, 多少条谱线? (3)其中多少条为可见光谱线,其 光波波长各多少? 光波波长各多少? 解: 1)使一个氢原子从基态激发到 ( ) n=4 激发态需提供能量为 E1 ∆E = E4 − E1 = 2 − E1 4 −13.6 = − ( −13.6 ) 2 4 = 12.75eV ≈ 2×10−18 J
氢原子光谱和玻尔的原子结构模型
Hale Waihona Puke 内容:无法同时精确测量粒子的位置和动量 提出者:海森堡 意义:否定了经典物理学的确定性和因果关系 对玻尔原子结构模型的影响:解释了原子光谱的离散性
光的波粒二象性:光既具有波动特性又具有粒子特性 德布罗意波长公式:λ=h/p其中λ是波长h是普朗克常数p是动量 光的粒子性:光子是光的基本单位具有能量和动量 光的波动性:光在空间中传播形成电磁波具有频率和波长
受普朗克、爱因斯坦等物理学家的量子理论启发玻尔提出了自己的原子结构模型。
PRT FIVE
对应原理是玻尔原子结构模型的理论基础它认为电子只能在特定的轨道上运动每个轨道对应 一定的能量。 玻尔引入了量子化的概念认为电子只能存在于具有确定能量的稳定状态中这些状态称为定态。
对应原理还指出当电子从一个定态跃迁到另一个定态时会释放或吸收一定频率的光子。
,
汇报人:
CONTENTS
PRT ONE
PRT TWO
发现者:罗伯特·米立根 时间:19世纪末 实验装置:真空管和棱镜 意义:揭示了氢原子光谱的存在和特征
稳定性:氢原子光谱具有高度的稳定性是研究原子结构的重要手段。 连续性:氢原子光谱线覆盖了从长波到短波的连续范围为研究原子能级提供了重要信息。
PRT SIX
1913年玻尔提出了原子结 构模型
模型基于经典力学和量子 化假设
模型成功解释了氢原子光 谱线
模型为后续原子结构研究 奠定了基础
提出假设:玻尔在1913年提出了氢原子光谱的假设奠定了玻尔原子结构模型的基础。
解释实验现象:玻尔的原子结构模型能够解释氢原子光谱的实验现象如巴尔末公式和里德伯公式等。
第4节氢原子光谱玻尔理论
1第4节 氢原子光谱 玻尔理论一、 氢原子光谱,422-=n n B λ∞=,,5,4,3 nA =7.3645B αH βH γH ∞H ,∞→nB =∞λ巴耳末系,:线系极限∞H =:线系极限波长B =∞λA 7.3645波数:沿波线单位长度内波的个数 ν~cνλν==1~λ )121()121(441(1411~2222222nR n B n B n n B -=-=-=-==λν,5,4,3=n 里德伯公式:里德伯恒量1710096776.14-⨯==m BR 帕邢系:, )131(1~22n R -==λν,6,5,4=n 原子光谱实验规律:“原子光谱都是彼此分立的线状光谱,每一条光谱线的波数由 两个光谱项的差值决定” 里兹并合原理,, )()(~n T k T -=νN k n ∈,k n >、:光谱项)(k T )(n T 氢原子:,2)(k R k T =2)(nRn T =碱金属原子:,2)()(α+=k R k T 2)()(β+=n Rn T 、都给定,给出一条光谱线的波数k n 一定,所有的取值对应的谱线构成一个谱线系 k n 不同,给出不同的谱线系 k二、 玻尔理论1、 原子的有核模型1911,卢瑟夫,粒子散射实验α 有核模型 与经典理论矛盾 按照经典理论: 原子光谱应是连续的,原子是不稳定的2、 玻尔的氢原子理论c2(1) 定态假设:原子只能处在一系列具有不连续能量的 稳定状态:定态,不辐射电磁波 定态1, 定态2,,, , 1E 2E , 轨道1, 轨道2, ,(2) 跃迁假设:的定态的定态 n E →k E 光子频率 hE E nk -=ν <,吸收一个光子,>,放出一个光子n E k E n E k E (3)角动量量子化假设:电子绕核转动的角动量:, n hnL ==π2 ,3,2,1=n:量子数n :约化普朗克常数,SI :=π2h = π2h= Js 341005.1-⨯三、 氢原子结构和氢原子光谱 1、 轨道半径(1) 20224r e r V m πε= (2),n mVr L == ,3,2,1=n (,)V m r P r L⨯=⨯=θθsin sin rmV rP L == ,, 222023141 n r e mr πε=22204n me r ⋅= πε ,3,2,1=n , 1=nA ==529.042201mer πε ,2=n 2122⋅=r r ,3=n2133⋅=r r21n r r n ⋅=<<<321r r r :玻尔半径A =529.01r 结论:电子的轨道半径是量子化的 2、 定态能量,, r e mV E 022421πε-=20224r e r V m πε=r e mV 022821πε= ,210202188n r e re E ⋅-=-=πεπε ,3,2,1=nVm e3,,,1=n eV r e E 6.1381021-=-=πε2=n eV E E 4.32/212-== ,,3=n ,51.13/213eV E E -== 21/n E E n =<<<321E E E 的定态:基态,的定态,激发态 1=n 1>n 结论:氢原子的定态能量是量子化的 每一个定态能量称为一个能级∞=n4=n51.1-3=neV 4.3-2=neV 6.13-1=n3、 氢原子光谱氢原子 ,n E →k E k n >辐射光子频率==h E E k n -=ν)(12121k E n E h -)11(221nk h E -- 波数, ==c νν~11(221n k hc E --k n > 令,, hc E R 1-===λν1~)11(22n k R -k n >= hcER 1-=1710097373.1-⨯m 例:赖曼系中波长最短的谱线光子能量是多少? 答:eV 6.13例:巴耳末系中波长最短的谱线光子能量是多少? 答:eV 4.3例:写出氢原子光谱各谱线系的极限波数表达式解:,, ==λν1~11(22n k R -∞→n 2)(~k R =∞ν赖曼系 (), = 1=k R =∞)(~赖ν1710097.1-⨯m 巴耳末系(), 2=k 1710274.04)(~-⨯==∞m R 巴ν5=n 赖曼系4四、 玻尔理论的缺陷氢原子及 类氢离子光谱 , ,, H +He +2Li +3Be Z= 1, 2, 3, 4碱金属元素的原子光谱,光谱的精细结构 塞曼效应,谱线宽度、强度、偏振逻辑上,玻尔理论自相矛盾 认识原子结构的里程碑 “定态”、“能级”、“跃迁” 例:氢原子由量子数为的定态()的定态 n →1-n 求:(1)辐射光子频率1-→n n ν (2)很大时,n 1-→n n νn ν≈:电子在第轨道上的转动频率n νn 解:(1)= 1-→n n ν22121211)1(12])1([1n n n h E n E n E h h E E n n --⋅-=--=--= ()22102)1(128n n n h r e --⋅πε10218r e E πε-= (2)= () n νn n n n n r mV mV r V ππ222=20224nn n r e r V m πε== (,) 31020214214nh r e n r e n ⋅=⋅πεππε n r mV n n =21n r r n ⋅= 很大时,== n 1-→n n ν22102)1(128n n n h r e --⋅πε310214nh r e ⋅≈πεn ν对应原理:当量子数很大时,量子方程应过渡到经典方程 n 经典理论是量子理论在很大时的极限 n 例:氢原子某谱线系的极限波长为,其中一条谱线A 3647 波长为A 6565求:该谱线对应的氢原子初态和末态的能级能量 ()1710097.1-⨯=m R 解:,,, ==λν1~11(22n k R -∞→n 21k R =∞λ2==∞λR k ,,= =λ1)121(22n R -221211n R -=λR nλ14112-=R R λλ44-344=-=R Rn λλ 初态,3=n eV E E 51.13/213-==末态,2=n eV E E 4.32/212-==。
玻尔的氢原子理论
玻尔的氢原子理论
为此,J.汤姆孙在1904年提出了原子结构的枣糕式模型.该模型认 为,原子可以看作一个球体,原子的正电荷和质量均匀分布在球内, 电子则一颗一颗地镶嵌其中.1909年,J.汤姆孙的学生卢瑟福为了验证 原子结构的枣糕式模型,完成了著名的α粒子散射实验.实验发现α粒 子在轰击金箔时,绝大多数α粒子都穿透金箔,方向也几乎不变,但 是大约有1/8 000的α粒子会发生大角度偏转,即被反弹回来.这样的 实验结果是枣糕式模型根本无法解释的,因为如果说金箔中的金原子 都是枣糕式的结构,那么整个金箔上各点的性质应该近乎均匀,α粒 子轰击上去,要么全部透射过去,要么全部反弹回来,而不可能是一 些穿透过去,一些反弹回来.
玻尔的氢原子理论
二、 原子结构模型
1897年,J.汤姆孙发现了电子.在此之前,原 子被认为是物质结构的最小单元,是不可分的,可 是电子的发现却表明原子中包含带负电的电子.那 么,原子中必然还有带正电的部分,这就说明原子 是可分的,是有内部结构的.执着的科学家就会继 续追问:原子的内部结构是什么样的?简洁的里德 伯光谱公式是不是氢原子内部结构的外在表现?
玻尔的氢原子理论
三、 玻尔的三点基本假设
为了解决原子结构有核模型的稳定性和氢原子光谱的分 立性问题,玻尔提出以下三个假设:
(1)定态假设.原子中的电子绕着原子核做圆周运动, 但是只能沿着一系列特定的轨道运动,而不能够任意转动, 当电子在这些轨道运动时,不向外辐射电磁波,原子系统处 于稳定状态,具有一定的能量.不同的轨道,具有不同的能 量,按照从小到大的顺序记为E1、E2、E3等.
玻尔的氢原子理论
可是这个模型却遭到很多物理学家的质疑.因为按照当时的物 理理论(包括经典力学、经典电磁理论及热力学统计物理),这 样一个模型是根本不可能的,原因有以下两个:
氢原子光谱和波尔的原子模型
〖趣味实验〗
几种原子的发射光谱
〖现实实践和经典理论的冲突〗
矛盾一:无法解释原子的稳定性 矛盾二:无法解释原子光谱的分立性
玻尔意识到经典理论在解释原 子结构方面的困难,受到普朗克 关于黑体辐射的量子论和爱因斯 坦光子说的启发下,玻尔大胆提 出自己的原子结构假说
玻尔
量子化的
电磁辐射 原子中这些具有确定能量的稳定状态。 能量最低的状态(离核最近) 其他的状态
原子在各种定态时的能量值
量子数
〖受到启发 质疑经典 提出假设〗
高能级
电子辐射光子,原子能量减少
跃迁
电子吸收光子克服库仑引力做功, 原子能量增加
低能级
邓小平:实践是检验真理的唯一标准!
〖重新实践 验证假设〗
复杂(氦)原 子光谱
电否否子在某处单玻位尔体模积型内出现的建建概立率立 — 电量子子云力学
定定
理论
课堂总结
一、光谱1、尔原子理论的假设1、轨道量子化 与定态2、频率条件 五、玻尔理论对氢光 谱等的解释
〖当前理论物理九大最前沿问题〗
汤姆孙发现电子
α 粒子散射实验
原子稳定性事实 氢光谱实验
怎思关观察与实验所获得的事实样想键否定否定否 定修否定::必 用改须 电玻彻 子尔汤卢式原底 云姆瓜瑟结子模放 概孙模福构不型弃 念的型的模可西核型割经 取?典 代经概出出建 立 科 学 模 型 提 出 科 学 假 说现典念出建建建现建矛现的矛立立盾立矛立盾轨盾道概汤 卢式玻瓜结姆 瑟念尔模构孙 福模型模的 的型型西 核
〖辩证思考 再次实践 修正理论……〗
六、玻尔模型的局限性
玻尔理论 解释并预言了氢原子光谱问题
在解决核外电子的运动时 成功引入了量子化的观念
玻尔对氢原子光谱的解释
第十一章 量子论初步
第三节 能级
卢瑟福的核式结构模型
19世纪末20世纪初,人类叩开了微观世界 的大门,物理学家根据研究提出了关于原子结构 的各种模型,卢瑟福的核式结构模型能够很好的 解释实验现象,得到了多数人的支持,但是与经 典的电磁理论发生了矛盾.
1、围绕原子核运动的电子轨道半 径只能是某些分立的数值,这些 现象叫做轨道量子化;
2、不同的轨道对应着不同的状态, 在这些状态中,尽管电子在做变 速运动,却不辐射能量,因此这 些状态是稳定的;
3、原子在不同的状态之中具有不 同的能量,所以原子的能量也是 量子化的。
玻 尔
玻尔对氢原子光谱的解释
(1)人们在提出氢原子理论很久前就发现氢光谱 的谱线很有规律,它们遵从巴耳末公式
1 1 RH ( 2 2 ) 2 n
1
n=3,4,5……
从这个公式中很容易地看出,氢光谱线的特点是 不连续的.这一公式反映了氢光谱的规律性 .介 绍过巴耳末公式后,可向学生指出:表面上如此 复杂的光谱线竟能用如此简单的公式表示,这里 面一定有着什么规律性的东西.
(2)由玻尔原子理论中能级公式及跃迁理论,
n=2时的能级的电子云图
形式与巴耳末公式十分相像.理论计算的
值与实验 测得的值符合 得很好,这样用玻
尔理论就很好地解释了氢光谱线的规律。
玻尔原子理论不仅对巴耳末公式给以精确 的解释,而且对其他线系也给出了很好的 说明.
氢原子的能级图
玻尔的定态假设和氢原子能级
(3)氢原子的能级图可以形象地表示氢原子所处的
玻尔原子理论对氢光谱的解释
三、玻尔原子理论对氢光谱的解释教学目的:◆了解玻尔原子理论的成功之处及局限性1、 知道巴耳末公式2、 了解如何用玻尔原子理论解释氢原子光谱3、 了解玻尔理论的局限性。
教学重点:玻尔原子理论对氢光谱的解释教学过程:(一) 组织教学(二) 复习提问1、玻尔原子理论的内容是什麽?2、玻尔原子理论中计算氢原子电子的各条可能轨道的半径和电子在各条轨道上运动时的能量公式是什麽?1212121E E h E n E r n r n n -===ν (三) 引入:看课本彩图4,找氢原子光谱在可见光区的四条谱线波长:mH mH mH mH μμμμδγβα4101.04340.04861.06562.0(四) 新授1、 氢光谱的实验规律:即巴耳末公式:⎪⎭⎫ ⎝⎛-=221211n R λ, n=3,4,5,┅┅ 其中λ是氢原子光波的波长,R 为里德伯常量实验值为R=1.096776×107m -12、 玻尔理论导出的氢光谱规律:按玻尔的原子理论,氢原子的电子从能量较高的轨道n 跃迁到能量较低的轨道2时辐射出的光子能量:2E E h n -=ν 但:212212,E E n E E n ==, 由此可得: ,121221⎪⎭⎫ ⎝⎛--=n E h ν 由于λνc=,所以上式可写作:⎪⎭⎫ ⎝⎛--=2211211n hc E λ,此式与巴耳末公式比较,形式完全一样,里德伯常量17110097373.1-⨯=-=m hc E R 与实验符合的很好。
由此可知,氢光谱的巴耳末线系是电子从 n=3,4,5,6,等能级跃迁到n=2的能级时辐射出来的。
玻尔原子理论还解释了帕邢系(在红外区),预言了当时未发现的氢原子的其他光谱线系。
氢原子能级图3、 玻尔理论的局限性(1) 玻尔原子模型在解释氢原子光谱上获得成功,而对核外电子较多的原子,理论与实验相差很多,玻尔理论不再成立,取而代之的是量子力学。
(2) 玻尔理论的成功之处在于它引入了量子的观念,失败之处在于它保留了过多的经典物理理论。
氢原子光谱和波尔的原子模型ppt课件
Na原子的发射光谱(明线)
H原子的吸收光谱(暗线)
H原子的发射光谱(明线)
吸收光谱和线状谱(发射光谱)的关系:
各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱(线状光谱)中的
一条明线相对应。
3.光谱分析
既然每种原子都有自己的特征谱线,我们就可以利用它来鉴别物质和确定物质的组
成成分。这种方法称为光谱分析。
4.由于不同的原子具有不同的结构,能级各不
相同,因此辐射(或吸收)的光子频率也不相
同。这就是不同元素的原子具有不同的特征谱
线的原因。
六、玻尔理论的局限性
1.玻尔理论的不足之处在于保留了
经典粒子的观念,仍然把电子的运
动看作经典力学描述下的轨道运动。
2.玻尔理论成功地解释了氢原子光
谱的实验规律。但对于稍微复杂一
1
E1
激
发
态
h E n E m
基态
原子从低能级向高能级跃迁(电子从低轨道向高轨道跃迁): 吸收光子,原子能量增大
电子从低轨道向高轨道跃迁,电子克服库仑引力做
功,电势能增大,原子的能量增加,要吸收能量。
吸收光子能量:
h E n E m
原子从高能级向低能级跃迁(电子从高轨道向低轨道跃迁): 辐射光子,原子能量减小
优点:灵敏度高
样本中一种元素的含量达到10-13kg时就可
以被检测到。
利用白炽灯的光谱,能否检测出灯丝的成分?
不能,白炽灯的光谱是连续谱,不是原子
的特征谱线,因而无法检测出灯丝的成分
原子的特征光谱
二、氢原子光谱(发射光谱)的实验规律
氢原子是最简单的原子,其光谱也最简单。
n=6
n=5
人教版高中物理选择性必修三 第4章第3节氢原子光谱和玻尔的原子模型 课件
四、玻尔原子理论的基本假设
假说3:频率条件(跃迁
假说)
吸
收
基光
子
态
针对原子光谱是线状
谱提出
电子克服库仑力做功增大电
势能,
激
n
E∞
5
4
3
E
5E
4
E
原子的能量增加
跃
发
辐
电子所受库仑力做正功减小电
迁
射
势能,
原子的能量减少
光
子
3
2
E
2
态
= − (
> )
激
发
态
1
E
1
基
态
新知讲解
五、玻尔理论对氢光谱的解释
光谱研究是探索原子结构的一条重要途径。
氢气光
谱管
分光
镜
高压电
源
新知讲解
二、氢原子光谱的实验规律
许多情况下光是由原子内部电子的运动产生的,因此
光谱研究是探索原子结构的一条重要途径。
新知讲解
二、氢原子光谱的实验规律
新知讲解
二、氢原子光谱的实验规律
氢原子是最简单的原子,其光谱也最简单。
7 m−1
4
N=
5
N=
6
帕邢系(红
外线)
布喇开系
逢德
系
成功解释了
氢光谱的所
有谱线
新知讲解
五、玻尔理论对氢光谱的解释
新知讲解
五、玻尔理论对氢光谱的解释 Nhomakorabea新知讲解
五、玻尔理论对氢光谱的解释
新知讲解
五、玻尔理论对氢光谱的解释
1.从高能级向低能级跃迁