全称量词与特称量词共41页文档

合集下载

1.4全称量词,特称量词

1.4全称量词,特称量词

关系: (3)在(1)的基础上,用短语”对所有的”对
变量x进行限定; (4)在(2)的基础上,用短语”对任意一个”对 变量x进行限定. 全称量词
一.全称命题
1. 全称量词及表示: 定义: 短语“对所有的”、“对任意一个”、 “对一切”、“对每一个”、“任给”、 “所有的”在逻辑中通常叫全称量词。
表示: 用符号“ ”表示 2. 全称命题及表示: 定义:含有全称量词的命题,叫全称命题。
练习 判断下列命题的真假
(1)∃α ,β ∈R,使sin(α +β )=sinα +sinβ 真 如:α=β=0时,成立 真 (2)∃x,y∈Z,使3x-2y=10 如:x=y=10时,成立 (3)存在一个函数,既是偶函数又是奇函数 真 如:函数y=0,x∈[-1,1]既是偶函数又是奇函数 ∵x2+x+8=(x+1/2)2+31/4>0
二.如何判断全称题,必须对 限定集合M中的每个元素x验证P(x)成立;
若判定一个全称命题是假命题,只要能 举出集合M中的一个x=x0 ,使得P(x)不成立 即可。
练习. 判断命题的真假 (1) xR, x2+x+1>0 真 (2) xQ, x2+0.5x+1是有理数 真 (3) xR, x2-3x+2=0 假 (x=1或2时才成立)
末位数不是0。
(2) 有些对数函数不是单调函数。
例2、写出下列命题的否定:
(1) 某些平行四边形是矩形。 (1) 没有一个平行四边形是矩形。 也即:所有的平行四边形都不是矩形。 (2)有些四边形的四个顶点共圆。
(2) 没有一个 四边形的四个顶点共圆。 也即:所有的四边形的四个顶点都不共圆。

全称量词与特称量词

全称量词与特称量词

真命题 假命题
x0 M , p ( x0 )
x M , p( x)
抽签助手
思考: 2 若存在x0 R, 使得x0 2ax0 a 0,
则a的取值范围是
4、对每一个无理数x, x 2也是无理数;假命题 5、至少有一个x0 Z , x0能被2和3整除;真命题
6、所有的矩形都是平行四边形; 真命题
7、有一个实数x0 R, 使x0 2 +2x0 +3=0; 假命题
8、有些整数只有两个正因数。 真命题
抽签助手
全称量词-----

全称命题
x M , p( x)
x0 M , p ( x0 )
抽签助手
判断命题的真假,并写出下列特称命题的否定
1、x0 R, x 1 0;
x R, x 1 0
2、x0 R, x 2 x0 2 0;
2 0
2 0 2
假命题 真命题 假命题 真命题 真命题 假命题
x R, x2 2x 2 0 3、有的三角形是等边三角形; 所有的三角形都不是等边三角形 4、有一个素数含三个正因数. 每一个素数都不含三个正因数
2、存在一个x0 R, x0 3; x0 R, x0 3
3、对任意一个x Z , 2 x 1是整数;x Z , 2 x 1 Z
真命题 真命题 假命题
3、存在一个x0 Z , 2 x0 1不是整数;x0 Z , 2 x0 1 Z
x M , p( x)
1.4 全称量词和存在量词
学习目标 1.通过生活和数学中的丰富实例,理解全称量 词与存在量词的意义。 2.能正确地对含有一个量词的命题进行否定。
判断下列命题的真假

3.1-3.3全称量词与存在量词 (共43张PPT)

3.1-3.3全称量词与存在量词 (共43张PPT)

上一页
返回首页
下一页
下列语句是特称命题的是( A.整数 n 是 2 和 7 的倍数
)
B.存在整数 n0,使 n0 能被 11 整除 C.x>7 D.任意 x∈M,p(x)成立
【解析】 A、C 不是命题,D 是全称命题,B 是特称命题.
【答案】 B
上一页
返回首页
下一页
教材整理 3
全称命题与特称命题的否定
上一页
返回首页
下一页
1.全称命题的否定是特称命题,特称命题的否定是全称命题. 2.常见关键词的否定: 关键词 词语的否 定 是 > < 都是 所有 有的 至少有 n 个 至多有 n- 1个
不是 ≤

不都是
有一个
任意Leabharlann 上一页返回首页下一页
[再练一题] 2.写出下列命题的否定并判断其真假: (1)不论 m 取何实数,方程 x2+mx-1=0 必有实数根; (2)有些三角形的三条边相等; (3)菱形的对角线互相垂直; (4)存在一个实数,使得 3x<0.
上一页 返回首页 下一页
(2)特称命题的真假判断 要判定一个特称命题是真命题,只要在限定集合 M 中,找到一个 x=x0,使 p(x0)成立即可;否则,这一特称命题就是假命题.
上一页
返回首页
下一页
[再练一题] 1.指出下列命题中,哪些是全称命题,哪些是特称命题,并判断其真假. (1)在平面直角坐标系中,任意有序实数对(x,y)都对应一点; (2)存在一个实数,它的绝对值不是正数; (3)对任意实数 x1,x2,若 x1<x2,都有 tan x1<tan x2; (4)存在一个函数,既是偶函数又是奇函数.
【答案】 任意 x∈R,使 x2+x+1>0

简单的逻辑用语、全称量词和特称量词

简单的逻辑用语、全称量词和特称量词

简单的逻辑⽤语、全称量词和特称量词⾼⼆年级数学科辅导讲义(第讲)学⽣姓名:授课教师:授课时间: 12.14第⼀部分基础知识梳理1.命题p∧q、p∨q、?p的真假判定2.全称量词和存在量词(1)全称量词有:所有的,任意⼀个,任给,⽤符号“?”表⽰;存在量词有:存在⼀个,⾄少有⼀个,有些,⽤符号“?”表⽰.(2)含有全称量词的命题,叫做全称命题.“对M中任意⼀个x,有p(x)成⽴”⽤符号简记为:?x∈M,p(x).(3)含有存在量词的命题,叫做特称命题.“存在M中元素x0,使p(x0)成⽴”⽤符号简记为:?x0∈M,p(x0).3.含有⼀个量词的命题的否定第⼆部分例题解析(⼀)“p∧q”“p∨q”“?p”形式命题的真假判断步骤(1)准确判断简单命题p、q的真假;(2)判断“p∧q”“p∨q”“?p”命题的真假.2.含有逻辑联结词的命题的真假判断规律(1)p∨q:p、q中有⼀个为真,则p∨q为真,即⼀真全真;(2)p∧q:p、q中有⼀个为假,则p∧q为假,即⼀假即假;(3)綈p:与p的真假相反,即⼀真⼀假,真假相反.例1.下列命题是真命题的是( )①27是3的倍数或27是9的倍数;②27是3的倍数且27是9的倍数;③平⾏四边形的对⾓线互相垂直且平分;④平⾏四边形的对⾓线互相垂直或平分;⑤1是⽅程x-1=0的根,且是⽅程x2-5x+4=0的根.A.①③⑤B.①②③⑤ C.①②④⑤ D.①②③④⑤2.已知命题p:?x0∈R,x20+1x20≤2;命题q是命题p的否定,则命题p、q、p∧q、p∨q中是真命题的是________.变式练习1.若p是真命题,q是假命题,则( )A.p∧q是真命题B.p∨q是假命题C.?p是真命题D.?q是真命题2.如果命题“⾮p或⾮q”是假命题,给出下列四个结论:①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;④命题“p或q”是假命题.其中正确的结论是( ) A.①③B.②④ C.②③ D.①④3.已知命题p:(a-2)2+|b-3|≥0(a,b∈R),命题q:x2-3x+2<0的解集是{x|1①命题“p∧q”是真命题;②命题“p∧?q”是假命题;③命题“?p∨q”是真命题;④命题“?p∨?q”是假命题.其中正确的是( )A.②③B.①②④C.①③④D.①②③④(⼆)1.全称命题真假的判断⽅法(1)要判断⼀个全称命题是真命题,必须对限定的集合M中的每⼀个元素x,证明p(x)成⽴;(2)要判断⼀个全称命题是假命题,只要能举出集合M中的⼀个特殊值x=x0,使p(x0)不成⽴即可.2.特称命题真假的判断⽅法要判断⼀个特称命题是真命题,只要在限定的集合M中,找到⼀个x=x0,使p(x0)成⽴即可,否则这⼀特称命题就是假命题.例3.下列命题中的假命题是( )A.?x0∈R,x0+1x0=2 B.?x0∈R,sin x0=-1 C.?x∈R,x2>0 D.?x∈R,2x>0例4.命题“?x0∈R,2x20-3ax0+9<0”为假命题,则实数a的取值范围为________.变式练习1.下列命题中的假命题是( ) A.?x∈R,2x-1>0 B.?x∈N*,(x-1)2>0C.?x0∈R,lg x0<1 D.?x0∈R,tan x0=22.下列命题中的假命题是( )A.?a,b∈R,a n=an+b,有{a n}是等差数列 B.?x0∈(-∞,0),2x0<3x0 C.?x∈R,3x≠0 D.?x0∈R,lg x0=03.下列命题中的真命题是( )A.?x0∈R,使得sin x0cos x0=35B.?x0∈(-∞,0),2x0>1C.?x∈R,x2≥x-1 D.?x∈(0,π),sin x>cos x(三)1.对含有⼀个量词的命题进⾏否定的⽅法⼀般地,写含有⼀个量词的命题的否定,⾸先要明确这个命题是全称命题还是特称命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.2.常见词语的否定形式例4.命题“?x0∈?R Q,x30∈Q”的否定是( )A.?x0??R Q,x30∈Q B.?x0∈?R Q,x30?QC.?x??R Q,x3∈Q D.?x∈?R Q,x3?Q例5.命题p:有的三⾓形是等边三⾓形.命题?p:__________________.变式练习1.(1)命题p:任意两个等边三⾓形都是相似的,则?p:__________.(2)命题p:?x0∈R,x20+2x0+2=0,则?p:__________.2.命题“所有不能被2整除的整数都是奇数”的否定是( )A.所有能被2整除的整数都是奇数 B.所有不能被2整除的整数都不是奇数C.存在⼀个能被2整除的整数是奇数 D.存在⼀个不能被2整除的整数不是奇数3.若命题改为“存在⼀个能被2整除的整数是奇数”,其否定为________.4.写出下列命题的否定,并判断其真假.(1)p:?x∈R,x2-x+14≥0; (2)q:所有的正⽅形都是矩形;(3)r :?x 0∈R ,x 20+2x 0+2≤0; (4)s :⾄少有⼀个实数x 0,使x 30+1=0.6.命题“能被5整除的数,末位是0”的否定是.第三部分巩固练习1.设p 、q 是两个命题,则“复合命题p 或q 为真,p 且q 为假”的充要条件是( )A .p 、q 中⾄少有⼀个为真B .p 、q 中⾄少有⼀个为假C .p 、q 中有且只有⼀个为真D .p 为真,q 为假2.下列四个命题中的真命题为( )A .?x 0∈Z,1<4x 0<3B .?x 0∈Z,5x 0+1=0C .?x ∈R ,x 2-1=0D .?x ∈R ,x 2+x +2>03.已知命题p :?x 0∈R ,cos x 0=54;命题q :?x ∈R ,x 2-x +1>0,则下列结论正确的是( )A .命题p ∧q 是真命题B .命题p ∧?q 是真命题C .命题?p ∧q 是真命题D .命题?p ∨?q 是假命题 4.已知命题p :?x 0∈?0,π2,sin x 0=12,则?p 为( ) A .?x ∈? ????0,π2,sin x =12 B .?x ∈? ????0,π2,sin x ≠12C .?x 0∈? ????0,π2,sin x 0≠12D .?x 0∈?0,π2,sin x 0>12 5.已知命题p :抛物线y =2x 2的准线⽅程为y =-12;命题q :若函数f (x +1)为偶函数,则f (x )关于x=1对称.则下列命题是真命题的是( )A .p ∧qB .p ∨(?q )C .(?p )∧(?q )D .p ∨q6.下列命题正确的是( )A .已知p :1x +1>0,则?p :1x +1≤0 B .在△ABC 中,⾓A 、B 、C 的对边分别是a 、b 、c ,则a >b 是cos A+x +1>0,则?p :对任意的x ∈R ,x 2+x +1≤0D .存在实数x ∈R ,使sin x +cos x =π2成⽴7.命题“对任何x ∈R ,|x -2|+|x -4|>3”的否定是____________.8.命题p :若a ,b ∈R ,则ab =0是a =0的充分条件,命题q :函数y =x -3的定义域是[3,+∞),则“p∨q”、“p∧q”、“?p”中是真命题的有________.9.若命题“?x∈R,ax2-ax-2≤0”是真命题,则实数a的取值范围是________.10.写出下列命题的否定,并判断真假.(1)q:?x∈R,x不是5x-12=0的根;(2)r:有些素数是奇数;(3)s:?x0∈R,|x0|>0.11.已知命题p:?x∈[1,2],x2-a≥0,命题q:?x0∈R,x20+2ax0+2-a=0,若“p且q”为真命题,求实数a的取值范围.12.已知命题p:存在实数m,使⽅程x2+mx+1=0有两个不等的负根;命题q:存在实数m,使⽅程4x2+4(m-2)x+1=0⽆实根.若“p∨q”为真,“p∧q”为假,求m的取值范围.第四部分课后作业1.将a2+b2+2ab=(a+b)2改写成全称命题是( )A.?a,b∈R,a2+b2+2ab=(a+b)2 B.?a<0,b>0,a2+b2+2ab=(a+b)2C.?a>0,b>0,a2+b2+2ab=(a+b)2 D.?a,b∈R,a2+b2+2ab=(a+b)22.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是( ) A.(?p)∨q B.p∧q C.(?p)∧(?q) D.?p)∨(?q)3.下列命题中,真命题是( )A.?m∈R,使函数f(x)=x2+mx(x∈R)是偶函数B .?m ∈R ,使函数f (x )=x 2+mx (x ∈R)是奇函数 C .?m ∈R ,函数f (x )=x 2+mx (x ∈R)`都是偶函数 D .?m ∈R ,函数f (x )=x 2+mx (x ∈R)都是奇函数 4.下列命题中,真命题是( )A .?x 0∈R ,e x 0≤0B .?x ∈R,2x >x 2C .a +b =0的充要条件是a b=-1 D .a >1,b >1是ab >1的充分条件5.已知命题p 1:?x 0∈R ,x 20+x 0+1<0;p 2:?x ∈[1,2],x 2-1≥0.以下命题为真命题的是( )A .(?p 1)∧(?p 2)B .p 1∨(?p 2)C .(?p 1)∧p 2D .p 1∧p 26.下列说法中错误的是( )A .对于命题p :?x 0∈R ,使得x 0+1x 0>2,则?p :?x ∈R ,均有x +1x≤2B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0” D .若p ∧q 为假命题,则p ,q 均为假命题7.已知命题p :?x ∈[1,2],x 2-a ≥0,命题q :?x 0∈R ,x 20+2ax 0+2-a =0,若“p 且q ”为真命题,则实数a 的取值范围是( )A .a =1或a ≤-2B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤18.命题“存在x 0∈R ,使得x 20+2x 0+5=0”的否定是________.9.已知命题p :“?x ∈N *,x >1x”,命题p 的否定为命题q ,则q 是“________”;q 的真假为________(填“真”或“假”).10.若命题“存在实数x 0,使x 20+ax 0+1<0”的否定是假命题,则实数a 的取值范围为________.。

(完整版)全称量词与特称量词

(完整版)全称量词与特称量词

1.4 全称量词与存在量词学习目标1. 理解全称量词与存在量词的意义.2. 能正确对含有一个量词的命题进行否定.3. 知道全称命题的否定是特称命题,特称命题的否定是全称命题.学习重点全称命题和特称命题真假的判定.学习难点对含有一个量词的命题进行否定.知识梳理一、请列举全称量词与全称命题、特称量词与特称命题的概念。

二、全称命题与特称命题的否定1、全称命题的否定一般地,对于含有一个量词的全称命题的否定,有下面结论:全称命题p :∀x ∈M ,p(x),它的否定⌝p :_________________ ,全称命题的否定是_____________2.特称命题的否定一般地,对于含一个量词的特称命题的否定,有下面的结论:特称命题p :∃0x M ∈,p 0()x ,它的否定⌝p :_________________特称命题的否定是_____________探究一 全称命题与特称命题的判断例1、判断下列语句是全称命题,还是特称命题,并用量词符号“∀”“∃”表达下列命题:1、对任意角α,都有1cos sin 22=∂+∂;2、有一个函数,既是奇函数又是偶函数;3、∀x ∈R ,2x -1=04、所有能被3整除的整数都是奇数5、有的三角形是等边三角形6、有一个实数α,tan α无意义方法归纳:__________________________________________________________________________________________________________________________________________探究二、全称命题与特称命题的真假判断例2、判断下列全称命题或特称命题的真假1、每个指数函数都是单调函数;2、任何实数都有算术平方根;3、∀x ∈0π⎡⎤⎢⎥⎣⎦,2,sin x +cos x ≥24、0,00≤∈∃x R x5、是无理数,}是无理数|{200x x x x ∈∃ 6、,x ππ⎡⎤∀∈⎢⎥⎣⎦2, tan x>sin x 方法归纳:__________________________________________________________________________________________________________________________________________ 探究三、含有一个量词的命题的否定及应用例3、写出下列命题的否定,并判断其真假:1、P :每一个四边形的四个顶点共圆2、P :23,x x N x >∈∀3、P :有的菱形是正方形4、p :∀x ∈R ,412+-x x ≥0;5、p :所有的正方形都是菱形;6、p :至少有一个实数0x ,使30x +1=0例4、若命题“2000,220x R x ax a ∃∈++-=”是真命题,则实数a 的取值范围是________.方法归纳:__________________________________________________________________________________________________________________________________________当堂检测一、选择题1.下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”B .若命题p :∃x ∈R ,x 2-2x -1>0,则命题⌝p :∀x ∈R ,x 2-2x -1<0C .命题“若x =y ,则sin x =sin y ”的逆否命题为真命题D .“x =-1”是“x 2-5x -6=0”的必要不充分条件2、 下列命题中,真命题是( )A .∃x ∈⎣⎢⎡⎦⎥⎤0,π2,sin x +cos x ≥2 B .∀x ∈(3,+∞),x 2>2x +1 C .∃x ∈R ,x 2+x =-1 D .∀x ∈⎝ ⎛⎭⎪⎫π2,π,tan x >sin x 3.已知命题p :∃n ∈N,2n >1 000,则⌝p 为( )A .∀n ∈N,2n ≤1 000B .∀n ∈N,2n >1 000C .∃n ∈N,2n ≤1 000D .∃n ∈N,2n <1 0004.下列语句是真命题的是( )A .所有的实数x 都能使x 2-3x +6>0成立B .存在一个实数x 使不等式x 2-3x +6<0成立C .存在一条直线与两个相交平面都垂直D .有一条直线和两个相交平面都垂直5. 命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是( )A .∀x ∈(0,+∞),ln x ≠x -1B .∀x ∉(0,+∞),ln x =x -1C .∃x 0∈(0,+∞),ln x 0≠x 0-1D .∃x 0∉(0,+∞),ln x 0=x 0-16.下列四个命题中的真命题为( )A .若sin A =sinB ,则A =B B .∀x ∈R ,都有x 2+1>0C .若lg x 2=0,则x =1D .∃x 0∈Z ,使1<4x 0<37.有下列四个命题:①∀x ∈R,2x 2-3x +4>0;②∀x ∈{1,-1,0},2x +1>0;③∃x 0∈N ,使x 20≤x 0;④∃x 0∈N +,使x 0为29的约数.其中真命题的个数为( )A .1B .2C .3D .4二、填空题8.下列命题,是全称命题的是__________;是特称命题的是__________. ①正方形的四条边相等;②有两个角是45°的三角形是等腰直角三角形; ③正数的平方根不等于0; ④至少有一个正整数是偶数.9. 2,210x R x ax ∀∈-+≥,则实数a 的取值范围是_______________10.“存在一个实数x 0,使sin x 0>cos x 0”的否定为________.11.若命题“∀x ∈(3,+∞),x >a ”是真命题,则a 的取值范围是________.12.若“∀x ∈[0,π4],tan x ≤m ”是真命题,则实数m 的最小值为________.三、解答题13.用“∀”“∃”写出下列命题的否定,并判断真假:(1)二次函数的图象是抛物线;(2)直角坐标系中,直线是一次函数的图象;(3)有些四边形存在外接圆;(4)∃a ,b ∈R ,方程ax +b =0无解.14.命题“2,2390x R x ax ∃∈-+<”为假命题,求实数a 的取值范围?15.已知命题p :“至少存在一个实数x 0∈[1,2],使不等式x 2+2ax +2-a >0成立”为真,试求参数a 的取值范围.。

全称、特称量词与特称、全称命题教学课件

全称、特称量词与特称、全称命题教学课件

2. 分析各题中p与q的关系; (1) p: 同位角相等,q: 两直线平行. (2) p: α是第二象限角,q: sinα·tanα <0. mn x (3) p: m,x,n成等差数列,q: . 2
本节主要学习了推断符号的意义,充分条 件与必要条件的概念,以及判断充分条件 与必要条件的方法.
原命题 (真) 否命题(真)
逆命题 (真) 逆否命题 (真)
(3)凡质数都是奇数. 逆命题: 凡奇数都是质数. 否命题: 不是质数就不是奇数. 逆否命题: 不是奇数就不是质数.
原命题 (假) 否命题 (假)
逆命题 (假) 逆否命题 (假)
(1)原命题 否命题 (2)原命题 否命题
( 真) (假) ( 真) (真)
例4 设原命题是“若a=0,则ab=0”.写出它的逆 命题、否命题和逆否命题,并判断这四个命 题的真假. 解: 它的逆命题是“若ab=0 ,则a=0,”. 否命题是“若a≠0 ,则ab≠0”. 逆否命题是“若ab≠0 ,则a≠0”. 可以发现:此例中,原命题与逆否命题都是真命 题,逆命题与否命题是假命题.
解: (1)由于p q,故p是q的充分条件,q是p的必要 条件. (2)由于q p,故q是p的充分条件,p是q的必要条件. (3)由于p q,故p是q的充分条件,q是p的必要条件.
解: (1)由于p q,故p是q的充分条件,q是p的必要 条件. (2)由于p q,故p是q的充分条件,q是p的必要条件. (3)由于p q,故p是q的充分条件,q是p的必要条件.
逆命题 逆否命题 逆命题 逆否命题
(假) (真) (真) (真)
(3)原命题 (假) 否命题 (假) 几条结论:
逆命题 (假) 逆否命题 (假)
•原命题为真,它的逆否命题一定为真. •原命题为真,它的逆命题不一定为真. •原命题为真,它的否命题不一定为真.

高中数学第一章常用逻辑用语1.4全称量词和特称量词教案省公开课一等奖新名师优质课获奖PPT课件

高中数学第一章常用逻辑用语1.4全称量词和特称量词教案省公开课一等奖新名师优质课获奖PPT课件
▪ [答案] ④
23/81
6.下列命题: ①“末位数不是零的数可被 3 整除”的逆命题; ②存在两个无理数,其乘积也为无理数; ③角平分线上的点到角的两边距离相等; ④有一实数既不是质数也不是合数. 其中正确的特称命题的序号是________.
24/81
▪ [解析] ①逆命题是假命题,③不是特称命 题.
▪ [答案] ②④
25/81
课内讲练
26/81
——题型探究——
27/81
题型一
全称命题判断
【例 1】 判断下列命题是否是全称命题: (1)对每一个无理数 x,x2 也是无理数; (2)所有的实数 x 都满足 x2+1≥1; (3)每个指数函数都是单调函数; (4)有这样的整数,它的倒数等于它自身. [分析] 根据全称命题的定义判断.
51/81
(3)由于存在整数 3 只有两个正因数 1 和 3,所以特 称命题“有些整数只有两个正因数”是真命题.
(4)由于存在邻边相等的平行四边形是菱形,所以特 称命题“某些平行四边形是菱形”是真命题.
52/81
题型五
全称命题与特称命题结构
【例 5】 (1)设集合 S={四边形},p(x):内角和为 360°.试用不同的表述写出全称命题“任意的 x∈S, p(x)”;
7/81
3.一般地,对于含有一个量词的全称命题的否定, 有下面的结论:
全称命题 p:∀x∈M,p(x), 它的否定非 p:___________________________. 全称命题的否定是特称命题.
8/81
4.一般地,对于含有一个量词的特称命题的否定, 有下面的结论:
特称命题 p:∃x0∈M,p(x0), 它的否定綈 p:______________________________. 特称命题的否定是全称命题.

高中数学第一章常用逻辑用语1.4全称量词和特称量词省公开课一等奖新名师优质课获奖PPT课件

高中数学第一章常用逻辑用语1.4全称量词和特称量词省公开课一等奖新名师优质课获奖PPT课件
41/53
类型四 全称命题与特称命题应用 [例4] 函数f(x)对一切实数x、y都有f(x+y)-
f(y)=(x+2y+1)x成立,且f(1)=0. (1)求f(0)值; (2)在(0,4)上存在实数x0,使得f(x0)+6=ax0成
立,求实数a取值范围.
42/53
[解] (1)由已知等式f(x+y)-f(y)=(x+2y+ 1)·x,令x=1,y=0,得f(1)-f(0)=2,又因 为f(1)=0,所以f(0)=-2.
7/53
思考感悟 如何判断全称命题的真假呢? 提示:要判定全称命题“∀x∈M,p(x)”是真命 题,需要对集合 M 中每一个元素 x,证明 p(x)成立; 如果在集合 M 中找到一个元素 x0,使得 p(x0)不成立, 那么这个全称命题就是假命题.
8/53
2.存在量词和特称命题 (1)存在量词: 短语“存在一个”“最少有一个”在逻辑中通
21/53
[分析] 首先判断命题中含有哪种量词,进而 确定是哪种命题,然后正面推理证实或举反例 说明命题真假.
22/53
[解] (1)是全称命题.因为∀x∈N,2x+1 都是奇 数,所以该命题是真命题.
(2)是特称命题.因为不存在 x0∈R,使x0-1 1=0 成立,所以该命题是假命题.
(3)是特称命题.当 m=4,n=3 时,使 m-n=1 成立,所以该命题是真命题.
故所求的取值范围 a≥5.
44/53
[点评] 全称命题真,意味着对限定集合中每 一个元素都能含有某性质,使所给语句真.所 以,当给出限定集合中任一个特殊元素时,自 然应导出“这个特殊元素含有这个性质”(这 类似于“代入”思想).而特称命题为真,则 只需在给定集合中,找到一个元素含有某性质, 使该语句为真即可.

全称量词和特称量词

全称量词和特称量词

常用逻辑用语全称量词与存在量词3. 1 全称量词与全称命题3. 2存在量词与特称命题I明目标、知重点:1•通过具体实例理解全称量词和存在量词的含义.2.会判断全称命题和特称命题的真假.填要点1 .全称量词与全称命题在命题的条件中,“所有”“每一个”“任何”“任意一条”“一切”都是在指定范围内,表示整体或全部的含义,这样的词叫作全称量词.含有全称量词的命题,叫作全称命题.2. 存在量词与特称命题在命题中,“有些” “至少有一个”“有一个” “存在”都有表示个别或一部分的含义,这样的词叫作存在量词.含有存在量词的命题,叫作特称命题.探要点:究所然探究点一全称量词与全称命题思考1下列语句是命题吗?(1)与(3), (2)与(4)之间有什么关系?(1) x>3 ;(2) 2x+ 1是整数;(3) 对所有的x€ R, x>3;(4) 对任意一个x€ Z,2x+ 1是整数.答语句(1)(2)含有变量x,由于不知道变量x代表什么数,无法判断它们的真假,因而不是命题.语句(3)在(1)的基础上,用短语“对所有的”对变量x进行限定;语句(4)在(2)的基础上,用短语“对任意一个”对变量x进行限定,从而使(3)(4)成为可以判断真假的语句,因此语句⑶(4)是命题.小结短语“所有”“每一个”“任何”“任意一条”“ 一切”都是在指定范围内,表示整体或全部的含义,这样的词叫作全称量词.像这样含有全称量词的命题,叫作全称命题.思考2如何判定一个全称命题的真假?答要判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称命题是假命题,只要能举出集合M中的一个x o,使得p(x o)不成立即可(即举反例). 例1判断下列全称命题的真假:(1) 所有的素数是奇数;(2) 任意x€ R , x2+ 1> 1;(3) 对每一个无理数x, x2也是无理数.解(1)2是素数,但2不是奇数.所以,全称命题“所有的素数是奇数”是假命题.⑵任意x€ R,总有x2> 0,因而x2+ 1> 1.所以,全称命题“任意x€ R, x2+ 1> 1”是真命题.(3) .2是无理数,但(,2)2= 2是有理数.所以,全称命题“对每一个无理数x, x2也是无理数”是假命题.反思与感悟判断全称命题的真假,要看命题是否对给定集合中的所有元素成立.跟踪训练1试判断下列全称命题的真假:(1) 任意x€ R , x2+ 2>o ; (2)任意x€ N , x4> 1.⑶对任意角a都有sin2a+ COS2a= 1.解⑴由于任意x€ R,都有x2> 0,因而有x2+ 2> 2>0,即x2+ 2>0,所以命题“任意x€ R ,x2+ 2>0”是真命题.⑵由于0€ N,当x = 0时,x4> 1不成立,所以命题“任意x€ N, x4》1”是假命题.⑶由于任意a€ R , sin2a+ COS2a= 1成立.所以命题“对任意角a,都有Sin2a+ COS2a= 1 ”是真命题.探究点二存在量词与特称命题思考1下列语句是命题吗?(1)与(3), (2)与(4)之间有什么关系?(1) 2x+ 1= 3;(2) x能被2和3整除;(3) 存在一个x o€ R,使2x0 + 1 = 3;⑷至少有一个x o€ Z,使x o能被2和3整除.答(1)(2)不是命题,⑶(4)是命题.语句⑶在⑴的基础上,用短语“存在一个”对变量x 的取值进行限定;语句(4)在(2)的基础上,用“至少有一个”对变量x的取值进行限定,从而使⑶(4)变成了可以判断真假的语句,因此语句⑶(4)是命题.小结“有些” “至少有一个”“有一个” “存在”都有表示个别或一部分的含义,这样的词叫作存在量词•像这样含有存在量词的命题,叫作特称命题.思考2怎样判断一个特称命题的真假?答要判断一个特称命题是真命题,只要在限定集合M中,至少能找到一个x= x o,使p(x o)成立即可,否则,这一特称命题是假命题.例2判断下列特称命题的真假:(1) 有一个实数x o,使x2+ 2x o+ 3= 0;(2) 存在两个相交平面垂直于同一条直线;(3) 有些整数只有两个正因数.解⑴由于任意x€ R ,x2+ 2x+ 3 = (x + 1)2+ 2>2,因此使x2+ 2x+ 3= 0的实数x不存在.所以,特称命题“有一个实数x o,使x0+ 2x o+ 3 = 0”是假命题.(2) 由于垂直于同一条直线的两个平面是互相平行的,因此不存在两个相交的平面垂直于同一条直线.所以,特称命题“存在两个相交平面垂直于同一条直线”是假命题.(3) 由于存在整数3只有两个正因数1和3,所以特称命题“有些整数只有两个正因数”是真命题. 反思与感悟特称命题是含有存在量词的命题,判断一个特称命题为真,只需在指定集合中找到一个元素满足命题结论即可.跟踪训练2判断下列命题的真假:(1) 存在x o€ Z , x3<1 ;(2) 存在一个四边形不是平行四边形;(3) 有一个实数a, tan a无意义;(4) 存在x o € R , cos x o=才.解(1) T — 1 € Z,且(-1)3=- 1<1,“存在x o€ Z , x3<1 ”是真命题.⑵真命题,如梯形.n(3)真命题,当a= 2时,tan a无意义.⑷•/ 当x€ R 时,cos x€ [- 1,1],n而2>1 ,二不存在x o€ R,使cos x o= 2,•••原命题是假命题.探究点三全称命题、特称命题的应用思考不等式有解和不等式恒成立有何区别?答不等式有解是存在一个元素,使不等式成立,相当于一个特称命题;不等式恒成立则是给定集合中的所有元素都能使不等式成立,相当于一个全称命题.例3 (1)已知关于x的不等式x2+ (2a + 1)x+ a2+ 2< 0的解集非空,求实数a的取值范围;⑵令p(x):ax2+ 2x+ 1>0,若对任意x€ R , p(x)是真命题,求实数a的取值范围.解⑴关于x 的不等式x2+ (2a + 1)x+ a2+ 2< 0 的解集非空,(2a + 1)2—4(a2+ 2)> 0,即4a—7>0,解得a>4,•实数a的取值范围为7, + m.⑵•••对任意x€ R, p(x)是真命题.•对任意x€ R , ax2+ 2x+ 1>0恒成立,当a= 0时,不等式为2x+ 1>0不恒成立,a>0,当0时,若不等式恒成立,则△= 4 —4a<0,• a>1.反思与感悟有解和恒成立问题是特称命题和全称命题的应用,注意二者的区别.跟踪训练3 (1)对于任意实数x,不等式sin x + cos x>m恒成立,求实数m的取值范围;(2)存在实数x,不等式sin x+ cos x>m有解,求实数m的取值范围.解(1)令y= sin x+ cos x, x€ R,■/y= sin x+ cos x= .2sin x + ^ > —. 2,又T任意x€ R , sin x+ cos x>m恒成立,•••只要m<—2即可.•••所求m的取值范围是(—0,— '2). (2)令y= sin x+ cosx, x€ R,n■/ y= sin x+ cos x= '2sin x+ 4 € [ —'2, '2].又•••存在x € R , sin x+ cos x>m 有解,•只要m<」2即可,•所求m的取值范围是(一0, .2).当1 .下列命题中特称命题的个数是()①有些自然数是偶数;②正方形是菱形;③能被6整除的数也能被3整除;总有|sin x|w 1.A. 0B. 1C. 2D. 3答案B解析命题①含有存在量词;命题②可以叙述为“所有的正方形都是菱形命题③可以叙述为“一切能被6整除的数都能被3整除”,是全称命题;题.故有一个特称命题.2. 下列命题中,不是全称命题的是()A .任何一个实数乘以0都等于0B .自然数都是正整数C.每一个向量都有大小D .一定存在没有最大值的二次函数答案D解析对于A,当x= 1时,9 x= 0,正确;对于B,当x=訓,tan x=④对于任意x€ R ,",故为全称命题;而命题④是全称命解析D选项是特称命题.3. 下列命题中的假命题是(A .存在x€ R, lg x= 0C.任意x€ R, x3>0 答案C )B .存在x € R , tan x=1D.任意x€ R,2x>01,正确;对于C,当x v 0时,x3V 0,错误;对于D,任意x€ R,2x> 0,正确.4 •用量词符号“任意”“存在”表述下列命题:⑴凸n边形的外角和等于2 n.(2)有一个有理数x o满足x0= 3.⑶对任意角a,都有Sin1 2a+ COS2a= 1.解⑴任意x€ {x|x是凸n边形} , x的外角和是2 n.(2)存在x o€ Q , % = 3.⑶任意a€ R , sin2a+ COS2a= 1.[呈重点、现规律]1. 判断命题是全称命题还是特称命题,主要是看命题中是否含有全称量词和存在量词,有些全称命题虽然不含全称量词,可以根据命题涉及的意义去判断.2•要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.3•要确定一个特称命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该特称命题是假命题.1下列命题:①中国公民都有受教育的权利;②每一个中学生都要接受爱国主义教育;③有人既能写小说,也能搞发明创造;④任何一个数除0,都等于0.其中全称命题的个数是()A. 1B. 2C. 3D. 4答案C解析命题①②④ 都是全称命题.2下列特称命题是假命题的是()A .存在x€ Q,使2x—x3= 0B .存在x€ R,使x2+ x+ 1= 0C. 有的素数是偶数D .有的有理数没有倒数答案B1 3解析对于任意的x€ R , x2+ x+ 1 = (x + 2)2+ 4>0恒成立.3. 给出四个命题:①末位数是偶数的整数能被2整除;②有的菱形是正方形;③存在实数x, x>0 :④对于任意实数x,2x+ 1是奇数.下列说法正确的是()A .四个命题都是真命题B .①②是全称命题C .②③是特称命题D. 四个命题中有两个假命题答案C解析①④为全称命题;②③为特称命题;①②③为真命题;④为假命题.4. 下列全称命题中真命题的个数为()①负数没有对数;②对任意的实数a, b,都有a2+ b2>2ab;③二次函数f(x)= x2—ax—1与x轴恒有交点;④任意x € R, y€ R,都有x2+ |y|>0.A. 1B. 2C. 3D. 4答案C解析①②③为真命题.5. 下列全称命题为真命题的是()A .所有的素数是奇数B .任意x€ R, x2+ 3> 3C.任意x€ R,2x—1=0D .所有的平行向量都相等答案B6. _____________________________ 下列命题中,真命题是.①存在X o€ 0, n,sin X o+ cos x o》2;②任意x€ (3,+s ), X2>2X+ 1;③存在m€ R,使函数f(x)= x2+ mx(x€ R)是偶函数;n④任意x €, n , tan x>sin x.答案②③此命题为假命题;对于②,当 x € (3 ,+s )时,x 2— 2x — 1 = (x — 1)2— 2>0,•此命题为真命题;对于③,当m = 0时,f(x) = x 2为偶函数,•此命题为真命题;n对于④,当 x € , n 时,tan x<0<sin x ,•此命题为假命题.7. 判断下列命题是否为全称命题或特称命题,并判断其真假.(1)存在一条直线,其斜率不存在;⑵对所有的实数a , b ,方程ax + b = 0都有唯一解;1 (3)存在实数 x o ,使得 逐—xo + i = 2.解(1)是特称命题,是真命题.(2) 是全称命题,是假命题.(3) 是特称命题,是假命题.二、能力提升&对任意x>3, x>a 恒成立,则实数 a 的取值范围是 _____________ . 答案(―汽3]解析 对任意x>3, x>a 恒成立,即大于 3的数恒大于a , • a < 3.9. 给出下列四个命题:①a 丄b? a b = 0;②矩形都不是梯形;③ 存在 x , y € R , x 2 + y 2w 1 ;④ 任意互相垂直的两条直线的斜率之积等于- 1.其中全称命题是 _________ .答案①②④解析 ①②省略了量词“所有的”,④含有量词“任意”.10. 四个命题:①任意 x € R , x 2— 3x + 2>0恒成立;②存在 x € Q , x 2 = 2;③存在x € R , 解析对于①,任意x € sin x + cos x = 2sin x +X2+ 1 = 0;④任意x€ R,4x2>2x—1 + 3x2.其中真命题的个数为 ________ .答案0解析x2—3x+ 2>0, △= (—3)2—4X 2>0,•••当x>2 或x<1 时,x2—3x+ 2>0 才成立,①为假命题.当且仅当x= ± 2时,x2= 2,• •不存在x€ Q,使得x2= 2,•②为假命题,对任意x € R, x2+ 1工0,•③为假命题,4/ —(2x—1 + 3x2)= x2—2x+ 1 = (x—1)2> 0,即当x= 1 时,4x2= 2x—1+ 3x2成立,•④为假命题.•••①②③④ 均为假命题.11. 判断下列命题的真假:(1)对任意x € R, |x|>0;⑵对任意a € R,函数y= log a x是单调函数;⑶对任意x € R, x2> —1;⑷存在a € {向量},使a b= 0.解(1)由于0€ R,当x= 0时,|x|>0不成立,因此命题“对任意x€ R, xi>0”是假命题.⑵由于1 € R,当a = 1时,y= log a x无意义,因此命题“对任意a€ R,函数y = log a x是单调函数”是假命题.⑶由于对任意x€ R,都有x2》0,因而有x2> —1.因此命题“对任意x€ R , x2> —1 ”是真命题.⑷由于0€ {向量},当a= 0时,能使ab= 0,因此命题“存在a€ {向量},使ab = 0”是真命题.12. 已知函数f(x)= x2—2x+ 5.(1)是否存在实数m,使不等式m+ f(x)>0对于任意x€ R恒成立?并说明理由;⑵若存在实数x,使不等式m —f(x)>0成立,求实数m的取值范围.解⑴不等式m+ f(x)>0 可化为m> —f(x),即m> —x2+ 2x—5 =—(x —1)2—4.要使m>—(x —1)2—4对于任意x€ R恒成立,只需m> —4即可.故存在实数m使不等式m+ f(x)>0对于任意x€ R恒成立,此时m> —4.(2)不等式m—f(x)>0 可化为m>f(x).若存在实数x使不等式m>f(x)成立,只需m>f(x)min.又f(x)= (x—1)2+ 4,所以f(x)min = 4,所以m>4.故所求实数m的取值范围是(4,+ a).三、探究与拓展13. 若任意x€ R,函数f(x)= mx2+ x—m—a的图像和x轴恒有公共点,求实数a的取值范围.解①当m= 0时,f(x)= x —a与x轴恒相交,所以 a € R;②当m^0时,二次函数f(x) = mx2+ x—m—a的图像和x轴恒有公共点的充要条件是△= 1 + 4m(m+ a)> 0 恒成立,即4m2+ 4am+ 1 > 0 恒成立.又4m2+ 4am + 1> 0是一个关于m的二次不等式,恒成立的充要条件是△= (4a)2—16< 0, 解得—K a< 1.综上所述,当m=0 时, a€ R;当m^ 0 时,a€ [ —1,1].。

全称量词与特称量词

全称量词与特称量词

练习:判断下列语句是不是全称命题或者存 在性命题,如果是,用量词符号表达出来。 • (1)中国的所有江河都注入太平洋; • (2)0不能作除数; • (3)任何一个实数除以1,仍等于这个实数 ; • (4)每一个向量都有方向吗?
1.4.3 含有一个量词的命题
的否定
想一想?
写出下列命题的否定 1)所有的矩形都是平行四边形; x M,p(x)
练习:判断下列命题的真假:
(1) (2)
x0 Z , x 1; x0 Q, x 3.
2 0 2 0
【例1】下列语句: ①有些实数a,b,能使|a-b|=|a|+|b|; ②对任意a,b∈R,若a>b,则 1 1 ;
a b
③三角函数都是周期函数吗? ④有的实数是无限不循环小数; 其中全称命题的序号为____,特称命题的序号为____.
征,再利用全称命题和特称命题真假的判断方法判断.
【规范解答】(1)命题中含有存在量词“有一个”,因此 是特称命题.由于 tan 无意义,因此是真命题.
2
(2)命题中含有全称量词“每个”,因此是全称命题. 由于二次函数y=x2+1的图象与x轴不相交,因此是假命题.
(3)命题中含有全称量词的符号“”,因此是全称命题.
练习:判断下列命题的真假:
(1) R, x 2 2 0;
(2)
x N , x 1;
4
1.4.2 存 在 量 词
想一想??
下列语句是命题吗? 1 )与), 3 2 )与4 )之间 有什么关系? 1)2 x 1 3; 2) x能被2和3整除; 3)存在一个 x R, 使 2 x 1 3; 4)至少有一个x Z , x能被 2和3整除。

全称量词与特称量词课件

全称量词与特称量词课件

解析:(1)若¬p∨q 为假命题,则¬p,q 都是假命题,所以 p 为 真命题,q 为假命题,所以 p∧q 是假命题,故选 A.
(2)¬p:存在一个 x0∈R,使 x20+x0+1≠0 成立.
例题考分点一析 含有逻辑联结词命题的真假判定
已知命题 p:∃x0∈R,使 tan x0=1,命题 q:x2-3x +2<0 的解集是{x|1<x<2},给出下列结论: ①命题“p∧q”是真命题;②命题“p∧¬q”是假命题;③命 题“¬p∨q”是真命题;④命题“¬p∨¬q”是假命题.其中正 确的是( D ) A.②③ B.①②④ C.①③④ D.①②③④
解:(1)p 或 q:平行四边形的对角线相等或互相垂直.假命题. p 且 q:平行四边形的对角线相等且互相垂直.假命题. ¬p:有些平行四边形的对角线不相等.真命题. (2)p 或 q:方程 x2+x-1=0 的两实根的符号相同或绝对值相 等.假命题. p 且 q:方程 x2+x-1=0 的两实根的符号相同且绝对值相等.假 命题. ¬p:方程 x2+x-1=0 的两实根的符号不相同.真命题.
确定命题的 构成形式

判断其中简单 命题的真假

根据真值表判断 命题的真假
1.写出由下列各组命题构成的“p 或 q”、“p 且 q”、“¬p”形式的复合命题,并判断真假. (1)p:平行四边形的对角线相等;q:平行四边形的对角线互相 垂直; (2)p:方程 x2+x-1=0 的两实根的符号相同;q:方程 x2+x -1=0 的两实根的绝对值相等.
当堂检测 4.(1)(2015·东北师大附中三校联考)已知命题 p:
∃x0∈(0,π2),sin x0=12,则¬p 为(
)
A.∀x∈(0,π2),sin x=12

《全称量词和特称命题》(课件)

《全称量词和特称命题》(课件)
解: 对所有的四边形x, x的内角和为360o; 对一切四边形x, x的内角和为360o; 每一个四边形x, x的内角和为360o;
1. 设集合S {四边形},p( x) :内角和为 360, 试用不同的表述写出全称命题 “x S, p( x)”
解: 对所有的四边形x, x的内角和为360o; 对一切四边形x, x的内角和为360o; 每一个四边形x, x的内角和为360o; 凡是四边形x, x的内角和为360o.
含有存在量词的命题叫做特称命题
特称命题: “存在M中一个x,使p(x)成立”可
以用符号简记为:x0M,p(x0)
特称命题: “存在M中一个x,使p(x)成立”可
以用符号简记为:xM,p(x) 读做“存在一个x属于M,使p(x)成
立”.
[例2] 判定特称命题的真假: (1) 有一个实数x0,使x02+2x0+3=0; (2) 存在两个相交平面垂直于同一条
存在量词相当于日常语言中“存在 一个”,“有一个”,“有些”,“至 少有一个”,“至多有一个”等.符号:
存在量词: 短语“存在一个”“至少有一个”,
这些词语都是表示整体的一部分的词在 通常叫做存在量词。
存在量词相当于日常语言中“存在 一个”,“有一个”,“有些”,“至 少有一个”,“至多有一个”等.符号:
2. 设q(R, q( x)".
2. 设q( x):x2 x, 试用不同的表达方式 写出特称命题"x R, q( x)".
存在x0 , 使x02 x0成立;
2. 设q( x):x2 x, 试用不同的表达方式 写出特称命题"x R, q( x)".
[例1] 判定全称命题的真假: (1) 所有的素数是奇数; (2) xM,x2+11; (3) 对每个无理数x,x2也是无理数; (4) 每个指数函数都是单调函数; (5) 所有有中国国籍的人都是黄种人.

全称量词与特称量词

全称量词与特称量词

二、全称量词与存在量词【知识与方法】:1.表示全体的量词称为全称量词,记为______________;表示部分的量词称为存在量词,记为______________.2.要判定全称命题“x ∀M ∈,()p x ”是真命题,要对集合M 中的每一个元素x 证明()p x 成立,如果在集合M 中找到一个元素0x 使0()p x 不成立,则这个全称性命题是假命题;3要判定存在性命题“,()x M p x ∃∈”是真命题,只要在集合M 中找到一个元素0x ,使0()p x 成立即可,如果在集合M ,使()p x 成立的x 不存在,则此存在性命题为假.4.“,()x M p x ∀∈”的否定为______________;5.“,()x M p x ∃∈”的否定为______________;6.全称命题的否定为存在性命题,存在性命题的否定为全称性命题。

【基础练习】:1、 判断下列语句是不是全称命题或者特称命题,如果是,用量词符号表达出来:(1) 中国的所有江河都流入太平洋;(2) 0不能作除数;(3) 任何一个实数除以1,仍等于这个实数;(4) 每一个向量都有方向吗?2、 判断下列命题的真假:(1) 在平面直角坐标系中,任意有序实数对(x,y)都对应一点P ;(2) 存在一个函数,既是偶函数又是奇函数;3、 下列语句是不是全称或者特称命题:(1) 有一个实数a ,a 不能取对数;(2) 所有不等式的解集A ,都有A R ⊆;(3) 三角函数都是周期函数吗?(4) 有的向量方向不定。

4、 用题词符号“∀”“∃”表达下列命题:(1) 实数都能写成小数形式;(2) 凸n 边形的外角和等于π2;(3) 任一个实数乘以-1都等于它的相反数;(4) 对任意实数x ,都有x 3>x 2;(5) 对任意角α,都有1cos sin 22=+αα。

5、 判断以下命题的真假:(1)01,2>++∈∀x x R x ;(1)12131,2++∈∀x x Q x 是有理数; (3)βαβαβαsin sin )sin(,,+=+∈∃使R ;(4)1023,,=-∈∃y x Z y x 使;(5)。

专题1.3全称量词与存在量词(解析版)

专题1.3全称量词与存在量词(解析版)
若命题“存在 x x 2 x 3 ,使得等式 2x m 0 成立”是假命题,
则实数 m 的取值范围是 , 4 U 6, ,
故选:D.
14.下列结论中正确的个数是(

①命题“所有的四边形都是矩形”是存在量词命题;
②命题“ x R, x2 1 0 ”是全称量词命题;
③命题“ x R, x2 2x 1 0 ”的否定为“ x R, x2 2 x 1 0”;
B. x0 0, x0 1 x0 2 0 D. x 0, x 1 x 2 0
【答案】D
【解析】命题“ x0 0, x0 1 x0 2 0 ”的否定是“ x 0, x 1 x 2 0 ”.
故选;D. 6.对于方程根的存在性问题,有一个著名的定理——“代数基本定理”,其内容为:任意一
个一元复系数方程,在复数域中至少有一个根.则“代数基本定理”的否定为(

A.任意一个一元复系数方程,在复数域中至多有一个根 B.任意一个一元复系数方程,在复数域中没有根 C.存在一个一元复系数方程,在复数域中至少有一个根 D.存在一个一元复系数方程,在复数域中没有根 【答案】D 【解析】“任意一个一元复系数方程,在复数域中至少有一个根”的否定为“存在一个一元复 系数方程,使得在复数域中没有根”. 故选:D.
18.下列命题的否定是假命题的是(

A. p :能被 3 整除的整数是奇数; p : 存在一个能被 3 整除的整数不是奇数
B. p :每一个四边形的四个顶点共圆; p : 存在一个四边形的四个顶点不共圆 C. p :有的三角形为正三角形; p : 所有的三角形不都是正三角形 D. p : x R, x2 2x 2 0 ; p : x R ,都有 x2 2x 2 0
몸३ 含有存在量词的命题称为特称命题.

全称量词与特称量词

全称量词与特称量词

练习:课本第15页.
注意:在某些全称命题中,全称量词有时可以省略 . 如 ①末位数字是偶数的整数能被 2 整除. ②正方形是矩形. ③球面是曲面. 大家举例:
2、存在量词与特称命题 观察下列命题,并分析它们的共同特点 . ①有些三角形是直角三角形 . ②若两数之和为正数,则这两个数中至少有一个是正数 . ③在素数中,有一个是偶数 . ④存在实数 x ,使得 x2 + x – 1 = 0 . 在以上命题的条件中,“有些”“至少有一个”“有一 个”“存在”等都有表示某个整体中的个别或一部分的意思.像 这样的词以后叫作存在量词,含有存在量词的命题叫作特称命题. 大家举例:
答:只需找出一个反例即可.
如果全称命题是错误的,则这个全称命题的否定是正确的.
重要结论:全称命题的否定是特称命题.
4、特称命题的否定 给出下列两个命题 ①10 ,102,103,104,105中有一个数能被 3 整除. ②方程 x2 – 5x + 6 = 0 至少有一个负根. 思考:分析以上两个命题,它们的共同特点是: ①都是特称命题. ②都是假命题. 思考:我们通过一个什么样的方法可以说明一个特称命题是 错误的? 必须验证命题中涉及的所有对象都不满足命题所表述的某一 性质.
如果特称命题是错误的,则这个特称命题的否定是正确的.
重要结论:特称命题的否定是全称命题. 5、写出下列全称命题与特称命题的否定 ⑴三个给定产品都是次品. ⑵方程 x2 – 8x + 15 = 0 有一个根是偶数. 解:⑴三个给定产品中至少有一个是正品.
⑵方程 x2 – 8x +全称量词与存在量词
1、全称量词与全称命题 观察下列命题,并分析它们的共同特点 . ①所有正方形都是矩形 . ②每一个有理数都能写成分数的形式 . ③任何实数乘 0 都等于 0 . ④若直线l0垂直于α内任意一条直线,则 l0 ⊥α . ⑤一切三角形的内角和都等于180°. 在以上命题的条件中,“所有”“每一个”“任何”“任意 一个”“一切”等都是在指定范围内,表示整体或全部.像这样 的词以后叫作全称量词,含有全称量词的命题叫作全称命题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档