七年级数学上册单元达标测试卷
【3套精选】七年级数学(上)第一章有理数单元达标测试卷(有答案)
人教版初中数学七年级上册第1章《有理数》单元测试题一、选择题(本大题共10小题,每小题3分,共30分)1.若汽车向南行驶30米记作+30米,则-50米表示()A.向东行驶50米B.向西行驶50米C.向南行驶50米D.向北行驶50米2.-|-2|的值是()A.-2 B.2 C.±2 D.43.大于-1且小于3的整数共有()A.2个B.3个C.4个D.5个4.下列四个数中,与-2018的和为0的数是()1 A.-2018 B.2018 C.0 D.-20185. “中国天眼”即500米口径球面射电望远镜(FAST),是世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面.将数据4600表示成a×10n(其中1≤a<10,n为整数)的形式,则n的值为()A.-1 B.2 C.3 D.46.检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,下列最接近标准质量的是()A B C D7.图1所示的数轴单位长度为1,如果点A,B表示的数的绝对值相等,那么点B表示的数是()A.-4 B.-2 C.0 D.4图18.下列说法中不正确的是()A.在数轴上能找到表示任何有理数的点B.若a ,b 互为相反数,则ba=-1 C.若一个数的绝对值是它本身,则这个数是非负数D.近似数7.30所表示的准确数的范围是大于或等于7.295,小于7.3059. 如图2,数轴上点A 表示的有理数为a ,点B 表示的有理数为b ,则下列式子中成立的是( )A .a+b >0B .a+b <0C .a-b >0D .|a|=|b|图210.用十进制计数法表示正整数,如365=300+60+5=3×102+6×101+5,用二进制计数法来表示正整数,如:5=4+1=1×22+0×21+1×1,记作5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作14=(1110)2,则(10101)2表示数() A. 41B. 21C. 20D. 24二、填空题(本大题共6小题,每小题4分,共24分)11.在有理数-0.2,0,321,-5中,整数有____________. 12. 计算:(-1)6+(-1)7=____________.13. 两会期间,百度APP 以图文、图案、短视频、直播等多种形式展现两会内容.据统计,直播内容237场,峰值观看人数一度高达3 800 000人,将数据3 800 000用科学记数法表示为 .14.已知线段AB 在数轴上,且它的长度为4,若点A 在数轴上对应的数为-1,则点B 在数轴上对应的数为 .15.已知一张纸的厚度是0.1 mm ,若将它连续对折10次后,则它折后的厚度为 mm .16.观察下列数据,找出规律并在横线上填上适当的数:1,-43,95,-167, , , ,… 三、解答题(本大题共6小题,共52分)17.(每小题3分,共6分)比较下列各组数的大小:(1)|-4+5|与|-4|+|5|; (2)2×32与(2×3)2.18.(每小题4分,共8分)计算: (1)|-2|-(-3)×(-15)÷(-9); (2)-12018+(-21+32-41)×24.19.(7分)当温度每上升1℃时,某种金属丝伸长0.002 mm ;反之,当温度每下降1℃时,金属丝缩短0.00 2mm.把15℃的这种金属丝加热到60 ℃,再使它冷却降温到5 ℃,求最后的长度比原来伸长了多少.20.(9分)计算6÷(-21+31)时,李明同学的计算过程如下,原式=6÷(-21)+6÷31=-12+18=6.请你判断李明的计算过程是否正确,若不正确,请你写出正确的计算过程,并正确计算出(21-61+91)÷(-361).21.(10分)如图3,已知点A 在数轴上表示的数为-1,从点A 出发,沿数轴向右移动3个单位长度到达点C ,点B 所表示的有理数是5的相反数,按要求完成下列各题. (1)请在数轴上标出点B 和点C ;(2)求点B 所表示的数与点C 所表示的数的乘积;(3)若将该数轴进行折叠,使得点A 和点B 重合,则点C 和哪个数所对应的点重合?图322.(12分)一辆货车从仓库装满货物后在东西街道上运送水果,规定向东为正方向,某次到达的五个地点分别为A,B,C,D,E,最后回到仓库,货车行驶的记录(单位:千米)如下:+1,+3,-6,-l,-2,+5.(1)请以仓库为原点,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)求出该货车共行驶了多少千米;(3)如果货车运送的水果以l00千克为标准质量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果质量可记为:+50,-l5,+25,-l0,-15,则该货车运送的水果总质量是多少千克?附加题(共20分,不计入总分)1.(8分)如图,点P,Q在数轴上表示的数分别是-8,4,点P以每秒2个单位长度的速度向右运动,点Q以每秒1个单位长度的速度向左运动,当运动秒时,P,Q 两点相距3个单位长度.2.(12分)对于有理数a,b,定义运算“⊕”:a⊕b=ab-2a-2b+1.(1)计算5⊕4的结果;(2)计算[(-2)⊕6]⊕3的结果;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.(第一章 有理数测试题参考答案一、1.D 2.A 3.B 4. B 5.C 6.C 7.B 8.B 9. A 10.B二、11. 0,-5 12.013. 3.8×106 14.3或-5 15. 102.4 16.259,-3611,4913 提示:第n 个数,分母是n 2,分子是2n-1,第奇数个数是正数,第偶数个数是负数.三、17.(1)|-4+5|=|1|=1,|-4|+|5|=4+5=9,所以|-4+5|<|-4|+|5|. (2)2×32=2×9=18,(2×3)2=62=36,所以2×32<(2×3)2.18. 解:(1) 原式=2+3×15×91=2+5=7. (2)原式=−1−21×24+32×24−41×24=−1−12+16−6=−3. 19. 解:(60-15)×0.002-(60-5)×0.002 =45×0.002-55×0.002 =(45-55)×0.002 =(-10)×0.002 =-0.02(mm ).答:最后的长度比原来伸长了-0.02 mm.20.解:李明的计算过程不正确,正确计算过程为:6÷(-21+31)=6÷(-61)=-36.原式=(21-61+人教版七年级数学(上)第一章有理数单元达标测试卷(有答案) 一、选择题(每题3分,共30分)1.如果向东走7 km 记作+7 km ,那么-5 km 表示( )A .向北走5 kmB .向南走5 kmC .向西走5 kmD .向东走5 km 2.在0,4,-3,-4这四个数中,最小的数是( )A .0B .4C .-3D .-43.在有理数|-1|,0,-122,(-1)2 019中,负数的个数为( )A .1B .2C .3D .44.某市去年共引进世界500强外资企业19家,累计引进外资410 000 000美元.410 000 000用科学记数法表示为( )A .41×107B .4.1×108C .4.1×109D .0.41×109 5.下列计算错误的是( )A .(-2)×(-3)=2×3=6B .-3-5=-3+(+5)=2C .4÷⎝ ⎛⎭⎪⎫-12=4×(-2)=-8 D .-(-32)=-(-9)=96.下列每对数中,不相等...的一对是( ) A .(-2)2 019和-22 019 B .(-2)2 020和22 020 C .(-2)2 020和-22 020 D .|-2|2 019和|2|2 0197.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab 的值是( )(第7题)A .负数B .正数C .0D .正数或0 8.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高约为161 cm”中的数是准确数9.已知|m |=4,|n |=6,且|m +n |=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一根100 m 长的小棒,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14……如此下去,直到截去剩下的1100,则剩下的小棒长为( )A.12 m B .1 m C .2 m D .4 m 二、填空题(每题3分,共24分)11.如果全班某次数学测试的平均成绩为90分,某位同学考了93分,记作+3分,那么得分86分应记作__________.12.-2 019的相反数是________,绝对值是________,倒数是________. 13.将数59 840精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-2,以点A 为圆心、1个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是____________.(第15题)16.如果|a +2|+(b -3)2=0,那么a b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.(第17题) (第18题)18.一个质点P从距原点1个单位长度的点A处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从点A1跳动到OA1的中点A2处,第三次从点A2跳动到OA2的中点A3处,…如此不断跳动下去,则第五次跳动后,该质点到原点O的距离为________;第n次跳动后,该质点到原点O的距离为________.三、解答题(19,24题每题12分,20题16分,21题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|;(2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36;(4)-42÷(-2)3+(-1)2 020-49÷23.21.现规定一种新运算“*”:a *b =a b-2,例如:2*3=23-2=6.试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450 g,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为450±5 g,求该食品的抽样检测的合格率.23.某景区工作人员接到任务后,驾驶电瓶车从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该工作人员能否在电瓶车一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s、4个单位长度/s,它们运动的时间为t s.(1)如果点P,Q在点A,B之间相向运动,当它们相遇时,点P表示的数是________;(2)如果点P,Q都向左运动,当点Q追上点P时,求点P表示的数;(3)如果点P,Q在点A,B人教版七年级数学上册第一章有理数单元测试(含答案)一、单选题1.在有理数-3,0,23,-85,3.7中,属于非负数的个数有()A.4个B.3个C.2个D.1个2.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是()A.B.C.D.3.下列各式中结果为负数的是()A.﹣(﹣2) B.|﹣2| C.(﹣2)2D.﹣|﹣2|4.下列说法不正确的是:()① a一定是正数;②0的倒数是0 ;③最大的负整数-1;④只有负数的绝对值是它的相反数;⑤相反数等于本身的有理数只有0A.②③④B.①②④⑤C.②③④⑤D.①②④5.在数轴上与-3的距离等于4的点表示的数是()A.1 B.-7 C.1或-7 D.无数个6.已知p与q互为相反数,且p≠0,那么下列关系式正确的是()A.p•q=1B.p1q=C.p-q=0 D.p+q=07.56-的相反数是()A.56B.56-C.65D.65-8.实数-2019的绝对值是()A. B.2019 C. D.9.下列计算正确的是( ) A .5+(﹣6)=﹣11 B .﹣1.3+(﹣1.7)=﹣3 C .(﹣11)﹣7=﹣4 D .(﹣7)﹣(﹣8)=﹣110.|-6|的倒数是( ) A .6B .-6C .16 D .-1611.﹣|﹣3|的倒数是( ) A .﹣3B .﹣13C .13D .312.一个数和它的倒数相等,则这个数是 ( ) A .1 B .-1 C .±1 D .±1和0二、填空题13.中国的领水面积约为3700000km 2,将3700000用科学记数法表示为_____. 14.0.7808用四舍五入法精确到十分位是_____. 15.计算:1001-1-6-)6÷⨯()(=_________16.用“>”或“<”填空: 3--______ ( 3.1)--; 78-____67-; 17.一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则点A 所表示的数是__.三、解答题 18.计算: (1)1+(-2)+|-2-3|-5 (2) 51557-÷ (3) (-16+34-512)⨯(12)- (4)(-1)2012-(-512)×411+(-8)÷[(-3)+5] (5)()2014322321-+--⨯-19.用☉定义一种新运算:对于任意有理数a 、b ,都有21ab b =+。
人教版七年级数学上册第五章达标测试卷含答案
人教版七年级数学上册第五章达标测试卷七年级数学 上(R 版) 时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.[2024上海黄浦区模拟]下列方程中,是一元一次方程的是( ) A . x +(4-x )=0B . x +1=0C . x +y =1D .1y +x =02.下列方程中,解为x =3的是( ) A . x +y =3B .3x =12C .2x -2=3xD .512x =543.下列说法正确的是( ) A .若a 2=5a ,则a =5 B .若x +y =2y ,则x =y C .若a =b ,则a +12=b -12D .若a =b ,则am =bm4.已知x =2是方程3x -5=2x +m 的解,则m 的值是( ) A .1B .-1C .3D .-35.下列方程变形中,正确的是( )A .方程3x +4=4x -5,移项,得3x -4x =5-4B .方程-32x =4,系数化为1,得x =4×(-32) C .方程3-2(x +1)=5,去括号,得3-2x -2=5 D .方程x -12-1=3x+13,去分母,得3(x -1)-1=2(3x +1)6.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数,则当y =505时,b 的值为( )A .205B .305C .255D .3157.[2024天津滨海新区期末]已知(m +1)x |m |-3=0是关于x 的一元一次方程,则m 的值为( ) A .0B .1C .-1D .±18.[新考向 数学文化]我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,则符合题意的方程是( ) A .12x =(x -5)-5B .12x =(x +5)+5C .2x =(x -5)-5D .2x =(x +5)+59.[教材P 137练习T 1变式]足球比赛的规则为胜一场得3分,平一场得1分,负一场得0分.一支足球队踢了14场比赛,负了4场,共得20分,那么该队胜的场数是( ) A .3B .4C .5D .610.[新考法 特征数表示法]如图,在某年11月的月历表中框出3,5,11,17,19五个数,它们的和为55,若在图中换个位置框出五个数,则它们的和可能是( )(第10题)A .40B .88C .107D .110二、填空题(每题4分,共24分)11.[新视角 结论开放题]请写出一个解是x =-2的一元一次方程: . 12.已知4x 2m y n+1与 -3x 4y 3是同类项,则 m = , n = .13.小丁在解方程5a -x =13(x 为未知数)时,误将-x 看作+x ,解得方程的解是x =-2,则原方程的解为 .14.[教材P 140习题T 4变式]一项工程,甲单独完成需要20天,乙单独完成需要25天,由甲先做2天,然后甲、乙一起做,余下的部分还要 天才能完成.15.观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…,若最后三个数之和是180,则n = .16.[新考向 数学文化]我国古代天文学和数学著作《周髀算经》中提到:一年有二十四个节气,每个节气的晷(ɡuǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气如图所示,从冬至到夏至晷长逐渐变小,从夏至到冬至晷长逐渐变大,相邻两个节气晷长减少或增加的量均相同,周而复始.若冬至的晷长为13.5尺,夏至的晷长为1.5尺,则相邻两个节气晷长减少或增加的量为 尺,立夏的晷长为 尺.(第16题)三、解答题(共66分) 17.(12分)解下列方程: (1)4x -3=2(x -1); (2)x -35-x -410=1; (3)3y -14-1=5y -76; (4)x3-0.1x+0.40.2=16.18.(10分)已知 P =2x +1,Q =x -43.(1)当x 取何值时, P =Q ? (2)当x 取何值时, P 比 Q 大4?19.(10分)[2024益阳期末]中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5 h 缩短至1 h ,运行里程缩短了40 km .已知高铁的平均速度比普通列车的平均速度高200 km/h ,求高铁的平均速度.20.(10分)[2024常州二十四中月考]请根据图中提供的信息,回答下列问题:(1)暖瓶与水杯的单价分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和28个水杯,请问选择哪家商场购买更合算,并说明理由.21.(12分)[2024长沙模拟]为了增强市民的节约用水意识,自来水公司实行阶梯收费,具体情况如下表:每月用水量收费不超过10吨的部分1.6元/吨超过10吨而不超过20吨的部分2元/吨超过20吨的部分2.4元/吨(1)若小刚家6月份用水18吨,则小刚家6月份应缴水费多少元?(2)若小刚家7月份的平均水费为1.75元/吨,则小刚家7月份的用水量为多少吨?(3)若小刚家8月、9月共用水40吨,9月底共缴水费78.8元,其中含2元滞纳金(水费为每月底缴纳,因8月份的水费未按时缴纳,所以收取了滞纳金),已知9月份用水量比8月份少,求小刚家8月、9月各用水多少吨?22.(12分)[情境题生活应用2024成都双流区期末]水在人体内起着十分重要的作用,每天补充一定量的水有助于身体健康.学校为了方便学生在校饮水,安装了如图所示的饮水机,饮水机有温水、开水两个按钮.温水和开水共用一个出水口.温水的温度为40 ℃,流速为20毫升/秒;开水的温度为90 ℃,流速为15毫升/秒.整个接水的过程不计热量损失.(1)用空杯先接7秒温水,再接4秒开水,接完后,求杯中水的体积和温度;(2)某学生先接了一会温水,又接了一会开水,得到一杯500毫升温度为50 ℃的水.设该学生接温水的时间为x秒,请求出x的值;(3)研究表明,蜂蜜的最佳冲泡温度是48 ℃~52 ℃,某教师携带一个容量为300毫升的水杯接水,用来冲泡蜂蜜,要使接满水时杯中水温在最佳冲泡温度范围内,请设计该教师分配接水时间的方案(接水时间按整秒计算).参考答案一、1. B 2. D 3. B 4. D 5. C 6. A 7. B 8. A 9. C 10. D二、11.2x -1=-5(答案不唯一) 12.2;2 13. x =2 14.10 15.3116.1;4.5 点拨:设相邻两个节气晷长减少或增加的量为x 尺,由题意知,13.5-12x =1.5,解得x =1, 所以相邻两个节气晷长减少或增加的量为1尺.因为1.5+3×1=4.5(尺),所以立夏的晷长为4.5尺. 三、17.(1)x =12(2)x =12 (3)y =-1 (4)x =-1318.解:(1)当P =Q 时,2x +1=x -43,解得x =-75.所以当x =-75时,P =Q . (2)当P 比Q 大4时,2x +1=x -43+4,解得x =1.所以当x =1时,P 比Q 大4.19.解:设高铁的平均速度为x km/h ,则普通列车的平均速度为(x -200) km/h .由题意得x +40=3.5(x -200), 解得x =296.答:高铁的平均速度为296 km/h .20.解:(1)设暖瓶的单价是x 元,则水杯的单价是(38-x )元.根据题意,得2x +3(38-x )=84, 解得x =30,所以38-x =8.答:暖瓶的单价是30元,水杯的单价是8元. (2)选择甲商场购买更合算.理由如下:甲商场:(4×30+28×8)×0.9=309.6(元), 乙商场:4×30+(28-4)×8=312(元). 因为312>309.6,所以选择甲商场购买更合算.21.解:(1)小刚家6月份应缴水费10×1.6+(18-10)×2=32(元).(2)由题意可得小刚家7月份的用水量超过10吨而不超过20吨.设小刚家7月份的用水量为x 吨.依题意得1.6×10+2(x -10)=1.75x ,解得x=16,所以小刚家7月份的用水量为16吨.(3)因为小刚家8月、9月共用水40吨,9月份用水量比8月份少,所以8月份的用水量超过了20吨.设小刚家9月份的用水量为y吨,则8月份的用水量为(40-y)吨.当y≤10时,依题意得1.6y+16+20+2.4(40-y-20)+2=78.8,解得y=9,此时40-y=31;当10<y<20时,依题意得16+2(y-10)+16+20+2.4(40-y-20)+2=78.8,解得y=8,不符合题意,舍去.综上,小刚家8月份用水31吨,9月份用水9吨.22.解:(1)杯中水的体积为7×20+4×15=200(毫升),杯中水的温度为7×20×40+4×15×90=55(℃).200(2)根据题意,得20x×40+(500-20x)×90=500×50,解得x=20.(3)设冲泡蜂蜜时接温水的时间是a秒,a(℃).则混合后温度为[20a×40+(300-20a)×90]÷300=90-103a=48时,解得a=12.6;当90-103a=52时,解得a=11.4,当90-103所以11.4<a<12.6.因为a为整数,所以a=12.所以接开水的时间是(300-12×20)÷15=4(秒).答:冲泡蜂蜜时,接温水12秒,接开水4秒.。
北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)
北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。
人教版七年级数学上册全册单元试卷达标检测(Word版 含解析)
人教版七年级数学上册全册单元试卷达标检测(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数________ ,点P表示的数________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)点B表示的数是﹣6;点P表示的数是8﹣5t(2)解:设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…解得:x=7,∴点P运动7秒时,在点C处追上点Q(3)解:没有变化.分两种情况:①当点P在点A.B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB=7…②当点P运动到点B的左侧时:MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7…综上所述,线段MN的长度不发生变化,其值为7…(4)解:式子|x+6|+|x﹣8|有最小值,最小值为14.…【解析】【分析】(1)由于A点表示的数是8,故OA=8,又AB=14,从而得出OB=AB-OA=6,由于点B表示的数在原点的左边,故B点表示的数是-6,根据路程等于速度乘以时间得出AP=5t,从而得出P点表示的数是8-5t;(2)设点P运动x秒时,在点C处追上点Q (如图)格努路程定于速度乘以时间得出AC=5x,BC=3x,然后由AC﹣BC=AB列出方程求解即可得出x的值;(3)没有变化.根据线段中点的定义得出PM=AP,NP=BP,分两种情况:①当点P在点A.B两点之间运动时,由MN=MP+NP= AP+ BP= (AP+BP)= AB得出答案;②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB得出答案,综上所述即可得出答案;(4)式子|x+6|+|x﹣8|有最小值,最小值为14,点D是数轴上一点,点D表示的数是x,那么|x+6|表示点D,B两点间的距离,|x﹣8|表示点D,A两点间的距离,要|x+6|+|x﹣8|其实质就是DB+AD的和,要DB+AD的和最小,只有在D为线段AB上的时候,DB+AD的和最小=AB,即可得出答案。
人教版七年级数学上册各单元检测卷6套含答案
第一章检测卷时间:120分钟 满分:120分题号 一 二 三 四 五 六 总分 得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.如果将“收入100元”记作“+100元”,那么“支出50元”应记作( ) A .+50元 B .-50元 C .+150元 D .-150元2.2017年春节黄金周宜春市共接待游客2234000人次,将2234000用科学记数法表示为( )A .22.34×105B .2.234×105C .2.234×106D .0.2234×1073.已知□×⎝⎛⎭⎫-12017=-1,则□等于( ) A.12017B .2016C .2017D .2018 4.下列各式计算正确的是( ) A .-3+23=-323 B .-10÷52=25C .(-2)2=-4D.⎝⎛⎭⎫-123=-185.如图,数轴上P ,Q ,S ,T 四点表示的整数分别是p ,q ,s ,t ,且有p +q +s +t =-2(数轴上每1小格为1个单位长度),则原点应是点( )A .PB .QC .SD .T6.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,……依此类推,则a 2017的值为( )A .-1009B .-1008C .-2017D .-2016二、填空题(本大题共6小题,每小题3分,共18分)7.-3的相反数是________,-2018的倒数是________. 8.近似数0.598精确到________位.9.一天早晨的气温为-3℃,中午上升了5℃,半夜又下降了7℃,则半夜的气温为________.10.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是________和________.11.如图是一个简单的数值运算程序.当输入x 的值为-1时,则输出的数值为________.输入x ―→×(-3)―→-2―→输出12.已知四个互不相等的整数a ,b ,c ,d 满足abcd =77,则a +b +c +d =________.三、(本大题共5小题,每小题6分,共30分) 13.把下列各数分别填在表示它所属的括号里:0,-35,2017,-3.1,-2,34.(1)正有理数集合:{ …};(2)整数集合:{ …}; (3)负分数集合:{ …}.14.将下列各数在如图所示的数轴上表示出来,并用“>”把这些数连接起来:-112,0,2,-|-3|,-(-3.5).15.计算:(1)-(-4)+|-5|-7;(2)1+(-2)+|-2-3|-5.16.计算:(1)(-24)×⎝⎛⎭⎫12-123-38;(2)-14-(1-0×4)÷13×[(-2)2-6].17.列式并计算:(1)什么数与-512的和等于-78?(2)-1减去-23与25的和,所得的差是多少?四、(本大题共3小题,每小题8分,共24分) 18.已知|a +3|+(b -1)2=0. (1)求a ,b 的值; (2)求b 2018-⎝⎛⎭⎫a 32017的值.19.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?20.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?五、(本大题共2小题,每小题9分,共18分)21.如果规定符号“*”的意义是a*b=aba+b,如1*2=1×21+2,求2*(-3)*4的值.同学 A B C D E F(1)完成表中空白的部分;(2)他们的最高身高与最矮身高相差多少? (3)他们6人的平均身高是多少?六、(本大题共12分)23.下面是按规律排列的一列式子: 第1个式子:1-⎝⎛⎭⎫1+-12;第2个式子:2-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34;第3个式子:3-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34⎣⎡⎦⎤1+(-1)45⎣⎡⎦⎤1+(-1)56. (1)分别计算这三个式子的结果(直接写答案);(2)写出第2017个式子的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案与解析1.B 2.C 3.C 4.D 5.C 6.B 7.3 -12018 8.千分 9.-5℃10.4 -4 11.1 12.±413.解:(1)2017,34(2分) (2)0,2017,-2(4分) (3)-35,-3.1(6分)14.解:数轴表示如图所示,(3分)由数轴可知-(-3.5)>2>0>-112>-|-3|.(6分)15.解:(1)原式=4+5-7=9-7=2.(3分) (2)原式=1-2+5-5=-1.(6分) 16.解:(1)原式=-12+40+9=37.(3分) (2)原式=-1-1×3×(-2)=-1+6=5.(6分) 17.解:(1)-78-⎝⎛⎭⎫-512=-1124.(3分) (2)-1-⎝⎛⎭⎫-23+25=-1+415=-1115.(6分) 18.解:(1)因为|a +3|+(b -1)2=0,且|a +3|≥0,(b -1)2≥0.∴a +3=0,b -1=0,∴a =-3,b =1.(4分)(2)由(1)知a =-3,b =1,故b 2018-⎝⎛⎭⎫a 32017=12018-⎝⎛⎭⎫-332017=1-(-1)=2.(8分)19.解:(1)如图所示.(2分)(2)2-(-1)=3(km).答:小彬家与学校之间的距离是3km.(5分)(3)2+1.5+|-4.5|+1=9(km),9km =9000m ,9000÷250=36(min).(7分) 答:小明跑步一共用了36min.(8分)20.解:由题意得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),(5分)所以他卖完这8套儿童服装后是盈利,(7分)盈利37元.(8分)21.解:根据题意得2*(-3)*4=2×(-3)2+(-3)*4=6*4=6×46+4=2.4.(9分)22.解:(1)168 0 163 169 +5(3分)(2)根据表格知道最高为171cm ,最矮为163cm ,所以他们的最高与最矮身高相差171-163=8(cm).(6分)(3)166+-1+2+0-3+3+56=166+1=167(cm).所以他们6人的平均身高是167cm.(9分)23.解:(1)第1个式子:12;第2个式子:32;第3个式子:52.(6分)(2)第2017个式子:2017-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34…⎣⎡⎦⎤1+(-1)40324033⎣⎡⎦⎤1+(-1)40334034=2017-12×43×34×…×40344033×40334034=2017-12=201612.(12分)第二章检测卷时间:120分钟 满分:120分题号 一 二 三 四 五 六 总分 得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.下列式子中,是单项式的是( ) A.x +y 2 B .-12x 3yz 2C.5xD .x -y 2.下列各式计算正确的是( )A .3x +x =3x 2B .-2a +5b =3abC .4m 2n +2mn 2=6mnD .3ab 2-5b 2a =-2ab 23.按某种标准,多项式x 3-3x 与ab 2+4属于同一类,则下列符合此类标准的多项式应是( )A .x 3+y 2B .ab 2+3c -2C .a 2+6xD .x 2y4.如图,用式子表示三角尺的面积为( )A .ab -r 2 B.12ab -r 2 C.12ab -πr 2 D .ab5.已知P =-2a -1,Q =a +1且2P -Q =0,则a 的值为( )A .2B .1C .-0.6D .-16.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形……依此规律,第十个图形中三角形的个数是( )A .50个B .52个C .54个D .56个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式-2x 2y5的系数是________,次数是________.8.化简:(4a -2)-3(-1+5a )=________.9.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.10.已知多项式(3-b )x 5+x a +x -b 是关于x 的二次三项式,则a +b 2的值为________. 11.有一组多项式:a +b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第8个多项式是____________,第n 个多项式是____________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)-3m +2m -5m ;(2)(2a 2-1+2a )-(a -1+a 2).14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.有理数a ,b ,c 在数轴上的位置如图所示,化简:|b -a |-|c -b |+|a +b |.19.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)图案序号①②③④…⑩每个图案中棋子的个数58…(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案与解析1.B 2.D 3.A 4.C 5.C 6.D7.-25 3 8.-11a +1 9.111a +80 10.1111.a 8-b 16 a n +(-1)n +1b 2n12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.13.解:(1)原式=-6m .(3分)(2)原式=2a 2-1+2a -a +1-a 2=a 2+a .(6分)14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分)15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由数轴可知,c <b <0<a ,|a |>|b |,∴b -a <0,c -b <0,a +b >0,(3分)∴原式=-(b -a )+(c -b )+(a +b )=-b +a +c -b +a +b =2a -b +c .(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分)21.解:(1)l=2πr+2a.(3分)(2)S=πr2+2ar.(6分)(3)当a=8m,r=5m时,l=2π×5+2×8=10π+16≈47.4(m),S=π×52+2×8×5=25π+80≈158.5(m2).(9分)22.解:(1)∵a2+a=0,∴a2+a+2017=0+2017=2017.(3分)(2)∵a-b=-3,∴3(a-b)-a+b+5=3×(-3)-(-3)+5=-1.(6分)(3)∵a2+2ab=-2,ab-b2=-4,∴2a2+5ab-b2=2a2+4ab+ab-b2=2×(-2)+(-4)=-8.(9分)23.解:(1)111432(3分)(2)第n个“T”字形图案共有棋子(3n+2)个.(6分)(3)当n=20时,3n+2=3×20+2=62(个).即第20个“T”字形图案共有棋子62个.(9分)(4)这20个数据是有规律的,第1个与第20个数据的和、第2个与第19个数据的和、第3个与第18个数据的和……都是67,共有10个67.所以前20个“T”字形图案中,棋子的总个数为67×10=670(个).(12分)第三章检测卷时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.下列等式变形正确的是( )A .若a =b ,则a -3=3-bB .若x =y ,则x a =yaC .若a =b ,则ac =bcD .若b a =dc ,则b =d2.把方程3x +2x -13=3-x +12去分母正确的是( )A .18x +2(2x -1)=18-3(x +1)B .3x +(2x -1)=3-(x +1)C .18x +(2x -1)=18-(x +1)D .3x +2(2x -1)=3-3(x +1)3.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A .x =-5 B .x =-3 C .x =-1 D .x =54.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,那么可列方程( )A .3(x -2)=2x +9B .3(x +2)=2x +9C.x 2+2=x -92D.x3-2=x +925.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是( )A .1B .2C .3D .46.某校为了丰富“阳光体育”活动,现购进篮球和足球共16个,共花了2820元.已知篮球的单价为185元,篮球个数是足球个数的3倍,则足球的单价为( )A .120元B .130元C .150元D .140元二、填空题(本大题共6小题,每小题3分,共18分)7.若-x n +1与2x 2n -1是同类项,则n =________.8.当x =________时,代数式4x -5与3x -9的值互为相反数.9.若方程x +2m =8与方程2x -13=x +16的解相同,则m =________. 10.一份试卷共25道选择题,规定答对一道题得4分,答错或不答一题扣1分.若某学生得了80分,则该学生答对了________道题.11.某书店把一本新书按标价的八折出售,仍获利30%.若该书的进价为40元,则标价为________元.12.现定义某种运算“☆”,对给定的两个有理数a ,b ,有a ☆b =2a -b .若⎪⎪⎪⎪1-x 2☆2=4,则x 的值为________.三、(本大题共5小题,每小题6分,共30分) 13.解下列方程: (1)4x +1=2(3-x );(2)2x -13-2x -34=1.14.已知关于x 的方程2(x -1)=3m -1与3x +2=-4的解互为相反数,求m 的值.15.小聪做作业时解方程x +12-2-3x3=1的步骤如下:解:①去分母,得3(x +1)-2(2-3x )=1;②去括号,得3x +3-4-6x =1; ③移项,得3x -6x =1-3+4;④合并同类项,得-3x =2; ⑤系数化为1,得x =-23.(1)聪明的你知道小聪的解答过程正确吗?答:________.若不正确,请指出他解答过程中的错误________.(填序号)(2)请写出正确的解答过程.16.保护和管理好湿地,对于维护一个城市的生态平衡具有十分重要的意义.2018年北京计划恢复湿地和计划新增湿地的面积共2200公顷,其中计划恢复湿地的面积比计划新增湿地面积的2倍多400公顷.求计划恢复湿地和计划新增湿地的面积.17.一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是70km/h ,卡车的行驶速度是60km/h ,客车比卡车早1h 经过B 地,A 、B 两地间的路程是多少?四、(本大题共3小题,每小题8分,共24分)18.一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,恰好成为个位数字与十位数字对调之后组成的两位数.求这个两位数.19.小李在解方程3x +52-2x -m3=1去分母时方程右边的1没有乘以6,因而得到方程的解为x =-4,求出m 的值并正确解出方程.20.某服装厂要生产某种型号的学生校服,已知3m 长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存有这种布料600m ,应如何分配布料做上衣和做裤子才能恰好配套?共能做多少套?五、(本大题共2小题,每小题9分,共18分) 21.快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读,在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.请根据以上信息解答下列问题:(1)你认为小宇购买________元以上的书,办卡合算; (2)小宇购买这些书的原价是多少元?22.为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?六、(本大题共12分)23.在某市第四次党代会上,提出了“建设美丽城市,决胜全面小康”的奋斗目标,为响应市委号召,学校决定改造校园内的一小广场.如图是该广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米.(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MQ和PN).请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.两队合作施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?参考答案与解析1.C 2.A 3.A 4.A 5.B 6.C7.2 8.2 9.72 10.21 11.65 12.-5或713.解:(1)x =56.(3分)(2)x =72.(6分)14.解:方程3x +2=-4,解得x =-2.(2分)所以关于x 的方程2(x -1)=3m -1的解为x =2.把x =2代入得2=3m -1,解得m =1.(6分)15.解:(1)不正确 ①②(2分)(2)去分母,得3(x +1)-2(2-3x )=6,去括号,得3x +3-4+6x =6,移项,得3x +6x =6-3+4,合并同类项,得9x =7,解得x =79.(6分)16.解:设计划新增湿地x 公顷,则计划恢复湿地(2x +400)公顷.(2分)根据题意,得x +2x +400=2200,解得x =600,∴2x +400=1600.(5分)答:计划恢复湿地1600公顷,计划新增湿地600公顷.(6分) 17.解:设A 、B 两地间的路程为x km ,(1分)根据题意得x 60-x70=1,(3分)解得x =420.(5分)答:A 、B 两地间的路程为420km.(6分)18.解:设这个两位数的十位数字为x ,则个位数字为7-x ,(2分)由题意列方程为10x +7-x +45=10(7-x )+x ,解得x =1,(6分)∴7-x =7-1=6,∴这个两位数为16.(8分)19.解:由题意x =-4是方程3(3x +5)-2(2x -m )=1的解,∴3(-12+5)-2(-8-m )=1,∴m =3,(4分)∴原方程为3x +52-2x -33=1,∴3(3x +5)-2(2x -3)=6,5x =-15,∴x =-3.(8分)20.解:设做上衣的布料用x m ,则做裤子的布料用(600-x )m ,(2分)由题意得x3×2=600-x 3×3,解得x =360,600-x =240.3603×2=240(套).(7分) 答:做上衣的布料用360m ,做裤子的布料用240m ,才能恰好配套,共能做240套.(8分)21.解:(1)100(3分) 解析:设买x 元的书办卡与不办卡的花费一样多,根据题意,得x =20+80%x ,解得x =100.故买100元以上的书,办卡比较合算.(2)设这些书的原价是y 元,(4分)根据题意,得20+80%y =y -13,解得y =165.(8分)答:小宇购买这些书的原价是165元.(9分)22.解:(1)由题意,得5020-92×40=1340(元).(3分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(4分)(2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,解得x =50,92-x =42.(8分)答:甲班有50名同学,乙班有42名同学.(9分)23.解:(1)∵最小的正方形A 的边长是1米,最大的正方形B 的边长是x 米,∴正方形F 的边长为(x -1)米,正方形E 的边长为(x -2)米,正方形C 的边长为(x -3)米或x +12米.(3分)(2)∵MQ =PN ,∴x -1+x -2=x +x +12,解得x =7.(7分)(3)设余下的工程由乙队单独施工,还要y 天完成.(8分)根据题意得⎝⎛⎭⎫110+115×2+115y =1,解得y =10.(11分)答:余下的工程由乙队单独施工,还要10天完成.(12分)第四章检测卷时间:120分钟 满分:120分题号 一 二 三 四 五 六 总分 得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.下列说法正确的是( ) A .两点确定一条直线B .两条射线组成的图形叫作角C .两点之间直线最短D .若AB =BC ,则点B 为AC 的中点2.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( )A .3cmB .6cmC .9cmD .12cm第2题图 第3题图3.如图,∠AOB 为平角,且∠AOC =27∠BOC ,则∠BOC 的度数是( )A .140°B .135°C .120°D .40°4.如图是一个正方体纸巾盒,它的平面展开图是( )5.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A ,D ,B 三点在同一直线上,BM 为∠ABC 的平分线,BN 为∠CBE 的平分线,则∠MBN 的度数是( )A.30°B.45°C.55°D.60°6.如图,线段AB表示一根对折以后的绳子,现从P处把绳子剪断,剪断后的各段绳子中最长的一段为8cm.若PB比AP长3cm,则这条绳子的原长为()A.10cm B.26cmC.10cm或22cm D.19cm或22cm二、填空题(本大题共6小题,每小题3分,共18分)7.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因__________________________.第7题图第8题图8.如图所示的图形中,柱体为__________(请填写你认为正确物体的序号).9.如图,已知线段AB=16cm,点M在AB上,AM∶BM=1∶3,P,Q分别为AM,AB的中点,则PQ的长为________.第9题图第11题图10.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有________种不同的票价,需准备________种车票.11.如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为________.12.从点O引出三条射线OA,OB,OC,已知∠AOB=30°,在这三条射线中,当其中一条射线是另两条射线所组成角的平分线时,则∠AOC的度数为________.三、(本大题共5小题,每小题6分,共30分)13.下列图形中,上面是一些具体的实物,下面是一些立体图形,请找出与下面立体图形相类似的实物,用线连接起来.14.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.15.观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.16.如图,已知直线AB、CD、EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.17.如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3,求线段CD,AB的长;(2)试说明:AD+AB=2AC.四、(本大题共3小题,每小题8分,共24分) 18.已知∠α=76°,∠β=41°31′,求: (1)∠β的余角;(2)∠α的2倍与∠β的12的差.19.已知线段AB =20cm ,M 是线段AB 的中点,C 是线段AB 延长线上的点,AC :BC =3:1,点D 是线段BA 延长线上的点,AD =AB .求:(1)线段BC 的长; (2)线段DC 的长; (3)线段MD 的长.20.如图,将两块直角三角尺的顶点叠放在一起. (1)若∠DCE =35°,求∠ACB 的度数; (2)若∠ACB =140°,求∠DCE 的度数;(3)猜想∠ACB 与∠DCE 的关系,并说明理由.五、(本大题共2小题,每小题9分,共18分)21.如图,已知点O在线段AB上,点C,D分别是AO,BO的中点.(1)AO=________CO;BO=________DO;(2)若CO=3cm,DO=2cm,求线段AB的长度;(3)若线段AB=10,小明很轻松地求得CD=5.他在反思过程中突发奇想:若点O在线段AB的延长线上,原有的结论“CD=5”是否仍然成立呢?请帮小明画出图形分析,并说明理由.22.如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C 两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).六、(本大题共12分)23.定义:从一个角的顶点出发,把这个角分成1∶2的两个角的射线,叫作这个角的三分线,显然,一个角的三分线有两条.例如:如图①,若∠BOC =2∠AOC ,则OC 是∠AOB 的一条三分线.(1)已知:如图①,OC 是∠AOB 的一条三分线,且∠BOC >∠AOC ,若∠AOB =60°,求∠AOC 的度数;(2)已知:∠AOB =90°,如图②,若OC ,OD 是∠AOB 的两条三分线. ①求∠COD 的度数;②现以O 为中心,将∠COD 顺时针旋转n °得到∠C ′OD ′,当OA 恰好是∠C ′OD ′的三分线时,求n 的值.参考答案与解析1.A 2.D 3.A 4.B 5.B 6.C7.两点之间,线段最短 8.①②③⑥ 9.6cm 10.10 20 11.20°12.15°或30°或60° 解析:①如图①,当OC 平分∠AOB 时,∠AOC =12∠AOB =15°;②如图②,当OA 平分∠BOC 时,∠AOC =∠AOB =30°;③如图③,当OB 平分∠AOC 时,∠AOC =2∠AOB =60°.故答案为15°或30°或60°.13.解:如图所示.(6分)14.解:如图所示.(6分)15.解:图略.(6分)16.解:∵∠2=2∠1,∴∠1=12∠2.(1分)∵∠3=3∠2,∴∠1+∠2+∠3=12∠2+∠2+3∠2=180°,解得∠2=40°,(4分)∴∠3=3∠2=120°,∴∠DOE =∠3=120°.(6分)17.解:(1)∵C 是线段BD 的中点,BC =3,∴CD =BC =3.∴AB =AD -BC -CD =8-3-3=2.(3分)(2)∵AD +AB =AC +CD +AB ,BC =CD ,∴AD +AB =AC +BC +AB =AC +AC =2AC .(6分)18.解:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′.(3分)(2)∵∠α=76°,∠β=41°31′,∴2∠α-12∠β=2×76°-12×41°31′=152°-20°45′30″=131°14′30″.(8分)19.解:(1)设BC =x cm ,则AC =3x cm.又∵AC =AB +BC =(20+x )cm ,∴20+x =3x ,解得x =10.即BC =10cm.(2分)(2)∵AD =AB =20cm ,∴DC =AD +AB +BC =20+20+10=50(cm).(5分)(3)∵M 为AB 的中点,∴AM =12AB =10cm ,∴MD =AD +AM =20+10=30(cm).(8分)20.解:(1)由题意知∠ACD =∠ECB =90°,∴∠ACB =∠ACD +∠DCB =∠ACD +∠ECB -∠DCE =90°+90°-35°=145°.(3分)(2)由(1)知∠ACB =180°-∠DCE ,∴∠DCE =180°-∠ACB =40°.(5分)(3)∠ACB +∠DCE =180°.(6分)理由如下:∵∠ACB =∠ACD +∠DCB =90°+90°-∠DCE =180°-∠DCE ,∴∠ACB +∠DCE =180°.(8分)21.解:(1)2 2(2分)(2)∵点C ,D 分别是AO ,BO 的中点,CO =3cm ,DO =2cm ,∴AO =2CO =6cm ,BO =2DO =4cm ,∴AB =AO +BO =6+4=10(cm).(5分)(3)仍然成立,如图:理由如下:∵点C ,D 分别是AO ,BO 的中点,∴CO =12AO ,DO =12BO ,(7分)∴CD=CO -DO =12AO -12BO =12(AO -BO )=12AB =12×10=5(cm).(9分)22.解:(1)图略.(3分)(2)∠BAC =90°-80°+90°-20°=80°.(6分) (3)约2.3cm ,即实际距离约23海里.(9分)23.解:(1)∵OC 是∠AOB 的一条三分线,且∠BOC >∠AOC ,∴∠AOC =13∠AOB =13×60°=20°.(3分)(2)①∵∠AOB =90°,OC ,OD 是∠AOB 的两条三分线,∴∠BOC =∠AOD =13∠AOB=13×90°=30°,∴∠COD =∠AOB -∠BOC -∠AOD =90°-30°-30°=30°.(6分) ②分两种情况:当OA 是∠C ′OD ′的三分线,且∠AOD ′>∠AOC ′时,如图①,∠AOC ′=13∠C ′OD ′=10°,∴∠DOC ′=∠AOD -∠AOC ′=30°-10°=20°,∴∠DOD ′=∠DOC ′+∠C ′OD ′=20°+30°=50°;(9分)当OA 是∠C ′OD ′的三分线,且∠AOD ′<∠AOC ′时,如图②,∠AOC ′=20°,∴∠DOC ′=∠AOD -∠AOC ′=30°-20°=10°,∴∠DOD ′=∠DOC ′+∠C ′OD ′=10°+30°=40°.综上所述,n =40或50.(12分)期中检测卷时间:120分钟 满分:120分题号 一 二 三 四 五 六 总分 得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.a 的相反数是( ) A .|a | B.1aC .-aD .以上都不对2.计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-43.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0 C.53D .14.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( ) A .0 B .1 C .7 D .-15.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A .2a 2-πb 2B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 2第5题图 第6题图6.如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50二、填空题(本大题共6小题,每小题3分,共18分)7.-0.5的绝对值是________,相反数是________,倒数是________.8.2018年1月4日,在萍乡市第十五届人民代表大会第三次会议报告中指出,去年我市城镇居民人均可支配收入为33080元,33080用科学记数法可表示为________.9.五次单项式(k -3)x |k |y 2的系数为________.10.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.11.已知|x |=2,|y |=5,且x >y ,则x +y =________.12.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是________(用含a 的代数式表示).三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-20-(-14)-|-18|-13;(2)-23-(1+0.5)÷13×(-3).14.化简:(1)3a 2+2a -4a 2-7a ;(2)13(9x -3)+2(x +1).15.已知a、b互为相反数,c、d互为倒数,|m|=2,求代数式2m-(a+b-1)+3cd的值.16.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=-1,b=-2.17.若多项式4x n+2-5x2-n+6是关于x的三次多项式,求代数式n3-2n+3的值.四、(本大题共3小题,每小题8分,共24分)18.对于有理数a,b,定义一种新运算“”,规定:a b=|a|-|b|-|a-b|.(1)计算(-2)3的值;(2)当a,b在数轴上的位置如图所示时,化简a b.19.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a >0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示2km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?六、(本大题共12分)23.探索规律,观察下面算式,解答问题.1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;……(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=________;(3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.B 5.D6.B 解析:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.7.0.5 0.5 -2 8.3.308×104 9.-6 10.-6 11.-3或-712.a 解析:由图②知小长方形的长为宽的2倍,设大长方形的宽为b ,小长方形的宽为x ,长为2x ,由图②得2x +x +x =a ,则4x =a .图①中阴影部分的周长为2b +2(a -2x )+2x ×2=2a +2b ,图②中阴影部分的周长为2(a +b -2x )=2a +2b -4x ,∴图①中阴影部分的周长与图②中阴影部分的周长之差为(2a +2b )-(2a +2b -4x )=4x =a .13.解:(1)原式=-6-18-13=-37.(3分)(2)原式=-8-1.5÷13×(-3)=-8-4.5×(-3)=-8+13.5=5.5.(6分)14.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)15.解:根据题意得a +b =0,cd =1,m =2或-2.(2分)当m =2时,原式=4-(-1)+3=4+1+3=8;(4分)当m =-2时,原式=-4-(-1)+3=-4+1+3=0.(6分)16.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2,(3分)当a =-1,b =-2时,原式=4.(6分)17.解:由题意可知该多项式最高次数项为3次,分如下两种情况:当n +2=3时,n =1,∴原多项式为4x 3-5x +6,符合题意,∴n 3-2n +3=13-2×1+3=2;(3分)当2-n =3时,n =-1,∴原多项式为4x -5x 3+6,符合题意,∴n 3-2n +3=(-1)3-2×(-1)+3=4.(5分)综上所述,代数式n 3-2n +3的值为2或4.(6分)18.解:(1)根据题中的新定义知,原式=|-2|-|3|-|-2-3|=2-3-5=-6.(4分) (2)由a ,b 在数轴上的位置,可得a >0,b <0,a -b >0,则a b =|a |-|b |-|a -b |=a +b -a +b =2b .(8分)19.解:(1)阴影部分的面积为12b 2+12a (a +b ).(4分)(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分)20.解:(1)如图所示:(3分)(2)C、A两村的距离为3-(-2)=5(km).答:C村距离A村5km.(5分)(3)|-2|+|-3|+|+8|+|-3|=16(km).答:邮递员共骑行了16km.(8分)21.解:(1)3(3分)(2)①-3(6分)②由题意可得,A、B两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A、B两点表示的数分别是-4.5,6.5.(9分)22.解:(1)10月2日的游客人数为(a+2.4)万人.(2分)(2)10月3日游客人数最多,人数为(a+2.8)万人.(4分)(3)(a+1.6)+(a+2.4)+(a+2.8)+(a+2.4)+(a+1.6)+(a+1.8)+(a+0.6)=7a+13.2.(6分)当a=2时,(7×2+13.2)×10=272(万元).(8分)答:黄金周期间淮安动物园门票收入是272万元.(9分)23.解:(1)102(3分)(2)(n+2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分)。
数学七年级上册全册单元试卷达标检测卷(Word版 含解析)
数学七年级上册全册单元试卷达标检测卷(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,线段AB=20cm.(1)点P沿线段AB自A点向B点以2cm/秒运动,同时点Q沿线段BA自B点向A点以3cm/秒运动,几秒后,点P、Q两点相遇?(2)如图,AO=PO=2cm,∠POQ=60°,现点P绕着点O以30°/秒的速度顺时针旋转一周后停止,同时点Q沿直线BA自B点向A点运动,若P、Q两点也能相遇,求点Q运动的速度.【答案】(1)解:设x秒点P、Q两点相遇根据题意得:2x+3x=20,解得x=4答:4秒后,点P、Q两点相遇。
(2)解:①当点P.Q在OB与圆的交点处相遇时:P点运动所用的时间为:① (秒),P点的运动速度为:(20-4)÷2=8cm/秒②当点P,Q在A点处相遇时:P点运动所用的时间为:②(60+180)÷30=8(秒),P点运动的速度为:20÷8-2.5cm/秒【解析】【分析】(1)此题是一道相遇问题,根据相遇的时候,P点所走的路程+Q点运动的路程等于AB两地之间的距离,列出方程,求解即可;(2)分①当点P.Q在OB与圆的交点处相遇时,②当点P,Q在A点处相遇时两类讨论,分别根据路程除以速度等于时间算出P点运动的时间,即Q点运动的时间,再根据路程除以时间等于速度即可算出Q点的运动速度。
2.已知,∠AOB=∠COD=90°,射线OE,FO分别平分∠AOC和∠BOD.(1)当OB和OC重合时,如图(1),求∠EOF的度数;(2)当∠AOB绕点O逆时针旋转至图(2)的位置(0°<∠BOC<90°)时,求∠EOF的度数.【答案】(1)解:当OB和OC重合时,∠AOD=∠AOC+∠BOD=180°,又∵射线OE,FO分别平分∠AOC和∠BOD,∴∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COF+∠BOF= (∠AOC+∠BOD)= ×180°=90°(2)解:∵∠AOB=∠COD=90°,∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COE+∠BOF﹣∠BOC= ∠AOC+ ∠BOD﹣∠BOC= (∠AOC+∠BOD)﹣∠BOC= (∠AOB+∠BOC+∠COD+∠BOC)﹣∠BOC= (180°+2∠BOC)﹣∠BOC=90°+∠BOC﹣∠BOC=90°【解析】【分析】(1)由角平分线的性质可得∠COE=∠AOC,∠BOF=∠BOD;由平角的定义可得∠AOC+∠BOD=180°,由角的构成可得∠EOF=∠COE+∠BOF,代入计算即可求解;(2)同理可求解。
新人教版七年级数学上册第一单元测试卷(含答案)
新人教版七年级数学上册单元测试卷第一单元:有理数一、选择题(本题共10小题,每小题3分,共30分)1.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A.+3mB.-3mC.+13D.-132. 室内温度是150℃,室外温度是-30℃,则室外温度比室内温度低( )A .120℃ B.180℃ C.-120℃ D.-180℃3. 一个数和它的倒数相等,则这个数是()A.1B.-1C.±1 D.±1和04. 若|a|=5,b=-3,则a-b的值是()A.2或8B.-2或8C.2或-8D.-2或-85. 下列四组有理数的大小比较正确的是()A.−12>−13B.-|-1|>-|+1|C.12<13D.|−12|>|−13|6. 若三个有理数的和为0,则下列结论正确的是()A.这三个数都是0B.最少有两个数是负数C.最多有两个正数D.这三个数是互为相反数7. 下列各式中正确的是()A.a2=.(−a)2B. a3=.(−a)3C.−a2=.|−a2|D. a3=.|a|38. 若x的相反数是3,│y│=5,则x+y的值为()A.-8B.2C.-8或2D.8或-29. 两个数的差是负数,则这两个数一定是( )A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小10. 点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是( )A. 3B.-1C.5D.-1或3二、填空题(本题共6小题,每小题3分,共18分)11. 甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________.12. 大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13. 在数轴上,与表示数-1的点的距离是5的点表示的数是。
七年级上册数学2024第一单元测试卷
七年级上册数学2024第一单元测试卷一、选择题(每小题3分,共30分)1.下列说法正确的是()A. 所有的整数都是正数B. 正数和负数统称为有理数C. 0是最小的有理数D. 整数和分数统称为有理数2.如果水库的水位高于正常水位2m时,记作+2m,那么低于正常水位3m时,应记作()A. +3mB. -3mC. +D. -3.室内温度是15℃,室外温度是-3℃,则室外温度比室内温度低()A. 12℃B. 18℃C. -12℃D. -18℃4.一个数和它的倒数相等,则这个数是()A. 1B. -1C. ±1D. ±1和05.下列各数中,最大的数是()A. -4B. 3C. 0D. -26.若三个有理数的和为0,则下列结论正确的是()A. 这三个数都是0B. 最少有两个数是负数C. 最多有两个正数D. 这三个数是互为相反数7.下列说法中错误的是()A. 0的绝对值是0B. 负数的绝对值等于它的相反数C. 任何数的绝对值都是正数D. 正数的绝对值等于它本身8.若|a|=5,b=-3,则a-b的值是()A. 2或8B. -2或8C. 2或-8D. -2或-89.点A在数轴上表示+2,从点A沿数轴向左平移3个单位到点B,点B表示的数是()A. 3B. -1C. 5D. -1或310.下列各式中计算正确的是()A. -(-3)=3B. -|+2|=-2C. |-(+2)|=-2D. +(-3)=3二、填空题(每小题3分,共18分)11.甲潜水员所在高度为-45米,乙潜水员在甲的上方15米处,则乙潜水员的所在的高度是__________米。
12.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
13.在数轴上,与表示数-1的点的距离是5的点表示的数是__________。
14.绝对值小于4的所有整数的和是__________。
15.某出租车的收费标准是:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元。
最新人教版初中数学七年级上册单元达标检测试题及答案(全册)
人教版数学七年级上册第一章达标测试卷一、选择题(每题3分,共30分)1.若将运动员某次跳水的最高点离跳台2 m ,记作+2 m ,则水面离跳台10 m 可记作( )A .-10 mB .-12 mC .+10 mD .+12 m2.-12 019的相反数是( )A.12 019 B .-12 019C .2 019D .-2 0193.在有理数-3,2,0,-4中,最大的数是( )A .-3B .2C .0D .-44.如图,数轴的单位长度为1,如果A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A .-4B .-2C .0D .2(第4题) (第7题)5.下列计算正确的是( )A .-2-1=-1B .3÷⎝ ⎛⎭⎪⎫-13×3=-3 C .(-3)2÷(-2)2=32D .0-7-2×5=-176.2017年中国高端装备制造业销售收入超过6万亿元.其中6万亿元用科学记数法表示为( )A .0.6×1013元B .60×1011元C .6×1012元D .6×1013元7.点M ,N ,P 和原点O 在数轴上的位置如图所示,点M ,N ,P 对应的有理数为a ,b ,c (对应顺序暂不确定).如果ab <0,a +b >0,ac >bc ,那么表示数b 的点为( )A .点MB .点NC .点PD .点O8.下列说法中,正确的是( )A .一个有理数不是正数就是负数B .|a |一定是正数C .如果两个数的和是正数,那么这两个数中至少有一个正数D .两个数的差一定小于被减数9.已知|a +3|=5,b =-3,则a +b 的值为( )A .1或11B .-1或-11C .-1或11D .1或-1110.若规定“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,则100!98!的值为( ) A.5049 B .99! C .9 900 D .2!二、填空题(每题3分,共30分)11.|-3|的相反数是________;-2 019的倒数是________.12.在数+8.3,-4,-0.8,-15,0,90,-343,-|-24|中,负数有____________________,分数有____________________.13.若A 、B 、C 三地的海拔高度分别是-102米、-80米、-25米,则最高点比最低点高________米.14.近似数2.30精确到__________位.15.绝对值不大于3.14的所有有理数之和等于________;不小于-4而不大于3的所有整数之和等于________.16.在数轴上与表示-1的点相距2个单位长度的点表示的数是________.17.有5袋苹果,以每袋50千克为准,超过的千克数记为正数,不足的千克数记为负数.若称重的记录如下:+4,-5,+3,-2,-6,则这5袋苹果的总质量是________.18.若x ,y 为有理数,且(3-x )4+|y +3|=0,则⎝ ⎛⎭⎪⎫x y 2 019的值为________. 19.按照下图所示的步骤操作,若输入x 的值为-2,则输出的值为________. 输入x ―→加上3―→平方―→乘3―→减去5―→输出20.如图,填在各正方形中的四个数之间都有一定的规律,据此规律得出n =________.三、解答题(23题6分,21,24,25题每题8分,其余每题10分,共60分)21.将下列各数在数轴上表示出来,并按从小到大的顺序用“<”号把这些数连接起来:-22,-(-1),0,-|-2|,-2.5,|-3|22.计算:(1)-78+(+4)+200-(-96)+(-22);(2)-22-|-7|+3-2×⎝ ⎛⎭⎪⎫-12;(3)⎝ ⎛⎭⎪⎫-162÷⎝ ⎛⎭⎪⎫12-132÷|-6|2÷⎝ ⎛⎭⎪⎫-122.(4)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-232+⎝ ⎛⎭⎪⎫-59-(-1)1 000-2.45×8+2.55×(-8).23.如果a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2.求a +b a +b +c+m 2-cd 的值.24.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a +4|+(b-1)2=0.现将点A ,B 之间的距离记作|AB |,定义|AB |=|a -b |.(1)|AB |=________;(2)设点P 在数轴上对应的数是x ,当|P A |-|PB |=2时,求x 的值.25.在数轴上表示a ,0,1,b 四个数的点如图所示,已知OA =OB ,求|a +b |+⎪⎪⎪⎪⎪⎪a b +|a +1|的值.26.足球比赛中,根据场上攻守形势,守门员会在门前来回跑动.如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m ):+10,-2,+5,-6,+12,-9,+4,-14(假定开始计时时,守门员正好在球门线上).(1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离是多少米?(3)如果守门员离开球门线的距离超过10米(不包括10米),则对方球员极可能挑射破门.请问在这一段时间内,对方球员有几次挑射破门的机会?27.观察下列等式:第1个等式:a 1=11×3=12×⎝ ⎛⎭⎪⎫1-13;第2个等式:a 2=13×5=12×⎝ ⎛⎭⎪⎫13-15;第3个等式:a 3=15×7=12×⎝ ⎛⎭⎪⎫15-17;第4个等式:a 4=17×9=12×⎝ ⎛⎭⎪⎫17-19;….请解答下列问题: (1)按发现的规律分别写出第5个等式和第6个等式;(2)求a 1+a 2+a 3+a 4+…+a 100的值.答案一、1.A2.A3.B4.B5.D6.C 7.A8.C9.B10.C二、11.-3;-1 2 01912.-4,-0.8,-15,-343,-|-24|;+8.3,-0.8,-15,-34313.7714.百分15.0;-416.-3或117.244千克18.-119.-220.96点拨:依规律得6下面的数是10,6右边的数是9.所以n=9×10+6=96.三、21.解:如图所示.-22<-2.5<-|-2|<0<-(-1)<|-3|.22.解:(1)原式=-78+4+200+96-22=200.(2)原式=-4-7+3+1=-7.(3)原式=136÷⎝⎛⎭⎪⎫162÷36÷14=136×36×136×4=1 9.(4)原式=1-1+(-2.45-2.55)×8=-40.23.解:由题意,得a+b=0,cd=1,m=±2,所以m2=4.所以a+ba+b+c+m2-cd=0+c+4-1=0+4-1=3.24.解:(1)5(2)当点P在点A左侧时,|P A|-|PB|=-(|PB|-|P A|)=-|AB|=-5≠2;当点P 在点B 右侧时,|P A |-|PB |=|AB |=5≠2;当点P 在A ,B 之间时,|P A |=|x -(-4)|=x +4,|PB |=|x -1|=1-x ,因为|P A |-|PB |=2,所以x +4-(1-x )=2,解得x =-12,即x 的值为-12.25.解:因为OA =OB ,所以a +b =0,a =-b ,由数轴知b >1,所以a <-1,所以a +1<0,所以原式=0+1-a -1=-a .26.解:(1)+10-2+5-6+12-9+4-14=0(m ).所以守门员最后正好回到球门线上.(2)第一次:10 m ,第二次:10-2=8(m ),第三次:8+5=13(m ),第四次:13-6=7(m ),第五次:7+12=19(m ),第六次:19-9=10(m ),第七次:10+4=14(m ),第八次:14-14=0(m ).因为19>14>13>10>8>7>0,所以守门员离开球门线的最远距离为19 m .(3)结合(2)中所求守门员离开球门线的距离,知第一次:10=10,第二次:8<10,第三次:13>10,第四次:7<10,第五次:19>10,第六次:10=10,第七次:14>10,第八次:0<10,所以对方球员有3次挑射破门的机会.27.解:(1)第5个等式:a 5=19×11=12×⎝ ⎛⎭⎪⎫19-111;第6个等式:a 6=111×13=12×⎝ ⎛⎭⎪⎫111-113. (2)a 1+a 2+a 3+a 4+…+a 100=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+12×⎝ ⎛⎭⎪⎫17-19+…+12×⎝ ⎛⎭⎪⎫1199-1201=12×(1-13+13-15+15-17+17-19+…+1199-1201)=12×200201=100201.第二章达标测试卷一、选择题(每题3分,共30分) 1.下列各式中,是单项式的是()A.x2-1 B.a2b C.πa+bD.x-y32.若-x3y a与x b y是同类项,则a+b的值为()A.2 B.3 C.4 D.53.将如图所示的两个椭圆中的同类项用线对应连接,其中对应正确的连线有()A.1条B.2条C.3条D.4条(第3题)(第8题)4.下列去括号错误的是()A.a2-(a-b+c)=a2-a+b-c B.5+a-2(3a-5)=5+a-6a+5C.3a-13(3a2-2a)=3a-a2+23a D.a3-[a2-(-b)]=a3-a2-b5.已知m-n=100,x+y=-1,则式子(n+x)-(m-y)的值是() A.99 B.101 C.-99 D.-1016.若x2+ax-2y+7-(bx2-2x+9y-1)的值与x的取值无关,则a+b的值为() A.-1 B.1 C.-2 D.27.某商品的原价为每件x元,后来店主将每件加价10元,再降价25%销售,则现在的单价是()A.(25%x+10)元B.[(1-25%)x+10]元C.25%(x+10)元D.(1-25%)(x+10)元8.如图,阴影部分的面积是()A.112xy B.132xy C.6xy D.3xy9.当1<a <2时,式子|a -2|+|1-a |的值是( )A .-1B .1C .3D .-310.把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,盒底未被卡片覆盖的部分用阴影表示.若按图①、图②所示方式摆放,阴影部分的面积分别为S 1和S 2,则S 1和S 2的大小关系是( )A .S 1=S 2B .S 1<S 2C .S 1>S 2D .无法确定二、填空题(每题3分,共30分)11.用式子表示“比a 的平方的一半小1的数”是________.12.单项式-xy 23的系数是________,次数是________.13.按照如图所示的步骤操作,若输入x 的值为-4,则输出的值为________.14.如果单项式-x 3y 与x a y b -1是同类项,那么(a -b )2 019=________.15.已知a ,b 在数轴上的位置如图所示,化简|a |+|b -a |-2|a +b |的结果是________.16.若a +b =2 019,则当x =1时,多项式ax 3+bx +1的值是________.17.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下________.18.小明在求一个多项式减去x 2-3x +5的结果时,误算成加上x 2-3x +5,得到的结果是5x 2-2x +4,则正确的结果是__________.19.随着通讯市场竞争的日益激烈,为了占领市场,甲公司推出的话费优惠措施是:每分钟降低a 元,再下调25%;乙公司推出的话费优惠措施是:每分钟下调25%,再降低a 元.若甲、乙两公司原来每分钟收费标准相同,则推出优惠措施后收费较便宜的是________公司.20.如图是一组有规律的图案:第1个图案由4个组成,第2个图案由7个组成,第3个图案由10个组成,第4个图案由13个组成,…,则第n (n 为正整数)个图案由________个组成.三、解答题(23题8分,26题12分,其余每题10分,共60分) 21.先去括号,再合并同类项:(1)(5a -3a 2+1)-(4a 3-3a 2); (2)-2(ab -3a 2)-[2b 2-(5ab +a 2)+2ab ].22.先化简,再求值:(1)3m +4n -[2m +(5m -2n )-3n ],其中m =1n =2;(2)⎝ ⎛⎭⎪⎫32x 2-5xy +y 2-⎣⎢⎡⎦⎥⎤-3xy +2⎝ ⎛⎭⎪⎫14x 2-xy +23y 2,其中|x -1|+(y +2)2=0.23.已知多项式(2x 2+ax -y +6)-(2bx 2-3x +5y -1). (1)若多项式的值与字母x 的取值无关,求a ,b 的值;(2)在(1)的条件下,先化简多项式3(a 2-ab +b 2)-(3a 2+ab +b 2),再求它的值.24.李叔叔买了一套新房,他准备将地面全铺上地板砖,这套新房的平面图如图所示,请解答下列问题:(1)用含x的式子表示这套新房的面积;(2)若每铺1 m2地板砖的费用为120元,当x=6时,求这套新房铺地板砖所需的总费用.25.某商场销售某款西装和领带,西装每套定价1 000元,领带每条定价200元.国庆节期间商场计划开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现一位客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款________元(用含x的式子表示),若该客户按方案二购买,需付款________元(用含x的式子表示);(2)当x=30时,通过计算说明此时按哪种方案购买较为合算;(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案.26.如图所示的图形是由边长为1的正方形按照某种规律排列而成的.(1)观察图形,填写下表:图形序号 1 2 3正方形的个数8图形的周长18(2)推测图(n为正整数)中正方形的个数为________,周长为________(都用含n的式子表示);(3)请直接写出图中图形的周长.答案一、1.B 2.C 3.B 4.B 5.D 6.A 7.D 8.A 9.B10.A 点拨:设正方形盒底的边长为a ,正方形卡片A ,B ,C 的边长均为b .由题图①得,阴影部分可拼成边长为a -b 的正方形;由题图②得,阴影部分也可拼成边长为a -b 的正方形,所以S 1=S 2,故选A . 二、11.12a 2-1 12.-13;三 13.-6 14.115.3b 点拨:由题图可知,a <0,b >0,且|a |>|b |,所以b -a >0,a +b <0,所以原式=-a +(b -a )+2(a +b )=-a +b -a +2a +2b =3b . 16.2 020 17.3a +2b 18.3x 2+4x -619.乙 点拨:设甲、乙两公司原来的收费为每分钟b 元(0.75b >a ),则推出优惠措施后,甲公司每分钟的收费为(b -a )×75%=0.75b -0.75a (元),乙公司每分钟的收费为(0.75b -a )元,0.75b -a <0.75b -0.75a ,所以乙公司收费较便宜. 20.(3n +1)三、21.解:(1)原式=5a -3a 2+1-4a 3+3a 2=-4a 3+5a +1.(2)原式=-2ab +6a 2-2b 2+5ab +a 2-2ab =7a 2+ab -2b 2.22.解:(1)原式=-4m +9n .当m =1n =2,即m =2,n =12时,原式=-72.(2)(32x 2-5xy +y 2)-[-3xy +2⎝ ⎛⎦⎥⎤14x 2-xy )+23y 2=32x 2-5xy +y 2+3xy -12x 2+2xy -23y 2=x 2+13y 2.因为|x -1|+(y +2)2=0,所以x -1=0且y +2=0, 所以x =1,y =-2.所以原式=12+13×(-2)2=73.23.解:(1)原式=2x2+ax-y+6-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+7,由结果与x的取值无关,得a+3=0,2-2b=0,解得a=-3,b=1.(2)原式=3a2-3ab+3b2-3a2-ab-b2=-4ab+2b2,当a=-3,b=1时,原式=-4×(-3)×1+2×12=14.24.解:(1)这套新房的面积为2x+x2+4×3+2×3=x2+2x+12+6=x2+2x+18(m2).(2)当x=6时,这套新房的面积是x2+2x+18=62+2×6+18=36+12+18=66(m2).66×120=7 920(元).故这套新房铺地板砖所需的总费用为7 920元.25.解:(1)(200x+16 000);(180x+18 000)(2)当x=30时,方案一花的钱数为200×30+16 000=22 000(元);方案二花的钱数为180×30+18 000=23 400(元),22 000<23 400,所以按方案一购买较为合算.(3)先按方案一购买20套西装获赠20条领带,再按方案二购买10条领带,则花的钱数为1 000×20+200×10×90%=21 800(元).26.解:(1)填表如下:图形序号 1 2 3正方形的个数8 13 18图形的周长18 28 38(2)5n+3;10n+8点拨:因为8=5×1+3,13=5×2+3,18=5×3+3,…,所以图中正方形的个数为5n+3.因为18=10×1+8,28=10×2+8,38=10×3+8,…,所以图中图形的周长为10n+8.(3)20 198.点拨:图中图形的周长为10×2 019+8=20 198.方法归纳:求解图形规律探究题,一般先从前几个简单的图形入手,通过观察图形特点,寻找图形中的基本元素随图形个数变化的规律,从而将图形问题转化为数字问题,有时也通过观察图形的结构特点,归纳相对某个基础图形的递变规律,从而将图形规律用式子表示出来.第三章达标测试卷一、选择题(每题3分,共30分)1.下列四个式子中,是一元一次方程的是( )A .1+2+3+4=10B .2x -3 C. x -13=x2+1 D .x +3=y 2.下列等式变形中,正确的是( )A .若a =b ,则a -3=3-bB .若x a =ya ,则x =y C .若ac =bc ,则a =b D .若b a =dc ,则b =d 3.方程-2x +3=7的解是( )A .x =5B .x =4C .x =3.5D .x =-2 4.解方程2x +13-x +16=2,有以下四步:解:2(2x +1)-(x +1)=12 ① 4x +2-x +1=12 ② 3x =9 ③ x =3 ④其中最开始发生错误的是( )A .①B .②C .③D .④ 5.已知M =-23x +1,N =16x -5,若M +N =20,则x 的值为( )A .-30B .-48C .48D .30 6.若关于x 的方程2x -m3=1的解为x =2,则m 的值是( )A .2.5B .1C .-1D .37.已知方程7x +2=3x -6与关于x 的方程x -1=k 的解相同,则3k 2-1的值为( )A .18B .20C .26D .-26 8.某项工程甲单独做5天完成,乙单独做10天完成.现在由甲先做两天,然后甲、乙合作完成此项工程,若设甲一共做了y 天,则所列方程正确的是( ) A.y +25+y 10=1 B.y 5+y +210=1 C.y 5+y -210=1 D.y 5+25+y -210=19.方程2x -■3-x -32=1中有一个数被墨水盖住了,看后面的答案,知道这个方程的解是x =-1,那么墨水盖住的数是( )A.27 B .1 C .-1311 D .010.现有m 辆客车n 个人.若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则只有1人不能上车.有下列四个等式:①40m +10= 43m -1;②n +1040=n +143;③n -1040=n -143;④40m +10=43m +1.其中正确的是( ) A .①② B .②④ C .②③ D .③④二、填空题(每题3分,共30分)11.已知(m -4)x |m |-3+2=0是关于x 的一元一次方程,则m 的值为________. 12.已知x -2y +3=0,则-2x +4y +2 019的值为________. 13.若-0.2a 3x +4b 3与12ab y 是同类项,则xy =________.14.已知y =3是方程ay =-6的解,那么关于x 的方程4(x -a )=a -(x -6)的解是________.15.在美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量比国画作品数量的2倍多7幅,则展出的油画作品有__________幅.16.对于两个非零的有理数a,b,规定a☆b=12b-13a,若x☆3=1,则x的值为________.17.甲、乙两个足球队进行对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共比赛10场,甲队保持不败,得22分,甲队胜________场.18.某汽车以20米/秒的速度在公路上行驶,开向寂静的山谷,驾驶员按一下喇叭,5秒后听到回声,这时汽车离山谷多远?已知在空气中声音的传播速度约为340米/秒.设按喇叭时,汽车离山谷y米,根据题意,可列方程为______________.19.在如图所示的运算流程中,若输出的数y=7,则输入的整数x=____________.(第19题) (第20题)20.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55 cm,此时木桶中水的深度是________.三、解答题(21题12分,22题8分,其余每题10分,共60分)21.解下列方程:(1)5y-3=2y+6;(2)2(x-2)-3(4x-1)=5(1-x);(3)7x-13-5x+12=2-3x+24;(4)2x0.3-1.6-3x0.6=31x+83.22.已知x =3是关于x 的方程3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 3+1+m (x -1)4=2的解,n 满足关系式 |2n +m |=0,求m +n 的值.23.下面是小红解方程2x +13-5x -16=1的过程:解:去分母,得2(2x +1)-5x -1=1.① 去括号,得4x +2-5x -1=1.② 移项,得4x -5x =1-2+1.③ 合并同类项,得-x =0.④ 系数化为1,得x =0.⑤上述解方程的过程中,是否有错误?答:________(填“有”或者“没有”);如果有错误,则开始出错的一步是________(填序号).如果上述解方程有错误,请你给出正确的过程.24.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,与一块正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形.问大正方形的面积是多少?25.某校召开运动会,七(1)班学生到超市分两次(第二次少于第一次)购买某种饮料共90瓶,用去205元,已知该种饮料价格如下:求两次分别购买这种饮料多少瓶?26.某商店5月1日当天举行优惠促销活动,当天到该商店购买商品有两种优惠方案:方案1:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的八折优惠;方案2:若不购买会员卡,则购买商店内任何商品,一律按商品价格的九五折优惠.已知小红5月1日前不是该商店的会员.(1)若小红不购买会员卡,所购买商品的总价格为120元,则实际应支付多少元?(2)请问购买商品的总价格是多少时,两种方案的优惠情况相同?(3)你认为哪种方案更合算?(直接写出答案)答案一、1.C2.B3.D4.B5.B6.B 7.C8.C9.B10.D二、11.-412.2 02513.-314.-4515.6916. 3 217.618.2y-100=1 700点拨:由题意可知,5秒后,汽车前进的距离为5×20=100(米),声音传播的距离为5×340=1 700(米),根据等量关系可列方程为2y-100=1 700.19.27或2820.20 cm三、21.解:(1)移项,得5y-2y=6+3.合并同类项,得3y=9.系数化为1,得y=3.(2)去括号,得2x-4-12x+3=5-5x,移项,得2x-12x+5x=5+4-3,合并同类项,得-5x=6,系数化为1,得x=-6 5.(3)去分母,得4(7x-1)-6(5x+1)=2×12-3(3x+2),去括号,得28x-4-30x-6=24-9x-6,移项,得28x-30x+9x=24+6+4-6,合并同类项,得7x=28,系数化为1,得x=4.(4)原方程可化为20x3-16-30x6=31x+83.去分母,得40x-(16-30x)=2(31x+8).去括号,得40x-16+30x=62x+16.移项,得40x+30x-62x=16+16.合并同类项,得8x=32. 系数化为1,得x=4.22.解:将x =3代入方程3[⎝ ⎛⎭⎪⎫x 3+1+m (x -1)4]=2中,得 3[33+1+m (3-1)4]=2. 解得m =-83.将m =-83代入关系式|2n +m |=0中,得⎪⎪⎪⎪⎪⎪2n -83=0. 于是有2n -83=0.解得n =43.所以m +n 的值为-43.23.解:有;①去分母,得2(2x +1)-(5x -1)=6.去括号,得4x +2-5x +1=6.移项,得4x -5x =6-2-1.合并同类项,得-x =3.系数化为1,得x =-3.24.解:设大正方形的边长为x 厘米,由题图可得x -2-1=4+5-x ,解得x =6,则6×6=36(平方厘米).所以大正方形的面积为36平方厘米.25.解:设第一次购买这种饮料x 瓶,则第二次购买(90-x )瓶,①若第一次购买饮料50瓶以上,第二次购买饮料30瓶以下,则2x +3(90-x )=205,解得x =65,得90-65=25(瓶).因为65>50,25<30,所以此情况成立.②若第一次购买饮料50瓶以上,第二次购买饮料30瓶以上不超过50瓶, 则2x +2.5(90-x )=205,解得x =40.因为40<50,所以此情况不成立.③若第一次和第二次均购买饮料30瓶以上,但不超过50瓶,则2.5×90=225(元).因为两次购买饮料共用去205元,所以此情况也不成立.故第一次购买饮料65瓶,第二次购买饮料25瓶.26.解:(1)120×0.95=114(元).故实际应支付114元.(2)设小红所购买商品的总价格为x元,依据题意,得0.8x+168=0.95x,解得x=1 120.故当购买商品的总价格是1 120元时,两种方案的优惠情况相同.(3)当购买商品的总价格低于1 120元时,方案2更合算;当购买商品的总价格等于1 120元时,两种方案的花费相同;当购买商品的总价格大于1 120元时,方案1更合算.点拨:解决商品经济中的打折销售问题时,若打x折,则打折后的价格=标价×x10,商品的利润=售价-进价.第四章达标测试卷一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是()A.三角形、圆、球、圆锥B.长方体、正方体、圆柱、球C.长方形、三角形、正方形、圆D.扇形、长方形、三棱柱、圆锥2.如图所示的几何体,从正面看所得的平面图形是()3.下列说法正确的是()A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC,则点B为AC的中点4.如图,点O在直线l上,∠1与∠2互余,∠α=116°,则∠β的度数是()A.144°B.164°C.154°D.150°5.如图,下列说法中,错误的是()A.图①的方位角是南偏西20°B.图②的方位角是西偏北60°C.图③的方位角是北偏东45°D.图④的方位角是南偏西45°6.已知线段AB=15 cm,点C是直线AB上一点,BC=5 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10 cm B.5 cm C.10 cm或5 cm D.7.5 cm7.已知∠1=28°24′,∠2=28.24°,∠3=28.4°,下列说法正确的是() A.∠1=∠2<∠3 B.∠1=∠3>∠2C.∠1<∠2=∠3 D.∠1=∠2>∠38.钟表在8:25时,时针与分针的夹角是()度.A.101.5 B.102.5 C.120 D.1259.如图是一个正方体的表面展开图,则该正方体中与“梦”字所在面相对的面上的字是()A.大B.伟C.国D.的(第9题) (第10题)10.如图,C,D在线段BE上,下列说法:①直线CD上以B,C,D,E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC =40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.在校园中的一条大路两旁种植树木(树木种在一条直线上),确定了两棵树的位置就能确定一排树的位置,这利用了我们所学过的数学知识是__________________.12.一个角的余角比这个角的补角的一半小40°,则这个角为________°. 13.三条直线两两相交,最少有________个交点,最多有________个交点.14.笔尖在纸上快速滑动写出了一个又一个字,这说明了______________;钟表的时针和分针旋转一周,均形成一个圆面,这说明了______________(从点、线、面的角度作答).15.两根木条,一根长60 cm,另一根长100 cm,将它们的一端重合,放在同一条直线上,此时两根木条的中点间的距离是________cm.16.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.17.如图,某海域有A,B,O三个小岛,在小岛O处观测到小岛A在其北偏东62°的方向上,观测到小岛B在其南偏东38°12′的方向上,则∠AOB的补角等于________.(第17题) (第19题) (第20题)18.往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有________种不同的票价,需准备________种车票.19.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是________度.20.用棱长是1 cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色的面积之和是________cm2.三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.计算:(1)32°45′48″+21°25′14″;(2)11°23′36″×3.22.如图,有A,B,C,D四点,请根据下列语句作图并填空:(1)作直线AD,并过点B作一条直线与直线AD相交于点O,且使点C在直线BO外;(2)作线段AB,并延长线段AB到E,使B为AE的中点;(3)作射线CA和射线CD,量出∠ACD的度数为________,并作∠ACD的平分线CG;(4)C,D两点间的距离为________厘米,作线段CD的中点M,并作射线AM.23.如图,线段AC=8,BC=20,点C是线段AB上一点,点N为AC的中点,点M是线段CB上一点,且CM:BM=1:4,求线段MN的长.24.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是____________;(2)若射线OE平分∠COD,求∠AOE的度数.25.用正方形硬纸板做三棱柱盒子(如图①),每个盒子由3个长方形侧面和2个正三角形底面组成,硬纸板以如图②两种方法裁剪(裁剪后边角料不再利用).方法A:剪6个侧面;方法B:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用方法A,其余用方法B.(1)用含x的式子分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?26.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.答案一、1.C 2.A 3.A 4.C 5.B 6.D7.B 8.B 9.D10.B 点拨:以B ,C ,D ,E 为端点的线段有BC ,BD ,BE ,CE ,CD ,ED共6条,故①正确;图中互补的角就是分别以C ,D 为顶点的两对角,即∠BCA 和∠ACD 互补,∠ADE 和∠ADC 互补,故②正确;根据图形,由∠BAE =100°,∠CAD =40°,可以求出∠BAC +∠CAE +∠BAE +∠BAD +∠DAE +∠DAC =100°+100°+100°+40°=340°,故③错误;当点F 在线段CD 上时,点F 到点B ,C ,D ,E 的距离之和最小,为FB +FE +FD +FC =2+3+3+3=11,当点F 和E 重合时,点F 到点B ,C ,D ,E 的距离之和最大,为FB +FE +FD +FC =8+0+3+6=17,故④错误.故选B. 二、11.两点确定一条直线12.80 13.1;314.点动成线;线动成面15.80或2016.155°17.100°12′18.21;4219.13520.30三、21.解:(1)32°45′48″+21°25′14″=53°70′62″=54°11′2″.(2)11°23′36″×3=33°69′108″=34°10′48″.22.略23.解:因为点N 是AC 的中点,所以NC =12AC =12×8=4.因为点M 是线段CB 上一点,且CM :BM =1:4,所以CM =15BC =15×20=4.所以MN =MC +CN =4+4=8.即线段MN 的长为8.24.解:(1)北偏东70°(2)因为∠AOB=40°+15°=55°,∠AOB=∠AOC,所以∠BOC=110°.又因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.又因为OE平分∠COD,所以∠COE=35°.又因为∠AOC=55°,所以∠AOE=55°+35°=90°.25.解:(1)因为裁剪时x张用方法A,所以(19-x)张用方法B,所以侧面的个数为6x+4(19-x)=2x+76(个),底面的个数为5(19-x)=95-5x(个).(2)由题意,得2(2x+76)=3(95-5x),解得x=7.所以盒子的个数为2×7+763=30(个).故若裁剪出的侧面和底面恰好全部用完,能做30个盒子.26.解:(1)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=45°.(2)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=12α.(3)∠MON=12α.理由:∠MON=∠MOC-∠NOC=12(α+β)-12β=12α.期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=x C.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列运算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.如图是一个正方体的平面展开图,则原正方体中与“你”字所在面相对的字是()A.遇B.见C.未D.来(第6题) (第9题)7.某商品每件标价为150元,若按标价打8折,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90° D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上. 其中正确的有( )A .1个B .2个C .3个D .4个二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.如图,OA 的方向是北偏东15°,OC 的方向是北偏西40°,若∠AOC =∠AOB ,则OB 的方向是__________.(第15题) (第16题) (第18题) 16.有理数b 在数轴上对应点的位置如图所示,化简:|3+b |+2|2+b |-|b -3|=________.17.已知点O 在直线AB 上,且线段OA =4 cm ,线段OB =6 cm ,点E ,F 分别是OA ,OB 的中点,则线段EF 的长为____________.18.观察如图摆放的三角形,则第四个图中的三角形有________个,第n个图中的三角形有________个.三、解答题(19,22题每题8分,20,23,24题每题10分,21题6分,25题14分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 020.20.解下列方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.(第22题)23.如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE,∠COF=34°.求∠BOD的度数.(第23题)24.甲、乙两人同时从相距25 km的A地去B地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40 min,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好为3 h.求两人的速度各是多少.25.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第25题)答案一、1.D 2.A 3.D 4.D 5.D 6.D 7.A8.D9.C10.C二、11.23;512.-813.-514.19°31′13″15.北偏东70°16.-417.1 cm或5 cm18.14;(3n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:如图所示.(第22题)23.解:因为∠COE 是直角,∠COF =34°,所以∠EOF =∠COE -∠COF =56°.又因为OF 平分∠AOE ,所以∠AOF =∠EOF =56°.因为∠COF =34°,所以∠AOC =∠AOF -∠COF =22°.所以∠BOD =∠AOC =22°.24.解:设乙的速度为x km/h ,则甲的速度为3x km/h.依题意,得⎝ ⎛⎭⎪⎫3-4060×3x +3x =25×2,解得x =5. 所以3x =15.答:甲、乙两人的速度分别为15 km/h 和5 km/h.25.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s ,则PO =100+8m ,AQ =4m .由题意知N 为PO 的中点,得ON =12PO =50+4m ,所以ON +AQ =50+4m +4m =50+8m ,ON -AQ =50+4m -4m =50.故ON -AQ 的值不变,这个值为50.。
七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文
精选全文完整版(可编辑修改)七年级数学上册全册单元测试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴(2)解:,设,则,则,(3) s或15s或30s或45s【解析】【解答】(2)解:当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,∠PON= ×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t= 或15;当OI在直线AO的下方时,∠MON═(360°-∠AOB)═ ×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°- )或180°-3t=3( -60°),解得t=30或45,综上所述,满足条件的t的值为 s或15s或30s或45s【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.2.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
人教版七年级数学上册 第一章 达标测试卷(word打印版+详细答案)
人教版七年级数学上册第一章达标测试卷一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.如果零上15 ℃记作+15 ℃,那么零下9 ℃可记作()A.-9 ℃B.+9 ℃C.+24 ℃D.-6 ℃2.下列各式正确的是()A.|5|=|-5| B.-|5|=|-5|C.-5=|-5| D.-(-5)=-|5|3.一种巧克力的质量标识为“100±0.25 g”,则下列合格的是() A.99.80 g B.100.30 gC.100.51 g D.100.70 g4.若有理数a,b在数轴上所对应的点如图所示,则下列大小关系正确的是()(第4题)A.-a<0<b B.-b<a<0C.a<0<-b D.0<b<-a5.A,B,C三个地方的海拔分别是124 m、38 m、-72 m,那么最低点比最高点低()A.196 m B.-196 mC.110 m D.-110 m6.-134的倒数是()A.-73 B.45C.-47 D.437.在(-2)5,(-3)4,-22,(-3)2这四个数中,负数有() A.0个B.1个C.2个D.3个8.下列运算正确的是()A.(-6)+(-2)=+(6+2)=+8B.(-5)-(+6)=+(6+5)=+11C.(-3)-(-2)=-(3-2)=-1D.(+8)-(-10)=-(10-8)=-29.下列说法错误的有()①-a一定是负数;②若|a|=|b|,则a=b;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.A.1个B.2个C.3个D.4个10.若(x-1)2+|2y+1|=0,则y-x的值是()A.12B.-12C.32D.-3211.数轴上一点a表示的有理数为-5,若将a点向右平移4个单位长度,则此时a点表示的有理数为()A.-5 B.4 C.1 D.-1 12.数轴上到点-2的距离为5的点表示的数为()A.-3 B.-7C.3或-7 D.5或-313.如图是小明同学完成的作业,他做对的题数是()(第13题)A.1 B.2 C.3 D.4 14.如图,半径为1的圆沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是()(第14题)A.-2π B.3-2π C.-3-2π D.-3+2π15.已知|a|=5,|b|=2,且b<a,则a+b的值为()A.3或7 B.-3或-7C.-3 或7 D.3或-716.观察下列算式,用你发现的规律得出22 021的个位数字是() 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…A.2 B.4 C.6 D.8二、填空题(17题3分,其余每空2分,共11分)17.比较大小:-0.6________-23.18.-⎝ ⎛⎭⎪⎫-512的倒数是________,-42的相反数是________.19.一个点A 从数轴上表示2的点开始移动,第一次先向左移动1个单位长度,再向右移动2个单位长度;第二次先向左移动3个单位长度,再向右移动4个单位长度;第三次先向左移动5个单位长度,再向右移动6个单位长度;…… (1)第五次移动后这个点在数轴上表示的数是________; (2)第n 次移动后这个点在数轴上表示的数是________.三、解答题(20题8分,21~23题每题9分,24~25题每题10分,26题12分,共67分)20.把下列各数填在相应的大括号中.-312,0.3,0,-3.4,12,-9,412,-2. 正数:{ …}; 负分数:{ …}; 负数:{ …}; 整数:{ …}.21.把下列各数在如图所示的数轴上表示出来,并按从小到大的顺序排列,用“<”号连接起来:-52,2,-4,3.5.(第21题)22.计算:(1)213-⎝ ⎛⎭⎪⎫+325-⎝ ⎛⎭⎪⎫+813+⎝ ⎛⎭⎪⎫-835;(2)(-24)×⎝ ⎛⎭⎪⎫13+14-18;(3)(-4)÷⎝ ⎛⎭⎪⎫-43×2+(-1)2 021×(-6).23.有10筐白菜,以每筐25 kg为标准,超过的千克数用正数来表示,不足的千克数用负数来表示,记录如下:(1)10筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准质量比较,10筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这10筐白菜可以卖多少元?24.(1)若|a|=3,则a=________,若|a|=0,则a=________;(2)若|a|=|3|,则a=________,若|a|=|-3|,则a=________;(3)若|-a|=4,求a的值;(4)若|-a|=|-5|,求a的值.25.为庆祝中华人民共和国成立70周年,2019年10月1日凌晨2点,参加我国建国70周年阅兵活动的各个部队方阵已经在东长安街集结完毕.阅兵副总指挥为了协调各项准备工作,他的指挥车在东西走向的东长安大街来回奔波于各个方阵之间,若他从A出发,如果规定向东为正,向西为负,到早上7点整他的行车里程(单位:km)如下:+15,-4,+5,-1,+10,-3,-2,+12,+4,-10,+6.(1)到早上7点整时,他的指挥车在出发点A的什么位置?距出发点A多远?(2)若指挥车耗油量为a L/km,从凌晨2点到早上7点整时他的指挥车共耗油多少升?26.(1)如图,在数轴上标出数-4.5,-2,1,3.5所对应的点A,B,C,D;(第26题)(2)C,D两点间的距离为______,B,C两点间的距离为__________;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点间的距离为________;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动,已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,设运动时间为t秒.①当t为何值时,P,Q两点重合?②当t为何值时,P,Q两点间的距离为1?答案一、 1.A 2.A 3.A 4.B 5.A 6.C 7.C 8.C 9.C 10.D 11.D 12.C 13.C14.B 点拨:由题意得AB =2πr =2π,点A 到原点的距离为3,则点B 到原点的距离为2π-3,因为点B 在原点的左侧,所以点B 所表示的数为-(2π-3)=3-2π,故选B. 15.A 16.A二、17.> 18.211;16 19. (1)7 (2)n +2三、20.解:正数:{0.3,12,412,…};负分数:{-312,-3.4,…};负数:{-312,-3.4,-9,-2,…};整数:{0,12,-9,-2,…}.21.解:如图.(第21题)-4<-52<2<3.5.22.解:(1)原式=⎝ ⎛⎭⎪⎫213-813+⎝ ⎛⎭⎪⎫-325-835=-6-12 =-18.(2)原式=(-24)×13+(-24)×14-(-24)×18 =(-8)+(-6)-(-3) =-11.(3)原式=(-4)×⎝ ⎛⎭⎪⎫-34×2+(-1)×(-6) =6+6 =12.23.解:(1)从表格可知,最重的一筐比最轻的一筐重2.5-(-3)=5.5(kg).所以10筐白菜中,最重的一筐比最轻的一筐重5.5 kg. (2)1×(-3)+3×(-2)+2×0+2×1+2×2.5=-2(kg), 所以与标准质量比较,10筐白菜总计不足2 kg. (3)(25×10-2)×2.6=644.8(元), 所以出售这10筐白菜可以卖644.8元. 24.解:(1)±3;0(2)±3;±3(3)因为|-a |=4,所以|-a |=|a |=4,所以a =±4. (4)因为|-a |=|-5|, 所以|a |=5,所以a =±5.25.解:(1)(+15)+(-4)+(+5)+(-1)+(+10)+(-3)+(-2)+(+12)+(+4)+(-10)+(+6)=32(km),所以到早上7点整时,他的指挥车在出发点A 的东边,距出发点A 32 km. (2)|+15|+|-4|+|+5|+|-1|+|+10|+|-3|+|-2|+|+12|+|+4|+|-10|+|+6|=72(km), a ×72=72a (L).所以从凌晨2点到早上7点整时他的指挥车共耗油72a L. 26.解:(1)如图所示.(第26题)(2)2.5; 3(3)|a-b|(4)①依题意有2t-t=3,解得t=3.故当t为3时,P,Q两点重合.②依题意有2t-t=3-1,解得t=2;或2t-t=3+1,解得t=4.故当t为2或4时,P,Q两点间的距离为1.。
七年级数学上册全册单元试卷达标训练题(Word版 含答案)
可得:
此式为Compton公式在电子运动 情况下的推广。
考虑相对论电子与光子的碰撞,
,但仍满足
,
由
当 时,
,尽管入射光子有各种方向,散射光子总是大 体上沿电子运动方向射出,具有很强的方向性。
由于 ,
,因此:
的变动范围是
,粗略地说有:
这表明:在与相对论电子碰撞后,光子能量可能增 加到原来的 倍!而电子则损失部分动能,这与 Compton散射的情况正好相反,故称为逆Compton 散射。由于这一散射,当高能电子在辐射场中穿行 时,不断和光子发生碰撞,使每个散射光子能量增 大约 倍,且沿电子速度方向射出。 由于逆Compton散射效应,辐射场中相对论电子不 断向前方辐射,有尖锐方向性,辐射频率可达到非 常高,所以此ompton散射
当光子能量 与电子静能 可以比较时,应考虑
量子效应,把电子对光波的散射看成电子-光子的碰
撞过程。
如入射光子动量和能量记为
,静止电子的能
量为
。碰撞后光子动量为 ,能量为 ,
电子动量为P,能量为W。由能量守恒和动量守恒,
可求出:
为散射角(散射光与入射光方向间夹角)。上式为 Compton散射公式。 散射光频率一般小于入射光,光子损失能量给电子。
若知道辐射场光子数密度 的谱分布,即可完成 对 的积分。
•如初始辐射场具有黑体谱(Uph(i)=4B (i)/c),则:
是辐射场能密度,代入谱发射系数公式得到:
式中
是黎曼 函数
•如初始辐射场是幂律形式的非热谱,则:
求电子总的谱功率时可先完成对 的积分,再以积 分下限 代替 ,上限近似为无穷大,得到:
人教版七年级数学上册第六章达标测试卷含答案
人教版七年级数学上册第六章达标测试卷七年级数学上(R版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.下列图形中,与其他三个不同类的是()A BC D2.[2023郴州]下列几何体中,从三个方向看到的图形完全一样的是()A BC D3.当我们在教室中排课桌时,有时在最前和最后的课桌旁拉一根长绳,沿着长绳排列能使课桌排的更整齐,这样做的数学道理是()A.两点之间,线段最短B.垂线段最短C.点动成线D.两点确定一条直线4.[教材P159习题T8变式2024长春期末]学校组织学生参观一汽红旗汽车生产线,感受一汽人创业、守业、拓业的红旗精神.某同学在活动结束后,将“执着的扛旗人”六个汉字分别写在一个正方体的表面上,如图是它的一种展开图,则在原正方体中,与“旗”字所在面相对的面上的汉字为()(第4题)A.执B.着C.的D.扛5.如图,点C是线段AB的中点,AB=6 cm.如果点D是线段AB上一点,且BD=1 cm,那么CD的长为()(第5题)A.1 cm B.2 cm C.3 cm D.4 cm 6.[2024吕梁一模]如图,OC在∠AOB外部,OM,ON分别是∠AOC,∠BOC的平分线.已知∠AOB=110°,∠BOC=60°,则∠MON的度数为()(第6题)A.50°B.75°C.60°D.55°7.[教材P71例1变式新情境生活应用]嘉淇乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间的距离是1 km(最小圆的半径是1 km),下列关于小艇A,B的位置描述,正确的是()A.小艇A在游船的北偏东60°方向上,且与游船的距离是3 kmB.游船在小艇A的南偏西60°方向上,且与小艇A的距离是3 kmC.小艇B在游船的北偏西30°方向上,且与游船的距离是2 kmD.游船在小艇B的南偏东60°方向上,且与小艇B的距离是2 km8.[教材P179习题T11变式]将一副直角三角尺按如图所示的不同方式摆放,则图中锐角∠α与∠β相等的是()A BC D9.[新考法折叠法法2024驻马店期末]如图,已知∠AOB=130°,以点O为顶点作直角∠COB,以点O为端点作一条射线OD.通过折叠的方法,使OD与OC重合,然后展开,OB落在OB'处,OE为折痕,若∠COE=15°,则∠AOB'=()(第9题)A.30°B.25°C.20°D.15°10.[ 2024长春双阳区期末]如图,已知O为直线AB上一点,将直角三角板的直角顶点放在点O处,若OC是∠MOB的平分线,则下列结论正确的是()(第10题)A.∠AOM=3∠NOC B.∠AOM=2∠NOCC.2∠AOM=3∠NOC D.3∠AOM=5∠NOC二、填空题(每题4分,共24分)11.国扇文化有着深厚的文化底蕴,历来中国有“制扇王国”之称.打开折扇时,随着扇骨的移动形成一个扇面,如图,这种现象可以用数学原理解释为.(第11题)12.已知∠1=4°18',∠2=4.4°,则∠1∠2.(填“>”“<”或“=”) 13.如图,∠AOC=90°,点B,O,D在同一直线上,若∠1=26°,则∠2的度数为.(第13题)14.[教材P172练习T1变式]下午3:40时,时钟上分针与时针的夹角是度.15.[新考法分类讨论法]已知线段AB=30 cm,点P沿线段AB自点A向点B以2 cm/s的速度运动,同时点Q沿线段BA自点B向点A以3 cm/s的速度运动,则s后,P,Q两点相距10 cm.16.[新考法分类讨论法2024南阳期中]如图,已知∠AOB=90°,射线OC绕点O从OA 位置开始,以每秒3°的速度顺时针旋转,同时,射线OD绕点O从OB位置开始,以每秒1°的速度逆时针旋转,并且当OC与OA成180°角时,OC与OD同时停止旋转.在旋转的过程中,秒后,OC与OD的夹角是30°.(第16题)三、解答题(共66分)17.(8分)[教材P166练习T1变式]如图,在同一平面内有四个点A,B,C,D,请按要求完成下列问题(不要求写出画法).(1)作射线AC;(2)作直线BD与射线AC相交于点O;(3)分别连接AB,AD;(4)我们容易判断出线段AB+AD与BD的大小关系是,理由是.18.(10分) [新考法折叠法2024泉州泉港区期末]下图是一个正方体的表面展开图,已知在原正方体中,相对面上的数的和为8,求-2xy+z的值.AB 19.(10分)[2023嘉兴模拟]已知点B在线段AC上,点D在线段AB上,如图,若BD=14 CD,E为线段AB的中点,EC=12 cm,求线段AC的长度.=1320.(12分) [新考法分类讨论法]已知点A在数轴上对应的数为a,点B对应的数为b,A,B之间的距离记作AB,且|a+4|+(b-10)2=0.(1)求线段AB的长;(2)设点P在数轴上对应的数为x,当PA+PB=20时,求x的值.21.(12分) [新视角规律探究题]欧拉公式讲述的是多面体的顶点数(V)、面数(F)、棱数(E)之间存在的等量关系.(1)如图,通过观察图中几何体,完成下列表格:多面体顶点数(V) 面数(F) 棱数(E)四面体 4 4五面体 5 8六面体8 6(2)通过对如图所示的多面体的归纳,请你补全欧拉公式:V+F-E=.【实际应用】(3)足球一般由32块黑白皮子缝合而成,且黑色的是正五边形,白色的是正六边形.如果我们近似地把足球看成一个多面体.你能利用欧拉公式计算出正五边形和正六边形各有多少块吗?请写出你的解答过程.22.(14分)[新趋势学科内综合]如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC∶∠BOC=1∶2,∠MON的一边OM在射线OB上,另一边ON在直线AB的下方,且∠MON=90°.(1)如图,求∠CON的度数;(2)将图中的∠MON绕点O以每秒6°的速度逆时针旋转一周,在旋转的过程中,若直线ON 恰好平分锐角∠AOC,求∠MON的运动时间t;(3)在(2)的条件下,当∠AOC与∠NOC互余时,请直接写出∠BOC与∠MOC之间的数量关系.参考答案一、1. C2. D3. D4. B5. B6. D7. D8. B9. C10. B点拨:因为∠MON=90°,所以∠BON=90°-∠AOM.因为OC是∠MOB的平分线,所以∠MOB=2∠BOC.所以∠AOM=180°-∠MOB=180°-2∠BOC=180°-2∠BON-2∠NOC=180°-2(90°-∠AOM)-2∠NOC=2∠AOM-2∠NOC.所以∠AOM=2∠NOC.二、11.线动成面12.<13.116°14.130点拨:因为时针每小时走30°,分针每分钟走6°,所以下午3:40时,分针与×30°)=130°.时针的夹角为40×6°-(3×30°+406015.4或8点拨:设x s后,P,Q两点相距10 cm.由题意得2x+3x+10=30或2x+3x-10=30,解得x=4或x=8.所以4 s或8 s后,P,Q两点相距10 cm.16.15或30点拨:设t秒后,OC与OD的夹角是30°,则∠AOC=3t°,∠BOD=t°.①如图①,因为∠AOB=90°,所以∠AOC+∠COD+∠BOD=90°,即3t°+30°+t°=90°,解得t=15.②如图②,因为∠AOB=90°,所以∠AOC-∠COD+∠BOD=90°,即3t°-30°+t°=90°,解得t=30.综上可知,15秒或30秒后,OC与OD的夹角是30°.三、17.解:(1)(2)(3)如图所示.(4)AB+AD>BD;两点之间,线段最短18.解:将这个展开图折成正方体,则“5”与“y”是相对面,“x”与“2”是相对面,”与“-1”是相对面.“z3因为相对面上的数的和为8,所以5+y=8,x+2=8,z-1=8.3所以x =6,y =3,z =27.所以-2xy +z =-2×6×3+27=-9. 19.解:设BD =x cm .因为BD =14AB =13CD ,所以AB =4BD =4x cm ,CD =3BD =3x cm . 又因为DC =DB +BC ,所以BC =3x -x =2x (cm ). 又因为AC =AB +BC ,所以AC =4x +2x =6x (cm ). 因为E 为线段AB 的中点, 所以BE =12AB =12×4x =2x (cm ).又因为EC =BE +BC ,所以EC =2x +2x =4x (cm ). 又因为EC =12 cm ,所以4x =12,解得x =3. 所以AC =6×3=18(cm ).20.解:(1)因为|a +4|+(b -10)2=0,所以a +4=0,b -10=0,解得a =-4,b =10. 所以AB =10-(-4)=14.(2)如图①,当P 在点A 左侧时,PA +PB =(-4-x )+(10-x )=20,即-2x +6=20,解得x =-7;如图②,当点P 在点B 右侧时,PA +PB =(x +4)+(x -10)=20,即2x -6=20,解得x =13;如图③,当点P 在点A 与点B 之间时,PA +PB =(x +4)+(10-x )=20,不存在这样的x 值,舍去.综上所述,x 的值是-7或13.21.解:(1)6;5;12(2)2(3)设正五边形有x 块,则正六边形有(32-x )块,由题意得F =32,E =5x+6(32-x )2=-12x +96,所以V =E ÷3×2=-13x +64. 根据欧拉公式V +F -E =2, 得-13x +64+32-(-12x +96)=2,解得x=12,则32-x=20.所以正五边形有12块,正六边形有20块.22.解:(1)因为∠AOC∶∠BOC=1∶2,∠AOC+∠BOC=180°,×180°=60°.所以∠AOC=13因为∠MON=90°,所以∠AON=90°,所以∠CON=∠AOC+∠AON=60°+90°=150°.(2)若直线ON恰好平分锐角∠AOC,则分两种情况:①如图a,易知ON沿逆时针旋转的度数为60°,所以t=60°÷6°=10(s).②如图b,易知ON沿逆时针旋转的度数为90°+150°=240°,=40(s).所以t=240°6°综上所述,∠MON的运动时间t为40 s或10 s.(3)∠BOC+∠MOC=180°或∠BOC=∠MOC.。
人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)
人教版七年级上册数学第二章《整式的加减》单元达标测试卷一.选择题(每题3分,共30分)1.下列代数式中,符合书写规则的是( )A .xB .x ÷yC .m ×2D .32.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .B .C .D .3关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.若x+y=1,则代数式3(4x-1)-2(3-6y )的值为( )A .-8B .8C .-3D .35.下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=1A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣17.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( )A .x 2-5y 2+1B .x 2-3y 2+1C .5x 2-3y 2-1D .5x 2-3y 2+18.两船从同一港口同时反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h ,水流的速度为a km/h ,3h 后,甲船比乙船多航行的路程是( )A .1.5a kmB .3a kmC .6a kmD .(150+3a )km 9.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面.(﹣x 2+3xy 12-y 2)﹣(12-x 2+4xy 12-y 2)12=-x 2●,黑点处即为被墨迹弄污的部分,那么被墨汁遮住的一项应是( )A .﹣xyB .+xyC .﹣7xyD .+7xy10.如图,阴影部分的面积为A.B.C.D.二、填空题(共24分)11.减去3m后,等于3m2+m﹣1的多项式是.12.已知3a n b n﹣1与﹣5a2b2m(m是正整数)是同类项,那么(2m﹣1)2=.13.计算:(m+3m+5m+…+2019m)﹣(2m+4m+6m+…+2020m)=.14.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.15.如图,把五个长为b、宽为a的小长方形,按图1和图2两种方式放在一个宽为m的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为C1,图2中阴影部分的周长为C2,若大长方形的长比宽大(6﹣a),则C2﹣C1的值为.16.如图,将图①中的四边形剪开得到图②,图中共有4个四边形;将图②中的一个四边形剪开得到图③,图中共有7个四边形;如此剪下去,第5个图中共有________个四边形,第n(n为正整数)个图中共有________个四边形.。
最新人教版数学七年级上册单元达标测试题及答案(全册)
人教版数学七年级上册第一章达标测试卷一、选择题(每题3分,共30分) 1.12的相反数是( )A.12B .-12C .2D .-22.化简:|-15|等于( )A .15B .-15C .±15D.1153.在0,2,-1,-2这四个数中,最小的数是( )A .0B .2C .-1D .-24.计算(-3)+5的结果等于( )A .2B .-2C .8D .-85.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4 000 000 000美元,将4 000 000 000用科学记数法表示为( ) A .0.4×109B .0.4×1010C .4×109D .4×10106.下列每对数中,不相等的一对是( )A .(-2)3和-23B .(-2)2和22C .(-2)2 018和-22 018D .|-2|3和|2|37.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab 的值是( )(第7题)A .负数B .正数C .0D .正数或08.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高为161 cm”中的数是准确数9.已知|m|=4,|n|=6,且|m +n|=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和为(1+3)+(2+6)=(1+2)×(1+3)=12; 12=22×3,则12的所有正约数之和为(1+3)+(2+6)+(4+12)=(1+2+22) ×(1+3)=28;36=22×32,则36的所有正约数之和为(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为( ) A .420B .434C .450D .465二、填空题(每题3分,共24分)11.某蓄水池的标准水位记为0 m ,如果用正数表示水面高于标准水位的高度,那么-0.2 m 表示____________________________.12.有理数-15的倒数为________,相反数为________,绝对值为________. 13.将数60 340精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-1,以点A 为圆心、12个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是______________.(第15题)(第17题)16.如果|a -1|+(b +2)2=0,那么3a -b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.18.按一定规律排列的一列数依次为:12,-16,112,-120,130,…按此规律排列下去,这列数中的第7个数为________,第n 个数为____________(n 为正整数).三、解答题(19,23题每题8分,20题18分,21,22题每题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12. 整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|; (2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36; (4)-42÷(-2)3+(-1)2 018-49÷23.21.现规定一种新运算“*”:a*b =a b -2,例如:2*3=23-2=6,试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.每年的春节晚会都是由中央电视台直播的,现有两地的观众,一是与舞台相距25 m远的演播大厅里的观众,二是距北京2 900 km正围在电视机前观看晚会的边防战士,这两地的观众谁先听到晚会节目的声音(声速是340 m/s,电波的速度是3×108m/s)?23.某景区一电瓶车接到任务从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s、4个单位长度/s,它们运动的时间为t s.(1)如果点P,Q在点A,B之间相向运动,当它们相遇时,点P对应的数是________;(2)如果点P,Q都向左运动,当点Q追上点P时,求点P对应的数;(3)如果点P,Q在点A,B之间相向运动,当PQ=8时,求点P对应的数.(第24题)25.观察下面三行数:2,-4,8,-16,32,-64,…;4,-2,10,-14,34,-62,…;1,-2,4,-8,16,-32,….(1)第1行的第8个数为________,第2行的第8个数为________,第3行的第8个数为________.(2)第3行中是否存在连续的三个数,使得这三个数的和为768?若存在,求出这三个数;若不存在,说明理由.(3)是否存在这样的一列,使得其中的三个数的和为1 282?若存在,求出这三个数;若不存在,说明理由.答案一、1.B 2.A 3.D 4.A 5.C 6.C7.B 8.C 9.C 10.D 二、11.水面低于标准水位0.2 m12.-5;15;15 13.6.0×104 14.< 15.-32,-12 16.5 17.1 18.156;(-1)n +11n (n +1)三、19.解:(1)整数:{(-1)2,-|-2|,-22,0,…};分数:{-(-2.5),-12,…}; 正有理数:{-(-2.5),(-1)2,…}; 负有理数:{-|-2|,-22,-12,…}.(2)图略.-22<-|-2|<-12<0<(-1)2<-(-2.5).20.解:(1)原式=-6+10-3+9=(-6-3+9)+10=10;(2)原式=-49+118-18-59=⎝ ⎛⎭⎪⎫-49-59+⎝ ⎛⎭⎪⎫118-18=-1+1=0;(3)原式=79×36-1112×36+16×36=28-33+6=1;(4)原式=-16÷(-8)+1-49×32=2+1-23=73.21.解:⎝ ⎛⎭⎪⎫-32*2*2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-322-2*2=14*2=⎝ ⎛⎭⎪⎫142-2=-3116.22.解:25÷340≈0.074(s );2 900 km =2 900 000 m , 2 900 000÷(3×108)≈0.0097(s ).因为0.074>0.0097,所以是边防战士先听到晚会节目的声音.23.解:(1)如图所示.(第23题)(2)电瓶车一共走的路程为|+2|+|+2.5|+|-8.5|+|+4|=17(km).因为17>15,所以该电瓶车不能在一开始充好电而途中不充电的情况下完成此次任务.24.解:(1)-8 3(2)易得t=16-(-12)4-2=282=14.此时-12-2×14=-40,即点P对应的数是-40.(3)当PQ=8时,有以下两种情况:①P,Q相遇前,t=28-82+4=103,此时点P对应的数是-12+2t=-16 3;②P,Q相遇后,t=28+82+4=6,此时点P对应的数是-12+2t=0.综上所述,点P对应的数是-163或0.25.解:(1)-256;-254;-128(2)存在.设中间数为m,根据题意,有m÷(-2)+m+m×(-2)=768.解得m=-512,符合第3行数的规律.此时m÷(-2)=256,m×(-2)=1 024.所以这三个数分别为256,-512,1 024.(3)存在.因为同一列的数符号相同,所以这三个数都是正数.设这一列的第一个数为2n(n为正整数).根据题意,有2n+(2n+2)+12×2n=1 282,即2n =512=29. 所以n =9.此时2n +2=514,12×2n=256. 所以这三个数分别为512,514,256.第二章达标测试卷一、选择题(每题3分,共30分) 1.下列各式中,是单项式的是( )A .x 2-1B .a 2b C.πa +bD.x -y 32.多项式-5-2x 23-y 中,二次项的系数是( )A .2B .-2C .-23 D.233.下列各组单项式中,是同类项的是( )A.a 2b3与a 2b B .3x 2y 与3xy 2 C .a 与1D .2bc 与2abc4.计算:5x -3x =( )A .2xB .2x 2C .-2xD .-2 5.关于多项式3a 2b -4ab 4+2ab 2-1,下面说法正确的是( )A .项分别是:3a 2b ,4ab 4,2ab 2,1B .多项式的次数是4C .它是一个五次四项式D .它是一个四次四项式6.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a-10%)(a+15%)万元B.a(1-10%)(1+15%)万元C.(a-10%+15%)万元D.a(1-10%+15%)万元7.下列各式去括号正确的是()A.x2-(x-y+2z)=x2-x+y+2zB.x-(-2x+3y-1)=x+2x-3y+1C.3x-[5x-(x-1)]=3x-5x-x+1D.(x-1)-(x2-2)=x-1-x2-28.已知a-b=1,则式子-3a+3b-11的值是()A.-14 B.1C.-8 D.59.某同学计算一个多项式加上xy-3yz-2xz时,误认为减去此式,计算出的结果为xy-2yz+3xz,则正确结果是()A.2xy-5yz+xz B.3xy-8yz-xzC.yz+5xz D.3xy-8yz+xz10.定义运算:a※b=b-2a,下面给出了关于这种运算的四个结论:①(-2)※(-5)=-1;②a※b=b※a;③若a+b=0,则a※a+b※b=0;④若3※x=0,则x=6.其中,正确结论的序号是()A.①②④B.②③④C.①②③D.①③④二、填空题(每题3分,共24分)11.-π3a3b2的系数是________,次数是________.12.一个三位数,百位数字是3,十位数字和个位数字组成的两位数是b,用式子表示这个三位数是____________.13.请你写出一个三次单项式:____________,一个二次三项式:______________.14.若2x 3y 2n 与-5x m y 4是同类项,则m -n =________.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含二次项,则m等于________.16.如图,阴影部分的面积是__________.(第18题)17.当x =-12时,2x 2-3x +x 2+4x -2=________.18.用棋子摆出如图的一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子__________枚.三、解答题(19题16分,21,22题每题6分,23题8分,其余每题10分,共66分) 19.计算:(1)x 2y -3xy 2+2yx 2-y 2x; (2)14a 2b -0.4ab 2-12a 2b +25ab 2;(3)2(x 2-2x +5)-3(2x 2-5); (4)5(a 2b -3ab 2)-2(a 2b -7ab 2).20.先化简,再求值:(1)(4a+3a2-3+3a3)-(-a+4a3),其中a=-2;(-3x2y2+3x2y)+(3x2y2-3xy2),其中x=-1,y=2.(2)(2x2y-2xy2)-[]21.已知M=a2-3ab+2b2,N=a2+2ab-3b2,化简:M-[N-2M-(M-N)].22.如图①,将一个边长为a的正方形纸片剪去两个小长方形,得到一个“5”的图案(如图②),再将剪下的两个小长方形拼成一个新的长方形(如图③),求新长方形的周长.(第22题)23.按下列程序计算.(第23题)(1)填写表内空格:(2)你发现的规律是__________________________;(3)用简要过程说明你发现的规律的正确性.24.先阅读下面的文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太烦琐,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算、提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×________=________.(1)补全例题的解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).25.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节水的目的.该市自来水收费价格见如图所示的价目表.(1)若某户居民2月份用水4 m3,则应交水费________元;(2)若某户居民3月份用水a m3(其中6<a<10),则应交水费多少元(用含a的整式表示并化简)?(3)若某户居民4,5月份共用水15 m3(5月份用水量超过了4月份),设4月份用水x m3,求该户居民4,5月份共交水费多少元(用含x的整式表示并化简).答案一、1.B 2.C 3.A 4.A 5.C 6.B7.B8.A9.B10.D二、11.-π3;512. 300+b13.x2y;x2-x+1(答案不唯一)14.115.416.112xy17.-7418.4n三、19.解:(1)原式=3x2y-4xy2;(2)原式=-14a2b;(3)原式=2x2-4x+10-6x2+15=-4x2-4x+25;(4)原式=5a2b-15ab2-2a2b+14ab2=3a2b-ab2.20.解:(1)原式=4a+3a2-3+3a3+a-4a3=-a3+3a2+5a-3.当a=-2时,原式=-(-2)3+3×(-2)2+5×(-2)-3=-(-8)+3×4+5×(-2)-3=8+12-10-3=7.(2)原式=2x2y-2xy2+3x2y2-3x2y-3x2y2+3xy2=-x2y+xy2.当x=-1,y=2时,原式=-(-1)2×2+(-1)×22=-1×2+(-1)×4=-2-4=-6.21.解:原式=M-N+2M+M-N=4M-2N=4(a2-3ab+2b2)-2(a2+2ab-3b2)=4a2-12ab+8b2-2a2-4ab+6b2=2a2-16ab+14b2.22.解:由题图可知,新长方形的长为a-b,宽为a-3b.故周长=2[(a-b)+(a-3b)]=2(a-b+a-3b)=2(2a-4b)=4a-8b. 23.解:(1)-1;-1;-1;-1(2)输出的答案均为-1(3)2(n2-n)-2n2+2n-1=-1,即输出的答案与n的值无关,均为-1. 24.解:(1)50;5 050(2)原式=+[(b+99b)+(2b+98b)+…+(49b+51b)+50b]=100a+(49×100b+50b)=100a+4 950b.25.解:(1)8(2)4(a-6)+6×2=4a-12(元),即应交水费(4a-12)元.(3)因为5月份用水量超过了4月份,所以4月份用水量少于7.5 m3.当4月份用水量少于5 m3时,5月份用水量超出10 m3,故4,5月份共交水费2x+8(15-x-10)+4×4+6×2=-6x+68(元);当4月份用水量不低于5 m3但不超出6 m3时,5月份用水量不少于9 m3但不超出10 m3,故4,5月份共交水费2x+4(15-x-6)+6×2=-2x+48(元);当4月份用水量超出6 m3但少于7.5 m3时,5月份用水量超出7.5 m3但少于9 m3,故4,5月份共交水费4(x-6)+6×2+4(15-x-6) +6×2=36(元).第一学期期中测试卷一、选择题(每题3分,共30分)1.a的相反数是()A.|a| B.1a C.-a D.以上都不对2.计算-3+(-1)的结果是()A.2 B.-2 C.4 D.-43.在1,-2,0,53这四个数中,最大的数是()A.-2 B.0 C.53D.14.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30 000 000个核苷酸.30 000 000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108 5.计算2a2+a2,结果正确的是()A.2a4B.2a2C.3a4D.3a26.下列判断中,错误的是()A.1-a-ab是二次三项式B.-a2b2c是单项式C.a+b2是多项式D.34πR2中,系数是347.对于四舍五入得到的近似数5.60×105,下列说法正确的是() A.精确到百分位B.精确到个位C .精确到万位D .精确到千位8.已知a =2 019x +20,b =2 019x +19,c =2 019x +21,那么式子a +b -2c 的值是( ) A .-4B .-3C .-2D .-19.已知a ,b 是有理数,若a 在数轴上的对应点的位置如图所示,且a +b <0,有以下结论:①b <0;②b -a >0;③|-a |>-b ;④ba <-1.则正确的结论是( ) A .①④B .①③C .②③D .②④(第9题)(第10题)10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中的一个正方形剪开得到图③,图③中共有7个正方形;将图③中的一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2 018个图中共有正方形的个数为( ) A .6 046B .6 049C .6 052D .6 055二、填空题(每题3分,共24分)11.-32的绝对值是________,2 018的倒数是________.12.已知多项式x |m |+(m -2)x -10是二次三项式,m 为常数,则m 的值为________. 13.若数轴上表示互为相反数的两点之间的距离是16,则这两个数是______________.14.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m=________.15.某音像社出租光盘的收费方法如下:每张光盘在出租后的头两天每天收0.8元,以后每天收0.5元,那么一张光盘在出租后的第n 天(n 是大于2的自然数)应收租金____________元,第10天应收租金__________元.16.若mn =m +3,则2mn +3m -5mn +10=________.17.数轴上与原点的距离小于2的整数点的个数为x ,不大于2的整数点的个数为y ,等于2的整数点的个数为z ,则x +y +z =________.18.有一数值转换器,原理如图,若开始输入的x 的值是5,可发现第一次输出的结果是8,第二次输出的结果是4……请你探索第99次输出的结果是________.(第18题)三、解答题(19题12分,20题6分,22题7分,26题9分,其余每题8分,共66分) 19.计算:(1) 35-3.7-⎝ ⎛⎭⎪⎫-25-1.3;(2)(-3)÷⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-25÷⎝ ⎛⎭⎪⎫-14+34;(3) ⎝ ⎛⎭⎪⎫-34+712-58÷⎝ ⎛⎭⎪⎫-124; (4) ⎣⎢⎡⎦⎥⎤(-1)2 018+⎝ ⎛⎭⎪⎫1-12×13÷(-32+2).20.在如图所示的数轴上表示3.5和它的相反数、-14和它的倒数、绝对值等于1的数、-2和它的立方,并用“<”把它们连接起来.(第20题)21.先化简,再求值:(1)3x 2-⎣⎢⎡⎦⎥⎤5x -⎝ ⎛⎭⎪⎫12x -3+2x 2,其中x =2;(2)(-3xy -7y )+[4x -3(xy +y -2x )],其中xy =-2,x -y =3.22.某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10.(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置的最远距离是多少米?(3)守门员离开初始位置达到10 m 以上(包括10 m)的次数是多少?23.有理数a ,b ,c 在数轴上的位置如图所示,且表示数a 的点、数b 的点与原点的距离相等.(1)用“>”“<”或“=”填空:b ______0,a +b ______0,a -c ______0,b -c ______0;(2)|b-1|+|a-1|=________;(3)化简:|a+b|+|a-c|-|b|+|b-c|.(第23题)24.如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为a m的正方形,C区是边长为c m的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=40,c=10,求整个长方形运动场的面积.(第24题)25.如今,网上购物已成为一种新的消费时尚,新星饰品店想购买一种贺年卡在元旦时销售,在互联网上搜索了甲、乙两家网店(如图所示),已知两家网店的这种贺年卡的质量相同,请看图回答下列问题:(第25题)(1)假若新星饰品店想购买x张贺年卡,那么在甲、乙两家网店分别需要花多少钱(用含有x的式子表示)?(提示:如需付运费时,运费只需付一次,即8元) (2)新星饰品店打算购买300张贺年卡,选择哪家网店更省钱?26.有一列数,第一个数为x1=1,第二个数为x2=3,从第三个数开始依次为x3,x4,…,x n,….从第二个数开始,每个数是左右相邻两个数和的一半,如x2=x1+x32,x3=x2+x42.(1)求x3,x4,x5的值,并写出计算过程;(2)根据(1)的结果,推测x9等于多少;(3)探索这一列数的规律,猜想第k(k为正整数)个数x k等于多少.答案一、1.C 2.D 3.C 4.A 5.D 6.D7.D 8.B 9.A 10.C二、11.32;12 018 12.-2 13.-8,8 14.-6 15.(0.6+0.5n );5.616.1 17.10 18.2三、19.解:(1)原式=(35+25)-(3.7+1.3)=1-5=-4;(2)原式=(-3)÷85+34=-158+34=-98;(3)原式=⎝ ⎛⎭⎪⎫-34+712-58×(-24)=⎝ ⎛⎭⎪⎫-34×(-24)+712×(-24)-58×(-24)=18-14+15=19;(4)原式=⎝ ⎛⎭⎪⎫1+16÷(-7)=76×⎝ ⎛⎭⎪⎫-17=-16. 20.解:图略.-8<-4<-3.5<-2<-1<-14<1<3.5.21.解:(1)原式=3x 2-5x +12x -3-2x 2=x 2-92x -3.当x =2时,原式=22-92×2-3=-8.(2)原式=-3xy -7y +(4x -3xy -3y +6x )=-3xy -7y +4x -3xy -3y +6x =-6xy +10x -10y .当xy =-2,x -y =3时,原式=-6xy +10(x -y )= -6×(-2)+10×3=12+30=42.22.解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).即守门员没有回到初始位置.(2)守门员离开初始位置的距离分别为5 m ,2 m ,12 m ,4 m ,2 m ,11 m ,1 m.所以守门员离开初始位置的最远距离是12 m.(3)守门员离开初始位置达到10 m 以上(包括10 m)的次数是2次.23.解:(1)<;=;>;<(2)a -b(3)原式=|0|+(a-c)+b-(b-c)=0+a-c+b-b+c=a. 24.解:(1)2[(a+c)+(a-c)]=2(a+c+a-c)=4a(m).(2)2[(a+a+c)+(a+a-c)]=2(a+a+c+a+a-c)=8a(m).(3)当a=40,c=10时,长=2a+c=2×40+10=90(m),宽=2a-c=2×40-10=70(m),所以面积=90×70=6 300(m2).25.解:(1)当x≤30时,在甲网店需要花(x+8)元,在乙网店需要花(0.8x+8)元;当x>30时,在甲网店需要花(0.6x+8)元,在乙网店需要花0.8x元.(2)当x=300时,甲网店:0.6×300+8=188(元);乙网店:0.8×300=240(元).因为188<240,所以选择甲网店更省钱.26.解:(1)x3=2x2-x1=2×3-1=5,x4=2x3-x2=2×5-3=7,x5=2x4-x3=2×7-5=9.(2)由(1)可知x9=9+2+2+2+2=17.(3)x k=2k-1.第三章达标测试卷一、选择题(每题3分,共30分)1.下列方程中,不是一元一次方程的是() A.5x+3=3x+7 B.1+2x=3C.2x3+5x=3 D.x=-72.如果4x2-2m=7是关于x的一元一次方程,那么m的值是()A.-12 B.12C.0 D.13.下列方程中,解是x=2的是()A.3x=x+3 B.-x+3=0 C.2x=6 D.5x-2=84.方程x9+1=0的解是()A.x=-10 B.x=-9C.x=9 D.x=1 95.下列说法中,正确的是()A.若ac=bc,则a=b B.若ac=bc,则a=bC.若a2=b2,则a=b D.若|a|=|b|,则a=b6.已知|m-2|+(n-1)2=0,则关于x的方程2m+x=n的解是() A.x=-4 B.x=-3C.x=-2 D.x=-17.若关于x的一元一次方程ax+b=0(a≠0)的解是正数,则() A.a,b异号B.b>0C.a,b同号D.a<08.已知方程7x+2=3x-6与x-1=k的解相同,则3k2-1的值为() A.18 B.20C.26 D.-269.轮船在静水中的速度为20 km/h,水流速度为4 km/h,从甲码头顺流航行到乙码头,再返回甲码头,共用5 h(不计停留时间),求甲、乙两码头间的距离.设甲、乙两码头间的距离为x km,则列出的方程正确的是()A.(20+4)x+(20-4)x=5 B.20x+4x=5C.x20+x4=5 D.x20+4+x20-4=510.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为()A.180元B.202.5元C.180元或202.5元D.180元或200元二、填空题(每题3分,共24分)11.写出一个解是-2的一元一次方程:____________________.12.比a的3倍大5的数等于a的4倍,列方程是.13.已知关于x的方程x+k=1的解为x=5,则-|k+2|=________.14.当y=________时,1-2y-56与3-y6的值相等.15.对于两个非零有理数a,b,规定:a⊗b=ab-(a+b).若2⊗(x+1)=1,则x 的值为________.16.一个两位数,十位上的数字比个位上的数字小1,十位与个位上的数字之和是这个两位数的15,则这个两位数是________.17.一项工程,甲单独完成需要20天,乙单独完成需要25天,由甲先做2天,然后甲、乙一起做,余下的部分还要做________天才能完成.18.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元又不高于4 000元的应缴纳超过800元的那一部分稿费的14%的税;(3)稿费高于4 000元的应缴纳全部稿费的11%的税.今知丁老师获得一笔稿费,并缴纳个人所得税420元,则丁老师的这笔稿费有________元.三、解答题(19题16分,20,21题每题6分,22题8分,其余每题10分,共66分)19.解方程:(1)2x+3=x+5; (2)2(3y-1)-3(2-4y)=9y+10;(3)12x+2⎝⎛⎭⎪⎫54x+1=8+x; (4)3y-14-1=5y-76.20.已知y1=-23x+1,y2=16x-5,且y1+y2=20,求x的值.21.如果方程x-43-8=-x+22的解与关于x的方程4x-(3a+1)=6x+2a-1的解相同,求式子a-1a的值.22.如图,一块长5 cm、宽2 cm的长方形纸板,一块长4 cm、宽1 cm的长方形纸板,与一块正方形以及另两块长方形的纸板,恰好拼成一个大正方形.问:大正方形的面积是多少?23.某人原计划在一定时间内由甲地步行到乙地,他先以4 km/h的速度步行了全程的一半,又搭上了每小时行驶20 km的顺路汽车,所以比原计划需要的时间早到了2 h.甲、乙两地之间的距离是多少千米?24.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水的收费价格见下表:若某户居民某月份用水8 t,则应收水费:2×6+4×(8-6)=20(元).注:水费按月结算.(1)若该户居民2月份用水12.5 t,则应收水费________元;(2)若该户居民3,4月份共用水15 t(3月份的用水量少于5 t),共交水费44元,则该户居民3,4月份各用水多少吨?25.某校计划购买20张书柜和一批书架,现从A,B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每个70元.A超市的优惠政策为每买一张书柜赠送一个书架,B超市的优惠政策为所有商品打8折出售.设该校购买x(x>20)个书架.(1)若该校到同一家超市选购所有书柜和书架,则到A超市和B超市需分别准备多少元货款?(用含x的式子表示)(2)若规定只能到其中一家超市购买所有书柜和书架,当购买多少个书架时,无论到哪家超市购买所付货款都一样?(3)若该校想购买20张书柜和100个书架,且可到两家超市自由选购,你认为至少需准备多少元货款?并说明理由.答案一、1.C 2.B 3.D 4.B 5.B 6.B7.A 8.C 9.D 10.C 二、11.2x -1=-5(答案不唯一)12.3a +5=4a 13.-2 14.8 15.2 16.45 17.10 18.3 800 三、19.解:(1)移项,得2x -x =5-3.合并同类项,得x =2.(2)去括号,得6y -2-6+12y =9y +10. 移项,得6y +12y -9y =10+2+6. 合并同类项,得9y =18. 系数化为1,得y =2.(3)去括号,得12x +52x +2=8+x. 去分母,得x +5x +4=16+2x. 移项,得x +5x -2x =16-4. 合并同类项,得4x =12. 系数化为1,得x =3.(4)去分母,得3(3y -1)-12=2(5y -7). 去括号,得9y -3-12=10y -14. 移项,得9y -10y =3+12-14. 合并同类项,得-y =1. 系数化为1,得y =-1.20.解:由题意,得⎝ ⎛⎭⎪⎫-23x +1+(16x -5)=20,解得x =-48.21.解:解x -43-8=-x +22,得x =10.因为方程x -43-8=-x +22的解与关于x 的方程4x -(3a +1)=6x +2a -1的解相同,所以把x =10代入方程4x -(3a +1)=6x +2a -1,得4×10-(3a +1)=6×10+2a -1,解得a =-4.所以a-1a=-4+14=-334.22.解:设大正方形的边长为x cm.根据题意,得x-2-1=4+5-x,解得x=6.6×6=36(cm2).答:大正方形的面积是36 cm2.23.解:设甲、乙两地之间距离的一半为s km,则全程为2s km.根据题意,得2s4-⎝⎛⎭⎪⎫s4+s20=2.解得s=10.所以2s=20.答:甲、乙两地之间的距离是20 km.24.解:(1)48(2)设该户居民3月份用水x t,则4月份用水(15-x)t,其中x<5,15-x>10.根据题意,得2x+2×6+4×4+(15-x-10)×8=44.解得x=4,则15-x=11.答:该户居民3月份用水4 t,4月份用水11 t.25.解:(1)根据题意,到A超市购买需准备货款20×210+70(x-20)=70x +2 800(元),到B超市购买需准备货款0.8(20×210+70x)=56x+3 360(元).(2)由题意,得70x+2 800=56x+3 360,解得x=40.答:当购买40个书架时,无论到哪家超市购买所付货款都一样.(3)因为A超市的优惠政策为买一张书柜赠送一个书架,相当于打7.5折;B超市的优惠政策为所有商品打8折,所以应该到A超市购买20张书柜,赠20个书架,再到B超市购买80个书架.所需货款为20×210+70×80×0.8=8 680(元).答:至少需准备8 680元货款.第四章达标测试卷一、选择题(每题3分,共30分)1.下列各图中,∠1与∠2互为补角的是()2.下列语句错误的是()A.延长线段AB B.延长射线ABC.直线m和直线n相交于点PD.在射线AB上截取线段AC,使AC=3 cm3.下列立体图形中,都是柱体的为()4.如图,表示∠1的其他方法中,不正确的是()A.∠ACB B.∠C C.∠BCA D.∠ACD 5.如图所示的表面展开图所对应的几何体是()A.长方体B.球C.圆柱D.圆锥6.如图所示的物体从上面看到的形状是()7.下列各图中,经过折叠能围成一个正方体的是()8.在直线上顺次取A,B,C三点,使得AB=5 cm,BC=3 cm,如果O是线段BC的中点,那么线段AO的长度是()A.8 cm B.7.5 cm C.6.5 cm D.2.5 cm 9.如图,∠AOC=∠DOE=90°,如果∠AOE=65°,那么∠COD的度数是() A.90°B.115°C.120°D.135°10.用折纸的方法,可以直接剪出一个正五边形(如图).方法是:拿一张长方形纸对折,折痕为AB,以AB的中点O为顶点将平角五等分,并沿五等分的线折叠,再沿CD剪开,使展开后的图形为正五边形,则∠OCD等于() A.108°B.90°C.72°D.60°二、填空题(每题3分,共24分)11.如图,射线OA表示____________方向,射线OB表示____________方向.12.已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC =__________.13.如图,图中线段有________条,射线有________条.14.计算:(1)90.5°-25°45′=__________;(2)5°17′23″×6=__________.15.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOC的度数是________.16.将线段AB延长至点C,使BC=13AB,延长BC至点D,使CD=13BC,延长CD至点E,使DE=13CD,若CE=8 cm,则AB=________ cm.17.如图,将一副三角尺叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=________.18.如图是由一些小立方块所搭立体图形分别从正面、左面、上面看到的图形,若在所搭立体图形的基础上(不改变原立体图形中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题(19,21题每题6分,20,22,24题每题10分,其余每题12分,共66分)19.如图,A,B两个村庄在河m的两侧,连接AB,与m交于点C,点D在m 上,连接AD,BD,且AD=BD.若要在河上建一座桥,使A,B两村来往最便捷,则应该把桥建在点C还是点D?请说明理由.20.如图,已知线段a,b,画一条线段,使它等于3a-b(不要求写画法).21.如图所示的立体图形是由七块积木搭成的,这几块积木是大小相同的正方体,请画出这个立体图形分别从正面、左面、上面看到的图形.22.如图,点C 是AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB ,若AB =24 cm ,求线段CE 的长.23.如图,OD 平分∠BOC ,OE 平分∠AOC ,∠BOC =60°,∠AOC =58°.(1)求出∠AOB 及其补角的度数;(2)①请求出∠DOC 和∠AOE 的度数;②判断∠DOE 与∠AOB 是否互补,并说明理由.24.如图,把一根绳子对折成线段AB ,从点P 处把绳子剪断,已知APBP =,若剪断后的各段绳子中最长的一段为60 cm ,求绳子的原长.25.已知O为直线AB上一点,∠COE是直角,OF平分∠AOE.(1)如图①,若∠COF=34°,则∠BOE=________;若∠COF=n°,则∠BOE=________;∠BOE与∠COF的数量关系为________________.(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.(3)在图③中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.答案一、1.D 2.B 3.C 4.B 5.D 6.D7.A 8.C 9.B 10.B二、11.北偏西45°(西北);南偏东75°12.11 cm 或5 cm 13.6;614.(1)64°45′ (2)31°44′18″15.84° 16.54 17.180° 18.54三、19.解:应该把桥建在点C .理由:两点之间,线段最短.20.解:如图,AE =3a -b .21.解:如图所示.22.解:因为点C 是AB 的中点,所以AC =BC =12AB =12×24=12(cm).所以AD =23AC =23×12=8(cm).所以CD =AC -AD =12-8=4(cm).因为DE =35AB =35×24=14.4(cm),所以CE =DE -CD =14.4-4=10.4(cm).23.解:(1)∠AOB =∠BOC +∠AOC =60°+58°=118°,其补角为180°-∠AOB =180°-118°=62°.(2)①因为OD 平分∠BOC ,OE 平分∠AOC ,所以∠DOC =∠BOD=12∠BOC =12×60°=30°,∠AOE =∠COE =12∠AOC =12×58°=29°.②∠DOE 与∠AOB 不互补.理由:因为∠DOC=30°,∠COE=29°,所以∠DOE=∠DOC+∠COE=59°.所以∠DOE+∠AOB=59°+118°=177°,故∠DOE与∠AOB不互补.24.解:(1)当点A是绳子的对折点时,将绳子展开,如图①所示.因为AP BP=,剪断后的各段绳子中最长的一段为60 cm,所以2AP=60 cm,所以AP=30 cm.所以BP=45 cm.所以绳子的原长为2AB=2(AP+BP)=2×(30+45)=150(cm).(2)当点B是绳子的对折点时,将绳子展开,如图②所示.因为AP BP=,剪断后的各段绳子中最长的一段为60 cm,所以2BP=60 cm,所以BP=30 cm.所以AP=20 cm.所以绳子的原长为2AB=2(AP+BP)=2×(20+30)=100(cm).综上,绳子的原长为150 cm或100 cm.25.解:(1)68°;2n°;∠BOE=2∠COF(2)仍然成立.理由如下:设∠COF=n°,则∠EOF=90°-n°.所以∠AOE=2∠EOF=180°-2n°.所以∠BOE=180°-(180°-2n°)=2n°,即∠BOE=2∠COF.(3)存在.由(2)可知,∠BOE=2∠COF=2×65°=130°.因为OF平分∠AOE,所以∠AOF=∠EOF=90°-65°=25°.当2∠BOD+∠AOF=12(∠BOE-∠BOD)时,有2∠BOD+25°=12(130°-∠BOD).所以∠BOD=16°.第一学期期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是() A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b >0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.。
七年级上册数学单元测试卷
七年级上册数学单元测试卷一、选择题(每题3分,共30分)1. 下列哪个选项是偶数?A. 1B. 2C. 3D. 42. 如果a > b,那么下列哪个不等式是正确的?A. a + 2 > b + 2B. a - 2 > b - 2C. a × 2 > b × 2D. a ÷ 2 > b ÷ 23. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 24. 以下哪个是质数?A. 2B. 4C. 6D. 85. 一个数的绝对值是它本身,那么这个数是:A. 正数B. 负数C. 非负数D. 非正数6. 下列哪个选项是等腰三角形?A. 三条边都相等的三角形B. 两条边相等的三角形C. 两个角相等的三角形D. 一个角为90度的三角形7. 一个数的立方根是它本身,这个数是:A. 0B. 1C. -1D. 28. 下列哪个选项是合数?A. 2B. 3C. 4D. 59. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 210. 下列哪个选项是锐角三角形?A. 一个角大于90度的三角形B. 一个角等于90度的三角形C. 三个角都小于90度的三角形D. 三个角都大于90度的三角形二、填空题(每题4分,共20分)11. 一个数的平方是25,这个数是______。
12. 一个数的立方是8,这个数是______。
13. 一个数的绝对值是5,这个数是______。
14. 一个数的相反数是-3,这个数是______。
15. 一个数的平方根是3,这个数是______。
三、解答题(每题5分,共20分)16. 计算:(-2) × (-3)。
17. 计算:(-2)^2。
18. 计算:√9。
19. 计算:|-5|。
四、应用题(每题10分,共30分)20. 一个长方形的长是10米,宽是5米,求这个长方形的面积。
21. 一个数的3倍加上5等于20,求这个数。
人教版七年级上册数学 第一章 有理数 单元达标测试卷(含答案)
人教版七年级上册数学第一章有理数单元达标测试卷时间:100分钟满分:100分一.选择题(每小题4分,共40分)1.﹣|﹣3|的倒数是()A.﹣3 B.﹣C.D.32.当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A.海拔23米B.海拔﹣23米C.海拔175米D.海拔129米3.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2 B.3 C.4 D.54.已知数a、b在数轴上对应的点在原点两侧,并且到原点的距离相等;数x、y是互为倒数,那么2|a+b|﹣2xy的值等于()A.2 B.﹣2 C.1 D.﹣15.若|a﹣3|=3﹣a,则a的取值范围是()A.a>3 B.a<3 C.a≥3 D.a≤36.华为Mate30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A.1.03×109B.10.3×109C.1.03×1010D.1.03×10117.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a ﹣b|=44,且AO=3BO,则a+b的值为()A.﹣44 B.﹣22 C.﹣55 D.﹣118.在数轴上表示有理数a,﹣a,﹣b﹣1的点如图所示,则()A.﹣b<﹣a B.|b+1|<|a| C.|a|>|b| D.b﹣1<a9.如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1 B.0 C.1 D.310.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有()A.3个B.4个C.5个D.6个二.填空题(每小题4分,共24分)11.若x,y互为相反数,且3x﹣y=4,则xy的值为.12.如果把一个物体向前移动5m记作+5m,那么这个物体向后移动4m记作m.13.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为.14.一根长12.56米的绳子刚好可以绕一个圆10圈,那么这个圆的直径大约是米.15.某种细菌每30秒由1个分裂成2个,经过3分,1个细菌分裂成个,这些细菌再继续分裂t分后共分裂成个.16.已知a,b,c为互不相等的整数,且abc=﹣4,则a+b+c=.三.解答题(每题9分,共36分)17.计算①.。
2024-2025学年人教新版七年级上册数学《第4章 整式的加减》单元测试卷(有答案)
2024-2025学年人教新版七年级上册数学《第4章整式的加减》单元测试卷一.选择题(共8小题,满分24分)1.代数式x2+5,﹣1,x2﹣8x+2,π,,中,整式有()A.3个B.4个C.5个D.6个2.已知﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=,n=1D.m=3,n=03.下列计算正确的是()A.5a﹣2a=3B.2a2+6a2=8a4C.x2y﹣2xy2=﹣xy2D.3mn﹣2mn=mn4.在等式1﹣a2+2ab﹣b2=1﹣()中,括号里应填()A.a2﹣2ab+b2B.a2﹣2ab﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b25.若a<0,则|a﹣(﹣a)|等于()A.﹣a B.0C.2a D.﹣2a6.如图是小明完成的线上作业,他的得分是()判断题(每小题2分,共10分)①1是单项式.(×)②非负有理数不包括零.(×)③绝对值不相等的两个数的和一定不为零.(√)④单项式﹣a的系数与次数都是1.(√)⑤将34.945精确到十分位为34.95.(×)A.4分B.6分C.8分D.10分7.在下列各整式中,次数为5的是()A.8x3y B.m+n2+q2C.52c3D.x2y38.若代数式2(mx2+x﹣1)﹣(x2﹣nx+1)的值与x的取值无关,则m2023n2025的值为()A.﹣4B.4C.D.二.填空题(共8小题,满分24分)9.有一道题:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+□,“□”的地方被墨水弄污了,你认为“□”内应填写.10.已知关于x的整式x3﹣x2+x a﹣2x﹣2bx中不含有x的一次项和二次项,则a+b=.11.若关于x,y,z的单项式﹣mx3y n与单项式的次数相同,系数互为倒数,则该单项式是.12.多项式x2+x+1的次数是.13.若2a m+1b2与﹣3a3b n是同类项,则m+n的值为.14.若一个四位自然数M各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M为“幸福数”.把四位数M的前两位数字和后两位数字整体交换得到新的四位自然数N.规定.例如:M=2344,∵2+3=5,4+4=8,∴2344是“幸福数”,则.若P是最大的“幸福数”,则F(P)=;若S是“幸福数”,且F(S)恰好能被8整除,则所有满足题意的S的值共有个.15.如果a2﹣3a﹣7=0,那么代数式(a﹣1)2+a(a﹣4)﹣2的值为.16.设x、y互为相反数,且xy≠0.m的绝对值为8,则的值为.三.解答题(共6小题,满分52分)17.已知单项式﹣3xy2的系数和次数分别是a,b,求ab+a b的值.18.已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.19.【问题呈现】(1)已知代数式mx﹣y﹣3x+4y﹣1的值与x的值无关,求m的值;【类比应用】(2)将7张长为a,宽为b的小长方形纸片(如图①),按如图②的方式不重叠地放在长方形ABCD 内,未被覆盖的两部分的面积分别记为S1,S2,当AB的长度变化时,S1﹣S2的值始终不变,求a与b 的数量关系.20.已知多项式A=(m﹣3)2﹣(2﹣m)(2+m)+6m.(1)化简多项式A;(2)若m2﹣4=5,求多项式A的值.21.类比同类项的概念,我们规定:所含字母相同,并且相同字母的指数之差的绝对值等于0或1的项是“强同类项”,例如:﹣x3y4与2x4y3是“强同类项”.(1)给出下列四个单项式:①5x2y5,②﹣x5y5,③4x4y4,④﹣2x3y6.其中与x4y5是“强同类项”的是(填写序号);(2)若x3y4z m﹣2与﹣2x2y3z6是“强同类项”,求m的值;(3)若C为关于x、y的多项式,C=(n﹣5)x5y6+3x4y5﹣7x4y n,当C的任意两项都是“强同类项”,求n的值;(4)已知2a2b s、3a t b4均为关于a,b的单项式,其中s=|x﹣1|+k,t=2k,如果2a2b s、3a t b4是“强同类项”,那么x的最大值是,最小值是.22.定义:若非零实数a,b,c满足,则称c是a和b的“协调数”.如4是3和6的“协调数”.(1)问:是不是﹣2和﹣3的“协调数”?(2)若2m是p和q的“协调数”,用m,q的代数式表示q.参考答案与试题解析一.选择题(共8小题,满分24分)1.B2.B3.D4.A5.D6.B7.D8.A二.填空题(共8小题,满分24分)9.3x.10.1.11.﹣3x3y2.12.2.13.4.14.30,3.15.13.16.16或﹣16.三.解答题(共6小题,满分52分)17.﹣36.18.解:(1)2A﹣3B=2(3x2+xy+y)﹣3(2x2﹣xy+2y)=6x2+2xy+2y﹣6x2+3xy﹣6y=5xy﹣4y;(2)当x=2,y=﹣3时,2A﹣3B=5xy﹣4y=5×2×(﹣3)﹣4×(﹣3)=﹣18.19.(1)3;(2)a﹣2b=0.20.(1)2m2+5;(2)23.21.(1)②③④;(2)m=7,8,9;(3)n=5或n=6;(4),.22.(1)是;(2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 从自然数到有理数单元达标测试卷
一、选择题
1.│-3│的相反数是( )
A 、3
B 、-3
C
D 2.飞机上升-30米,实际上就是( )
A 、上升30米
B 、下降30米
C 、下降-30米
D 、先上升30米,再下降30米.
3.最小的正整数是( )
A 、-1
B 、0
C 、1
D 、2 4.绝对值最小的有理数的倒数是( )
A 、1
B 、-1
C 、0
D 、不存在
5.在已知的数轴上,表示-2.75的点是 ( )
A 、E 点
B 、F 点
C 、G 点
D 、H 点 6.下列对“0”的说法中,不正确的是( )
A 、0既不是正数,也不是负数;
B 、0是最小的整数
C 、0是有理数
D 、0是非负数
7.在-3,-12
1,0,-7
3,2002各数中,是正数的有( ) A 、0个 B 、1个 C 、2个 D 、3个
8.比较-0.50.5的大小,应有()
A-0.5>0.5 B.0.5>-0.5
C.-0.5>D.0.5>-0.5>
9.│a│= -a,a一定是()
A、正数
B、负数
C、非正数
D、非负数
10
列在中间的一个数应是()
二、填空题
11.整数和分数统称为.
12.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准短2毫米记作.
13.计算:│-(+4.8)│=
14.│-2005│的倒数是________.
15.绝对值等于2的数是
16.若a<0,b<0,且│a│>│b│,那么a,b的大小关系是________.17.在数轴上,A、B两点在原点的两侧,但到原点的距离相等,如果点A表示3,那么点B表示
18.在7,-6,0,0.01中,绝对值小于1的数是________.19.如果数轴上点A到原点的距离为3,点B到原点的距离为5,那么A、B两点的距离为
20.12+1=1×2=2,22+2=2×3=6,32+3=3×4=12,…,
试猜想:992+99=_____×_____=________.
三、解答题
21.比较下列各组数的大小.
(10.76;(2
(3)-(4)-│-3.5│与-[-(-3.5)].
22.小明的家(记为A)与他上学的学校(记为B)、书店(记为C)依次坐落再一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边100米处,小明从学校沿这条大街向东走了40米,接着又向西走了70米达到D处.试用数轴表示上述A,B,C,D的位置.
23.已知有理数a为正数,b、c为负数,且│c│>│b│>│a│,用“<”
把a、b、•c、-a、-b、-c连接起来.
24.假日公司的西湖一日游价格如下:
A种:成人每位160元,儿童每位40元
B种:5人以上团体,每位100元
现有三对夫妇各带1个小孩,共9人,参加西湖一日游,最少要多少钱?
25.某市对电话费作了调整,原市话费为每3分钟0.2元(不足3分钟,按3分钟计算),调整后,前3分钟为0.2元,以后每分钟加收0.1元(不足1分钟按1分钟计算).
(1)根据提供的信息,完成下列表格:
(2)若通话时间为11分钟,请你设计两种通话方案(可以分几次拨打),使所需话费小于调整后的话费.
26.设a b c a,b,c的大小.(提示:用整数1分别减去a,b,c)
参考答案
一、选择题
1.B2.B3.C4.D5.D6.B7.B8.B9.C 10.A
二、填空题
11.有理数12.-2毫米13.4.8 1415. 2
16.b
a
31800.01 19.8或 2 17.-
7
20.99,100,9900
三、解答题
21.(1)>;(2)<;(3)<;(4)=
22.略
23.c
-
c-
b
-
a
a
b
24.720元
25.(1)调整前:0.4,0.4,0.4,0.6,0.6,0.8;
调整后:0.3,0.4,0.6,0.7,0.8,1;
(2)第一次3分钟,第二次3分钟,第三次3分钟,第四次2分钟或第一次3分钟,第二次3分钟,第三次5分钟.其他
符合条件的也可.
26.c
a
b。