高中数学必修一《函数的单调性》优秀教学设计
函数的单调性教案(获奖)
函数的单调性教案(获奖)章节一:函数单调性的引入1. 引入概念:单调增加和单调减少2. 讲解实例:设f(x) = x,则f(x)在实数集上单调增加设g(x) = -x,则g(x)在实数集上单调减少3. 总结:函数单调性是描述函数值变化趋势的重要性质,分为单调增加和单调减少两种情况。
章节二:函数单调性的定义1. 定义单调增加:若对于任意的x1 < x2,都有f(x1) ≤f(x2),则称f(x)在区间I上单调增加。
2. 定义单调减少:若对于任意的x1 < x2,都有f(x1) ≥f(x2),则称f(x)在区间I上单调减少。
3. 举例说明:设h(x) = 2x + 3,则h(x)在实数集上单调增加设k(x) = -x^2 + 1,则k(x)在区间[-1, 1]上单调增加,在区间(-∞, -1]和[1, +∞)上单调减少章节三:函数单调性的判断方法1. 导数法:若函数f(x)在区间I上可导,且导数f'(x) ≥0(单调增加)或f'(x) ≤0(单调减少),则f(x)在区间I上单调增加或单调减少。
2. 图像法:绘制函数图像,观察函数值的变化趋势,判断单调性。
3. 表格法:列出函数在不同x值下的函数值,观察函数值的变化规律,判断单调性。
章节四:函数单调性的应用1. 最大值和最小值:对于单调增加的函数,最大值出现在定义域的右端点;对于单调减少的函数,最小值出现在定义域的左端点。
2. 函数的切线:单调增加的函数在切点处的切线斜率为正;单调减少的函数在切点处的切线斜率为负。
3. 函数的图像:单调增加的函数图像上升,单调减少的函数图像下降。
章节五:单调性在实际问题中的应用1. 线性规划:利用函数的单调性确定最优解的位置。
2. 优化问题:求函数的最值,利用函数的单调性判断最值的位置。
3. 经济学:分析市场需求和供给的单调性,预测市场变化趋势。
4. 物理学:研究物体运动的速度和加速度,利用单调性分析物体的运动状态。
《函数的单调性》教学设计
《函数的单调性》教学设计一、教学内容1. 函数单调性的定义:函数单调递增和单调递减的定义及其性质。
2. 单调性的判断方法:利用导数、图像以及定义法判断函数的单调性。
3. 单调性在实际问题中的应用:求解最值问题、不等式问题等。
二、教学目标1. 理解函数单调性的定义,掌握单调递增和单调递减的概念。
2. 学会利用导数、图像以及定义法判断函数的单调性。
3. 能够运用单调性解决实际问题,提高解决问题的能力。
三、教学难点与重点1. 教学难点:单调性的判断方法,特别是利用导数判断单调性。
2. 教学重点:函数单调性的定义,单调性的判断方法以及单调性在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:笔记本、彩笔、函数图像绘制工具。
五、教学过程1. 实践情景引入:通过一个实际问题,引发学生对函数单调性的思考。
例题:某商品的价格随销售量的增加而减少,问销售量为多少时,商品的价格最低?3. 单调性的判断方法:(1)利用导数:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数的单调性。
(2)利用图像:引导学生观察函数图像,判断函数的单调性。
(3)利用定义法:讲解如何利用定义法判断函数的单调性。
4. 单调性在实际问题中的应用:通过例题,讲解单调性在求解最值问题、不等式问题等方面的应用。
5. 随堂练习:让学生通过实际问题,运用所学知识解决,巩固所学内容。
六、板书设计1. 函数单调性的定义。
2. 单调性的判断方法:导数法、图像法、定义法。
3. 单调性在实际问题中的应用。
七、作业设计(1)y = x^2(2)y = x^2(3)y = 2x + 3某商品的价格随销售量的增加而减少,已知销售量为100时,价格为5000元,销售量为200时,价格为4000元。
求销售量为多少时,商品的价格最低?八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解了函数单调性的概念及其应用,通过讲解和练习,使学生掌握了单调性的判断方法。
函数的单调性教案()
函数的单调性教案(优秀)第一章:引言1.1 教学目标了解函数单调性的概念及其在数学中的重要性。
理解单调性对解决实际问题的重要作用。
1.2 教学内容介绍函数单调性的概念。
通过实际例子说明单调性在解决实际问题中的应用。
1.3 教学方法使用多媒体演示和实际例子来讲解函数单调性的概念。
引导学生通过思考和讨论来理解单调性的重要性。
1.4 教学评估通过课堂提问和小组讨论来评估学生对函数单调性的理解程度。
第二章:函数单调性的定义与性质2.1 教学目标理解函数单调性的定义及其性质。
学会判断函数的单调性。
2.2 教学内容介绍函数单调性的定义。
讲解函数单调性的性质,如单调递增和单调递减。
2.3 教学方法使用数学定义和示例来解释函数单调性的概念。
引导学生通过自主学习和小组讨论来掌握函数单调性的性质。
2.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性定义和性质的理解程度。
第三章:函数单调性的应用3.1 教学目标学会使用函数单调性解决实际问题。
理解函数单调性在数学和其他领域中的应用。
3.2 教学内容介绍函数单调性在解决实际问题中的应用。
讲解函数单调性在其他领域中的应用,如经济学和物理学。
3.3 教学方法使用实际例子和应用问题来展示函数单调性的使用。
引导学生通过思考和讨论来理解函数单调性在实际问题中的应用。
3.4 教学评估通过课堂练习和小组讨论来评估学生对函数单调性应用的理解程度。
第四章:函数单调性的证明4.1 教学目标学会使用数学方法证明函数的单调性。
理解证明函数单调性的重要性和方法。
4.2 教学内容介绍证明函数单调性的方法和技巧。
讲解不同类型的函数单调性证明。
4.3 教学方法使用示例和练习来讲解证明函数单调性的方法。
引导学生通过自主学习和小组讨论来掌握证明函数单调性的技巧。
4.4 教学评估通过课堂练习和小组讨论来评估学生对证明函数单调性的理解程度。
5.1 教学目标拓展对函数单调性的深入理解。
5.2 教学内容介绍函数单调性的进一步研究和发展。
《函数的单调性》教学设计[合集5篇]
《函数的单调性》教学设计[合集5篇]第一篇:《函数的单调性》教学设计《函数的单调性》教学设计一、教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.二、教学目标(1)知识与技能目标:使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;(2)过程与方法目标:引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.(3)情感态度与价值观:在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.三、教法学法分析教法分析:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.学法分析:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.四、教学过程函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节.(一)创设情境,提出问题(问题情境)(播放中央电视台天气预报的音乐).如图为某地区2006年元旦这一天24小时内的气温变化图,观察这张气温变化图:[教师活动]引导学生观察图象,提出问题:问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心.(二)探究发现建构概念[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答. [教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,这一情形进行描述.引导学生回答:对于自变量8<10,f(t1)=1,t2=10时,f(t2)=4”对应的函数值有1<4.举几个例子表述一下.然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征.在学生对于单调增函数的特征有一定直观认识时,进一步提出:问题3:对于任意的t1、t2∈[4,16]时,当t1<t2时,是否都有f(t1)<f(t2)呢? [学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述.[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当x1<x2时,都有f(x1)<f(x2)”.告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:问题4:类比单调增函数概念,你能给出单调减函数的概念吗?最后完成单调性和单调区间概念的整体表述.[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点.(三)自我尝试运用概念1.为了理解函数单调性的概念,及时地进行运用是十分必要的.[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明.[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:并画出函数的草图,根据函数的图象说出函数的单调区间.[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集.[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.2.对于给定图象的函数,借助于图象,我们可以直观地判定函数的单调性,也能找到单调区间.而对于一般的函数,我们怎样去判定函数的单调性呢?[教师活动]问题6:证明f(x)=1在区间(0,+ ∞)上是单调减函数.x[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难.[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式.[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断.[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.(四)回顾反思深化概念 [教师活动]给出一组题:1、定义在R上的单调函数f(x)满足f(2)>f(1),那么函数f(x)是R 上的单调增函数还是单调减函数?2、若定义在R上的单调减函数f(x)满足f(1+a)<f(3-a),你能确定实数的取值范围吗?[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.[教师活动]作业布置:(1)阅读课本P29例1、2(2)书面作业:必做:教材作业选做:二次函数y=x2+bx+c在[0,+∞)是增函数,满足条件的实数b的值唯一吗?探究:函数y=x在定义域内是增函数,函数y=1有两个单调减区间,由这两个基本函x数构成的函数y=x+1的单调性如何?请证明你得到的结论.x[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯.基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层.学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.五、教学评价学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.第二篇:函数单调性教学设计函数单调性教学设计关于函数的单调性习题课教学设计,本人在听了专家的讲解后感到受益匪浅,结合平时的教学,有些教学方面的心得如下,希望专家和同行批评指正。
函数的单调性教学设计
函数的单调性一、教材分析《函数的单调性》是高中数学新教材必修一第二章第三节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。
掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
二、教学目标知识与技能:1.通过例子帮助学生理解增函数、减函数及其几何意义。
2.学会应用函数的图象理解和研究函数的单调性及其几何意义。
过程与方法:1.通过本节课的教学,渗透数形结合的数学思想。
2.通过探究与活动,使学生明白考虑问题要细致,说理要明确。
情感与态度:1.通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象。
2.通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。
三、重点难点重点:函数单调性概念的理解及应用。
难点:增函数、减函数的理解。
四、教法分析为了实现本节课的教学目标,在教法上我采取了:1.通过学生熟悉的可以表达起落的成语引入课题,为概念学习创设情境,激发学生求知欲,调动学生主体参与的积极性。
2.在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。
3.在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。
五、学法分析在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。
然后通过对函数单调性的概念的学习理解,最终把问题解决。
整个过程学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。
六、教学用具黑板、多媒体七、教学用时15分钟八、教学过程设计(一)、情境引入在数学问题的研究中,图像可以很形象、直观的反应出一些数学现象。
高中数学 “函数的单调性”的教学设计教案 苏教版必修1
“函数的单调性”的教学设计一、教材分析地位与作用:“函数的单调性”既是一个重要的数学概念,又是函数的一个重要性质.在中学数学内容里占有十分重要的地位.它体现了函数的变化趋势和变化特点,在利用函数观点解决问题中起着十分重要的作用.重点与难点:重点是函数的单调性定义理解(从形到数,从文字语言到符号语言).难点是利用函数的单调性定义判断、证明函数的单调性.二、教学目标知识目标:(1)通过已学过的函数特别是二次函数,理解函数的单调性;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断函数在某区间上的的单调性.能力目标:通过概念的教学,培养学生观察、联想、比较、分析、综合、抽象、概括的逻辑思维能力,使其能体验和感悟数学的一般思维方法.德育目标:通过形式化与符号化对函数单调性的描述,促使学生养成用运动、发展、变化的观点认识世界的思维习惯.三、学情研究在讲授函数的单调性之前,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,接下来的任务是对函数应该继续研究什么.从各种函数关系中研究它们的共同属性,应该是顺理成章的,有必要的和有意义的.而且,函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣.四、教具选择多媒体课件及实物展台,通过对图形的直观体验理解概念,化解难点.五、过程设计问题情境:观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:得到充分感知.从而获得丰富的表象信息,产生众多的联想.学生活动:学生通过充分观察提出自己意见:①随x的增大,y的值有一定变化;②有的函数有最大值或最小值;③有的函数图象有上升或下降的情形或具有某种对称性……师:图1:函数图像在整个定义域上都是下降的.图2:函数图像在(),0-∞上下降,在()0,+∞上上升. 图3:函数图像在整个定义域上都是上升的.图4:函数图像在部分区域上上升,在部分区域上下降. 共同特点:图像在定义域的某些部分上升或下降.师:引导学生讨论一个实际问题:校门口与地下车库之间的路是上坡还是下坡? 生:有的说上坡,有的说下坡. 师:为何说法不一?生:讨论之后形成共识:究竟上升还是下降要看方向.不然,容易产生歧义. 师:就函数图像的上升、下降而言,以什么为参照或方向比较好? 生:以x 轴的方向为参照较好.师:图像的上升或下降表明了函数在变化中一种不变的性质.数学上把函数的这种性质称之为“单调性”.把上升称为“单调增”,把下降称为“单调减”.意义建构:建构主义的学习理论认为,学习不是一个被动的吸收过程,而是一个以已有的知识和经验为基础的主动的建构过程,因此,从具体问题出发来引出数学概念更符合学生的认知规律.对函数的单调性的建构有两个重要的过程:一是建构函数单调性的意义,二是通过思维构造把这个意义用数学的形式化语言加以描述.师:“上升、下降”是一种日常语言,这样来描述函数的性质是不够准确的.能否用数学的语言来描述函数的这一特点呢?生:讨论之后提出一种表示:上升:函数()y f x =随x 的增大而增大 下降:函数()y f x =随x 的增大而减小 师:能否用数字化的符号给出一种定量的描述?生:x 的增大⇒ x 1< x 2, ()y f x =的增大⇒()()12f x f x < 故猜想上升即 x 1< x 2⇒()()12f x f x < 同理:下降即 x 1< x 2⇒()()12f x f x >师:按刚才所说:对于函数2y x =而言,因为13-<时,()()13f f -<,所以函数2y x =是增函数.对不对?生:联系图像,发现问题,改进猜想. 师:总结之后给出定义. 数学理论:函数单调性定义一般地,设函数()y f x =的定义域为A ,如果对于定义域A 内的某个区间I 内的任意..两个自变量x 1,x 2,当x 1< x 2时,都有()()12f x f x <,那么就说()y f x =在区间I 上是增函数(increasing function ).I 称为y =f(x )的单调增区间(increasing interval ).注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间I 内的任意..两个自变量x 1,x 2;当x 1< x 2时,总有()()12f x f x <. 思考:仿照增函数的定义说出减函数的定义.数学运用:例1.(教材P 34例1)根据函数图象,写出函数的单调区间:⑴ 22y x =-+; ⑵ 1(0)y x x=≠ 解:(略)巩固练习:课本P 37练习第1、2题点评:对于某些函数,如果能画出其图像,那么寻找函数的单调区间就十分容易了,因此,图像法是求函数单调区间的一种重要方法.例1引申:函数xy 1=在整个定义域上是否为单调函数? 函数在某个区间上是单调函数,并不能说明函数在整个定义域上也是单调的. 例2.(教材P 35例2)根据函数单调性定义证明函数的单调性.求证:函数11y x=--在区间(),0-∞上是单调增函数.解:(略) 巩固练习:○1 课本P 37练习第5题;○2 证明函数xx y 1+=在(1,+∞)上为增函数. 例3.借助计算机作出函数23y x x =-++的图象并指出它的单调区间. 解:(略)小结:判断函数单调性的方法步骤:利用定义证明函数f(x)在给定的区间I 上的单调性的一般步骤:○1 任取x 1,x 2∈I ,且x 1< x 2;○2 作差()()12f x f x -; ○3 变形(通常是因式分解,配方或有理化);○4 定号(即判断差()()12f x f x -的正负); ○5 下结论(即指出函数()y f x =在给定的区间I 上的单调性).回顾反思:函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象可以借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步: 取 值 → 作 差 → 变 形 → 定 号 → 下结论六、教后反思⑴ 要实现数学新知的建构学习,教师创设适当的情境是一个十分重要的方面. 当然,情境应符合实际.这里的实际包括数学教学内容的实际,学生知识状况的实际,学生思维发展的实际等等. ⑵ 函数的单调性与很多已有的知识、经验、方法有联系, 这些对函数单调性的学习有着积极的意义,同时对函数单调性的理解也使得这些知识的意义得到了扩展.⑶ 概念和意义的综合贯通,不是一次课堂教学所能解决,因此需要在后续教学中多次反思,不断运用.。
高中《数学》函数的单调性教学设计学情分析教材分析课后反思
《函数的单调性》教学设计一、教学内容解析1. 教材内容及地位本节课是人教版版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.2. 教学重点函数单调性的概念,判断和证明简单函数的单调性.3. 教学难点函数单调性概念的生成,证明单调性的代数推理论证.二、学生学情分析1. 教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“V随X的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2. 教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.三、课堂教学目标1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随x 的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:1. 指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随x 的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4. 在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.五、教学过程(一)通过问题,引入课题分别作出函数y=x+1,y=-x+1,y=x²的图像,并且观察自变量变化时,函数图像有什么变化趋势?y=-x+10 1X1y=x²1问题一问题二如何描述函数图像的上升或下降?图像上升,y 随着x的增大而增大图像上升,y随着x的增大而减小向题三如何用符号化的数学语言来描述y 随着x 的增大而增大呢?(二)引导探究,生成概念探究在函数y=f(x)的给定区间上任取x₁,x₂,当x₁<x₂时,有f(x)<f(x₂),这时我们就说函数y=f(x)在给定区间上是增函数.单调性的定义一般的,设函数f(x) 的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有_f(x)<f(x₂),那么就说函数f(x) 在区间D上是增函数;如果对于定义域I内某个区间D 上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有f(x)>f(x),那么就说函数f(x) 在区间D上是减函数;如果函数y=f(x) 在区间D上是增函数或是减函数,就说这个函数在这个区间上具有(严格的)单调性;区间D 叫做函数y=f(x)的单调区间(三)学以致用,理解感悟概念理解( 1 ) 已知,因为f(-1)<f(2), 所以函数f(x)是增函数.(2)能不能说y= (x≠0)定义域(-∝,0)∪(0,+∝)上是单调减函数?(3)对于函数f(x),x∈D,若x,x₂∈D,(x₂-x) [f(x₂)-f(x₁)]>0 ,则函数f(x)在D上是增函数.(4)y=f(x) 在区间D上是减函数,若x,x₂∈D,且x₁<x₂,则f(x)>f(x₂).- 用于比较函数值的大小(5)y=f(x) 在区间D上是减函数,若x,x₂∈D,且f(x₁)>f(x₂),则x₁<x₂…用于比较自变量值的大小概念升华:(1)x,x₂具有任意性;(2)单调性是相对区间而言的,在一点处不具有单调性,单调区间之间用“,”隔开(不可用“U”符号连接)(3)定义的等价变形;(4)“知二推一”的应用典型例题—根据图像,指出函数的单调区间,并指明函数在这些区间上的增减性。
函数的单调性优秀教案
函数的单调性优秀教案一、教学目标1、知识与技能目标理解函数单调性的概念,能够根据函数的图象判断函数的单调性。
掌握函数单调性的证明方法,能运用定义证明函数的单调性。
2、过程与方法目标通过观察函数图象,引导学生发现函数单调性的特征,培养学生的观察能力和归纳能力。
通过函数单调性的证明,让学生体会从特殊到一般、从具体到抽象的思维方法,提高学生的逻辑推理能力。
3、情感态度与价值观目标让学生在自主探究中体验成功的喜悦,增强学习数学的信心。
通过函数单调性的应用,让学生感受数学与实际生活的紧密联系,提高学生学习数学的兴趣。
二、教学重难点1、教学重点函数单调性的概念。
运用定义证明函数的单调性。
2、教学难点函数单调性定义的理解。
利用定义证明函数的单调性。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课展示函数图象,如一次函数 y = 2x + 1,二次函数 y = x²的图象。
引导学生观察图象的上升和下降趋势,提问:“从图象中,你能发现函数值随着自变量的变化有什么规律吗?”2、讲授新课给出函数单调性的定义:设函数 f(x) 的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x) 在区间 D 上是增函数(或减函数)。
强调定义中的关键词:定义域、区间、任意、都有。
通过具体例子,如 f(x) = x²在区间 0, +∞)上是增函数,在区间(∞, 0 上是减函数,帮助学生理解函数单调性的概念。
3、例题讲解例 1:判断函数 f(x) = 2x 1 在区间(∞,+∞)上的单调性。
分析:设 x₁,x₂是区间(∞,+∞)上的任意两个实数,且 x₁< x₂,计算 f(x₂) f(x₁),判断其符号。
解:f(x₂) f(x₁) =(2x₂ 1) (2x₁ 1) = 2(x₂ x₁)因为 x₁< x₂,所以 x₂ x₁> 0,所以 2(x₂ x₁) > 0,即 f(x₂) f(x₁) > 0,所以 f(x) = 2x 1 在区间(∞,+∞)上是增函数。
函数的单调性教案(获奖)
函数的单调性教案(获奖)第一章:函数单调性的概念及定义1.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如商品价格的变化、物体运动的速度等。
1.2 讲解:单调性的定义,函数单调递增和单调递减的概念。
1.3 练习:判断几个简单函数的单调性,如f(x)=x, f(x)=-x, f(x)=x^2等。
第二章:函数单调性的判断方法2.1 引入:通过实际例子,让学生理解单调性判断的重要性。
2.2 讲解:利用导数、图像、定义等方法判断函数的单调性。
2.3 练习:判断一些复杂函数的单调性,并进行验证。
第三章:函数单调性的应用3.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如最优化问题、不等式的证明等。
3.2 讲解:函数单调性在解决最优化问题、不等式证明等方面的应用。
3.3 练习:解决一些实际问题,如求函数的最值、证明不等式等。
第四章:函数单调性的性质与定理4.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的周期性、奇偶性等。
4.2 讲解:函数单调性的性质与定理,如拉格朗日中值定理、柯西中值定理等。
4.3 练习:运用性质与定理解决一些实际问题。
第五章:函数单调性与导数的关系5.1 引入:通过实际例子,让学生感受函数单调性在实际生活中的应用,如函数的极值点。
5.2 讲解:函数单调性与导数的关系,如单调递增的充分必要条件是导数大于0,单调递减的充分必要条件是导数小于0。
5.3 练习:判断函数的单调性,并找出其极值点。
第六章:复合函数的单调性6.1 引入:通过实际例子,让学生感受复合函数单调性在实际生活中的应用,如温度随高度和纬度的变化。
6.2 讲解:复合函数单调性的定义和判断方法。
6.3 练习:判断复合函数的单调性,并进行验证。
第七章:反函数的单调性7.1 引入:通过实际例子,让学生感受反函数单调性在实际生活中的应用,如坐标系的转换。
7.2 讲解:反函数单调性的性质和判断方法。
函数的单调性教学设计(经典)
1.3.1函数的性质(一)函数的单调性教学设计一、教材内容分析本节课《函数的单调性》是人教A版《高中数学必修1》第一章第三节的内容,函数的性质由研究函数单调性开始,它既是函数基本特征之一,为后面基本初等函数的研究提供了一般方法,为研究不等关系提供了重要依据。
探究方法对研究函数的其他性质有很强的启发与示范作用。
函数单调性的实质是对函数两个变量运动趋势相关性的研究,研究函数单调性是从观察具体图象的变化趋势入手,通过图象分析数值之间的关系,最终抽象出用数学符号表述的定义。
二、教学目标知识目标(学习目标)(1)能通过函数图象分析函数的单调性。
掌握一次函数、二次函数、反比例函数的单调性。
(2)准确概括出增、减函数的定义并理解。
(3)会用增、减函数的定义证明函数的单调性。
能力目标培养学生数形结合的数学思想,指导学生形成研究问题从特殊到一般,从具体到抽象的研究方法。
指导学生形成科学的利用时间进行有效复习的学习方法。
情感态度与价值观目标通过对函数单调性的探究过程培养学生细心观察图象并进行分析最后严谨论证的良好思维习惯,并激发学生利用现代的设备技术去探索数学问题的兴趣。
三、教学(学习)重点难点重点:形成增、减函数的形式化定义。
难点:形成增、减函数概念的过程中,如何从图象升降的直观认识过渡到函数增减的数学符号语言表达;用定义证明函数的单调性。
四、学情分析所教授的班级学生为高一学生,在初中通过三类简单的函数图象分析已经对函数的单调性有了一定的直观认识,但是还欠缺对函数单调性用数学符号的定义概括和进一步去理解函数的单调性。
学生思维活跃,小组合作探究已经比较默契。
课前学生可以利用ipad观看微课并检测自学效果,也可以利用图形计算器绘制函数图象,对初中没有接触的函数的图象有直观认识。
但学生欠缺规范表述函数的单调性和单调区间。
五、教学策略选择与设计教学设计思路:通过对函数单调性的研究让学生经历从直观到抽象,从图形语言到数学语言,理解增函数、减函数,单调区间概念的过程。
“函数的单调性”教案
“函数的单调性”教案一、教学目标1. 理解函数单调性的概念,掌握判断函数单调性的方法。
2. 能够运用函数单调性解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力,提高学生对函数知识的兴趣。
二、教学内容1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用三、教学重点与难点1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用四、教学方法1. 采用启发式教学,引导学生主动探究函数单调性的定义与性质。
2. 通过例题讲解,让学生掌握判断函数单调性的方法。
3. 结合实际问题,培养学生运用函数单调性解决问题的能力。
五、教学过程1. 导入新课:回顾上一节课的内容,引导学生思考函数的单调性。
2. 讲解函数单调性的定义与性质:详细讲解函数单调性的概念,引导学生理解并掌握函数单调性的性质。
3. 判断函数单调性的方法:讲解如何判断函数的单调性,引导学生通过实例分析来掌握判断方法。
4. 运用函数单调性解决实际问题:给出实际问题,引导学生运用函数单调性进行解决,培养学生的应用能力。
5. 课堂小结:对本节课的内容进行总结,强调函数单调性的重要性。
6. 布置作业:设计具有针对性的作业,巩固学生对函数单调性的理解和掌握。
六、教学评估1. 课堂提问:通过提问了解学生对函数单调性的理解程度,及时发现并解决学生在学习过程中遇到的困惑。
2. 作业批改:重点关注学生对函数单调性概念的掌握和判断方法的运用,及时给予反馈和指导。
3. 课堂练习:设计一些具有代表性的练习题,让学生在课堂上独立完成,检验学生对函数单调性的掌握情况。
七、教学拓展1. 引导学生思考函数单调性与其他数学概念的联系,如导数、极限等。
2. 介绍函数单调性在实际应用中的重要作用,如经济学、物理学等领域。
3. 鼓励学生进行课外阅读,了解函数单调性的更多相关知识,提高学生的知识面。
八、教学反思1. 反思教学过程中的优点和不足,总结经验教训,为今后的教学提供参考。
《函数单调性教案》
《函数单调性教案》word版章节一:引言1.1 课程背景本节课主要讲解函数的单调性。
函数单调性是数学中的一个重要概念,也是高中数学的核心内容之一。
通过学习函数单调性,学生可以更好地理解函数的性质,提高解决问题的能力。
1.2 教学目标1. 理解函数单调性的概念及意义。
2. 学会判断函数的单调性。
3. 能够应用函数单调性解决实际问题。
章节二:单调性的定义与性质2.1 单调性的定义本节课我们将引入单调性的定义。
一个函数在某个区间内,如果对于任意的x1和x2,当x1 < x2时,都有f(x1) ≤f(x2),则称该函数在区间内是单调递增的;如果对于任意的x1和x2,当x1 < x2时,都有f(x1) ≥f(x2),则称该函数在区间内是单调递减的。
2.2 单调性的性质本节课我们将学习单调性的几个重要性质。
如果函数在某个区间内是单调递增的,它在该区间内的任意子区间内也是单调递增的;同样地,如果函数在某个区间内是单调递减的,它在该区间内的任意子区间内也是单调递减的。
如果两个函数在某个区间内具有相同的单调性,它们的和函数在该区间内也具有相同的单调性。
章节三:判断单调性3.1 判断单调性的方法本节课我们将介绍几种判断函数单调性的方法。
可以通过求导数来判断函数的单调性。
如果函数在某个区间内的导数大于0,则函数在该区间内是单调递增的;如果函数在某个区间内的导数小于0,则函数在该区间内是单调递减的。
可以通过观察函数的图像来判断函数的单调性。
如果函数的图像在某个区间内是上升的,则函数在该区间内是单调递增的;如果函数的图像在某个区间内是下降的,则函数在该区间内是单调递减的。
3.2 判断单调性的应用本节课我们将通过一些实际问题来应用单调性的判断方法。
例如,我们可以通过判断函数的单调性来确定函数的最大值和最小值所在的区间,或者判断两个函数的交点位置等。
章节四:单调性与实际应用4.1 单调性与最值本节课我们将学习单调性与函数最值的关系。
《函数的单调性》教学设计与反思
《函数的单调性》教学设计与反思一、教学内容本节课的教学内容选自人教A版高中数学必修1第三章函数的单调性。
具体包括:函数单调性的定义,单调增函数和单调减函数的性质,以及利用单调性解决实际问题。
二、教学目标1. 理解函数单调性的概念,掌握单调增函数和单调减函数的性质。
2. 能够运用函数单调性解决简单的实际问题。
3. 培养学生的逻辑思维能力和数学建模能力。
三、教学难点与重点1. 教学难点:函数单调性的证明和应用。
2. 教学重点:函数单调性的定义和性质。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:笔记本、笔、计算器。
五、教学过程1. 实践情景引入:通过生活中常见的物价变化现象,引导学生思考函数的单调性。
2. 概念讲解:介绍函数单调性的定义,并通过示例进行讲解。
3. 性质探讨:引导学生探究单调增函数和单调减函数的性质,并通过示例进行验证。
4. 例题讲解:讲解利用函数单调性解决实际问题的例题,引导学生学会运用单调性分析问题。
5. 随堂练习:布置随堂练习题,让学生巩固所学知识。
六、板书设计1. 函数单调性的定义。
2. 单调增函数和单调减函数的性质。
3. 利用函数单调性解决实际问题的方法。
七、作业设计1. 题目:判断下列函数的单调性,并给出证明。
函数1:y = x^2函数2:y = x^2答案:函数1单调增,函数2单调减。
2. 题目:利用函数单调性解决实际问题。
问题:某商品原价为100元,商家进行两次折扣促销,第一次折扣为8折,第二次折扣为7折,求最终成交价。
答案:最终成交价为84元。
八、课后反思及拓展延伸1. 课后反思:本节课通过生活实例引入函数单调性,让学生能够更好地理解概念。
在讲解性质时,通过示例进行验证,增强了学生的理解。
在例题讲解环节,培养了学生的实际应用能力。
2. 拓展延伸:引导学生思考函数单调性在其他数学领域的应用,如微积分中的极值问题。
重点和难点解析一、函数单调性的定义函数单调性是函数性质的重要组成部分,它反映了函数值随着自变量变化的大致趋势。
函数单调性优秀教案
函数单调性优秀教案【篇一:《函数单调性》教学设计】《函数单调性》教学设计【设计思路】有效的概念教学必须建立在学生已有的知识结构基础之上顺应学生的思维发展,因此在教学设计中注意在学生已有知识结构和新概念间寻找“最近发展区”,呈现知识的发生和形成过程,使学生始终处于问题探索研究状态之中。
为达到本节课的教学目标,突出重点,突破难点,在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,使得学生对概念的认识不断深入.在应用概念阶段, 通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.考虑到学生数学思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究函数单调性埋下伏笔。
在教学设计中发挥好多媒体教学的优势,注意结合图形,由浅入深,采用数形结合方法,从感知发展到理性思维,让学生经历“创设情境——探究概念——理解反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。
【教学目标】1.理解函数单调性的概念,初步掌握判断、证明函数单调性的方法. 2.通过观察、归纳、抽象、概括自主建构函数单调性概念的过程,体会数形结合的思想方法,提高发现、分析、解决问题的能力;通过对函数单调性的证明,体会数学的严谨性,提高学生的推理论证能力.3.在学习中体会数学的科学价值和应用价值,培养学生细心观察、认真分析、严谨论证、勇于探索的良好习惯和严谨的科学态度,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【背景分析】1、教材分析本节是高中数学新教材必修1第1章第1.3.1节第一课时,主要学习函数单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
他是高中数学中相当重要的一个基础知识点。
是高中数学中起着承上启下作用的核心知识之一.是函数概念的延续和拓展,又是后续研究指数函数、对数函数单调性的基础.在比较数的大小、解方程或不等式、求函数的值域或最值、函数的定性分析以及相关的数学综合问题中也有广泛的应用。
高中数学必修1《函数的单调性》教案
课题:函数的单调性教材:人教A版必修(1)【教学目标】(1)知识与技能:使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和定义判断、证明函数单调性的方法.(2)过程与方法:通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.(3)情感态度价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程.【教学重点】函数单调性定义的构建、判断及证明.【教学难点】单调性定义构建中从自然语言到符号语言的过渡.【教学方法】教师启发讲授,学生探究学习.【教学过程】一、创设情境,引入课题(播放中央电视台天气预报的音乐)假设下图为揭阳市今天晚上到明天24小时内的气温变化图,观察这张气温变化图,请一位同学上讲台来为我们在座的各位观众播报一下明天的天气情况。
意图:这一环节让学生通过身边熟悉的情景去感受数学就在大家身边,数学知识的起源和发展是自然的,问题虽然开放,但因切合学生的实际,不同程度的学生都能说一说,讲一讲,学生参与学习的热情和兴趣必然得到不同程度的激发。
课堂预设:学生应该能说到一天中什么时候气温最高,什么时候气温最低,一天的温差是多少,能说到从凌晨0点到4点气温越来越低,从4点到下午2点,气温越来越高,等等。
学生发言后,为了突出单调性的主题,教师强调从0点到4点图象整体程下降的趋势,即气温随时间的增大而减少,从4点到下午2点图象整体程上升的趋势,即气温随时间的增大而增大……在现实生活中,关注函数图象的这种变化趋势大到决策和投资,小到生活起居都有很大的帮助(引入函数单调性概念,板书)。
二、归纳探索,形成概念1.借助图象,直观感知问题1.观察函数xyxyxyxy1,,2,22==+-=+=的图象,四个函数图像从左往右各有什么变化趋势?你能用自变量x和函数值y描述这种趋势么?(1)(2)(3)课堂预设(1)图象整体上升,即在(,)-∞+∞上y随x的增大而增大;(2)图象整体下降,即在(,)-∞+∞上y随x的增大而减小;(3)在y轴左侧,图象整体下降,即在(,0)-∞上y随x的增大而减小;在y 轴右侧,图象整体上升,即在(0,)+∞上y随x的增大而增大;(4)在y轴左侧,图象整体下降,即在(,0)-∞上y随x的增大而减小;在y 轴右侧,图象整体下降,即在(0,)+∞上y随x的增大而减小。
函数的单调性教案(获奖)
函数的单调性教案(获奖)第一章:引言1.1 现实背景(1) 学生通过观察生活中的实例,如商品价格与销售量的关系,了解函数的单调性在实际问题中的应用。
(2) 引导学生思考:如何判断一个函数在其定义域内的单调性?1.2 知识准备(1) 回顾函数的定义及其图像表示。
(2) 复习导数的概念及其性质。
第二章:函数单调性的定义与性质2.1 函数单调性的定义(1) 介绍函数单调递增和单调递减的定义。
(2) 引导学生通过实例理解单调性的概念。
2.2 函数单调性的性质(1) 分析单调性在函数图像上的表现。
(2) 引导学生总结单调性的基本性质。
第三章:利用导数判断函数单调性3.1 导数与单调性的关系(1) 讲解导数在判断函数单调性方面的应用。
(2) 引导学生理解导数正负与函数单调性的关系。
3.2 利用导数判断函数单调性(1) 举例说明如何利用导数判断函数的单调性。
(2) 学生分组讨论,尝试自行判断给定函数的单调性。
第四章:单调性在实际问题中的应用4.1 实际问题建模(1) 引导学生将实际问题转化为函数单调性问题。
(2) 分析实际问题中函数单调性的应用。
4.2 求解最值问题(1) 讲解如何利用函数单调性求解最值问题。
(2) 学生练习求解具有单调性的最值问题。
第五章:总结与拓展5.1 课堂小结(1) 引导学生回顾本章所学内容,总结函数单调性的概念、性质及应用。
(2) 学生分享自己在实际问题中应用函数单调性的心得体会。
5.2 课后拓展(1) 布置课后习题,巩固函数单调性的相关知识。
(2) 鼓励学生探索函数单调性在其他领域的应用。
第六章:函数单调性的进一步探讨6.1 连续函数的单调性(1) 引入连续函数的概念,讨论连续函数的单调性。
(2) 引导学生理解连续函数单调性的重要性。
6.2 单调函数的图像特征(1) 分析单调函数图像的形状和位置。
(2) 学生通过绘制函数图像,加深对单调性的理解。
第七章:利用单调性解决实际问题7.1 最大值和最小值问题(1) 讲解如何利用单调性求解函数的最大值和最小值。
必修一《函数的单调性》教学设计
必修一《函数的单调性》教学设计第一篇:必修一《函数的单调性》教学设计必修一《函数的单调性》教学设计必修一《函数的单调性》教学设计本节课是北师大版必修1,§3《函数的单调性》新授课的微课程教学设计。
课程标准:通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义。
教学目标:1.理解函数单调性的定义,掌握其图象特征;2.能够根据函数的图象,读出函数的单调区间;3.会用定义法证明函数的单调性;4.能够判断抽象函数的单调性.教学重点:函数单调性的定义,及单调函数的图象特征。
教学难点:数形结合的数学思想方法在函数单调性中的应用。
教学过程:第1个环节:复习函数单调性的定义。
一般地,设函数f(x)的定义域内的一个区间A上:如果对于属于A内某个区间上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2).那么就说f(x)在这个区间上是增函数.如果对于属于A内某个区间上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2).那么就说f(x)在这个区间上是减函数.给出函数单调性的定义,强调定义中的“任意”二字,指出函数的单调性是一个整体的概念,在给定的区间内的所有的均要满足单调性的数学表达式。
【设计意图】对函数单调性的定义进行学习,特别是要领会定义中的“任意”二字。
第2个环节:单调函数的图象特征。
给出3个具体的例子,剖析函数单调性的图象特征。
然后给出一个函数的图象,读出单调递增和单调递减区间,将抽象的定义具体化。
在本环节,要重点突出的两个问题:(1)单调区间区间端点的“开”和“闭”的问题;因为函数的单调性是一个整体的概念,在区间端点讨论单调性是毫无意义的。
但是要注意,如果函数在区间端点处没有定义,则区间端点必须是“开”的,有定义则“可开可闭”。
(2)单调区间不能写成并集的形式。
两个集合的并集相当于是进行集合的运算,结果是一个集合,而显然函数在[0,4]∪[14,24]图象不是一直下降的,所以不能写成并集的形式。
函数单调性教案函数单调性教学设计(6篇)
函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。
《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。
把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。
从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。
从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。
函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。
【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性课题2.3.1函数的单调性授课类型新授课课时安排1课时教具多媒体、实物投影仪教学目标(1)了解单调函数、单调区间的概念;理解增函数、减函数的概念;掌握利用函数的单调性定义证明简单函数的单调性的基本方法(2)能用自已的语言表述概念;能根据函数的图象指出单调性、写出单调区间;能把文字描述、图像特征、数学语言结合起来准确地表述、判断、证明函数的单调性;学会利用函数的单调性解决诸如不等式、函数最值(值域)的问题(本节课只设置引导目标)(3)通过数形互助培养学生直观判断与严格证明相结合、形象与抽象相结合的思维习惯;渗透联系与变化的认识观教学重点函数的单调性(增函数、减函数)的概念教学难点对函数单调的定义中数学语言的准确理解和灵活运用教材开发点对函数的单调性的应用引导教材与学情函数的单调性是函数重要性质之一,也是今后研究函数时涉及最多的性质之一,如函数值域与最值、比较大小与解不等式、函数图像等问题均与函数的单调性相关;同时函数的单调性也是高考考查的重点内容。
学生在初中学过一次函数、正比例函数、反比例函数、二次函数,已有一些具体函数的知识,在学生的现有认知结构中,一方面能用描点法画出简单函数的图像,另一面可以根据函数的图象观察出“图像上升(或下降)”、“随着自变量的增大函数值增大”等变化趋势,同时在此之前,刚刚学习抽象的函数概念,所以对函数的单调性的认识首先依赖于函数图象的直观性,然后才能逐步过渡抽象的数学语言理解层面。
本节课的教学应以函数的单调性的概念为主线设计材料、设计问题、设计活动,一方面设计几个比较性、思辨性好的问题,另一面要充分利用证明函数单调性的例题加深学生对单调性概念的准确(严谨性)理解。
考虑到学生将来还要学习导数的知识,函数单调性的判断会变得比较容易,因此,在教学中,应该适当减少用定义判断证明单调性的问题,注意引导学生主动地应用函数的单调性去解决问题。
教学过程一、复习引入:1.复习:我们在初中已经学习了函数图象的画法,也学习了一次函数、二次函数和反比例函数。
为了研究函数的性质,我们先分组画出下列函数的图像1第一组:一次函数①y = X 1,②y - _ — X亠12第二组:二次函数③y = X2,④y - -X2• 4x T第三组:反比例函数⑤y=3,⑥y二-§X X(学生快速画图,教师指导画图要点,挑选画得较成功的图像用实物投影仪展示,并用几何画板校正、确认。
引导学生观察图像上升或下降的特征)此外根据情况,可用几何画板作出更多的函数图象:女口y 二x3,y _ -x3 4x,2.弓I入:从函数y=x2的图象看到:图象在y轴的右侧部分是上升的,也就是说,当x在区间[0, +二)上取值时,随着x的增大, 相应的y值也随着增大,即自变量值大的对应的函数值大(自变量值小的对应的函数值小)这时我们就说函数 f (x) = x2在[0,+ ::)上是增函数图象在y轴的左侧部分是下降的,也就是说,当x在区间-::,0上取值时,随着x的增大,相应的y值反而随着减小,即即自变量值大的对应的函数值小(自变量值小的对应的函数值大)这时我们就说函数 f (x) = x2在(-::,0)上是减函数那么这样的变化特征在数学上是如何描述的呢?我们来看增函数、减函数的定义:二、讲解新课:1增函数与减函数般地,设函数f(x)的定义域为I :定义:如果对于属于定义域I内某个区间上的任意两个自变量的值x—,x2,⑴若当x—<x2时,都有f(X—)<f(X2),那么就说f(x)在这个区间上是增函数(图2-9(1));⑵若当X—V X2 时,都有f(X1)>f(X2),那么就说f(x)在这个区间上是减函数(图2-9(2)).Q说明:函数是增函数还是减函数,是对定义域内某个区间而言的2.单调性与单调区间若函数y=f(x)在某个区间是增函数或减函数,则就说函数f(x)在这一区间具有(严格的)单调性,这一区间叫做函数 f (x)的单调区间.此时也说函数是这一区间上的单调函数.在单调区间上,增函数的图象是上升的,减函数的图象是下降的说明:除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“f(X i) < f(X2)或f (xj > f(X2 ), ” 改为“ f(X i)乞f(X2)或f(X i)-f(X2),” 即可;急转弯:(教师引导提问,学生抢答、纠正、辩论)1对开始画出的图像分别直观地指出其单调性2定义辨析:已知函数f X在区间1.0,51上有意义,下列命题中真命题有(1)如果f 1 < f 2,那么函数f X在区间0,51上是增函数;⑵如果函数f X在区间1-0,51上是增函数,那么 f 1 :::f 2 ;⑶如果函数f X在区间1.0,51上是增函数,那么 f 1 :::f 8 ;⑷如果f 5 < f 4 ::: f 3 ::: f 2 :::f 1 :::f 0 ,那么函数f X在区间1.0,51 上是减函数;⑸如果函数f x在区间1.0,51上是单调函数且f 3 :::f 2,那么函数f x在区间0,5 1上是减函数;⑹如果函数f x在区间〔0,5〕上是增函数,那么当x 1-0,5 1时,函数f x的最大值是f 5,最小值是f 0 ;三、讲解例题:例1如图6是定义在闭区间[-5 , 5]上的函数y二f(x)的图象,根据图象说出y二f(X)的单调区间,以及在每一单调区间上,函数y = f (x)是增函数还是减函数.XJ/ - -2©£-10解:函数y 二f(x)的单调区间有[-5,-2),[-2,1),[1,3),[3,5],其中y 二f (x)在区间[-5,-2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数.说明:函数的单调性是对某个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题;本例中的区间可开可闭,以后涉及定义域或者端点取值的问题时可根据情况有意地选择开闭例2证明函数f (x) =3x 2在R上是增函数.(略讲或不讲)证明:设X1,X2是R上的任意两个实数,且X1<X2,贝Uf(X1)—f(X2)=(3 X1 +2)-(3 X2 +2)=3( x - X2),由X1 < X2 X,得X1 —X2 <0 ,于是f(xj —f (X2)<0,即f (xj < f (X2).••• f(x) =3x 2在R上是增函数.1例3证明函数f(x) 在(0,+ ::)上是减函数.x证明:设X1, X2是(0,+二)上的任意两个实数,且X1<X2,1 1 X2 X1贝y f (x1) —f (x2)= —= ,X1X2X1X2由X1,X2 € (0,+ ::),得X1 X2 >0,又由x1< x2,得x2- x1>0 ,于是f (x1) - f (x2) >0,即f (x1) > f (x2)1 —f(x) 在(0,+ ::)上是减函数.(教师板书上述过程)x例4• (1)试判断函数f X - -X2• 2x在区间-::,1上是增函数还是减函数,证明你的结论•(2)当x:= 12,4时,求函数f x - -X2■ 2x的最大值和最小值(3)当x 1-3,3]时,求函数f x =-X 2x的最大值和最小值解:⑴因为函数图像是开口向下的抛物线,对称轴x=1,所以函数在区间-二,1上是增函数(如图)。
证明如下:设X1, X2 三〔•二,1 且X1 :::X2f(X1)- f (X2)2 2= (-X1 2X J-(-X22X2)=X2 - X1 X2 X1 2 X1 - X2=X2 -人X2 X1 -2又%,X2 三i ,1 即X1 ::1,X2 ::1, • X2 X1 -2 :: 0由此可知:f(X1)- f(X2):: 0所以,函数在区间-二,1上是增函数(教师板书上述过程)⑵因为,函数图像是开口向下的抛物线,对称轴x=1 ,所以,函数在区间12,4 1上是减函数,函数的最大值是f 2 =0,函数的最小值是f 4]=-8(3)由图可知,函数在区间1-3,11上是增函数,在区间1,3上是减函数所以,函数的最大值是f 1 =1,最小值是f -3 - -15以上(2)、(3)可通过引导让学生解决四、练习:1:课本练习:1,21见教材图像,提问完成; 2 略;3学生独立完成,个别展示;4学生独立完成,个别展示.五、小结说明:由学生甲、乙、丙叙述本节主要内容,教师最后确认,特别说明以下几点1讨论函数的单调性必须在定义域内进行,也就是说,函数的单调区间是其定义域的子集,因此讨论函数的单调性,必须先确定函数的定义域;2要了解函数在某一区间是否具有单调性,从图象上进行观察是一种常用而又直观的方法,如果需要,可以根据增(减)函数的定义进行证明。
通过观察图象,对函数是否具有某种性质,作出猜想,然后通过推理的办法,证明这种猜想的正确性,是发现和解决问题的一种常用数学方法;3根据定义证明函数单调性的一般步骤是:⑴设X1,X2是给定区间内的任意两个值,且X1<X2 ;⑵作差f(xj —f(x2),并将此差式变形;⑶判断f (xj —f(X2)的正负(注意符号判断要到位);⑷根据f (xj —f (X2)的符号确定其增减性•六、课后作业:课本习题2.3: 1,2,3课后整理思考:1函数的单调性主要是指什么?2函数的单调性如何判断、确认?3函数的单调性可以用来解决什么问题?4讨论函数f(x)二x2 -2ax • 3在1-2,2 1 上的单调性以及最大值、最小值 .七、板书设计(图像以及部分文字材料由投影仪呈示)。