酶法降解蔗渣制备低聚木糖酶解特性的

酶法降解蔗渣制备低聚木糖酶解特性的
酶法降解蔗渣制备低聚木糖酶解特性的

酶的特性综述

酶的特性综述 酶通常是指由活细胞产生的、具有催化活性的生物大分子,大多数酶是蛋白质,少数是RNA,另有一些需要辅助因子的辅助。酶的特性主要体现在这几个方面: 一、高效性 1、酶的高效性是和非酶的催化剂比较而言。主要是指催化能力,蛋白质(环境适宜)的催 化能力是普通化学催化物质的10^5—10^8倍。生物分子之间的反应首先要进行分子碰撞接触,如果在没有酶作用的情况下,分子主要靠自然的热运动来随机进行接触,这样的几率比较小,而在酶的作用下,由于酶和作用底物有特异性结合位点,相当于把反应需要的分子给拉到一起去了,所以这样的效率要高很多。 2、酶的高效性实验探究 材料: 新鲜猪肝研磨液(含有H2O2酶)、3%的FeCl3溶液(催化过氧化氢分解的化学催化剂)、清水、试管5支、试管架、酒精炉、线香、打火机、量筒 步骤: 1、在5支试管中分别加入5mLH2O2溶液,依次编号置于试管架上。 2、在1号试管中加入一定量的清水;2号试管中加入与清水等量的新鲜猪肝研磨液;3号试管中加入等量的3%的FeCl3溶液;4号试管中加入经过高温煮过的等量的新鲜猪肝研磨液;5号试管中加入高温煮过的FeCl3溶液。 3、用点燃但无火焰的线香插入试管检验。 现象: 氧气量效果 1号:—无催化作用 2号:﹢﹢高效催化 3号:﹢低效催化 4号:—无催化作用 5号:﹢低效催化 结论:过氧化氢酶比FeCl3催化剂高效。酶具有高效性。

二、专一性 酶对所作用的底物有严格的选择性。一种酶仅能作用于一种物质,或一类分子结构相似的物质,促其进行一定的化学反应,产生一定的反应产物,这种选择性作用称为酶的专一性。 酶的专一性是指酶对底物及其催化反应的严格选择性。通常酶只能催化一种化学反应或一类相似的反应,不同的酶具有不同程度的专一性,酶的专一性可分为三种类型:绝对专一性、相对专一性、立体专一性;也可分为:结构专一性和立体异构专一性。 如过氧化碳氢酶只能催化过氧化氢分解,不能催化其他化学反应。细胞代谢能够有条不乱的进行,与酶的专一性是分不开的。 探究酶的专一性的实验 序 号 项目 试管 1 2 1 注入可溶性淀粉2mL / 2 注入蔗糖溶液/ 2mL 3 注入新鲜淀粉酶溶液2mL 振荡 4 60℃温水保温 5 min 5 加斐林试剂1mL 振荡 6 将试管下部放入60℃热水 中 2 min 7 观察实验结果有砖红色沉淀无砖红色沉淀结 论 淀粉酶只能催化淀粉水解,不能催化蔗糖水解 三、多样性 酶的种类很多,大约有5000多种,其中可以通过食用补充的酵素达2000多种;形态上主要有三种:专业级酵素为酵素胶囊,其次为酵素粉,而液体酵素含量低、效价低、易腐败而安全性较差一些,食用风险较高。 四、温和性

玉米芯酶法生产低聚木糖

玉米芯酶法生产低聚木糖 功能性低聚糖是日本七十年代研制八十年代开始工业化生产,并在保健食品中广泛使用的一类功能性食品添加剂。日本已投入工业化生产的低聚糖有10余种,总产量达4万多吨。我国从八十年代末开始对功能性低聚糖进行研究,低聚异麦芽糖和低聚果糖也相继投入了工业化生产。但是,我国投入工业化生产的功能性低聚糖的品种还比较少,还没有能耐酸、耐热和适合特殊人群如糖尿病、高血脂等患者食品要求的功能性低聚糖面市。 1、产品简介 与其它低聚糖相比低聚木糖具有以下特点:(1)有效用量少。低聚木糖是目前达到显著双歧杆菌增殖效果有效用量最少的功能性低聚糖。经试验: 每天口服0.7g, 两周后大肠双歧杆菌的比例从8.9%增加到 17.9%;每天口服1.4g, 一周后大肠双歧杆菌的比例从9%增加到33%。(2)耐酸和耐热。低聚木糖在pH2.5-8.0的范围内相当稳定, 100℃加热1小时, 几乎不分解。(3)普通纯度产品能应用于糖尿病和高血脂等患者的食品中。低聚木糖的伴随成分为木糖, 木糖也是不被消化的单糖,糖尿病和高血脂等患者可以食用。 2、生产技术 低聚木糖的生产原料为玉米芯、蔗渣、棉子壳等农副产物,其中玉米芯为最佳原料。玉米芯酶法生产低聚木糖生产流程如下。 原料(玉米芯)→木聚糖提取→提取液→精制→酶降解→

粗产品→精制→浓缩→低聚木糖产品。 该生产技术于2006年获得国家发明专利授权。专利号:CN200410013840.8。该专利于2009年获得江苏省专利金奖和中国专利优秀奖。 3、产品形式及得率 产品有70 糖浆、90糖浆、70 粉末、90 粉和35粉末等形式。这些产品已获准应用于各种饮料、巧克力、调味料(醋)等保健食品和一些功能饲料中。 每8吨玉米芯粒可制成1吨以上固形物为70%以上,低聚木糖含量为70%(对总糖)的糖浆产品。 4、投资 年产300吨低聚木糖生产线需生产厂房:2000-3000M2、蒸汽:5吨/小时、电力:200KW。设备投资1000万元。

酶的特性

《酶的特性》说课稿 各位老师:大家好!今天我说课的内容是《酶的特性》。 《酶的特性》是高中生物必修1第5章第1节《降低化学反应活化能的酶》第2课时的内容,本课时通过设计探究实验,进一步理解酶的三大特性,不仅巩固了第1课时酶的作用与本质的内容,也为后面学习ATP的合成与分解、光合作用、细胞呼吸等重要内容奠定了坚实的基础,因此,本节课在教材中起到了承上启下的作用。 本节课的教学对象是高一年级的学生,他们对酶已经有了一定的理论认识,但如何通过设计实验更深入的认识酶,还存在一定的障碍。由此,我制定了以下教学目标: 1、在知识方面:希望通过本节课的学习,使学生能够总结出酶的特性及影响酶促反应的条件,并能分析和应用。 2、能力目标:主要是通过进行有关的实验探究,使学生能够掌握控制变量的方法。 3、情感态度和价值观目标同时,学生能够亲身体会科学发现过程,领悟科学研究方法,培养了他们崇尚科学的态度和实事求是的精神。

明确了教学目标,不难得出本节的重难点。新课标要求学生的学习要注重与现实生活的联系,而酶的特性又与生活息息相关,因此我将酶特性的探究定为本节课的重点。课程标准同时倡导探究性学习,培养学生分析问题解决问题的能力,因此这就需要学生具有严格缜密的思维,但是这对高一学生来说还是比较困难的,因此,我将实验中如何控制变量作为本节的难点。 为了讲清教材的重难点,使学生能够达到本节内容设定的教学目标,我再说说教法: 我们都知道生物是一门培养人的实践能力的重要学科。在教学过程中,不仅要使学生“知其然,还要使学生知其所以然”。因此,我将采用以下教学方法来展开教学: 1活动探究法:在我的指导下,学生主动做实验探究酶的特性,亲身体会科学发现过程,领悟科学探究方法。 2集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生团结合作的精神。 我们常说:“现代的文盲不是不懂字的人,而是没有掌握学习方法的人。”因而,我在教学过程中特别重视学法的指导,让学生转变,即:从“学会”向“会学”转变,成为真正的学习的主人。本节课将采用自主、合作、探究的学习方式来培养学生合作意识创新意识。学生先

阿托伐他汀酶法生产工艺

阿托伐他汀酶法生产工艺 本生物法制备阿托伐他汀原料药,为目前国内最新工艺,仅有两家运用,一家为生产,另一家处于中试阶段。可直接购买A6或A5开始,国内A6或A5已经规模生产,因此成本较自己再合成成本更低。三种酶在国内苏州汉酶有限公司有商品出售,酶代号为供应商代号,若进行战略合作,则全程技术服务可与之深谈。 ATS-6生产工序 一.配比 ATS-5 146.6kG 苯乙烯212.5L (在冷库存放)温度高会聚合 THF 173+104kg 二异丙胺381kg 乙酸叔丁酯406kg 甲基叔丁基醚170+920+1900kg 金属锂26kg 15%盐酸1900+(150-360)L 碳酸氢钠0.5kg 水450+260 ATS-7酶法工艺 一.配比

1.碳酸钠 50kg 2.纯化水 400+400+20L 3.三乙醇胺 8kg 4.15%盐酸适量 5.硅藻土 40kg 6.活性炭 60kg 7.乙酸乙酯 800+400+400+400L 8.饱和盐水 200+200 9.ATS-6 250-300kg(相对146kgATS-5) 10.酶YK 260*1/催化率*0.8 11.酶YM 260*1/催化率*0.9 12.酶YN 260*1/催化率*0.9 ATS-8制备工艺 一.配比 1.ATS-7 一整批(240-280) 2.甲苯 330+460+900L 3.丙烷 260kg 4.甲基磺酸 1.35-2.7L 5.碳酸氢钠 3.3kg 6.水 320+400+400 7.己烷 750L

ATS-8一精 一.配比 1.ATS-8粗品 4批约620-880kg 2.己烷 1400-1500L 3.乙醇 -1 160kg(套用母液加40-80kg) 4.活性炭 9kg 5.己烷乙醇混合液 20L(3:1) ATS-8二精 一.配比 1.AT S-8一精物一整批约600kg 2.己烷-1 1000-1100L 3.乙醇-1 60-120kg 4.乙醇-2 20kg 5.己烷-2 20L 套用母液总收率可以达到100%,按以上投料量月正常生产可以产出9t成品;二异丙胺,乙酸叔丁酯,甲基叔丁基醚可以上塔回收,乙酸乙酯,甲苯,己烷可以套用。 卢红生 2014年3月2日

酶法合成阿莫西林原理

酶法合成阿莫西林介绍 β-内酰胺抗生素经过多年的发展,己成为抗生素中的最主要类型之一。由于具有良好的抗菌效力,较低的毒副作用,在临床上广泛应用,其发展非常迅速。现全世界耗用量已过万吨,预计今后还会增长。其中,青霉素和头孢菌素为最重要的两大类β-内酰胺抗生素。酶法合成技术始于20世纪60年代末70年代初,经过30多年的发展,现在酶缩合反应技术、产品分离以及固定化酶技术等方面取得很大的发展,配套技术日益完善,具备了大规模工业化生产的条件。全球著名的β-内酰胺抗生素生产厂家如荷兰DSM公司已有酶法合成的商品头孢氨苄、阿莫西林等产品面世。由于酶法应用于β-内酰胺抗生素合成,不仅可减少反应步骤,而且还可减少废弃物的产生,有利于保护环境,降低生产成本,产品质量优异,所含杂质极少。因此,21世纪β-内酰胺抗生素的酶法合成将是发展的必然趋势。我国酶法合成研究起步并不晚,但至今仍未形成大规模工业化生产,与国外先进厂家差距较大。随着我国经济快速发展,人们对自身居住环境的要求,政府对环保的重视,政府和越来越多的企业加大“绿色化学制药”的研究开发,特别是加快工业化生产的推进进程。 酶法产品主要有三大特点: 一是产品含量稳定、变化小,可降低制剂在有效期内的检测风险,并且杂质低,降解速度慢,对制剂的安全性,尤其是特殊制剂的稳定性尤为重要。 二是酶法产品生产批量能够达到化学法产品的2~3倍,这既能够大幅度节省制剂生产商的检验成本,粗略估算原料检测成本能够节约人民币9元/kg;同时,也便于物流、仓储和生产管理。 三是酶法产品是通过生物酶一步到位生产而得,以纯净水为介质,不使用传统化学工艺中的特殊化工原料,有机溶剂的使用量大幅度减少90%,废水排放减少80%,品质更纯净。 1 青霉素酰化酶的发展 青霉素酰化酶是从微生物或其代谢产物中发现的一类具有特定活性的蛋白质。能够产生青霉素酰化酶的微生物广泛分布于细菌、放线菌、真菌和酵母中,如:醋酸杆菌、假单胞菌、粪产碱菌、黄单胞菌、产气单胞菌、大肠杆菌、芽孢杆菌、枝状杆菌、克氏梭菌( Kluyvera) 等,其中常用的有巴氏醋酸杆菌、粪产碱

多酚氧化酶特性研究

多酚氧化酶特性研究 摘要: 采用分光光度法, 对板栗仁多酚氧化酶( PPO) 的催化特性、最适波长、最适反应时间、最适温度、最适pH 值、热稳定性等性质进行了研究, 同时研究了Vc、EDTA、NaCl、柠檬酸4种添加剂对板栗仁多酚氧化酶活性的影响。结果表明: 板栗仁多酚氧化酶催化氧化产物的最大吸收波长为410nm, 最佳反应时间为3min, 最适反应温度为30℃ , 最适pH 值为6. 0, 米氏常数Km = 0.0694mo l/L, Vmax = 3.918OD/min。95℃水浴处理5min该酶已基本失活, 其中V c和EDTA对板栗仁多酚氧化酶酶促褐变有很好的抑制效果。 关键词: 板栗; 多酚氧化酶; 褐变; 抑制多酚氧化酶( Polyphenolox idase, PPO ) 是由核基因编码的铜金属酶, 其酶促褐变机制是: 内源性酚类物质在多酚氧化酶的催化下氧化生成醌, 醌再相互作用生成高分子聚合物, 从而导致褐色素的生成。它能催化两类不同的反应, 可以使一元酚羟基化, 生成相应的邻二羟基化合物;也可以氧化邻苯二酚生成醌[ 1]。而酚类物质是果疏组织褐变的物质基础, 不同植物、同一植物的不同组织, 同一植物的不同品种、生长环境以及不同的发育期, 其褐变的主要酚类物质均有所不同, 导致酶褐变活性也有所差异。云南富产板栗, 但对板栗仁PPO 的活性及影响活性因素的研究则未见报道。1材料与方法 1.1材料 板栗市场购外观良好, 无病虫害, 无机械损伤新鲜的云南板栗。 1.2试剂与仪器 主要试剂: 聚乙烯吡咯烷酮( PVPP)、邻苯二酚、乙酸钠、冰乙酸、磷酸氢二钠、磷酸二氢钠、甲醇、乙醛、盐酸、维生素C ( V c)、EDTA、柠檬酸、氯化钠等, 均为国产分析纯。 主要试验仪器: TGL - 16G 高速台式冷冻离心机、722W 型分光光度计、HH - 4型数显恒温水浴锅、冰箱等。 1.3试验方法 1.3.1粗酶液的制备 酶液提取参照文献[ 2] 的方法, 有所改进。称150g 冷冻鲜样, 加入PH 值6.0 的0.05mol /L冷冻磷酸缓冲液150mL 和15gPVPP, 打浆, 过滤, 于3℃下12000r /min 离心15min, 取上清液置于0~ 4℃保存备用。 1.3.2褐变度( BD) 的检测 称5g 样品加入15mL 蒸馏水中研磨, 离心( 14000r/min、15min)。沉淀溶于15mL 甲醇甲酸溶液(体积比1:1), 充分浸提15min 后离心。 将两次所得上清液混匀后用蒸水定容为25mL, 离心, 取上清液检测410nm 下的吸光值An ×10 表示。 1.3.3总酚( TP) 的提取和含量检测 称取5g 样品, 加入15mL 乙醛- 盐酸溶液( pH3.0) 研磨, 在恒温水浴中震荡1h, 取出离心15000r /min, 30min, 量取滤液体积, 吸取5mL, 用蒸水定容到50mL, 测定A 值, 用邻苯二酚做标准曲线。 1.3.4酶活性的测定 取2mL 0.2mol/L 邻苯二酚溶液和2mL一定pH值的磷酸缓冲溶液加入到试管中, 然后加入0.5ml的粗酶液, 水浴保温3min后立即倒人比色管中, 在410nm波长处测定反应混合液的吸光值变化(△A), 每30s读数1次, 共记录3min。空白用

一步酶法生产 7-ACA

一步酶法生产7-ACA的优点 7-氨基头孢烷酸(7-ACA)是生产头孢菌素类抗生素的重要母核,头孢菌素分子中由于都含有β-内酰胺结构。它能抑制肽转肽酶所催化的转肽反应,使线性高聚物不能交联成网状结构,抑制粘肽的台成,从而阻止细胞壁的形成,导致细胞的死亡。 目前7-ACA生产采用新型酶法工艺,国内已成功开发出新型酶法7-ACA生产技术,打破国外对一步酶法生产7-ACA 技术的垄断。而目前国内的生产厂家采用的双酶大多数是从国外进口的,成本与化学法不相上下。通过本项目技术的使用大大降低7-ACA的成本,从而获得成本优势。新型酶法较好解决了旧酶法技术生产7-ACA在质量、色泽上劣于化学法的问题,同时在生产上的使用批次也大幅度增加,从而也降低了生产成本。 7-ACA和头孢菌素的合成工艺主要有化学法和酶法两种。化学半合成技术主要包括酰氯法和混酐法,化学法合成存在着活化、缩合、保护和去保护的过程;合成过程长、步骤多反应条件苛刻产生大量的三废等弊端,而酶法合成工艺与化学法相比,由于具有许多优点,如:生产工艺简单,周期短;反应条件温和,pH接近中性;高度的区域和立体选择性以及无需保护和去保护过程,割除了化学合成中所需的毒害物质;劳动环境得到改善,减少了三废的排放。因此,用

酶法实现7-ACA及头孢菌素的半合成体现了绿色环保工艺的各种优势。

一步酶法和两步酶法制备7-ACA优势对比分析 对比项一步酶法(CPCA)两步酶法(DAO 与GAC)生物酶NRB—103 D—氨基酸氧化酶 GL—7ACA酰化酶 设备投资减少30% 较大 操作步骤4步6步 操作周期每批90min 每批150min 同等设备条件产量增大一倍较小 7-ACA转化率/% ≥95 ≥93 收率/% 46—50 44—45 7-ACA含量/% ≥98.5 ≥97 技术安全特性优优 技术环保特性优优 技术发展空间非常大有 优点高转化率,高纯度,高经济性,环境保 护。生产成本低, 减少有机溶媒用量,利于环保。 缺点转化率低,酶解路线长、氧化条件 控制难度大、设备条件高。 一步酶法工艺技术指标: 底物浓度:2.0-3.0% 转化率:不低于98% 得率:不低于95% 反应时间: 90 分钟 固定化头孢菌素酰化酶( immoblized CPC acylase) 酶活:80-100U/g 使用寿命:100 次

酶的特性

酶的特性 第2节一.教材版本及章节普通高中课程标准实验教科书《分子与细胞(必修1)》(人教版)第五章第一节第二部分。二.内容分析酶是生物新陈代谢过程中的重要物质,是多项生物化学反应的联系纽带。光合作用和细胞呼吸这两个过程由许许多多的生物化学反应组成,这些反应都需要酶的参与。因此,本节内容即酶的三个特性是本章的基础。即酶的高效性、酶的专一性及酶的作用条件较温和。本节的“科学·技术·社会”,通过多个侧面,体现出酶与人类社会生活的密切关系。课时安排:一课时三.教学目标①知识目标理解酶的特性;理解酶特性的实质和意义;②能力目标通过多种方式的教学活动,对学生进行思维能力、语言表达能力、分析和实验操作能力以及用学到的生物学知识解决某些实际问题能力的培养;③情感、态度、价值观目标通过参与酶的特性的实践,使学生体验设计对照实验的科学思想,促进质疑、求实、实践的科学精神和科学态度的养成,通过探讨、交流,促进探索、创新、合作精神的养成。四.教学重点酶的特性和实质及影响酶活性的条件的探究方法。五.教学难点组织学生设计,实践,主动探究酶的特性,分析实验结果,准确描述影响

酶活性的各种因素。六.多媒体及实验器材电脑、投影仪、视频展示仪、powerpoint课件;试管、滴管、试管架、火柴、卫生香、酒精灯、试管夹、小烧杯、大烧杯、三脚架、石棉网、温度计、玻璃棒、ph试纸、新鲜的质量分数为20%的肝脏研磨液、稀释200倍的新鲜唾液溶液、新配制的体积分数为3%的过氧化氢溶液、质量分数为3%的可溶性淀粉溶液、质量分数3%的蔗糖溶液、质量分数为5%的盐酸、质量分数为5%的naoh溶液、蒸馏水、热水、冰快、碘液、斐林试剂。各代表展示实验结果 教师提问,适当补充 学生归纳总结,反馈练习 结束 开始 新课导入 酶的特性 分组设计实验方案 回忆推理 教师指导 各代表组介绍实验方案

酶法加工麦芽糊精生产工艺

酶法加工麦芽糊精生产工艺 中国食品添加剂和配料协会尤新 概述 麦芽糊精的生产工艺大致可分为3种:酸法工艺、酶法工艺、酸酶法工艺。目前,酸法工艺已基本被淘汰,国内外生产麦芽糊精均采用酶法工艺。酶法产品聚合度在1—6的产物的水解率比值均在2以上,产品透明度高,溶解性强,室温储存不变浑浊。 利用α-淀粉酶对于淀粉的催化水解具有高度的专一性,即只能按照一定的方式水解一定种类和一定部位的葡萄糖苷键,仅水解淀粉,不分解蛋白质、纤维素等。因此,麦芽糊精是以玉米、大米等粗粮直接投料(不是以精制淀粉为原料),经酶法控制部分水解、脱色提纯、真空浓缩、喷雾干燥而成。 为了便于叙述,在此以大米作原料为例,并按优级品质生产工艺说明。 麦芽糊精系列产品的生产按酶法工艺要求可分为6个工序:原料预处理、液化、过滤、浓缩、干燥、包装等。 1原料预处理工序 预处理包括计量投料、热水浸泡、淘洗杂质、粉碎磨浆4个内容,计量投料是为了保证投料准确,便于操作和管理。热水浸泡可使水分渗透到米的内部组织,促进米粒组织膨胀软化,便于淘洗和粉碎。淘洗是为了除去米糠和其他杂质,保障食品卫生和产品质量。粉碎磨浆是为了保证淀粉粒的细度和粉浆的流动性能,使淀粉易于糊化,并为酶能均匀地水解淀粉创造良好的条件。 大米预处理工序技术要求如下: 浸洗后的米,应该色白无米糠,无酸败味,米粒用两手指轻捏即成粉末状。 粉浆细度,60目以上粉粒应占80%以上,手感无粗粒,不允许在粉浆中混有米粒。 粉浆浓度控制在22—24°Bé,1t米磨成的粉浆相当于2.2m3左右。 粉浆不发酵,pH不低于5.2。 淘洗去杂

一般淘洗米采用机械淘洗,通常用压缩空气来翻动淘洗,在特制的洗米罐中进行。 淘洗操作时,将米按规定量送到洗米罐,放入清水,待水浸没米层后,通入压缩空气,利用空气冲击使米粒在水中翻动和相互摩擦,把附着于米粒上的米糠和杂质洗掉,悬浮物从溢流口溢出。当悬浮物基本溢净,可关闭进水阀和空气阀,放出米泔水。如此反复洗米2—3次,可使米粒洗净。 热水浸泡 热水浸泡的目的是为了加快吸收水分,促进米粒组织软化。米粒吸水程度和下列因素有关。 (1)与米粒吸水和浸米时间有关。一般说来,浸泡时间不能少于2h,否则米粒中心部分的水分浸入不足,这样就不利于米的粉碎和糊化。 (2)米粒吸水程度还决定于米的品质。非糯性米要相对延长浸泡时间。 (3)米粒吸水还和浸泡水温度有关。提高水温可加速米粒吸水,缩短浸泡时间。在冬季,浸泡水可利用生产中冷却水代替冷水,但水温不宜高于45℃,若再提高温度,会使米粒表面糊化,淀粉流失。 在浸泡过程中还要注意米粒发酵情况,虽浸泡2h不会很快受到微生物侵入而发酵。若在洗米时没有将米糠洗净,往往也会引起米粒发酵,如此将米磨成粉浆后,会造成液化中途pH下降,致使发生液化困难。凡发酵米粒必须要重新洗米才能粉碎。 米粒和粉浆发酵经常发生在夏秋高温季节,在此期间生产,更应重视环境卫生和设备清洗消毒工作,以减少微生物污染机会。 粉碎磨浆 将米粉碎磨成粉浆,要注意细度和浓度两个质量要求。 粉浆细度影响着液化程度和过滤速度。从糊化角度考虑,粒度细的粉浆溶解性好,容易糊化。从过滤性看,粉浆太细,则不利于过滤。根据工业化规模生产结果表明,粉浆细度以70目为宜,这样液化性和过滤性均好。 粉浆浓度关系到糊化液的流动性和蒸发量,粉浆浓度低,黏度小,流动性好,容易糊化,有利于加热和过滤。但降低液化浓度,增加了蒸发负荷,经济上不合算。高浓度粉浆则流动性差,且糊化困难。所以,粉浆最适宜浓度应在22—24°Bé。 砂盘磨工艺操作 开车:接通电源,先空载运转1—2min,检查有无异常振动和噪音,再调节上下磨盘间距到发出有轻微的摩擦声止。

脂肪酶特性与应用

饲料研究FEED RESEARCH NO .6,2011 5 脂肪酶特性与应用 陈倩婷广州博仕奥集团 饲料资源不足一直是我国养殖业面临的一个大问题,在耕地和水资源严重紧缺的情况下,粮食产量很难提高。我国动物生产中饲料转化率低,猪、鸡和奶牛等的饲料转化率均比国际先进水平低0.3 %~0.6 %,使饲料资源不足的问题更加严峻。饲料用酶制剂的开发和应用极大的缓解了饲料资源的不足,酶制剂在饲料工业中的有效应用使得饲料工业和养殖业安全、高效、环保和可持续发展成为可能。 目前研究较多的饲用酶制剂有蛋白酶、甘露聚糖酶、β-葡聚糖酶、木聚糖酶、纤维素酶及植酸酶等。脂肪酶也是一种重要的酶制剂,它能够水解脂肪(三脂酰甘油或三酰甘油)为一酰甘油、二酰甘油和游离脂肪酸,最终产物是甘油和脂肪酸。 产物脂肪酸为动物体生长和繁殖提供能量,部分中链脂肪酸能抑制肠道有害微生物,改善肠道菌落环境,从而促进消化,起到类似抗生素的作用,脂肪酶在常温常压下反应,反应条件温和,转化率高,具有优良的立体选择性,不易产生副产物,避免因化学催化法而带来的有害物质,不会造成环境污染,因此,在食品、皮革、医药、饲料和洗涤剂等许多工业领域中均有广泛的应用。 1 脂肪酶的特性 1.1 脂肪酶的来源 脂肪酶按其来源主要分为3类:1)动物源性脂肪酶,如:猪和牛等胰脂肪酶提取物;2)植物源脂肪酶,如:蓖麻籽和油菜等;3)微生物源性脂肪酶。由于微生物种类多、繁殖快且易发生遗传变异,具有比动植物更广的作用pH、作用温度范围及底物专一性,且微生物来源的脂肪酶一般都是分泌性的胞外酶,所以,微生物脂肪酶是主要的研究对象。产微生物脂肪酶菌种的研究主要集中在真 菌包括,根霉、黑曲霉、镰孢霉、红曲霉、黄曲霉、毛霉、犁头霉、须霉、白地霉、核盘菌、青霉和木霉;其次是细菌,如:假单胞菌、枯草芽抱杆菌、大肠杆菌工程菌、无色杆菌、小球菌、发光杆菌、黏质赛氏杆菌、无色杆菌、非极端细菌和洋葱伯克霍尔德菌等;另外还有解酯假丝酵母和放线菌。1.2 特性1.2.1 催化特性 脂肪酶不同活性的发挥依赖于反应体系的特点,在油水界面促进酯水解,而在有机相中可以酶促合成和酯交换。其催化特性在于:在油水界面上其催化活力最大,溶于水的酶作用于不溶于水的底物,对均匀分散的或水溶性底物不作用,反应在2个彼此分离的完全不同的相的界面上进行。Macrae 等研究表明:在油水界面上油脂量决定脂肪酶活性,增加乳化剂量,可提高油水界面饱和度,从而提高脂肪酶活性,增加油水界面面积,可承载更多脂肪酶分子,也可增加催化反应速率。而在水体系中,大多数脂肪酶活性很低或没有活性。 由于脂肪酶在非均相体系中表现出的高催化活性,且在酶催化反应中不需要辅酶,所以可利用非水相中的脂肪酶催化完成各种有机合成及油脂改性反应,如:酯化、酸解、醇解、转酯、羟基化、甲基化、环氧化、氨解、酰基化、开环反应和聚合等反应。 1.2.2 底物特异性 不同来源脂肪酶对底物不同碳链长度和饱和度脂肪酸表现出不同反应性,圆弧青霉和金黄色葡萄球菌脂肪酶水解短链(低于C 8)脂肪酸所形成的三脂酰甘油,黑曲霉和根霉对中等长链(C 8~C 12)脂肪酸形成的三脂酰甘油有强烈特异性,猪葡萄球菌脂肪酶偏爱磷脂为底物,也可以水解脂肪酸链长短不一的各种油脂。解脂无色杆菌对饱和脂肪酸表现出 收稿日期:2011 - 05 - 09

酶法生产HT

Short Communication Enzymatic routes for the production of mono-and di-glucosylated derivatives of hydroxytyrosol Antonio Trincone,Eduardo Pagnotta,Annabella Tramice ? Istituto di Chimica Biomolecolare,Consiglio Nazionale delle Ricerche,Via Campi Flegrei 34,80072Pozzuoli,Naples,Italy a r t i c l e i n f o Article history: Received 30August 2011 Received in revised form 20October 2011Accepted 21October 2011 Available online 30October 2011Keywords:a -Glucosidase Aplysia fasciata Transglycosylation Hydroxytyrosol Biocatalysis a b s t r a c t In this work,a new eco-friendly procedure for the synthesis of hydroxytyrosol and tyrosol a -glycosidic derivatives was proposed by using the marine a -glucosidase from Aplysia fasciata ,and a commercial tyrosinase from mushroom for the bioconversion of tyrosol glycosidic derivatives into the corresponding hydroxytyrosol products.New hydroxytyrosol mono-and di-saccharide derivatives were synthesized at ?nal concentrations of 9.35and 10.8g/l of reaction,respectively,and their antioxidant activity was evaluated by DPPH test.The best antioxidant agent resulted the (3,4-dihydroxyphenyl)ethyl-a -D -gluco-pyranoside;it showed a radical scavenging activity similar to that of the hydroxytyrosol,together with an increased hydrosolubility.This molecule could be a good response to many food industry demands,always in search of cheap antioxidants with nutritional properties to improve the nutritional value and the quality of foods. ó2011Elsevier Ltd.All rights reserved. 1.Introduction Olive biophenols have attracted the attention of food and phar-maceutical industries ?rst of all for their well-acquainted antioxidant activity (Obied et al.,2005).2-(4-Hydroxyphenyl)etha-nol (tyrosol,1)and 3,4-dihydroxyphenyl ethanol (hydroxytyrosol,2)represent the most abundant oil phenols (Vissers et al.,2004).Hydroxytyrosol,as well as being a powerful antioxidant and scavenger of free radicals,reduces,in fact,the risk of coronary heart disease and atherosclerosis (Visioli et al.,1995,2002)and it is involved in a mechanism of protection against oxidative DNA damage (Waterman and Lockwood,2007).Differently,tyrosol shows milder antioxidant properties (Damiani et al.,2003).Never-theless,it exerts a powerful protective effect against oxidative inju-ries in cell systems and improves the intracellular antioxidant defence systems (Mateos et al.,2008).In spite of their potential applications in the nutraceutical and pharmaceutical ?elds,few methods have been developed for synthesizing tyrosol and hydroxytyrosol glycosidic derivatives. In this paper,we screened the possibility to perform glucosyla-tion reactions of various phenolic compounds,including tyrosol and hydroxytyrosol and their structurally analogous compounds,by using the marine a -glucosidase from Aplysia fasciata .Interesting glucosylations at phenolic sites of some selected acceptors were ob-served,especially considering that phenolic hydroxyls are inef?-ciently glycosylated by glycosidases (van Rantwijk et al.,1999).Among all molecules tested,tyrosol and hydroxytyrosol glycosyla-tion procedures were more deeply investigated.Tyrosol a -glycosidic derivatives were ef?ciently produced by direct glucosylation and in a second enzymatic step,these molecules were regioselectively oxi-dized by a commercial mushroom tyrosinase to give the hydroxyty-rosol a -glycosyl derivatives,possessing interesting radical scavenging activities. These results appeared of great interest when compared to enzymatic synthesis of salidroside,monoglucuronides derivatives of hydroxytyrosol,and tyrosol,previously reported in literature (Tong et al.,2004;Khymenets et al.,2006).2.Methods 2.1.General TLC solvent systems:(A)(CH 3CN:H 2O,8:2,v/v);(B)(CH 3CN:H 2O,9:2,v/v).Compounds on TLC plates were visualized under UV light or charring with a -naphthol reagent. Other technical information were reported in Supplementary Section S.1.2.2.Enzyme source A clear enzymatic homogenate from A.fasciata visceral mass was prepared as previously described by Andreotti et al.(2006).Since the most abundant hydrolytic enzyme in A.fasciata visceral mass extract was an a -D -glucosidase activity,this enzy-matic solution (8.1mg total protein/ml;1.2U/mg,using p -nitro- 0960-8524/$-see front matter ó2011Elsevier Ltd.All rights reserved.doi:10.1016/j.biortech.2011.10.073 Corresponding author.Tel.:+390818675070;fax:+390818041770. E-mail address:atramice@https://www.360docs.net/doc/638418853.html,r.it (A.Tramice).

酶的特性

第2课时 酶的特性 班级 姓名 【学习目标】 1.阐明酶的高效性、专一性和作用条件较温和。 2.通过探究“影响酶活性的条件”发展科学探究能力。 【基础感知】 一、酶的特性 1.酶的特性及验证实验 (1)酶的高效性 含义:酶的催化效率比 高很多,大约是 的107~1013倍。 意义:可以使生命活动更加高效地进行。 (2)酶的专一性 含义:每一种酶只能催化 化学反应。如过氧化氢酶只能催化 分解。脲酶除了催化 分解外,对其他化学反应不起作用。 意义:使细胞代谢能够有条不紊地进行。 (3)酶的作用条件较温和 酶所催化的化学反应一般是在 的条件下进行的。过酸、过碱或温度过高,都会使酶的 遭到破坏,使酶永久 。低温只能使酶活性降低,不会使酶失活。 特别提醒 酶与无机催化剂的共同点 (1)只改变化学反应速率,不改变化学反应的方向。 (2)不为化学反应提供物质和能量,本身不被消耗。 (3)降低化学反应的活化能,使反应速率加快,缩短达到平衡点的时间。 2.酶特性的验证实验 (1)酶高效性的实验分析 实验组:底物+ →底物分解速率(或产物形成的速率) 对照组:底物+ →底物分解速率(或产物形成的速率) (2)酶专一性的实验分析 ①? ???? 实验组:底物+相应酶液――→检测 底物被分解对照组:另一底物+相同酶液――→检测底物没被分解 ②? ???? 实验组:底物+相应酶液――→检测底物被分解对照组:相同底物+另一酶液――→检测底物没被分解

③实例:实验验证淀粉酶具有专一性 ①效率更高;率,不改变生成物的量 ①率比未加酶时明显加快,A 入酶同,说明酶二、探究影响酶活性的条件 1.酶活性的含义:酶对化学反应的 。 2.探究酶活性的适宜条件 思路: ? ????底物+t 1(或pH 1)+酶液底物+t 2(或pH 2)+酶液 ? ? ? 底物+t n (或pH n )+酶液――→检测 底物分解速率或剩余量 实例:

第二章 酶的生物合成与发酵生产

第二章酶的生物合成与发酵生产 酶工程就是将酶所具有的生物催化功能,借助工程手段应用于社会生活的一门科学技术。酶制剂是如何生产的呢?我们知道,酶是活细胞产生的具有催化作用的生物大分子,广泛存在于动植物和微生物体内。酶的生产方法有三种:提取分离法、生物合成法、化学合成法。生物合成法又包括:微生物细胞发酵产酶、植物细胞发酵产酶和动物细胞发酵产酶 第一节酶生物合成及调节 一、酶的生物合成 先从遗传信息传递的中心法则谈起(1958年,Crick提出) 遗传信息传递的中心法则:生物体通过DNA复制将遗传信息由亲代传递给子代,通过RNA 转录和翻译而使遗传信息在子代得以表达。 DNA具有基因的具有基因的所有属性。基因是DNA的一个片段,基因的功能最终由蛋白质来执行,RNA控制着蛋白质的合成。核酸是遗传的物质基础,蛋白质是生命活动的体现者。 1970年Temin和Baitimore发现了逆转录酶,是对中心法则的补充。即:细胞能否合成某种酶分子。首先取决于细胞中的遗传信息载体-DNA分子中是否存在有该酶所对应的基因。DNA分子可以通过复制生成新的DNA,再通过转录(transcription)生成所对应的RNA,然后再翻译(translation)成为多肽链,经加工而成为具有完整空间结构的酶分子。 (一)RNA的生物合成--转录(transcription)P102 DNA分子中的遗传信息转移到RNA分子中的过程,称为转录。 转录:见课件附图,书P102 定义:以DNA为模板,以核苷三磷酸为底物,在RNA聚合酶(转录酶)的作用下,生成RNA分子的过程。 模板链(template strand):又称反意义链(antisense strand),指导转录作用的一条DNA RNA的转录过程:转录过程分为三步:起始、延长、.终止 补充:原核生物的RNA聚合酶(DDRP)-见课件附图 E.coli的RNA聚合酶是由四种亚基组成的五聚体(α2、β、β′、) 全酶(holoenzyme)包括起始因子σ和核心酶(core enzyme)。

甲壳素的酶解研究

壳聚糖酶的研究进展 【摘要】目的壳聚糖的降解产物壳寡聚糖在医药领域中有着广泛的应用前景,而壳聚糖酶是酶法制备壳寡聚糖的专一性酶。本文综述了壳聚糖酶的研究概况,主要是壳聚糖酶的酶学特性、分离纯化以及分子生物学研究进展,同时展望了其应用前景。 【关键词】壳聚糖; 壳聚糖酶; 糖苷水解酶 Abstract:Objective Chitooligosaccharides,degradation product of chitosan,have extensive potential application prospect in medical field.Chitosanase are key enzyme for specifically hydrolyzing chitosan into chitooligosaccharides.In this summary,the achievement of stidies on chitosanases,including its enzymatic properties,isolation and purification,molecular biology and prospects for application was discussed. Key words:chitosan;chitosanase;glucoside hydrolase 几丁质(chitin)又名甲壳素、甲壳质,是N-乙酰-D-葡萄糖胺以β-1,4-糖苷键相连而成,是地球上仅次于纤维素的第二大类天然高分子化合物。壳聚糖(chitosan)为几丁质脱乙酰化后的产物,是一种阳离子型多糖,也是目前唯一的商品化碱性多糖。壳聚糖是一种高分子阳离子絮凝剂,由于具有无毒、可被生物降解、良好的生物容性和成膜性等优良特性,在医药卫生、农业等方面得到广泛的应用[1]。如可作为离子交换剂,毛发固定剂、保湿剂和柔软剂,药物缓释剂、增溶剂,饲料添加剂,种子处理剂等。但是壳聚糖的分子量大,水溶性较差,在人体内不易吸收,使其应用受到限制。而壳聚糖的降解产物壳寡聚糖(Chitooligosaccharides)不仅具有水溶性好、易吸收等优点,近年来更是发现,低分子量壳寡聚糖(如五糖、六糖)具有抗肿瘤、抗菌、免疫激活及保湿吸湿等特点,使其在医药领域有着广泛的应用前景[1,2]。 壳寡糖的制备大多数是以虾、蟹等为原料,经过脱乙酰基等处理得到壳聚糖,再进一步水解得到壳寡糖。目前,由壳聚糖制备壳寡糖主要有两种水解方法:酸解法和酶解法。 酸解法一般是用盐酸部分水解壳聚糖[3],用甲醇除去水解液中产生的大量单糖,经加Dowex离子交换树脂分离得到壳寡糖。酸水解法的缺点是反应产物单糖较多,而壳寡糖含量低,反应条件苛刻,工艺烦琐,同时这一工艺由于产生大量废弃酸液,易给环境造成污染。酶解法是指采用酶制剂在较温和的条件下降解壳聚糖。一般分为两类:非专一性水解酶和专一性水解酶[5]。非专一性酶工艺,是利用如脂肪酶、溶菌酶等壳聚糖非专一性水解酶,降解壳聚糖。但降解程度有限,而且产物复杂,不易分离,酶量使用大。专一性水解酶是利用以壳聚糖为专一性底物的壳聚糖酶,专一性水解壳聚糖,该反应条件温和,可通过反应时间控制水解产物,为大规模生产壳寡糖提供了可能,是一种较为理想的壳寡糖制备方法。壳聚糖酶(Chitosanase,EC.3.2.1.132)是催化壳聚糖降解的专一性酶。壳聚糖经壳聚糖酶降解后生成低分子量壳寡糖,壳聚糖酶在降解壳聚糖多聚物、大规模生产壳寡糖中发挥着重要作用[6]。

相关文档
最新文档