负反馈放大电路分析

合集下载

放大电路中的反馈-深度负反馈放大倍数分析

放大电路中的反馈-深度负反馈放大倍数分析

深度负反馈在无线通信系统中的应用
总结词
无线通信系统中的信号处理模块常常采用深度负反馈 技术,以提高信号质量和稳定性。
详细描述
无线通信系统中的信号处理模块面临着复杂多变的干扰 和噪声环境,需要具备高稳定性和高可靠性。深度负反 馈技术能够提高信号处理模块的性能和稳定性,减小外 部干扰对信号的影响。通过引入深度负反馈,可以降低 信号处理模块的误差放大率,提高其抗干扰能力,从而 保证无线通信系统的稳定性和可靠性。此外,深度负反 馈还能优化信号处理模块的性能参数,提高其动态范围 和线性度。
闭环增益
放大电路在有反馈时的放 大倍数,与开环增益和反 馈系数有关。
关系
在深度负反馈条件下,闭 环增益等于开环增益的倒 数。
深度负反馈下的开环增益计算
开环增益计算公式
根据电路元件参数计算,一般通 过测量输入和输出信号幅度和相 位差来计算。
影响因素
与电路的元件参数、信号源内阻 、负载电阻等有关。
深度负反馈下的闭环增益计算
详细描述
音频放大器在放大信号时,常常会遇到各种干扰和噪声,导致输出信号失真。深度负反 馈通过引入负反馈网络,能够减小放大器内部元件参数变化对输出信号的影响,提高放 大器的稳定性。同时,负反馈能够减小放大器内部的噪声,提高音频质量。此外,深度
负反馈还能减小非线性失真,使输出信号更加接近原始信号。
深度负反馈在运算放大器中的应用
05 结论
深度负反馈放大倍数分析的意义
深度负反馈放大倍数分析是放大电路中反馈技术的重要研 究内容,对于理解放大电路的工作原理、优化电路性能、 提高稳定性等方面具有重要意义。
通过深度负反馈放大倍数分析,可以深入了解反馈机制对 放大电路性能的影响,为实际应用中电路设计、调试和优 化提供理论支持。

负反馈放大电路实验报告

负反馈放大电路实验报告

一、实验目的加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。

二、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、万用表5、晶体三极管3DG6×2(β=50~100)或9011×2 电阻器、电容器若干。

三、实验原理负反馈放大器有四种组态,即电压串联、电压并联、电流串联、电流并联。

本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。

1、图3-1为带有负反馈的两级阻容耦合放大电路,在电路中通过f R 把输出电压O U 引回到输入端,加在晶体管T1的发射极上,在发射极电阻1F R 上形成反馈电压f U 。

根据反馈的判断法可知,它属于电压串联负反馈。

带有电压串联负反馈的两级阻容耦合放大器主要性能指标如下①闭环电压放大倍数:u u uuf F A 1A A +=其中I O u U U A /=——基本放大器(无反馈)的电压放大倍数,即开环电压放大倍数。

u u F A +1——反馈深度,它的大小决定了负反馈对放大器性能改善的程度。

②反馈系数:F1f F1u R R R F +=③输入电阻:i u u if R F A R )1(+=,i R ——基本放大器的输入电阻④输出电阻:uuO Oof F A 1R R +=,of R :基本放大器的输出电阻 uo A :基本放大器∞=L R 时的电压放大倍数 ①在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令0=O U ,此时f R 相当于并联在1F R 上。

②在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T1管的射极)开路,此时)1F f R R +(相当于并接在输出端。

可近似认为f R 并接在输出端。

根据上述规律,就可得到所要求的如图3-2所示的基本放大器。

四、实验步骤1、测量静态工作点数模实验箱按图3-3连接实验电路,模拟电子技术实验箱按图3-4连接实验电 路,首先取 适量,频率为1KHz 左右,调节电位器使放大器的输出不出现失真,然后使 (即断开信号源的输出连接线),用万用表直流电压档分别测量第一级、第二级的静态工作点,记入表3-1。

负反馈放大电路的实验报告

负反馈放大电路的实验报告

负反馈放大电路的实验报告负反馈放大电路的实验报告引言负反馈放大电路是电子工程领域中常见的一种电路结构,它通过将一部分输出信号反馈到输入端,以达到提高电路性能的目的。

本实验旨在通过搭建负反馈放大电路并进行实验验证,深入理解负反馈放大电路的原理和应用。

实验原理负反馈放大电路是通过将一部分输出信号反馈到输入端,形成一个反馈回路,从而改变电路的输入-输出关系。

其中最常见的一种负反馈方式是电压负反馈,它通过将输出电压与输入电压之间的差异进行放大,从而实现对电路增益的调节。

实验步骤1. 准备实验所需的电路元件和仪器设备,包括放大器、电阻、电容等。

2. 根据实验要求,搭建负反馈放大电路。

3. 连接信号源和示波器,确保电路正常工作。

4. 调节放大器的参数,如增益和带宽,观察输出信号的变化。

5. 测量并记录实验数据,包括输入信号的幅值、输出信号的幅值、增益等。

6. 对实验结果进行分析和总结,验证负反馈放大电路的性能。

实验结果与分析通过实验我们得到了一系列实验数据,并进行了分析和总结。

首先,我们观察到在负反馈放大电路中,输出信号的幅值相对于输入信号的幅值有所减小。

这是因为负反馈放大电路通过将一部分输出信号反馈到输入端,降低了电路的增益,从而实现了对信号的调节。

其次,我们还观察到在负反馈放大电路中,输出信号的频率响应更加平坦。

这是因为负反馈放大电路通过反馈回路,降低了电路的频率响应,使其更加稳定。

这对于一些需要稳定输出信号的应用场景非常重要。

此外,我们还发现负反馈放大电路可以提高电路的线性度。

通过调节反馈回路的参数,我们可以使输出信号更加接近输入信号,从而减小非线性失真。

这对于音频放大器等需要高保真度的应用非常重要。

结论通过本次实验,我们深入理解了负反馈放大电路的原理和应用。

负反馈放大电路通过将一部分输出信号反馈到输入端,实现了对电路增益、频率响应和线性度的调节。

这种电路结构在电子工程领域中具有广泛的应用,如音频放大器、运算放大器等。

详解负反馈放大器电路

详解负反馈放大器电路

难点电路详解之负反馈放大器电路1 负反馈放大器在放大器中采用负反馈电路,其目的是为了改善放大器的工作性能,提高放大器的输出信号质量。

在引入负反馈电路之后,放大器的增益要比没有负反馈时的增益小,但是可以改善放大器的许多性能,主要有四项:减小放大器的非线性失真、扩宽放大器的频带、降低放大器的噪声和稳定放大器的工作状态。

1.1 正反馈和负反馈概念放大器的信号传输都是从放大器的输入端传输到放大器输出端,但是反馈过程则不同,它是从放大器输出端取出一部分输出信号作为反馈信号,再加到放大器的输入端,与原放大器输入信号进行混合,这一过程称为反馈。

①反馈方框图如图1所示是反馈方框图。

从图中可以看出,输入信号Ui从输入端加到放大器中进行放大,放大后的输出信号Uo其中的一部分加到下一级放大器中,另有一部分信号经过反馈电路作为反馈信号UF,与输入信号Ui合并,作为净输入信号VI加到放大器中。

图1 反馈方框图②反馈种类反馈电路有两种:正反馈电路和负反馈电路。

这两种反馈的结果(指对输出信号的影响)完全相反。

③正反馈概念正反馈可以举一个例子来说明,吃某种食品,由于它很可可,所以在吃了之后更想吃,这是正反过程。

如图2所示正反馈方框图,当反馈信号UF与输入信号Ui是同相位时,•这两个信号混合后是相加的关系,所以净输入放大器的信号UI•比输入信号Ui更大,而放大器的放大倍数没有变化,这样放大器的输出信号Uo比不加入反馈电路时的大,这种反馈称为正反馈。

图2 正反馈方框图在加入正反馈之后的放大器,输出信号愈反馈愈大(当然不会无限制地增大,这一点在后面的振荡器电路中介绍),这是正反馈的特点。

正反馈电路在放大器电路中通常不用,它只是用于振荡器中。

④负反馈概念负反馈也可以举一例说明,一盆开水,当手指不小心接触到热水时,手指很快缩回,而不是继续向里面伸,手指的回缩过程就是负反馈过程。

如图3所示是负反馈方框图,当反馈信号UF相位和输入信号Ui的相位相反时,它们混合的结果是相减,结果净输入放大器的信号UI比输入信号Ui要小,•使放大器的输出信号Uo减小,引起放大器电路这种反馈过程的电路称为负反馈电路。

实验报告(负反馈电路)

实验报告(负反馈电路)

实验四负反馈放大电路一、实验目的1.研究负反馈对放大电路性能的影响。

2.掌握负反馈放大电路性能的测试方法。

二、实验仪器1.双踪示波器。

2.音频信号发生器。

3.数字万用表。

三、实验电路原理图 4.11.工作原理(电路的功能、电路中各个元器件的作用):1).电路的功能:该电路是电压串联负反馈电路。

除了可以放大电压之外, 当接入负反馈电路时, 还可以稳定放大倍数, 又由于该电路是电压串联负反馈电路, 可以增大输出电阻, 减小输入电阻。

同时拓宽通频带, 减小非线性失真。

2).电路中各个元器件的作用:两个三极管起放大作用;CF,Rf构成反馈电路;R3用以消除交越失真;四、实验内容及结果分析1.负反馈放大电路开环和闭环放大倍数的测试:表4.1R L(KΩ)V i(mV) V0(mV) A V(A vf)开环∞ 2 1840 9201.5k 2 616 308闭环∞ 2 59.2 29.61.5k 2 59.2 29.62.负反馈对失真的改善作用(1)将图4.1电路开环, 逐步加大Vi的幅度, 使输出信号出现失真(注意不要过份失真)记录失真波形幅度。

(2)将电路闭环, 观察输出情况, 并适当增加Vi幅度, 使输出幅度接近开环时失真波形幅度。

若RF=3K不变, 但RF接入1V1的基极。

3.测放大电路频率特性表4.2f H(Hz) f L(Hz)开环140HZ 1.2KHZ闭环 2.88MHZ 400HZ五、小结思考题1.分析电路的负反馈组态。

该电路是电压串联负反馈电路2.根据实验内容总结负反馈对放大电路的影响。

稳定放大倍数, 又由于该电路是电压串联负反馈电路, 可以增大输出电阻, 减小输入电阻。

同时拓宽通频带, 减小非线性失真。

放大电路中的负反馈

放大电路中的负反馈
计算机电路基础
把电子系统输出信号(电流或电压)的一部分或全部,经过一定的电路 (称为反馈网络),回送到放大电路的输入端,和输入信号叠加的连接方式称 为反馈。若反馈信号削弱输入信号而使放大倍数降低,则为负反馈;若反馈信 号增强输入信号,则为正反馈。
负反馈主要用于改善放大电路的性能,正反馈主要应用于振荡电路、电压 比较器等方面。不含反馈支路的放大电路称为开环电路,引入反馈支路的放大 电路称为闭环电路。
AF
|
1,则有
Af

1 F

说明:深度负反馈时,闭环放大倍数与电路的开环放大倍数无关,只与反
馈电路的参数有关,基本不受外界影响。反馈深度越深,放大电路越稳定。
5)放大倍数的相对变化量。
dAf dA 1
Af A 1 AF
dAf
dA
式中: Af 为有反馈时的放大倍数相对变化量; A 为无反馈时的放大倍数相对
1)直流反馈:反馈信号只有直流成分。 作用:能够稳定静态工作点。 2)交流反馈:反馈信号只有交流成分。 作用:从不同方面改善动态技术指标,对Au 、Ri 、 Ro 有影响。 3)交直流反馈:反馈信号既有交流成分又有直流成分。
从放大器输出端的取样物理量看,判断反馈量是取自电压还是电流。 1)电压反馈:反馈信号采样输出电压,大小与输出电压成比例。 作用:能够稳定放大电路的输出电压,减小电路的输出电阻。 2)电流反馈:反馈信号采样输出电流,大小与输出电流成比例。 作用:能够稳定放大电路的输出电流,增大电路的输出电阻。
1)开环放大倍数——未引入反馈的放大倍数。
A Xo Xo Xo Xi Xi Xf Xi F X o
2)反馈系数——反馈信号与输出信号之比
F Xf Xo
3)闭环放大倍数——包括反馈在内的整个放大电路的放大倍数。

负反馈放大电路实验报告总结

负反馈放大电路实验报告总结

负反馈放大电路实验报告总结
负反馈放大电路是一种能够有效提高放大器性能的电路。

通过引入反馈信号,可以减小放大器的非线性失真、提高增益稳定性和频带宽度等。

本次实验中,我们通过搭建简单的负反馈放大电路,验证了负反馈的作用和效果。

实验步骤:
首先搭建一个基本的放大电路,包括一个晶体管、电源、输入信号和输出装置。

然后,在电路中引入一个反馈回路,将输出信号与输入信号进行比较,从而控制放大器的增益。

最后调节反馈回路的参数,观察放大器的性能变化。

实验结果:
通过实验,我们发现负反馈放大电路能够有效提高放大器的性能。

在没有反馈时,放大器的增益较高,但存在非线性失真和频带受限等问题。

而在引入反馈信号后,放大器的增益减小,但失真程度明显降低,频带宽度也得到了扩展。

我们还观察到反馈回路的参数对放大器性能的影响。

当反馈电阻较小,反馈信号影响较小,放大器的增益仍然较高;当反馈电阻较大,反馈信号影响较大,放大器的增益显著减小。

因此,在实际应用中,需要根据具体情况选择合适的反馈回路参数。

总结:
负反馈放大电路是一种简单有效的电路,对于提高放大器的性能具有重要作用。

实验中,我们通过搭建电路、调节参数等方式,验证了负反馈的作用和效果,并发现了反馈回路参数对放大器性能的影响。

这对于我们在实际应用中设计和优化电路具有重要的指导意义。

负反馈放大电路

负反馈放大电路

A
Af
1 AF
由上式可以看出:
① 放大电路采用负反馈,即|1+AF|>1时,|Af|<|A|,这表明引入负 反馈后,放大倍数下降。当|1+AF|>>1时称为深度负反馈,此时, |Af|≈1/|F|,反馈放大电路的闭环放大倍数几乎与基本放大电路的A无关, 仅与反馈网络的F有关。而反馈网络一般由无源线性元件构成,性能稳定, 故Af也比较稳定。


负馈
反放
馈大
放 大 电
电 路 的 一
路般



1.2
第 11 页
由图11-4所示反馈放大电路的方框图可知,基本放大电路的放大 A X o
倍数A(也称为开环放大倍数)为输出信号与净输入信号之比,即
Xd
上式中,X d Xi X f
反馈网络的反馈系数F为反馈信号与基本放大电路输出信号 之比,即
(a)
(b) 图11-5 例11-1图
(c)
第9页

反反
馈馈
放 大 电
的 类 型 及
路判



1.1
【解】放大器输出电流原来的意义是指流过负载的电流。但在如图11-5(a) 所示从晶体管集电极输出的电路中,由于负载上的电流和晶体管集电极电流同
步变化,所以,为了不造成混乱,可把晶体管的集电极电流作为输出电流。
根据反馈信号与输入信号在放大电路输入端的连接方式不同,反馈可分 为串联反馈和并联反馈。如果反馈信号与输入信号在输入端串联连接,即反 馈信号与输入信号以电压比较的方式出现在输入端,则称为串联反馈;如果 反馈信号与输入信号在输入端并联连接,即反馈信号与输入信号以电流比较 的方式出现在输入端,则称为并联反馈。

负反馈放大电路的分析计算常用方法

负反馈放大电路的分析计算常用方法
分立元件负反馈放大电路
由独立的电子元件(如晶体管、电阻和电容)构成,通过 负反馈实现信号的放大。
电路结构
通常包括输入级、中间级和输出级,以及负反馈网络。
分析方法
利用晶体管的放大倍数、输入电阻和输出电阻等参数,结 合负反馈原理,计算电路的电压放大倍数、输入电阻和输 出电阻等性能指标。
集成运放负反馈放大电路实例
扩展放大器的通频带
负反馈能够减小放大器内部元件的极 间耦合电容和分布电容的影响,从而 扩展放大器的通频带。
通过调整负反馈深度和环路增益,可 以在一定范围内灵活地调整放大器的 通频带。
提高放大器的稳定性
负反馈能够降低放大器的净输入信号 幅度,从而减小由于信号幅度过大引 起的自激振荡的可能性。
VS
通过合理设计负反馈网络,可以进一 步改善放大器的稳定性,提高其工作 可靠性。
01
集成运放负反馈放大电路
利用集成运算放大器(运放)实现信号的放大,并通过负反馈进行控制。
02
电路结构
通常由运放和负反馈网络组成,运放作为核心的放大器件。
03
分析方法
利用运放的开环增益、输入电阻和输出电阻等参数,结合负反馈原理,
计算电路的电压放大倍数、输入电阻和输出电阻等性能指标。
比较器负反馈放大电路实例
负反馈可以抑制外界干扰对放大电路的影响, 提高电路的抗干扰能力。
02
负反馈放大电路的分析 方法
电压反馈与电流反馈分析
电压反馈
通过比较输出电压与参考电压来调整放大器的增益,使输出 电压稳定。
电流反馈
通过比较输出电流与参考电流来调整放大器的增益,使输出 电流稳定。过在输入和输出之间串联一个反馈 网络来实现反馈,影响输入阻抗和输 出阻抗。

负反馈放大电路实验报告

负反馈放大电路实验报告

负反馈放大电路实验报告负反馈放大电路实验报告引言:负反馈放大电路是电子工程中常见的一种电路结构,通过引入负反馈,可以改善放大电路的性能,提高稳定性和线性度。

本实验旨在通过搭建负反馈放大电路并进行实际测量,验证其性能改善效果。

一、实验装置与原理本实验采用了基本的共射放大电路作为负反馈放大电路的实验对象。

该电路由三极管、电阻、电容等元件组成,其原理是通过负反馈将放大电路的输出信号与输入信号进行比较,并通过调节反馈电路的增益来实现性能的改善。

二、实验步骤1. 搭建电路:根据实验指导书上的电路图,依次连接三极管、电阻和电容等元件,确保电路连接正确无误。

2. 调整电路参数:通过调节电阻的值,使得电路的工作点达到最佳状态,以确保三极管能够正常工作。

3. 连接信号源:将信号源与输入端相连,确保输入信号正常输入。

4. 连接示波器:将示波器与输出端相连,以便观察输出信号的波形和幅度。

5. 测量输出信号:通过示波器观察输出信号的波形和幅度,并记录下相应的数值。

三、实验结果与分析在实验中,我们通过调节电阻的值,使得电路的工作点达到最佳状态。

在这个状态下,我们观察到输出信号的波形明显改善,失真减小,幅度更加稳定。

这说明负反馈放大电路能够有效地改善放大电路的性能。

此外,我们还通过改变输入信号的频率,观察输出信号的变化。

实验结果显示,随着频率的增加,输出信号的幅度有所下降,但波形仍然保持较好的线性度。

这说明负反馈放大电路对于不同频率的信号都能够进行有效放大,并保持较好的线性度。

四、实验总结通过本次实验,我们成功搭建了负反馈放大电路,并通过实际测量验证了其性能改善效果。

负反馈放大电路能够有效地改善放大电路的线性度和稳定性,使得输出信号更加稳定、准确。

在实际应用中,负反馈放大电路被广泛应用于音频放大器、功放等电子设备中,以提高音质和信号质量。

然而,负反馈放大电路也存在一些限制,如增加了电路的复杂性、引入了噪声等。

因此,在实际设计中需要综合考虑各种因素,选择合适的负反馈放大电路结构以及合适的参数。

实验5 负反馈放大电路的分析

实验5 负反馈放大电路的分析

实验5 负反馈放大电路的分析实验原理反馈是将输出信号的部分或全部通过反向传输网络引回到电路的输入端,与输入信号叠加后作用于基本放大电路的输入端。

当反馈信号与输入信号相位相反时,引入的反馈信号将抵消部分输入信号,这种情况称为负反馈。

在基本放大系统中引入负反馈可以提高放大器的性能,具有稳定电路的作用,但这是以牺牲放大器的增益为代价。

负反馈对放大器性能指标的影响取决于反馈组态和反馈深度的大小。

负反馈系统组态根据反馈信号的取样的种类可以分为电压反馈和电流反馈,根据反馈信号与输入信号的叠加关系何以分为串联反馈和并联反馈。

综合这两方面,就有了负反馈电路的四种组态即电压串联负反馈、电流串联负反馈、电压并联负反馈、电流并联负反馈。

负反馈系统特性1、系统增益及其稳定性A f=A1+AF∆A f A f=11+AF×∆A A可见负反馈放大器的增益下降了(1+AF)倍,但其稳定性却提高了(1+AF)倍。

当闭环系统满足深度负反馈条件(即AF≫1)时,系统增益A f就与基本放大器的开环增益无关,而仅由反馈系数F决定,即A f≈1/F。

2、输入电阻对于串联负反馈R if=(1+AF)R i可见串联负反馈使放大器的输入电阻提高了(1+AF)倍对于并联负反馈R if=1(1+AF)R i可见并联负反馈使放大器的输入电阻下降了(1+AF)倍3、输出电阻对于电压负反馈R of=1(1+AF)R o可见电压负反馈使放大器的输出电阻下降了(1+AF)倍,系统更加接近理想电压源。

对于电流负反馈R of=(1+AF)R o可见电流负反馈使放大器的输出电阻提高了(1+AF)倍,系统更加接近理想电流源。

4、通频带负反馈能够展宽放大器的通频带宽,对于但极点心系统,电路的增益带宽积为常数。

对于多极点系统,系统的增益带宽积不再是常数,但通频带总有所扩展。

f Lf=f L1+AF f Hf=(1+AF)f HB f=f Hf−f Lf≈(1+AF)B5、非线性失真负反馈能够减小放大器的非线性失真。

负反馈放大电路的分析方法

负反馈放大电路的分析方法

负反馈放大电路的分析方法用算负反馈放大电路的闭环增益比较精确但较麻烦,因为要先求得开环增益和反馈系数,就要先把反馈放大电路划分为基本放大电路和反馈网络,但这不是简单地断开反馈网络就能完成,而是既要除去反馈,又要考虑反馈网络对基本放大电路的负载作用①。

所以,通常从工程实际出发,利用一定的近似条件,即在深度反馈条件下对闭环增益进行估算。

一般情况下,大多数反馈放大电路特别是由集成运放组成的放大电路都能满足深度负反馈的条件。

根据和的定义,在中,若,则,即所以有此式表明,当时,反馈信号与输入信号相差甚微,净输入信号甚小,因而有对于串联负反馈有(虚短),;对于并联负反馈有(虚断)。

利用“虚短”、“虚断”的概念可以以快速方便地估算出负反馈放大电路的闭环增益或闭环电压增益。

①通常称为“方框图”法。

前面讨论了在深度负反馈的条件下,近似计算反馈放大电路的增益,并定性地分析了电路的输入电阻和输出电阻。

这在工程上的近似方法中有其重要的意义,并可建立和熟悉某些重要的概念。

这里将介绍用负反馈放大电路的小信号模型分析、计算闭环增益、输入电阻和输出电阻的方法及步骤。

具体步骤如下:1.画出反馈放大电路的小信号等效电路,其中包括基本放大电路的小信号等效电路和反馈网络的等效电路。

(1)基本放大电路的小信号等效电路的画法:对于由分立元件(三极管和场效应管)组成的基本放大电路,按第3、4章的方法处理;对于集成运放组成的基本放大电路,可按本节的LT_01中的方法处理。

但应注意,集成运放通常给出的参数为开环差模电压增益A V O、输入电阻r i 和输出电阻r o,而放大电路有四种类型(电压放大、互阻放大、互导放大和电流放大),因此必须考虑这四种基本放大电路模型之间的相互转换关系,这在知识点0120201~0120204中已作过简要介绍。

(2)反馈网络的等效电路的画法:① 反馈网络的主要作用是传送反馈信号到放大电路的输入端(与进行比较),因此反馈网络的输出端口有一个含内阻的受控源,受控源的类型由交流反馈的类型决定,如是电压串联负反馈,则为;如是电流并联负反馈,则就是等等。

负反馈电路实验报告

负反馈电路实验报告

实验六负反馈放大电路一、实验要求(1)建立负反馈放大电路;(2)分析负反馈放大电路的性能。

3.实验内容过程及数据分析(1)建立如图6-1所示的电压串联负反馈放大电路。

晶体管为QNL,用信号发生器产生频率为lkHz、幅值为5mV的正弦交流小信号作为输入信号。

示波器分别接到输入端和输出端观察波形。

根据电路图,两级电压串联负反馈放大电路。

负反馈虽然使放大电路的增益下降,但是能改善放大电路的性能。

比如说,能够提高电路放大倍数的稳定性、能够扩展通频带等。

如果负反馈放大电路属于深度负反馈,则放大电路闭环放大倍数等于反馈系数的倒数。

如果电路满足深度负反馈条件,闭环电压放大倍数为11e f V R R A +=(2)打开仿真开关,双击示波器,进行适当调节后,观察输入波形和输出波形。

测量输入波形和输出波形的幅值,计算电路闭环电压放大倍数并与理论计算值相比较。

计算值:11e fV R R A +==1+10000/100=101实验值:A=vout/vin=476.469/4.998=95.332实验误差:w=Av-A/Av(3)对于电路反馈电阻Rf 进行参数扫描分析,以观察反馈电阻变化对闭环增益及通频带的影响。

具体步骤是:选择Analysis /ParameterSweep 命令,弹出ParameterSweep 对话框,选取扫描元件为Rf (即图中的R6)、扫描起始值为5k ,扫描终止值为20k 、扫描型态为Linear 、步进值为5k 、输出节点为3,再选择暂态分析或AC 频率分析,然后单击Simulate 按钮进行分析。

三、实验总结由实验数据分析知(2)对于电路反馈电阻Rf进行参数扫描分析结果,并分析结果。

负反馈放大电路

负反馈放大电路

Af
=
A 1 AF

AHf
=
1
AH AH
F
,A
mf
= Am , 1 AmF
ALf
= AL 1 ALF
可证明: fHf = (1 + AF) fH
A(f) Af(f) Am 0707Am Amf
fLf = fL / (1 + AF) BWf = fHf fLf fHf
0707Amf
BW
BWf
判别法:使 io = 0(RL 开路),若反馈消失为电流反馈。
四、串联反馈和并联反馈
串联反馈:反馈信号与输入信号以
电压相比较的形式在输入端出现。 RS
uid
A
uid = ui uf
特点:
ui
us
uf
F
反馈信号和输入信号在不同节点引入。
并联反馈:反馈信号与输入信号以
电流相比较的形式在输入端出现。
iid = ii if
并联负反馈使输入电阻减小
ii iid
ui if
Ri A
Rif
AFiid F
Rif
=
ui ii
=
uid iid i f
=
uid iid AFi id
Rif
=
Ri 1 AF
深度负反馈:
Rif 0
2. 对输出电阻的影响
电压负反馈 F 与 A 并联,使输出电阻减小。
A
Ro
F
Rof
=Ro 1 AFFra bibliotekRof
+ ui


Rb
++
输入 uid
回路 –
Re

负反馈放大电路实验总结

负反馈放大电路实验总结

负反馈放大电路实验总结在本次实验中,我们研究了负反馈放大电路的基本原理和特性。

负反馈放大电路是一种常见的放大电路,可以通过改变电路的反馈方式来提高电路的性能,例如增加稳定性、降低失真等。

本实验通过搭建负反馈放大电路并进行电路参数测量,验证了负反馈放大电路的特性。

实验步骤:1. 准备工作:搭建实验电路所需的电路板、电阻、电容等元件。

2. 搭建负反馈放大电路:按照实验要求连接电路板上的元件,搭建负反馈放大电路。

3. 测量电路参数:使用信号发生器提供输入信号,通过示波器测量放大电路的输入和输出信号,记录幅度和相位差。

4. 改变反馈方式:通过改变电路中的反馈元件,比较不同反馈方式下电路的性能差异。

实验结果:通过实验测量,我们得到了负反馈放大电路的输入输出特性曲线。

在实验中,我们可以观察到以下几个重要的特性:1. 增益稳定性:负反馈放大电路能够通过反馈路径将输入信号的一部分反馈到输入端,从而抑制电路的增益变化。

通过改变反馈比例,我们可以得到不同的增益值。

实验结果表明,增加反馈比例可以显著提高电路的增益稳定性。

2. 频率特性:在实验中,我们还可以观察到负反馈放大电路的频率特性。

通过测量输入和输出信号的幅度和相位差,我们可以得到电路的频率响应曲线。

实验结果表明,在一定频率范围内,负反馈放大电路的频率响应是平坦的,增益基本保持不变。

3. 失真情况:负反馈放大电路可以有效降低电路的失真。

在实验中,我们可以通过测量电路输入和输出信号的波形来观察电路的失真情况。

实验结果表明,负反馈放大电路的失真程度较低,能够更好地保持输入信号的准确度。

实验总结:通过本次实验,我们深入了解了负反馈放大电路的原理和特性。

负反馈放大电路的特点在于增加了电路的稳定性、降低了失真等方面的优点。

实验结果表明,通过改变反馈比例和反馈方式,可以调整电路的性能,以满足不同应用场景的需求。

在实际应用中,负反馈放大电路被广泛应用于音频放大器、运算放大器等领域。

负反馈放大电路分析计算

负反馈放大电路分析计算

Auf
Auf
uO ui
1
Bu
Auf
uO uS
11
Bg RS
Auf
uO ui
1 Br
RL
Auf
uO uS
1 RL Bi RS
讨论(一)
图示电路的级间反馈满足深度负反馈条件,试估算电路的闭 环电压增益。
【解】: (1)判别反馈组态是电流并联负反馈,ii i f ; id 0;
(2)求反馈系数:Bi i f / iO
if uO
;
Arf
uo ii
1 Bg
Auf
uO ui
uO iiif RRSS
11 Bg RS
反馈 网络
并或实路以u+-iR联是验时一1 i负内室,般iif R反阻测因要iCd1馈 比 试 信 外的较并号接RF源大联源一总的负内个RC是电反阻电2 R用 流 馈 很 阻R1C恒源放小去3 流。大,等RRe+3L源在电所效EC+-uO RS,若非如此,负反馈所起 的作用很小,测不出Rem效果-。EE
id≈0, ube≈0,发射结虚短路
Bg
if uO
(0 uO ) / RF uO
1
RF
Auf
uO ui
uO i f R1
Auf
11
Bg R1
RF R1
3、电流串联负反馈 (ui u f ;ud 0)
++ u-d
ui +
- u-f
放大 电路
反馈 网络
iO + uO
iO RL
-
Xd(s) 基本放大器
Xi(s)
A(s)
Xf(s)
反馈网络 B(s)

负反馈放大电路的分析计算常用方法

负反馈放大电路的分析计算常用方法
模拟电子技术基础
b. 分离法 分离法的基本思想 (a) 分负反馈放大电路为基本放大电路和反馈网络
两部分。 (b) 分别求出基本放大电路的A、Ri、Ro、fH 和fL等指
标及反馈网络的反馈系数F。 (c) 分别求出Af、Rid、Rof、fHf 和fLf等指标。
上页 下页 返回
模拟电子技术基础
5.3.1 深度负反馈放大电路近似计算的一般方法 1. 采用近似计算的条件
R2 Ri R1 RZ
R1 R2
R1
R2 RZ
)
(
jCZ
)(
Ri
Ri R2 R1
R2 )
由于
A·uf
UU··oi
1
( jC Z
Auf0 )( Auf0Ri
R2
)
当Auf0 Ri<<R2时
A·uf
1
Auf 0
j CZ R2
上页 下页
返回
模拟电子技术基础
由式
A·uf
1
Auf 0
j CZ R2

电路的闭环上限截止频率为
·
Xo
X·o X·i

X·o X·f
上页 下页 返回
模拟电子技术基础

X·o X·i

X·o X·f

X·f ≈ X·i
X·id ≈0
(1) 当电路引入串联负反馈时
U·f ≈ U·i
U·id ≈0
(称为虚短)
上页 下页 返回
模拟电子技术基础
(2) 当电路引入并联负反馈时 I·f ≈ I·i I·id ≈0
U· U·o R2
U·o R2
上页 下页 返回
模拟电子技术基础

6.4深度负反馈放大电路的分析

6.4深度负反馈放大电路的分析


-
RL
(RF + R3) R1 R3
上一页 返 回 下一页
虚地
RF
+ R1 if
+ u-i
ii
-
iid
A
+
R2
≈0
if ≈
- R3
RF + R3
io
Fii =
if io

- R3
RF + R3
-+
RL iouo -
R3
Aii ≈
1 Fii
≈-
RF + R3 R3
Auuf =
uo ui
≈ io RL ifR1
≈ R3
Auuf =
uo ui

R2 io uf
≈ R2 R3
上一页 返 回 下一页
试估算各电路的闭环电压放大倍数
≈ 0V Rc1
Rc2
+VCC C2
+ C1
Rs ii
u+s ~ -
-
i'i
T1
if
RF
+ T2
io uo -
Re2 -
ii' = ii - if 电流并联负反馈 ii ≈ if
if ≈ -
Rs U s
Ii Ii
-
A + I f
R1
RL
U+ O
-
R2
A iif
Io Ii
Io I f
1 Fii
U o Io RL
U s I f Rs
Fii
R2 R1 R2
A usf
U o U s
Io RL I f Rs

6.4负反馈放大电路的分析与计算

6.4负反馈放大电路的分析与计算

Rc1
Rc2
+UCC + C2
T1
T2
+
Rf
Uo
Re1
Re2
-
I Rf
Ui
Ue2 Rf
闭环增益是电流增益
Aif
Io Ii
Io Rf Re2
If
Re2
闭环源电压增益
Ausf
Uo Us
IoRc2 Rc2 Rf Re2
I i Rs
Rs
Re2
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)
Io 1 URe1 Re1
闭环电压增益
Auf
Uo Ui
Io
Rf2 //Rc3 //RL U Re1
Rf2 //Rc3 //RL Re1
5 电流并联负反馈
从输入端看,是并联负反馈
Ii Ib1 IRf 深度负反馈时,利用“虚断”
Ib1 0 Ii IRf
C1 +
+
Rs
+
Ui
Us - -
闭环增益是互导增益
Agf
Io Ui
Io 1 Ue Re1
闭环电压增益
Auf
Uo Ui
IcRc //RL Rc //RL
Ue
RRc //RL (1 )Re1
C1+
+
ui
-
Rb +UCC
T
+
C2
+
Re RL uo
_
Rs
+
Us -
Rb1 C1
+
Rb2
Ui
+UCC
模拟电子技术基础
1 深度负反馈放大电路的特点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新疆大学
课程设计报告
所属院系:电气工程学院
专业:自动化
课程名称:电子技术基础A
设计题目:负反馈放大电路的设计
班级:自动化10-1
学生姓名:孙奥
学生学号:20102102004
指导老师: 程静、刘兵
完成日期:2012.7.7
负反馈放大电路的设计
一、 课程设计的目的
(1)初步了解和掌握负反馈放大器的设计、调试的过程。

(2)能进一步巩固课堂上学到的理论知识。

(3)了解负反馈放大器的工作原理。

(4)了解并掌握负反馈放大电路各项性能指标的测试方法。

(5)加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。

二、 设计方案论证
2.1框图及基本公式
图1 负反馈放大电路原理框图
图中X 表示电压或电流信号;箭头表示信号传输的方向;符号¤表示输入求和,+、–表示输入信号
与反馈信号是相减关系(负反馈),即放大电路的净输入信号为:
id i f X X X =-
基本放大电路的增益(开环增益)为:
/o id A X X = 反馈系数为:
/f o F X X =
负反馈放大电路的增益(闭环增益)为:
/f o i A X X =
2.2负反馈对放大器各项性能指标的影响
负反馈的电路形式很多,但就基本形式来说,可以分为4种:即电流串联负反馈;电压串联负反馈 ;电流并联负反馈;电压并联负反馈。

一个放大器,加入了负反馈环节后,虽
图2 第一级放大电路
三极管工作在放大区时满足的条件为:BE U >on U 且CE BE U U ≥ 在电路的直流通路中,节点B 的电流方程为
1R I =2R I +BQ I
为了稳定静态工作点,通常是参数的选取满足 2R BQ I I
R BQ I I 因此,12R R I I ≈,B 点电位为2
12
BQ CC
R U V R R ≈+ 12BQ CC R U V R R ≈+ 表明基极电位几乎仅决定于21R R 与对CC V 的分压,而与环境温度无关。

为了提高输入电阻而又不致使放大电路倍数太低,应取IE1=1mA ,并选1β=80,则
be1r =bb'r +(1+1β)
T E1
U I =300+(1+80)26
1 =2.256k Ω
利用同样的原则,可得
()()11119
//1c L o
u i be R R U A U r R ββ-=
=
++ 为了获得高输入电阻,且取Au1=50,取R5=1.8k Ω,代入Au1=50,求出R3=5.1K Ω。

为了计算R4,EQ U =1V ,再利用IE1(R5+R4)=EQ U 得出R4=123Ω,选R4为100Ω。

为了计算2R ,可先求1B I =
1
1
c I β≈
0.5
80
=0.00625mA=6.25uA 由此可得 21
24EQ BQ
B U U R k I -==Ω
为了确定阻R1,利用
)(1111C C CC C R R I V U +-=
可求得147R k ≈Ω47R k ≈Ω。

2.5.2第二级放大电路参数设定
确定第二级的电路参数。

电路图如图3所示.
图3 第二级放大电路
为了稳定放大倍数,在电路中引入R9,取R9=1.0k Ω,由此可求出这级的电压放大倍数Au2
因为IE2=1mA,且280β=,所以
R be2=rbb+(1+β2)
T E2
U I =300+(1+80)26
1 =2.308k
又由于第二级为共集放大电路,故Au2≈1 代入公式 ()()()()
289222891//1//o
u i be R R U A U r R R ββ+=
=
++ 由此可以解得R8=3k Ω。

图4 负反馈放大器原理图
三、设计结果与分析
用Multisim10.0软件对负反馈放大器进行仿真分析。

1.负反馈放大器放大倍数的测试:
将所有元件及仪器调出并经整理连成仿真电路如图5所示。

图 5 负反馈放大器放大倍数的测试
由测量的数据可以得出
电压数据
U i U o U F 8mV 141.371mV 134.911mV 电流数据
I i I o
1.438uA 1.414mA
电压放大增益A V=U o
U i =141.371mV
8mV
≈17>10
反馈网络的反馈系数F≈0.95≈1 反馈深度 1+AF≈18>10
输入电阻R i=8mV
1.438uA
=5.56KΩ>1000Ω
输出电阻R o=141.371mV
1.414mA
=99.97Ω<100Ω
四、测放大电路的频率特性和输出电压的波形
关闭仿真开关,在电机电子仿真软件Multisim10.0基本界面右侧虚拟仪器工具中“Bode Plotter”按钮,调出虚拟波特仪“XBP1”。

重新组建仿真电路如图9所示。

图6频率特性测试仿真电路图
双击示波仪“XBP1”图标,弹出虚拟扫频仪放大面板,按下“Reverse”按钮,扫频仪放大面板左边屏幕显示的是放大电路的频率特性曲线,如图10所示。

图7负反馈放大器频率特性曲线
从屏幕下方显示的数据中,我们可以看到:频率特性曲线中间平坦部分为放大电路中频段,
放大电路增益基本不变且最大;左侧为频率低端、右侧为频率高端,它们的增益都会降低。

图中读数指针所在位置表示:频率为3.181kHz时,电路增益24.979dB。

将读数指针分别移到下限频率和上限频率点,分别可读出电路的下限频率和上限频率。

图8负反馈放大下线频率
图9负反馈放大器上限频率
由频率特性曲线可知,
f=6.924Hz
放大器的下限频率为:
L
f=684.036KHz
放大器的上限频率为:
H
输出电压与输入电压
在电路中加入示波器,计较输出输入波形,如下图所示
图10 输出输入端连接示波器
便可得到输出与输入波形,从图中可知,输出电压的波形无失真现在,输出电压稳定
图11 输入输出电压波形图。

相关文档
最新文档