两个计数原理

合集下载

高考数学一轮总复习课件:两个计数原理

高考数学一轮总复习课件:两个计数原理
解析 分步考虑:从 8 所高校中选 2 所,有 C28种选法;依题意 必有 2 位同学被同一所学校录取,则有 C23C12种录取方法;另一位同 学被剩余的一所学校录取.所以共有 C28·C23·C12=168 种录取方法.
授人以渔
题型一 两个计数原理(自主学习)
例 1 (1)设 x,y∈N*,直角坐标平面中的点为 P(x,y). ①若 x+y≤6,这样的 P 点有___1_5____个. ②若 1≤x≤4,1≤y≤5,这样的 P 点有___2_0____个.
例 3 (1)用 0,1,2,3,4,5,6 这 7 个数字可以组成___4_2_0___ 个无重复数字的四位偶数.(用数字作答)
【思路】
【解析】 要完成的“一件事”为“组成无重复数字的四位 偶数”,所以千位数字不能为 0,个位数字必须是偶数,且组成 的四位数中四个数字不重复,因此应先分类,再分步.
状元笔记
利用两个计数原理解决应用问题的一般思路 (1)弄清“完成一件事”是什么事. (2)确定是先分类后分步,还是先分步后分类. (3)弄清分步、分类的标准是什么. (4)利用两个计数原理求解.
【解析】 分三步:第一步选 3 个数有 C34=4 种方法;第二步 把选出的 3 个数中最小的数排在十位,有 1 种方法;第三步排个位 和百位,有 A22=2 种方法,由乘法原理共有 4×1×2=8(个).
(3)(2020·新高考山东Ⅰ)6 名同学到甲、乙、丙三个场馆做志
愿者,每名同学只去 1 个场馆,甲场馆安排 1 名,乙场馆安排 2
个?
【解析】 方法一:按十位上的数字分别是 1,2,3,4,5,6,7, 8 的情况分成 8 类,在每一类中满足题目条件的两位数分别是 8 个,7 个, 6 个,5 个,4 个,3 个,2 个,1 个.

第十章 第1讲 两个计数原理-2025年高考数学备考

第十章 第1讲 两个计数原理-2025年高考数学备考

第十章计数原理、概率、随机变量及其分布第1讲两个计数原理课标要求命题点五年考情命题分析预测了解分类加法计数原理、分步乘法计数原理及其意义.分类加法计数原理2023新高考卷ⅠT13两个计数原理是解决排列、组合问题的基本方法,也是与实际联系密切的部分,既能单独命题,也常与排列组合问题、概率计算问题综合命题,题型以小题为主,难度不大.在2025年高考的复习备考中要注意两个计数原理的区别并能灵活应用.分步乘法计数原理2023全国卷乙T7;2022新高考卷ⅡT5;2021全国卷乙T6;2020新高考卷ⅠT3;2020全国卷ⅡT14两个计数原理的综合应用学生用书P2241.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N =①m +n 种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N =②m ×n 种不同的方法.辨析比较两个计数原理的联系与区别原理分类加法计数原理分步乘法计数原理联系都是对完成一件事的方法种数而言.区别一每类方案中的每一种方法都能独立完成这件事.各个步骤都完成才算完成这件事(每步中的每一种方法都不能独立完成这件事).区别二各类方法之间是相互独立的,既不能重复也不能遗漏.各步之间是相互依存的,缺一不可.1.[多选]下列说法正确的是(BD )A.在分类加法计数原理中,两类不同方案中的方法可以相同B.在分类加法计数原理中,每类方案中的方法都能直接完成这件事C.在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事D.从甲地经丙地到乙地是分步问题2.[教材改编]已知某公园有4个门,从一个门进,另一个门出,则不同的进出公园的方式有12种.解析将4个门分别编号为1,2,3,4,从1号门进入后,有3种出门的方式,同理,从2,3,4号门进入,也各有3种出门的方式,故不同的进出公园的方式共有3×4=12(种).3.[易错题]某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有243种.解析因为每封电子邮件有3种不同的发送方法,所以要发5封电子邮件,不同的发送方法有3×3×3×3×3=243(种).4.[教材改编]书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架中任取1本书,则不同的取法种数为9.解析分三类:第一类,从第1层取一本书,有4种取法;第二类,从第2层取一本书,有3种取法;第三类,从第3层取一本书,有2种取法.共有取法4+3+2=9(种).学生用书P224命题点1分类加法计数原理例1(1)我们把各位数字之和为6的四位数称为“六合数”(如2022是“六合数”),则首位为2的“六合数”共有(B)A.18个B.15个C.12个D.9个解析依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数分别为400,040,004;由3,1,0组成6个数分别为310,301,130,103,013,031;由2,2,0组成3个数分别为220,202,022;由2,1,1组成3个数分别为211,121,112.共计3+6+3+3=15(个).(2)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为13.解析当a=0时,b的值可以是-1,0,1,2,(a,b)的个数为4.当a≠0时,要使方程ax2+2x+b=0有实数解,需使Δ=4-4ab≥0,即ab≤1.若a=-1,则b的值可以是-1,0,1,2,(a,b)的个数为4;若a=1,则b的值可以是-1,0,1,(a,b)的个数为3;若a=2,则b的值可以是-1,0,(a,b)的个数为2.由分类加法计数原理可知,(a,b)的个数为4+4+3+2=13.方法技巧分类加法计数原理的应用思路(1)根据题目中的关键词、关键元素和关键位置等确定恰当的分类标准,分类标准要明确、统一;(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.训练1集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是(B)A.9 B.14 C.15 D.21解析当x=2时,x≠y,y可从3,4,5,6,7,8,9中取,有7种方法.当x≠2时,由P⊆Q,得x=y,x可从3,4,5,6,7,8,9中取,有7种方法.综上,满足条件的点共有7+7=14(个).命题点2分步乘法计数原理例2(1)[2023全国卷乙]甲、乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有(C)A.30种B.60种C.120种D.240种解析甲、乙二人先选1种相同的课外读物,有6种情况,再从剩下的5种课外读物中各自选1本不同的读物,有5×4=20(种)情况,由分步乘法计数原理可得,共有6×20=120(种)选法,故选C.(2)[多选]有4位同学报名参加三个不同的社团,则下列说法正确的是(AC)A.每位同学限报其中一个社团,则不同的报名方法共有34种B.每位同学限报其中一个社团,则不同的报名方法共有43种C.每个社团限报一个人,则不同的报名方法共有24种D.每个社团限报一个人,则不同的报名方法共有33种解析对于A选项,第1个同学有3种报名方法,第2个同学有3种报名方法,后面的2个同学也有3种报名方法,根据分步乘法计数原理共有34种报名方法,A正确,B错误;对于C选项,每个社团限报一个人,则第1个社团有4种选择,第2个社团有3种选择,第3个社团有2种选择,根据分步乘法计数原理,共有4×3×2=24(种)选择,C正确,D错误.故选AC.方法技巧分步乘法计数原理的应用思路根据事件发生的过程合理分步,分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.训练2[多选]某校高二年级安排甲、乙、丙三名同学到A,B,C,D,E五个社区进行暑期社会实践活动,每名同学只能选择一个社区进行实践活动,且多名同学可以选择同一个社区进行实践活动,则下列说法正确的有(AC)A.如果社区A必须有同学选择,则不同的安排方法有61种B.如果同学甲必须选择社区A,则不同的安排方法有50种C.如果三名同学选择的社区各不相同,则不同的安排方法共有60种D.如果甲、乙两名同学必须在同一个社区,则不同的安排方法共有20种解析对于A,如果社区A必须有同学选择,则不同的安排方法有53-43=61(种),故A正确;对于B,如果同学甲必须选择社区A,则不同的安排方法有52=25(种),故B 错误;对于C,如果三名同学选择的社区各不相同,则不同的安排方法共有5×4×3=60(种),故C正确;对于D,甲、乙两名同学必须在同一个社区,第一步,将甲、乙视作一个整体,第二步,两个整体挑选社区,则不同的安排方法共有52=25(种),故D错误.故选AC.命题点3两个计数原理的综合应用例3(1)《周髀算经》是中国最古老的天文学和数学著作,其中记载了“勾股圆方图”(如图),用以证明勾股定理.现提供4种不同颜色给图中5个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则不同的涂色方法种数为(C)A.36B.48C.72D.96解析解法一根据题意得,涂色分2步进行:①对于区域A,B,E,三个区域两两相邻,有43=24(种)涂色方法;(区域E位于中心位置,其他4个区域均与区域E相邻,故先考虑两两相邻的区域A,B,E的涂色方法,再研究余下2个区域的涂色方法)②对于区域C,D,若区域C与区域A颜色相同,则区域D有2种涂色方法,若区域C与区域A颜色不同,当A,B,E涂色确定时,则区域C和区域D涂色方法确定,只有1种,由分类加法计数原理可知区域C,D有2+1=3(种)涂色方法.由分步乘法计数原理得,共有24×3=72(种)不同的涂色方法.故选C.解法二可分两种情况:①区域A,C不同色,先涂区域A有4种,区域C有3种,区域E有2种,区域B,D各有1种,有4×3×2=24(种)涂法.②区域A,C同色,先涂区域A有4种,区域E有3种,区域C有1种,区域B,D各有2种,有4×3×2×2=48(种)涂法.故共有24+48=72(种)涂色方法.(2)由0,1,2,3,4,5,6这7个数字可以组成420个无重复数字的四位偶数.解析要完成的一件事为“组成无重复数字的四位偶数”,所以千位数字不能为0,个位数字必须是偶数,且组成的四位数中的四个数字不重复.因此应先分类,再分步.第1类,当千位数字为奇数,即取1,3,5中的任意一个时,个位数字可取0,2,4,6中的任意一个,百位数字不能取与个位、千位数字重复的数字,十位数字不能取与个位、百位、千位数字重复的数字.根据分步乘法计数原理,不同的取法种数为3×4×5×4=240.第2类,当千位数字为偶数,即取2,4,6中的任意一个时,个位数字可以取除千位数字外的任意一个偶数数字,百位数字不能取与个位、千位数字重复的数字,十位数字不能取与个位、百位、千位数字重复的数字.根据分步乘法计数原理,不同的取法种数为3×3×5×4=180.根据分类加法计数原理,可以组成无重复数字的四位偶数的个数为240+180=420.方法技巧1.利用两个计数原理解决问题的一般步骤2.涂色问题常用的两种方法训练3(1)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是(D)A.48B.18C.24D.36解析第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(2)甲与其四位同事各有一辆汽车,甲的车牌尾号为9,其四位同事的车牌尾号分别是0,2,1,5.为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾号为奇数的车通行,偶数日车牌尾号为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为(B)A.64B.80C.96D.120解析5日至9日,有3个奇数日,2个偶数日.第一步,安排偶数日出行,每天都有2种选择,不同的用车方案共有2×2=4(种).第二步,安排奇数日出行,分两类讨论:第一类,选1天安排甲的车,不同的用车方案共有3×2×2=12(种);第二类,不安排甲的车,每天都有2种选择,不同的用车方案共有2×2×2=8(种).综上,不同的用车方案种数为4×(12+8)=80,故选B.1.[命题点1]设集合I={1,2,3,4},A与B是I的子集,若A∩B={1,2},则称(A,B)为一个“理想配集”.若将(A,B)与(B,A)看成不同的“理想配集”,则符合此条件的“理想配集”有9个.解析对子集A分类讨论:当A是{1,2}时,B可以为{1,2,3,4},{1,2,4},{1,2,3},{1,2},共4种情况;当A是{1,2,3}时,B可以为{1,2,4},{1,2},共2种情况;当A是{1,2,4}时,B可以为{1,2,3},{1,2},共2种情况;当A是{1,2,3,4}时,B为{1,2},有1种情况.根据分类加法计数原理可知,共有4+2+2+1=9(种)结果,即符合此条件的“理想配集”有9个.2.[命题点2]已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是(C)A.12B.8C.6D.4解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此可表示第一、二象限内不同点的个数是3×2=6.3.[命题点3]如果一个三位正整数“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为240.解析若a2=2,则百位数字只能选1,个位数字可选1或0,凸数为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则凸数有2×3=6(个).若a2=4,则凸数有3×4=12(个),……,若a2=9,则凸数有8×9=72(个).所以凸数共有2+6+12+20+30+42+56+72=240(个).4.[命题点3/2023哈尔滨六中检测]涂色能锻炼手眼协调能力,更能提高审美能力.现有四种不同的颜色:湖蓝色、米白色、橄榄绿、薄荷绿,欲给图中的小房子中的四个区域涂色,要求相邻区域不涂同一颜色,且橄榄绿与薄荷绿也不涂在相邻的区域内,则共有66种不同的涂色方法.解析可分四类:第一类,当选择两种颜色时,因为橄榄绿与薄荷绿不涂在相邻的区域内,所以共有42-1=5(种)选法,因此不同的涂色方法有5×2=10(种);第二类,当选择三种颜色且橄榄绿与薄荷绿都被选中时,有2种选法,因此不同的涂色方法有2×2×2=8(种);第三类,当选择三种颜色且橄榄绿与薄荷绿只有一个被选中时,有2种选法,因此不同的涂色方法有2×3×2×(2+1)=36(种);第四类,当选择四种颜色时,不同的涂色方法有2×2×2+2×2=12(种).所以共有10+8+36+12=66(种)不同的涂色方法.学生用书·练习帮P3821.[2024四川成都模拟]“数独九宫格”的游戏规则为:将1到9这9个自然数填到如图所示的九宫格的9个空格里,每个空格填1个数,且9个空格的数字各不相同.若中间空格已填数字5,且只填第二行和第二列,并要求第二行从左至右及第二列从上至下所填的数字都是从小到大排列的,则不同的填法种数为(C)5A.72B.108C.144D.196解析按题意,5的上方和左边只能从1,2,3,4中选取,5的下方和右边只能从6,7,8,9中选取.第一步,填上方空格,有4种填法;第二步,填左方空格,有3种填法;第三步,填下方空格,有4种填法;第四步,填右方空格,有3种填法.由分步乘法计数原理得,不同的填法种数为4×3×4×3=144.故选C.2.[2023全国卷甲]现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有(B)A.120种B.60种C.30种D.20种解析先从5人中选择1人两天均参加公益活动,有5种方式;再从余下的4人中选2人分别安排到星期六、星期日,有4×3=12(种)安排方式.所以不同的安排方式共有5×12=60(种).故选B.3.[2024北京市顺义区联考]某班一天上午有4节课,下午有2节课.现要安排该班一天中语文、数学、政治、英语、体育、艺术6门课的课程表,要求数学课排在上午,体育课排在下午,则不同的排法有(D)A.48种B.96种C.144种D.192种解析由题意,要求数学课排在上午,体育课排在下午,先考虑这两门课程,有4×2=8(种)排法,再排其余4节课,有4×3×2×1=24(种)排法,根据分步乘法计数原理,共有8×24=192(种)排法,故选D.4.现有十二生肖的吉祥物各一个,已知甲同学喜欢牛、马和猴的吉祥物,乙同学喜欢牛、狗和羊的吉祥物,丙同学对所有的吉祥物都喜欢.让甲、乙、丙三位同学依次从中选一个珍藏,若每个人所选取的吉祥物都是自己喜欢的,则不同的选法共有(C)A.50种B.60种C.80种D.90种解析根据题意,按甲的选择分两类讨论:第一类,若甲选择牛的吉祥物,则乙的选法有2种,丙的选法有10种,此时不同的选法有2×10=20(种);第二类,若甲选择马或猴的吉祥物,则甲的选法有2种,乙的选法有3种,丙的选法有10种,此时不同的选法有2×3×10=60(种).所以不同的选法共有20+60=80(种).故选C.5.[2023南京六校联考]如图,用4种不同的颜色把图中A,B,C,D四块区域区分开,若相邻区域不能涂同一种颜色,则不同的涂法共有(C)A.144种B.73种C.48种D.32种解析由于A,B,C三块区域两两相邻,因此需填涂3种不同的颜色.①当D区域与A区域颜色相同时,只需从4种不同的颜色中选取3种分别填涂到A,B,C三块区域,有4×3×2=24(种)涂法;②当D区域与A区域颜色不同时,只需将4种不同的颜色分别填涂到A,B,C,D四块区域,有4×3×2×1=24(种)涂法.所以不同的涂法共有24+24=48(种),故选C.6.如图所示,从正八边形的八个顶点中任选三个构成三角形,则与正八边形有公共边的三角形有40个(用数字作答).解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形,此类三角形由正八边形中两个相邻的顶点和一个与所选顶点均不相邻的顶点构成,共有8×4=32(个);第二类,有两条公共边的三角形,此类三角形由正八边形中三个相邻的顶点构成,共有8个.由分类加法计数原理可知,共有32+8=40(个).7.[2023北京通州区质检]一个三位数,如果满足个位上的数字和百位上的数字都大于十位上的数字,那么我们称该三位数为三位数“凹数”,则没有重复数字的三位数“凹数”的个数为240.(用数字作答)解析依题意,无重复数字的三位数“凹数”,十位数字只可能为0,1,2,3,4,5,6,7之一,个位和百位上的数字从比对应十位数字大的数字中任取两个进行排列,所以没有重复数字的三位数“凹数”的个数为9×8+8×7+7×6+6×5+5×4+4×3+3×2+2×1=72+56+42+30+20+12+6+2=240.8.[2024北京市景山学校期末]在0,1,2,3,4,5,6这7个数中任取4个数,将其组成无重复数字的四位数,其中能被5整除且比4351大的数共有(C)A.54个B.62个C.74个D.82个解析根据被5整除的数特点,分成两类.第一类:个位为0,则千位为5或6时,有2×5×4=40(个)四位数大于4351;千位为4,百位为5或6时,有2×4=8(个)四位数大于4351;千位为4,百位为3时,十位为6,有1个四位数大于4351.第二类:个位为5,则千位为6时,有5×4=20(个)四位数大于4351;千位为4,百位是6时,有4个四位数大于4351;千位为4,百位为3时,有1个四位数大于4351.综上,满足条件的数共有40+8+1+20+4+1=74(个).故选C.9.算盘是中国古代的一项重要发明.现有一种算盘(如图1),共两档,自右向左分别表示个位和十位,档中横以梁,梁上一珠拨下,记作数字5,梁下五珠,上拨一珠记作数字1(如图2中算盘表示整数51).若拨动图1算盘中的三枚算珠,则可以表示不同整数的个数为(C)图1图2A.16B.15C.12D.10解析由题意,拨动三枚算珠,有4种拨法:①个位拨动三枚,有2种结果:3,7;②十位拨动一枚,个位拨动两枚,有4种结果:12,16,52,56;③十位拨动两枚,个位拨动一枚,有4种结果:21,25,61,65;④十位拨动三枚,有2种结果:30,70.综上,拨动题图1算盘中的三枚算珠,可以表示不同整数的个数为2+4+4+2=12,故选C.10.[2023青岛检测]据史书记载,古代的算筹由一根根同样长短和粗细的小棍制成,如图所示,据《孙子算经》记载,算筹记数法则是:凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当.即在算筹记数法中,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推.例如表示62,表示26,现有5根算筹,据此方式表示一个两位数(算筹不剩余且个位不为0),则可以表示不同的两位数的个数为12.解析当十位为1时,个位可以是4,8,共2种;当十位为2时,个位可以是3,7,共2种;当十位为3时,个位可以是2,6,共2种;当十位为4时,个位为1,共1种;当十位为6时,个位可以是3,7,共2种;当十位为7时,个位可以是2,6,共2种;当十位为8时,个位为1,共1种.所以可以表示的两位数有5×2+1×2=12(个).11.[与集合综合]设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},则集合A中满足条件1≤12+22+32+42+52≤4的元素个数为(B)A.180B.210C.240D.241解析因为A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},所以x1,x2,x3,x4,x5都有3种不同的赋值,集合A中共有35个元素,且0≤12+22+32+42+52≤5,其中满足12+22+32+42+52=0的只有1个元素,即(0,0,0,0,0).当12+22+32+42+52=5时,x1,x2,x3,x4,x5都有2种不同的赋值,共有25个元素.所以集合A中满足条件1≤12+22+32+42+52≤4的元素个数为35-1-25=210,故选B.12.[逻辑推理]小李和小王玩一个猜数游戏,规则如下:已知六张纸牌上分别写有1-(12)n(n∈N*,1≤n≤6)六个数,现小李和小王分别从中各随机抽取一张,然后根据自己手中纸牌上的数推测谁手中纸牌上的数更大.小李看了看自己手中纸牌上的数,想了想说:“我不知道谁手中纸牌上的数更大.”小王听了小李的判断后,思索了一下说:“我知道谁手中纸牌上的数更大了.”假设小王和小李做出的推理都是正确的,那么小李和小王拿到纸牌的情况共有14种.解析六张纸牌上的数分别为12,34,78,1516,3132,6364.因为小李不知道谁手中纸牌上的数更大,因此小李拿的纸牌上的数不是最大的6364,也不是最小的12,因此小李拿的纸牌有4种情况.接下来讨论小王:①当小王拿的纸牌上的数是12时,则小王知道小李拿的纸牌上的数一定比他大,此时有4种情况;②当小王拿的纸牌上的数是34时,则小王知道小李拿的纸牌上的数一定比他大,此时有3种情况;③当小王拿的纸牌上的数是3132时,则小王知道小李拿的纸牌上的数一定比他小,此时有3种情况;④当小王拿的纸牌上的数是6364时,则小王知道小李拿的纸牌上的数一定比他小,此时有4种情况;⑤当小王拿的纸牌上的数是1516或78时,此时小王无法判断小李拿的纸牌上的数与他拿的纸牌上的数谁大谁小,舍去.所以满足题意的情况共有4+3+3+4=14(种).。

3.2-两个计数原理

3.2-两个计数原理

4. 用 0,1,2,3,4 可以组成多少个无重复数字的 比 2 300 大的四位数?
解法:按千位是 2,3,4 分三类: 第一类:千位是 2 的有 2×3×2=12(个); 第二类:千位是 3 的有 4×3×2=24(个); 第三类:千位是 4 的有 4×3×2=24(个); 则由分类加法计数原理有 N=12+24+24=60(个).
例1.书架的第1层放有5本不同的数学书,第2层放有3 本不同的语文书,第3层放有2本不同的英语书。
(1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、2、3层各取1本不同的书,有多少 种不同的取法?
解:(2)从书架的第1、2、3层各取1本书,可 分3个步骤完成:
第1步有5种方法;
第2步有3种方法;
分类计数原理
分步计数原理
完成一件事,共有n类 区别1 办法,关键词“分类”
完成一件事,共分n个 步骤,关键词“分步”
区别2
每类办法都能独立地完成 这件事情,它是独立的、 一次的、且每次得到的是 最后结果,只须一种方法 就可完成这件事。
每一步得到的只是中间结果, 任何一步都不能独立完成这件 事,缺少任何一步也不能完成 这件事,只有各个步骤都完成 了,才能完成这件事。
例2: 用0,1,2,3,4这五个数字可以组成多少个无重复数字的:
(1)银行存折的四位密码? (2)四位数? (3)四位奇数?
(2)完成“组成无重复数字的四位数”这件事,可以分四个步 骤:
第一步 从1,2,3,4中选取一个数字做千位数字,有4 种 不同的选取方法;
第二步 从1,2,3,4中剩余的三个数字和0共四个数字中选取 一个数字做百位数字,有4种不同的选取方法;
第三步 从剩余的三个数字中选取一个数字做十位数字,有3种 不同的选取方法;

高考数学专题复习《两个基本计数原理、排列与组合》PPT课件

高考数学专题复习《两个基本计数原理、排列与组合》PPT课件

5.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取
法的种数是
.
答案 6
解析 从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类:第1类,取出
的两数都是偶数,共有3种方法;第2类,取出的两数都是奇数,共有3种方法.
故由分类加法计数原理,不同的取法种数为N=3+3=6.
取0,2,4,6中的任意一个,百位数字不能取与这两个数字重复的数字,十位数
字不能取与这三个数字重复的数字.根据分步乘法计数原理,有
3×4×5×4=240(个)数.第2类,当千位数字为偶数且不为0时,即取2,4,6中的
任意一个时,个位数字可以取除首位数字外的任意一个偶数数字,百位数字
不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数
不同的方法
依据 能否独立完成整件事

完成这件事共有
N=
m1×m2×…×mn

能否逐步完成整件事
种不同的方
2.两个计数原理的区别与联系
名称
分类加法计数原理
分步乘法计数原理
相同点
都是用来计算完成一件事的不同方法种类的计数方法
针对“分类”问题,各种方法相互 针对“分步”问题,各个步骤中的
不同点
注意点
独立,每一类办法中的每一种方 方法互相依存,只有每一个步骤
(5)若组合式C = C ,则 x=m 成立.( × )
2.A24 + C73 =(
)
A.35
B.47
C.45
答案 B
解析
A24
+
C73
=
4!
7!
+
=12+35=47.

两种计数原理的综合应用

两种计数原理的综合应用
两种计数原理的综合 应用
目录
• 分类加法计数原理 • 分步乘法计数原理 • 两种计数原理的综合应用 • 两种计数原理的对比与总结
01
分类加法计数原理
定义与理解
定义
分类加法计数原理是指将一个问题分 成若干个互不重叠的部分,分别对每 一部分进行计数,然后将各部分的结 果相加,得出总数。
理解
分类加法计数原理的核心思想是将复 杂问题分解为简单问题,然后分别解 决,最后汇总结果。这种方法有助于 简化问题,提高解决问题的效率。
计数原理在数学和实际生活中的应用前景
数学领域
计数原理在组合数学、概率论、 统计学等领域有广泛的应用,对 于解决复杂数学问题具有重要的 理论价值。
实际生活
计数原理在计算机科学、信息论 、交通规划、生产管理等领域也 有广泛的应用,对于提高生产效 率和生活品质具有实际意义。
THANKS
感谢观看
决策树分析
在决策树分析中,分类加法计数原理和分步乘法计数原理 用于计算每个节点和路径的概率和期望值,以帮助决策者 做出最优决策。
综合应用实例解析
问题描述
一个班里有20个学生,每个学生有3种不同的课程可以选择,问一共有多少种不同的选 课方案?
分析过程
首先将问题分成20个互斥的子事件,每个子事件代表一个学生的选课结果。每个子事 件有3种可能的结果(选择3种不同的课程),因此每个子事件的结果数为3。然后根据 分类加法计数原理,20个互斥子事件的和即为整个问题的结果数,即$3^{20}$种不同
分步乘法计数原理的实例解析
实例1
一个班里有10个男生和10个女生,要从中选出3个男生和2个 女生组成一个小组,问有多少种不同的组成方式?
实例2
一个班里有10个男生和10个女生,要从中选出3个学生参加一 个比赛,其中男生和女生的人数都要大于等于1,问有多少种不 同的选人方式?

剖析高考全国卷中计数原理的几个核心问题

剖析高考全国卷中计数原理的几个核心问题

剖析高考全国卷中计数原理的几个核心问题ʏ湖南省郴州市第二中学 陈 伟计数原理㊁排列组合与二项式定理常出现在高考数学试卷的选择题与填空题中㊂该类问题强调数学在生活和生产中的应用价值,是培养同学们数据分析㊁数学建模㊁逻辑推理㊁数学运算等数学核心素养的重要工具㊂下面笔者根据教材内容和近几年高考题型,对本章内容的几个核心问题进行分析,希望能帮助同学们更好地进行高考备考复习㊂一㊁两个计数原理1.分类计数问题例1 设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ɪ{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件 1ɤ|x 1|+|x 2|+|x 3|+|x 4|+|x 5|ɤ3 的元素个数为( )㊂A .60 B .90 C .120 D .130解析:分以下三种情况讨论㊂(1)|x 1|+|x 2|+|x 3|+|x 4|+|x 5|=1,则上述五个数中有一个为1或-1,其余四个数为零,此时集合A 中的元素有C 15C 12=10(个);(2)|x 1|+|x 2|+|x 3|+|x 4|+|x 5|=2,则上述五个数中有两个数为1或-1,其余三个数为零,其中这两个数的所有可能搭配有22=4(种),此时集合A 中的元素有4C 25=40(个);(3)|x 1|+|x 2|+|x 3|+|x 4|+|x 5|=3,则上述五个数中有三个数为1或-1,其余两个数为零,其中这两个数的所有可能搭配有23=8(种),此时集合A 中的元素有8C 35=80(个)㊂综上所述,集合A 中的元素共有10+40+80=130(个)㊂故选D ㊂点评:分类计数是计数原理中非常重要的方法之一,理解问题的要求和限制条件非常关键㊂将问题中的对象分成不同的类别,然后分别计算每个类别的计数㊂解决分类计数问题需要多多练习,通过解决各种类型的问题,以提高解题能力㊂2.分配问题例2 有2男2女共4名大学毕业生被分配到A ,B ,C 三个工厂实习,每人必须去一个工厂且每个工厂至少去1人,且A 工厂只接收女生,则不同的分配方法种数为( )㊂A.12 B .14 C .36 D .72解析:按A 工厂分类,第一类:A 工厂仅接收1人的分配方法有C 12C 23A 22=12(种);第二类:A 工厂接收2人的分配方法有C 22A 22=2(种)㊂综上可知,不同的分配方法共有12+2=14(种)㊂故选B ㊂点评:在分组分配问题中,首先要明确问题要求和限制条件,包括对象数量㊁组的个数㊁是否允许重复分配等㊂根据问题性质选择排列或组合方法,有时候还要考虑对象顺序和组的顺序要求,使用乘法或加法原理处理独立或多样的分配方式㊂同时,还要特别注意任何额外的约束条件,如组大小的限制㊂二㊁排列组合问题1.捆绑法㊁插空法的应用例3 (多选题)现有2名男生和3名女生,在下列不同条件下进行排列,则其中说法正确的是( )㊂A.排成前后两排,前排3人后排2人的排法共有120种B .全体排成一排,女生必须站在一起的排法共有36种C .全体排成一排,男生互不相邻的排法共有72种D .全体排成一排,甲不站排头,乙不站排尾的排法共有72种解析:对于选项A :从5人里面抽出3人站在前排且全排列,有C 35A 33种,剩余2人在后排全排列,有A 22种,则满足条件的排法共有C 35A 33A 22=120(种),故A 正确;对于选项B :因为女生必须站在一起,所以先将女生捆绑一起且全排列,有A 33种,再3知识篇 科学备考新指向 高考数学 2023年12月将捆绑的女生与男生一起全排列,有A33种,则满足条件的排法共有A33A33=36(种),故B 正确;对于选项C:先将女生全排列,有A33种,此时共产生4个空,由于男生互不相邻,则2个男生插空即可,有A24种,则满足条件的排法共有A33A24=72(种),故C正确;对于选项D:甲不站排头,乙不站排尾,考虑反面,甲站排头的排法有A44种,乙站排尾的排法有A44种,甲站排头,乙站排尾的排法有A33种,从而甲不站排头,乙不站排尾的排法共有A55-2A44+A33=78(种),故D错误㊂故选A B C㊂点评:在解决有限制条件的排队问题时,常用捆绑法㊁插空法㊁隔板法㊁特殊元素优先法等㊂要理解问题的要求和限制,快速地确定对象的性质和数量㊂因此,我们要对不同的条件进行总结和归类,这样有助于解决各种有限制条件的排列组合问题㊂2.几何要素的分组分类计数问题例4以长方体A B C D-A1B1C1D1的任意三个顶点为顶点作三角形,从中随机取出2个三角形,则这2个三角形不共面的情况共有()㊂A.1480种B.1468种C.1516种D.1492种解析:因为长方体A B C D-A1B1C1D1的8个顶点中任意3个均不共线,所以从8个顶点中任取3个均可构成1个三角形,共有C38=56(个),从中任选2个,共有C256= 1540(种)㊂因为长方体有6个面,6个对角面,所以8个顶点中有4个点共面的情况有12种,每个面的4个顶点共确定4个不同的三角形,从这4个三角形中选出2个共有6种选法,所以随机取出2个三角形,且这2个三角形不共面的情况共有1540-12ˑ6= 1468(种)㊂故选B㊂点评:立体几何中的排列组合问题是一个有趣且具有挑战性的问题㊂主要是有关点㊁线㊁面的问题,要考虑几何体的结构特征及对称性㊂在对特定的几何要素进行分类研究时,需注意既不重复,也不遗漏㊂三、二项式定理1.求特定项例51+1x2(x-2)6的展开式中x3的系数为()㊂A.-512B.-172C.-160D.192解析:已知1+1x2(x-2)6=(x-2)6 +1x2(x-2)6,因为(x-2)6的展开式的通项T k+1=C k6x6-k(-2)k,所以(x-2)6的展开式中含x3的项为C36x3(-2)3=-160x3,其系数为-160,又1x2(x-2)6的展开式中含x3的项为1x2㊃C16x5(-2)1=-12x3,其系数为-12,所以1+1x2(x-2)6的展开式中x3的系数为-172㊂故选B㊂点评:求展开式中的特定项是高考中考查二项式定理最重要的一类问题㊂一定要牢记通项公式T k+1=C k n a n-k b k,同时也要注意利用排列组合的知识对所求项的次数进行分类㊂2.整除类问题例6若642024+m能被13整除,则m 的最小正整数取值为㊂解析:因为642024+m=(65-1)2024+ m=652024+C12024㊃652023㊃(-1)+ + C20232024㊃65㊃(-1)2023+C20242024(-1)2024+m= 652024+C12024㊃652023㊃(-1)+ +C20232024㊃65㊃(-1)2023+1+m能被13整除,又因为65=13ˑ5,即65能被13整除,则1+m能被13整除,所以m的最小正整数取值为12㊂故填12㊂点评:在利用二项式定理解决整除问题时,需要对底数进行分解,然后对展开式的余项进行讨论㊂总之,高考数学着重考查同学们灵活运用知识解决问题的能力㊂因此,复习时需要不断强化对知识的理解和记忆,不只是死记硬背基本概念㊁公式和定理,而是要了解它们的推导过程和实际应用,要通过理解和记忆来替代单纯的背诵㊂(责任编辑王福华)4知识篇科学备考新指向高考数学2023年12月。

《两个计数原理》课件

《两个计数原理》课件

概率计算问题
概率的基本性质
概率具有非负性、规范性、可加性等基本性质,用于描述随机事件发生的可能性。
概率计算方法
通过列举法、古典概型、几何概型等方法计算概率。
分步计数原理在概率计算问题中的应用
将复杂事件分解为若干个简单事件的组合,利用分步计数原理计算每个简单事件发生的概率,然后根据 概率的加法原则和乘法原则计算出复杂事件发生的概率。
04
两个计数原理的实例分析
排列组合实例
总结词
通过具体实例,理解排列与组合的概念及计算方法。
详细描述
通过实际生活中的例子,如不同颜色球的不同排列方式、不同组合的彩票中奖 概率等,来解释排列与组合的基本概念,以及如何使用计数原理进行计算。
概率计算实例
总结词
通过实例掌握概率计算的基本方 法。
详细描述
选择分步计数原理
当问题涉及多个独立步骤,且需要按照顺序逐步计算每一步 的数量时,应选择分步计数原理。例如,计算排列数时,需 要按照顺序计算从n个不同元素中取出k个元素的所有排列数 。
THANK YOU
感谢聆听
05
总结与思考
两个计数原理的异同点
相同点
两个计数原理都是用来解决计数问题,特别是涉及多个独立事件 的问题。
不同点
分类计数原理是针对完成某一任务的不同方式进行计数,而分步 计数原理则是针对完成某一任务的不同步骤进行计数。
两个计数原理的应用范围
分类计数原理
适用于问题涉及多种独立的方式或方法,需要分别计算每一种方式或方法的数量 ,然后求和得到总数。
分步计数原理的适用范围是:当完成 一个任务时,需要分成几个有序的步 骤,并且各个步骤之间有相互影响。
两个计数原理的对比

计数原理知识梳理-2024届高三数学一轮复习

计数原理知识梳理-2024届高三数学一轮复习

计数原理知识梳理一、两个原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N = 种不同的方法.推广:如果完成一件事有n 类不同方案,在第1类方案中有m 1种不同的方法,在第2类方案中有m 2种不同的方法,…,在第n 类方案中有m n 种不同的方法,那么完成这件事的方法总数为:N =m 1+m 2+…+m n .2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N = 种不同的方法.推广:如果完成一件事需要n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法,…,做第n 步有m n 种不同的方法,那么完成这件事的方法总数为:N =m 1×m 2×…×m n .(1)将一个比较复杂的问题分解为若干个“类别”,先分类解决,然后将其整合,如何合理进行分类是解决问题的关键.(2)要准确把握分类加法计数原理的两个特点:①根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏; ②分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复; ③对于分类问题所含类型较多时也可考虑使用间接法. 5.利用分步乘法计数原理解决问题时要注意:(1)要按事件发生的过程合理分步,即考虑分步的先后顺序.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这个事件. (3)对完成各步的方法数要准确确定. 6. 应用两种原理解题要注意 (1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系; (3)有无特殊条件的限制; (4)检验是否有重漏.7.与两个计数原理有关问题的解题策略(1)在综合应用两个原理解决问题时,一般是先分类再分步,但在分步时可能又会用到分类加法计数原理. (2)对于较复杂的两个原理综合应用的问题,可恰当借助列表、画图的方法来帮助分析,使问题形象化、直观化.二、排列与组合 1.排列;如果与顺序无关,则是组合. 2.排列数、组合数的定义、公式、性质全排列:n 个不同元素全部取出的一个排列,全排列数公式:所有全排列的个数,即(1)(2)21!nn A n n n n =⨯-⨯-⋅⋅⋅⨯⨯=.3.排列、组合问题的求解常用方法与技巧解排列组合综合问题,先选后排法是解答排列、组合应用问题的根本方法,具体有下面几种常用方法: (1)特殊元素或特殊位置优先法:从元素入手时,先给特殊元素安排位置,再把其他元素安排在其他位置上;从位置入手时,先安排特殊位置,再安排其他位置.优先安排.(2)相邻问题捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列. (3)相间问题插空法:对不相邻问题,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.(4)定序问题倍除法:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列. (5)多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理. (6)分球问题隔板法:相同元素的分配问题常用“隔板法”,每组至少一个.(7) 分组分配问题的策略:对于不等分问题,首先要对分配数量的可能情形进行一一列举,然后再对每一种情形分类考虑.对于整体均分,分组后一定要除以A n n (n 为均分的组数),避免重复计数.对于部分均分,若有m 组元素个数相等,则分组时应除以m !.(8)间接法:正难则反、等价转化的方法,比如“至少”或“至多”含有几个元素的题型. 三、二项式定理 1.二项式定理(1)二项式定理:(a +b )n =(n ∈N *),等号右边的式子称为()na b +的二项展开式.(2)通项公式:T k +1= ,它表示第 项;注意:(a +b )n 与(b +a )n 虽然相同,但用二项式定理展开后,具体到它们展开式的某一项时是不相同的,一定要注意顺序问题. 2.二项展开式的特征:(1)二项展开式共有 项;(2)二项式系数依次为组合数012,,,,,,knn n n n n C C C C C ⋅⋅⋅⋅⋅⋅;(3)各项次数都等于二项式的幂指数n ;(4)字母a 的指数由n 开始按降幂排列到0,b 的指数由0开始按升幂排列到n . 注意:二项式系数与项的系数是完全不同的两个概念.二项式系数是特指相应的组合数C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关. 3.4.(1)(a +b )n 展开式的各二项式系数和:C 0n +C 1n +C 2n +…+C n n = .(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…= .5.求二项展开式中特定项(或系数)的步骤第一步,利用二项式定理写出二项展开式的通项T k +1=C k n a n -k b k,把字母和系数分离开(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出k ;第三步,把k 代入通项中,即可求出T k +1,有时还需要先求n ,再求k ,才能求出T k +1或者其他量. 6.求三项展开式中某些特定项(或系数)的策略(1)通过变形先把三项式转化为二项式,再用二项式定理求解. (2)两次利用二项式定理的通项求解.(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量.7.二项式定理中的字母可取任意数或式,在解题时根据题意给字母赋值是求解二项展开式各项系数和的一种重要方法.(1)“赋值法”普遍适用于恒等式,是一种重要的方法.对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式的各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.8.二项展开式中系数最大项的求法如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法.设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,注意解出k 后要检验首末两项.。

计数原理

计数原理

第一章.计数原理一.两个基本计数原理分类计数原理(加法原理):完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,…..在第n类方式中有mn种不同的方法,那么完成这件事共有N=m1+m2+….mn种不同的方法。

分布计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1个有m1种不同的方法,做第2步有m2种不同的方法,….做第n步有mn种不同的方法,那么完成这件事共有N=m1+m2+….+mn种不同的方法。

二.排列一般的,从n个不同的元素中取出m(m≦n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列。

排列数三.组合一般的,从n个不同的元素中取出m(m≦n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。

组合数㈠简单问题直接法例一.某班级有男生40人,女生20人,⑴从中任选一人去领奖,有多少种不同的选法?60⑵从中任选男女各一人去参加座谈会,有多少种不同的选法?800例二.五名学生报名参加思想体育比赛,每人限报一项,报名方法的种数为多少?1024例三.七个人做两排座位,第一排坐3人,第二排坐4人,有多少种不同的坐法?5040㈡相邻问题捆绑法例一.七个小孩拍照留念,其中三个是女孩,四个是男孩,⑴若三个女孩要站在一起,有多少种不同的排法720⑵若三个女孩要站在一起,四个男孩也要站在一起,则有多少种排法288㈢不相邻问题插空法例一.七个小孩拍照留念,其中三个是女孩,四个是男孩,⑴若三个女孩要互不相邻,有多少种排法1440⑵若三个女孩互不相邻,四个男孩也互不相邻,有多少种排法144例二.8张椅子排成一排,有四个人就坐,每个人一个座位,恰有3个连续的空位的做法共有几种480例三.5名学生和2位老师站成一排合影,2位老师不相邻的排法有几种例四.七人排成一排,甲乙两人必须相邻,且甲乙都不与丙相邻,则有不同的排法几种?960㈣特殊元素或特殊位置的优先考虑例一.4个男生,3个女生排队,⑴甲不站中间也不站两端,共有多少种排法?2880⑵甲乙中间至少有2个人,有多少种排法2400⑶甲必须在已的右边,有多少种排法2520例二.从6人中选出4人分别到莨山,韶山,衡山,张家界4个旅游景点游览,要求每个景点只有一人游览,每人只游览一个景点,且这6人中甲不去衡山景点,乙不去韶山景点,则不同的安排方法有几种252例三.从6名运动员中选出4人参加4*100米接力,⑴若甲不跑第一棒,乙不跑第四棒,则有多少种排法252⑵若甲乙都不跑第一棒,则有多少种排法240⑶若甲乙不跑中间两棒,则有多少种排法144例四.将五列车停在5条不同的轨道上,其中a列车不停在第一轨道,b列车不停在第二轨道,那么不同的停车方法有几种78例五.要排出某一天中语文,数学,政治,英语,体育,艺术,6门课各一节的课程表,要求数学课排在前三节,英语课不排在第六节,则不同的排法有几种?288㈤涂色问题例一.在矩形的绿地四角各方一盆花,现有6种不同颜色的花,若要求同一边的两端摆放不同的颜色,则不同的摆放方式有多少种630例二.将三种作物种在5块试验田里,每块种植一种作物,且相邻的试验田不能种植同一作物,不同的种植方法有多少种□□□□□42例三.在田字格中用四种颜色涂,要求相邻的格子颜色不能相同,有多少种不同的涂法㈥几何问题例一.平面内有12个点,任何3点不在同一直线上,以每3点为顶点画一个三角形,一共可画多少个三角形220例二.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得到多少个不同的三角形216例三.∠A的两条边除A点分别有3给点和四个点,则有这些点,共能构成多少个不同的三角形42例四.从正方体的八个顶点中任取三个点为顶点作为三角形,其中直角三角形有多少个?48例五.共有11层台阶,一个人可以一次走一个台阶或两个台阶,⑴若他恰在第七步走完,共可以有多少种走法35⑵若他要在7步内走完,共可以有多少种走法41例六.甲乙丙3人到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上得人不区分站的位置,则不同的站法有几种?例七.某市有7条南北向街道,5条东西向街道,⑴图中共有多少个矩形210⑵从A点到B点最短路线的走法有多少种?210㈦分组分配例一.对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有几种可能576例二.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级,且每班安排两名,则不同的安排方案有几种?90例三.从7名男运动员和5名女运动员中,选出4名进行男女混合双打乒乓球比赛,则不同的配组方法有几种420例四.共有8个人,其中6个人会英语,有5个人会法语,现从中选出6个人,3个人翻译英语,3个人翻译法语,共有多少种可能?55例五.若7个人身高都不同,从中取出6人,站成2排,每排3人,要求每一列前排比后排的人矮,共有几种站法?630㈦至多至少恰好间接法例一.袋中有5双不同的鞋子,从中取出4只⑴恰好有2双,共有几种可能?10⑵恰好有2只成双,共有几种可能120⑶至少有2只成双,有几种可能130⑷每只都不成双,有几种可能?80例二.将7名学生分配到甲乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的分配方式有几种?112例三.设有编号12345的五个球和编号为12345的五个盒子,现将五个球放入盒子内,要求每个盒子内放一个球,⑴若恰有两个球的编号与盒子编号相同,则这样的投放方法有几种20⑵若至多有两个球的编号与盒子相同,则这样的投放方法有多少种?109三个人站成一排,要调整位置,每个人都不站在自己的位置上,有2种方法。

两种计数原理的内容

两种计数原理的内容

两种计数原理的内容
1. 乘法原理:将一个问题分解成几个部分,每个部分都有若干种选择,那么整个问题的总方案数就等于各部分选择方案数乘积。

例如,有5种颜色的衣服和3种不同的裤子,那么可以组成的不同的服装组合数就是5×3=15。

2. 加法原理:当一个问题可以用多种不同的方法得到的时候,就可以使用加法原理。

例如,有一条路线,从A到B有3条不同的路线,从B到C有4条不同的路线,那么从A到C总共有3+4=7种不同的路线。

也可以理解为将不同的方案(如A到B的路线和B到C的路线)相加得到总方案数。

两个计数原理的应用知识点

两个计数原理的应用知识点

两个计数原理的应用知识点1. 二进制计数原理•二进制计数是一种使用只有两个数字0和1的数字系统。

•二进制计数系统是计算机中最常用的计数系统之一。

•二进制计数原理是基于权值计数的,每一位的权值是2的指数值。

1.1 二进制加法•二进制加法是在二进制计数系统中进行加法运算的方法。

•在二进制加法中,当两个位数相加为0时,结果位为0;当两个位数相加为1时,结果位为1;当两个位数相加为2时,结果位为0并向前一位进位1。

1.2 二进制减法•二进制减法是在二进制计数系统中进行减法运算的方法。

•在二进制减法中,当被减数位大于减数位时,结果位为1;当被减数位等于减数位时,结果位为0;当被减数位小于减数位时,需要向前一位借位。

1.3 二进制位运算•二进制计数系统中有一些特殊的位运算操作,如与(AND)、或(OR)、非(NOT)、异或(XOR)等。

•位运算可以对二进制数据进行快速、高效的操作。

2. 十进制计数原理•十进制计数是我们常见的十个数字0-9的计数系统。

•十进制计数原理是基于权值计数的,每一位的权值是10的指数值。

2.1 十进制加法和减法•十进制加法和减法是在十进制计数系统中进行加法和减法运算的方法。

•十进制加法和减法与二进制加法和减法类似,根据位数的相加或相减进行计算。

2.2 十进制乘法和除法•十进制乘法和除法是在十进制计数系统中进行乘法和除法运算的方法。

•十进制乘法和除法与二进制乘法和除法类似,根据位数的相乘或相除进行计算。

2.3 小数计算•十进制计数系统还包括小数的计算方法。

•小数计算通过十进制点的位置来确定权值,根据位数的相加、相减、相乘或相除进行计算。

总结•二进制计数原理和十进制计数原理是计算机科学中非常重要的基础知识。

•了解和掌握二进制计数原理和十进制计数原理可以帮助我们更好地理解和使用计算机。

•通过学习和应用这些知识点,我们可以更加高效地进行二进制和十进制的计算和处理任务。

(完整版)两个计数原理与排列组合知识点及例题(最新整理)

(完整版)两个计数原理与排列组合知识点及例题(最新整理)

m
1
mm
1
2m
1n
m
1
m
n!
1!n
m
1 ! n
2n
1
m
n 1 !n
2!
m
1 !
C m1 n2

另法:利用公式
C
m n
Cm n1
C
m1 n1
推得

C m1 n
C nm
C
m n
C m1 n
C m1 n1
Cn n1
C m1 n2

点评:证明排列、组合恒等式通常利用排列数、组合数公式及组合数基本性质
并列需要分类计算
解:(1)A 中每个元都可选 0,1,2 三者之一为像,由分步计数原理,共有 3 3 3 3 34 个不同
映射
(2)根据 a, b, c, d 对应的像为 2 的个数来分类,可分为三类:
第一类:没有元素的像为 2,其和又为 4,必然其像均为 1,这样的映射只有一个;
第二类:一个元素的像是
(1)6 名学生排 3 排,前排 1 人,中排 2 人,后排 3 人; (2)6 名学生排成一排,甲不在排头也不在排尾; (3)从 6 名运动员中选出 4 人参加 4×100 米接力赛,甲不跑第一棒,乙不跑第四棒; (4)6 人排成一排,甲、乙必须相邻; (5)6 人排成一排,甲、乙不相邻; (6)6 人排成一排,限定甲要排在乙的左边,乙要排在丙的左边(甲、乙、丙可以不相邻)
根据分类计数原理和点 A 共面三点取法共有 3C53 3 33 种
(2)取出的 4 点不共面比取出的 4 点共面的情形要复杂,故采用间接法:先不加限制任取 4 点( C140
例 1 完成下列选择题与填空题

两个计数原理及其简单应用 课件

两个计数原理及其简单应用 课件

分步乘法计数原理的应用 [典例] 从 1,2,3,4 中选三个数字,组成无重复数字的整 数,则分别满足下列条件的数有多少个? (1)三位数; (2)三位数的偶数. [解] (1)三位数有三个数位, 百位 十位 个位 故可分三个步骤完成: 第 1 步,排个位,从 1,2,3,4 中选 1 个数字,有 4 种方法; 第 2 步,排十位,从剩下的 3 个数字中选 1 个,有 3 种方法;
两个计数原理及其简单应用
1.分类加法计数原理
2.分步乘法计数原理
[点睛]
两个原理的区别
区别一 区别二
每类方法都能独立完 成这件事.它是独立 的、一次的且每次得 到的是最后结果,只 需一种方法就完成
任何一步都不能独立 完成这件事,缺少任 何一步也不可,只有 各步骤都完成了才能 完成这件事
各类方法之间是互斥 的、并列的、独立的
法二:分析个位数字,可分以下几类: 个位是 9,则十位可以是 1,2,3,…,8 中的一个,故共有 8 个; 个位是 8,则十位可以是 1,2,3,…,7 中的一个,故共有 7 个; 同理,个位是 7 的有 6 个; …… 个位是 2 的有 1 个. 由分类加法计数原理知,符合条件的两位数共有 8+7+6+5 +4+3+2+1=36(个). [答案] 36
利用分步乘法计数原理计数时的解题流程
两个计数原理的简单综合应用
[典例] 在 7 名学生中,有 3 名会下象棋但不会下围棋, 有 2 名会下围棋但不会下象棋,另 2 名既会下象棋又会下围棋, 现在从 7 人中选 2 人分别参加象棋比赛和围棋比赛,共有多少 种不同的选法?
[解] 选参加象棋比赛的学生有两种方法:在只会下象棋的 3 人中选或在既会下象棋又会下围棋的 2 人中选;选参加围棋比 赛的学生也有两种选法:在只会下围棋的 2 人中选或在既会下象 棋又会下围棋的 2 人中选.互相搭配,可得四类不同的选法.

计数原理及举例

计数原理及举例

计数原理及举例一、两个原理:1.加法原理。

一般地,如果完成一件事情需要n 类办法,在第一类办法中,有1m 种不同方法,在第二类办法中有2m 种不同方法,…,在第n 类办法中,有n m 种不同方法。

那么完成这件事共有n m m m +++ 21种方法。

上述原理称为加法原理。

2.乘法原理。

如果完成一件需要n 个步骤,做第一步有1m 种方法,做第二步有2m 种方法,…,做第n 步有n m 种方法,那么完成这件事共有n m m m ⨯⨯⨯ 21 种方法。

上述原理称为乘法原理。

让我们来看一个简单的例子。

如下图,从甲地到乙地有2条路,从乙地到丙地有4条路,从甲地到丁地有3条路,从丁地到丙地也有3条路。

问:从甲地到丙地共有多少种不同的走法?此题中,首先可根据加法原理,把从甲到丙的走法分为两类。

① 由甲过乙至丙,② 由甲过丁至丙。

而这两类办法中,都需要两个步骤,要应用乘法原理来算,最后总的方法为: 2×4+3×3=17(种)。

下面让我们来看几个具体的题。

例1:有一堆火柴共12根,如果规定每次取1~3根,那么取完这堆火柴共有多少种不同取法?此题要用到加法原理:要拿第n 根火柴,可以从第(n-3)、(n-2)及(n-1)根三种基础上来考虑。

如果拿第(n-3)根有a 种办法,拿第(n-2)根有b 种办法,拿第(n-1)根有c 种办法,因此拿第n 根共有(a+b+c )种办法。

因此只要知道拿1根、2根、3根的火柴数就可以得到具体的种数。

1,2,4,7,13,24,44,81,149,274,504,927,…例2:从2,3,4,5,6,10,11,12这八个数中,取出两个数组成一个最简真分数,共有多少种取法?此题显然是根据分子或分母的情况来分类,最后种数为15种。

例3:在下图中,从A 点沿实线走最短路径到B 点,有多少种走法?甲 乙 丁丙AB P35种,可从图上逐个标注数字,除左边和下边都是1外,其余每个点的种数在计算时都是一个加法原理的应用。

高二数学两个基本计数原理7省名师优质课赛课获奖课件市赛课一等奖课件

高二数学两个基本计数原理7省名师优质课赛课获奖课件市赛课一等奖课件

在图(2)中,按要求接通电路必须分两步进行:第一步,合上A中旳一只开关;第二步,合上B中旳一只开关。故有 2×3=6 种不同措施。
答:在图 (1)旳电路中,只合上一只开关以接通电路,有5种不同旳措施;图(2)旳电路中,合上两只开关以接通电路,有6种不同旳措施.
………...问Fra bibliotek情境1:问题 1.从南京到上海,有3条公路,2条铁路,那么从南京到上海共有多少种不同旳措施?
上海
宁波
问题2、增长杭州游,从南京到杭州旳路有三条,由杭州到上海旳路有两条。问:从南京经杭州到上海有多少种不同旳措施?
上海
宁波
杭州
完毕一件事, 有n类方式, 在第一类方式,中有m1种不同旳措施,在第二类方式,中有m2种不同旳措施,……,在第n类方式,中有mn种不同旳措施. 那么完毕这件事共有 种不同旳措施。
分类计数原理
N=m1+m2+…+m n
例1: 某班共有男生28名,女生20名,从该班选出学生代表参加校学代会.若学校分配给该班1名代表,有多少种不同旳选法?若学校分配给该班2名代表,且男女生代表各1名,有多少种不同旳选法?
例2: (1) 在图 (1)旳电路中,只合上一只开关以接通电路,有多少种不同旳措施? (2) 在图(2)旳电路中,合上两只开关以接通电路,有多少种不同旳措施?
密码为4位,每位均为0到9这10个数字中旳一种数字,这么旳 密码共有多少个?
解:(1) 设置四位密码,每一位上都能够从0到9这10个数字中取一种,有10种取法,根据分步计数原理,四位密码旳个数是 10×10×10×10=10000
密码为4位,每位是0到9这10个数字中旳一种,或是从A到Z这26个英文字母中旳1个,这么旳密码共有多少个?

§1.1两个计数原理

§1.1两个计数原理
N m1 m 2 m n
种不同的方法.
例1
某班共有男生28名,女生20名,从该班选出学 生代表参加校学生代会.
(1)若学校分配给该班1名代表,有多少种不同的选
法?
(2)若学校分配给该班2名代表,且男,女生代表各1
名,有多少种不同的选法?
例2(1):在由电键组A与B所组成的并 联电路中,只合上一只开关以接通电路,使 电灯发光的方法有多少种?
(3)密码为4到6位,每位均为0到9这10个数字
中的一个,这样的密码共有多少个?
例4
用4种不同颜色给如图所示的地图上 色,要求相邻两块涂不同的颜色,共有多少种 不同的涂法?
分层训练
必做题:
P9 选做题:

练习 2,3,4,5
1,用0,1,2,……,9可以组成多少个8位整数? 2,用0,1,2,……,9可以组成多少个无重复数字 的4位奇数?
人们在社会生活的各个方面都常需要进行计数 比如:(1)电话号码的编排;
(2)密码的设定;
(3)彩票的设计; (4)集成电路的布线安排; (5)计算机的程序编制等
某市目前汽车牌照的号码使用2个英文字
母 后接4个阿拉伯数字的方式构成(其中第一个字 母是固定不变的),那么可能的汽车牌照号码共 有多少个?估计该市到2008年汽车保有量将达 到1000000辆,到时怎样调整汽车牌照号码的构 成方式,就可以满足需要了?
N m1 m 2 m n
种不同的方法.
问题二:从甲地到乙地,要从甲地选乘火 车到丙地,再于次日从丙地乘汽车到乙地.一 天中,火车有3班,汽车有2班.那么两天中, 从甲地到乙地共有多少种不同的走法 ?
这个问题与前一个问题不同.在前一个问题中,采用乘 火车或汽车中的任何一种车、后乘汽车两个步骤, 才能从甲地到乙地.

计数原理教案

计数原理教案

注意事项:
相邻问题,常用“捆绑法”,不相邻问题,常用 “插空法”
第一章:计数原理
一、两个计数原理
3、两个计数原理的区别
二、排列与组合 1、排列: 一般地,从 n 个不同元素中取出 m(m≤n)个元素,按照一定的顺序 排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。
m 2、排列数:从 n 个不同元素中取出 m(m≤n)个元素的所有不同排列 An
的个数叫做从 n 个不同元素中取出 m 个元素的排列数。 用符号 Anm 表 示. 3、排列数公式:
m An nn 1n 2 n m 1

n! n m !
n An n!
其中
n, m N * , 并且m n.
4、组合: 一般地, n 个不同元素中取出 m(m≤n)个元素合成一组, 从 叫做从 n 个不同元素中取出 m 个元素的一个组合。 5、组合数: 从 n 个不同元素中取出 m(m≤n)个元素的所有不同组合的个数叫做 从 n 个不同元素中取出 m 个元素的组合数。用符号 Cnm 表示。 6、组合数公式:
m Cn
n n 1n 2 n m 1 m ! n ! m!n m !

其中 n, m N * , 并且m n. 注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否 与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什 么”.
7、性质:
0 Cn 1 , Cnm Cnn m m An Cn . Am
三、二项式定理
如果在二项式定理中,设 a=1,b=x,则可以得到公式:
2、性质:
奇数项二项式系数和 偶数项二项式系数和:
0 2 4 1 3 5 Cn Cn Cn Cn Cn Cn 2 n 1

完整版两个计数原理

完整版两个计数原理

两个计数原理两个计数原理1•分类计数原理:做一件事,有n类办法,在第1类办法中有m i种不同的方法, 在第2类办法中有m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有N m i m2 L 种不同的方法•例从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法有____________ 种练习一个学生从3本不同的科技书、4本不同的文艺书、5本不同的外语书中任选一本阅读,不同的选法有 _种.2•分步计数原理:完成一件事,需要分成n个步骤,做第1步有m i种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N m1 m2 L m*种不同的方法•例1一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有种不同的选法•例2 一商场有3个大门,商场内有2个楼梯,顾客从商场外到二楼的走法有种•练习1从分别写有0,1,2,3,…,9十张数字的卡片中,抽出两张,数字和为奇数的卡片共有种不同的抽法。

数字和为偶数的卡片共有种不同的抽法•练习2从1,0,1,2这四个数中选三个不同的数作为函数f(x) ax2 bx c 的系数,可组成不同的二次函数共有—,其中不同的偶函数共有个.18,63两个原理的综合应用例1如图10-1-2所示,从A地到B地有3条不同的道路,从B地到C地有4 条不同的道路,从A地不经B地直接到C地有2条不同的道路.(1)从A地到C地共有多少种不同的走法?(14)(2)从A地到C地再回到A 地有多少种不同的走法?(196)⑶从A地到C地再回到A地,但回来时要走与去时不同的道路,有多少种走法?(182)⑷从A地到C地再回到A地,但回来时要走与去时完全不同的道路,有多少种走法?(122)例2如下图的街道上,从A到B不走回头路,则有n i& 11不同的走法.(15)例3某体育彩票规定:从01到36共36个号中抽出7个号为一注,每注2元. 某人想先选定吉利号18,然后从01至17中选3个连续的号,从19至29 中选2个连续的号,从30至36中选1个号组成一注.若这个人要把这种要求的号全买下,至少要花_____________________ 钱•(2100)练习1如图,从A C有___________ 种不同走法•(6)练习2在3000到8000之间有_______ 无重复数字的奇数.(1232个)分两类;一类是以3、5、7为首位的四位奇数,可分三步完成:先排首位有 3 种方法,再排个位有4种方法,最后排中间两个数位有8 X7种方法,所以共有 3 X4 X8 X7=672 个.另一类是首位是4或6的四位奇数,也可以3步完成,共有2 X5 X8X7=560个•由分类计数原理得共有672+560=1232 个.练习3有一角、二角、五角人民币各一张,一元人民币3张,五元人民币2张,一百元人民币2张,由这些人民币可组成_____ 中不同的非零币值.(287 )练习4用0, 1,2,3,4,5可以组成—无重复数字且比2000大的偶数(120).涂色问题 例1如图:某班宣传小组要出一期向英雄学习的专刊,现有红、黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中 A 、B 、C 、D 每一部分只写一种 颜色,如图所示,相邻两块颜色不同,则不同颜色的书写方法共有1 -------A―i1------------* B 斗一CD例2如图,用4种不同的颜色涂入 图中的矩形A ,的矩形涂色不同,则不同的涂法有()A练习1如图所示,用五种不同的颜色,给图中标有①,②,③,④的各个部分涂色,每部分只能涂一种颜色,且相邻部分要涂不同色,那么不同涂色的方法种数为 _____ (240 )种(180)A . 72 种B . 48 种C . 24 种D . 12 种例2有5名同学争夺4项竞赛冠军,冠军获得者共有种可能.练习2用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,(260)□ □ □练习3将红、黄、绿、黑四种不同的颜色涂入如图中的五个区域内,要求相邻三 模型法(投信法) (1)可重复问题例1有5名同学报名参加4个课外活动小组,若每人限报1个,共有 _ 中不 同的报名方法•若要求相邻(有公共边)的区域不同色,那么共有种不同的涂色方法的两个区域的颜色都不相同,贝U 不同的涂色方法有种例1将三封信投入4个邮箱,不同的投法有_________ 种.例2有3名同学报名参加4个不同学科的比赛,每名学生只能参赛一项,问有____ 中不同的报名方案•例3有数学、物理、文学3个课外活动小组,6个同学报名,每人限报一组,一共有种报名的方法•(2)无重复问题例1把4张不同的参观券分给5个代表,每人最多分一张,参观券全部分完, 则不同的分法共有种•练习1五个工程队承建某个工程的5个不同的子项目,每个工程队承建1项, 其中甲工程队不能承建1号子项目,则不同的承建方案共有___种.(96)练习2从黄瓜,白菜,油菜,扁豆4中蔬菜中选3中,分别种在不同土质的三四间接法和排除法例1已知集合A a i ,a 2,a 3,a 4以集合B bb , 合B 为值域能构成 _____ 不同函数•( 14)例2从1,2,3,4,7,9中任取不相同的两个数, 数,可得到 ____ 个不同的对数值.(17)块土地上,其中黄瓜必须种植,则不同的种植方法有种.(18)则以集合A 为定义域,以集分别作为对数的底数和真练习 1 用数字2,3组成四位数,且数字 2 ,3至少都出现一次,这样的四位数共有____ 个.(14 )练习 2 用0,1,L ,9十个数字,可以组成有重复数字的三位数个数为(252)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分步乘法计数原理
思考4:类比分类加法原理的推广,分步 乘法原理能推广吗?
思考5:你能说说分类加法原理与分 步乘法原理两个原理的异同点?
分步加法计数原理和分类乘法 计数原理的共同点:
计算做一件事情完成它的所 有不同方法种数的问题。
分类加法计数原理 分步乘法计数原理
区别1 完成一件事,共有
n类方案,关键词
A大学
B大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学
工程学
如果这名同学只能选一个专业,那么他共有多少种 选择呢?
练习 :在填写高考志愿表时,一名高中毕业生了解
到,A,B,C三所大学各有一些自己感兴的强项专
业,具体情况如下:
A大学
B大学
C大学
生物学
数学
机械制造
化学
会计学
建筑学
医学
信息技术学 广告学
(2008·重庆)某人有4种颜色的灯泡(每种颜色的灯泡足够
多),要在如图所示的6个点A、B、C、A1 、B1、C1上各装一个
灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡 都至少用一个的安装方法共有种.(用数字作答)
课堂小结
两大原理:
1、分类加法计数原理: 针对的是“分类”问题.各类方法相互独立。
“分类”
完成一件事,共分n 个步骤,关键词 “分步”
区别2 每类方案的任何一个 任何一步都不能独立完成
方法都能独立地完成 这件事,只有各个步骤都
这件事情
完成了,才能完成这件事
区别3
相加
相乘
例1:书架的第1层放有4本不同的计算机书,第2 层放有3本不同的文艺书,第3层放有2本不同的体 育书,
(1)从书架上任取1本书,有多少种不同的取法?
物理学
法学
汉语言文学
工程学
韩语
如果这名同学只能选一个专业,那么他共有多少种 选择呢? N=5+4+5=14(种)
推广:
思考2:从甲地到丙地,有3条道路,从丙地到 乙地有2条道路,那么从甲地经丙地到乙地共 有多少种不同的走法 ?
甲地
丙地
乙地
思考3:你能类比分类加法计数原理,概 括出第二种计数原理吗?
630=2×32×5×7
正约数:2a×3b×5c×7d 2×3×2×2=24(个)
例7 某电视节目中有A、B两个信箱, 分别存放着先后两次竞猜中入围的观众 来信,其中A信箱中有30封来信,B信箱 中有20封来信.现由主持人从A信箱或B信 箱中抽取1名幸运观众,再由该幸运观众 从A、B两个信箱中各抽取1名幸运伙伴, 求共有多少种不同的可能结果?
30×29×20+20×19×30 =17400+11400=28800(种)
例8 :甲、乙、丙3个班各有三好学生3,5, 2名,现准备推选两名来自不同班的三好 学生去参加校三好学生代表大会,共有多 少种不同的推选方法?
解析: A处1 4种, B处1 3种, 处C12种,则底面共4×3×2=24
两个计数原理
思考1:从甲地到乙地,可以乘火车,
也可以乘汽车。一天中,火车有3班,
汽车有2班。那么一天中,乘坐这些
交通工具从甲地到乙地共有多少种不
同的走法?
3+2=5(种)
火车1
火车2

火车3

汽车1
汽车2
分类加法计数原理
.在填写高考志愿表时,一名高中毕业生了解到A,B 两所大学各有一些自己感兴趣的强项专业,具体情 况如下:
A5 4 B C3 D3
N=5×4×3×3=180(种)
例5 将一个四棱锥的每个顶点染上
一种颜色,并使同一条棱上的两端点颜
色不同,如果只有5种颜色可供使用,求
共有多少种不同的染色方法?
S
涂S点
5
C
涂A点
4
D
涂D点
3
A
B涂B、C点 7
N=5×4×3×7=420(种)
典例讲评
例6 630的正约数(包括1和630)共 有多少个?
第二类方法:取计算机书和体育书 该方法分两步完成,共4*2=8种方法
第三类方法:取文艺书和体育书 该方法分两步完成,共3*2=6种方法
所以共有12+8+6=26种方法。
例2 有架楼梯共6级,每次只允
许上一级或两级,求上完这架楼梯共
有多少种不同的走法?
第1类:走3步
1种走法
第2类:走4步
6种走法
第3类:走5步
N 4 3 2 24
答:从书架的1、2、3层各取1本书,有24种不同的取 法。
例1 书架的第1层放有4本不同的计算机书,第2层放 有3本不同的文艺书,第3层放有2本不同的体育书,
(3)从书架上任取两本不同学科的书,有多少种不 同的取法?
解: 从书架上任取两本不同学科的书,有三类方法:
第一类方法:取计算机书和文艺书 该方法分两步完成,共4*3=12种方法
解(:1)从书架上任取一本书,有三类方法: 第1类办法是:从第1层取1本计算机书,有4种方法; 第2类办法是:从第2层取1本文艺书,有3种方法; 第3类办法是:从第3层取1本体育书,有2种方法; 根据分类加法计数原理,不同取法的种数是:
N 4329
答:从书架上任取1本书,有9种不同的取法.
例1 书架的第1层放有4本不同的计算机书,第2层放 有3本不同的文艺书,第3层放有2本不同的体育书,
(种).根据A点和 B1点两处灯泡的颜色相同或不相同分为两类:
(1)A, B颜1 色相同,则B处有3种,C处有1种,则共有3×1=3种;
(2)A, B颜1 色不同,则A处有2种,B处和C处共有3种,则共有
3×2=6(种).
由分类计数原理得上底面共9种,再由分步计数原理得共有
24×9=216(种).
例9
2、分步乘法计数原理: 针对的是“分步”问题。每步相互依存。
两种思想:
1、类比思想:由加法原理类比得到乘法原理
2、从特殊到一般思想:原理的推广
(2)从书架的第1,2,3层各取1本书,有多少种不 同的取法?
解(:2)从书架的1、2、3层各取1本书,可以分3步来完成:
第1步:从第1层取1本计算机书,有4种方法;
第2步:从第2层取1本文艺书,有3种方法;
第3步:从第3层取1本体育书,有2种方法;
根据分步乘法计数原理,从书架的1、2、3层各取1本书, 不同取法的种数是:
5种走法
第4类:走6步
1种走法
N=1+6+5+1=13(种)
例3 在1,2,3,…,200这些自 然数中,各个数位上都不含数字8的 自然数共有多少个?
不含8的一位数
8个
不含8的二位数 不含8的三位数
8×9=72个 9×9+1=82个
N=8+72+82=162(个)
例4 用5种不同颜色给图中A,B, C,D四个区域涂色,每个区域只涂 一种颜色,相邻区域的颜色不同, 求共有多少种不同的涂色方法?
相关文档
最新文档