数学物理方法习题解答(完整版)
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
高中物理数学物理法技巧和方法完整版及练习题及解析
高中物理数学物理法技巧和方法完整版及练习题及解析一、数学物理法1.如图所示,身高h =1.7 m 的人以v =1 m/s 的速度沿平直路面远离路灯而去,某时刻人的影长L 1=1.3 m ,2 s 后人的影长L 2=1.8 m .(1)求路灯悬吊的高度H .(2)人是远离路灯而去的,他的影子的顶端是匀速运动还是变速运动? (3)在影长L 1=1.3 m 和L 2=1.8 m 时,影子顶端的速度各是多大? 【答案】(1)8.5m (2)匀速运动(3)1.25/m s 【解析】 【分析】(1)匀匀速运动,画出运动图景,结合几何关系列式求解; (2)(3)根据比例法得到影子的顶端的速度的表达式进行分析即可. 【详解】(1)画出运动的情景图,如图所示:根据题意,有:CD=1.3m EF=1.8m CG=EH=1.7m ;CE=vt=2m ;BF=BC+3.8m 根据几何关系: 1.3CG CDAB BC +=3.8EH EFAB BC += 可得:H=AB=8.5m ;(2)设影子在t 时刻的位移为x ,则有: x vt hx H-=, 得:x=HH h-vt , 影子的位移x 是时间t 的一次函数,则影子顶端是匀速直线运动; (3)由(2)问可知影子的速度都为v′= x Hv tH h=-=1.25m/s ;【点睛】本题关键是结合光的直线传播,画出运动的图景,结合几何关系列式分析,注意光的传播时间是忽略不计的.2.在地面上方某一点分别以和的初速度先后竖直向上抛出两个小球(可视为质点),第二个小球抛出后经过时间与第一个小球相遇,要求相遇地点在抛出点或抛出点以上,改变两球抛出的时间间隔,便可以改变值,试求(1)若,的最大值(2)若,的最大值【答案】(1)(2)22212v vvtg g-∆=-【解析】试题分析:(1)若,取最大值时,应该在抛出点处相遇,则最大值(2)若,取最大值时,应该在第一个小球的上抛最高点相遇,解得,分析可知,所以舍去最大值22212v vvtg-∆=-考点:考查了匀变速直线运动规律的应用【名师点睛】本题的解题是判断并确定出△t取得最大的条件,也可以运用函数法求极值分析.3.如图,O1O2为经过球形透明体的直线,平行光束沿O1O2方向照射到透明体上。
数学物理方法习题及解答
2. 试解方程:()0,044>=+a a z44424400000,0,1,2,3,,,,i k iiz a a e z aek aez i i ππππωωωωω+=-=====--若令则1.计算:(1)iii i 524321-+-+ (2)y =(3)求复数2⎝⎭的实部u 和虚部v 、模r 与幅角θ(1) 原式=()()()123425310810529162525255i i i i i i +⋅+-⋅+-++=+=-+--(2) 332()102052(0,1,2,3,4)k i e k ππ+==原式(3)2223221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,23i i i e r ππππππθπ⎛⎫==+=+==-+ ⎪⎝⎭⎝⎭=-===+=±±原式所以:,3.试证下列函数在z 平面上解析,并分别求其导数.(1)()()y i y y ie y y y x e x x sin cos sin cos ++-3.()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y ue x y y y e y x ue x y y y y y ve y y x y e y y x ve y y y x y yu v u v x y y x u v z f z u iv z u f z =-=+∂=-+∂∂=---∂∂=++∂∂=-+∂∂∂∂∂==-∂∂∂∂=+∂'=∂证明:所以:。
由于在平面上可微所以在平面上解析。
()()()cos sin cos cos sin sin .x x x x vi e x y y y e y i e y y x y e y x x∂+=-++++∂由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-=解:()()()()()()()222222222212,2,212,2,,,2112,22111,0,1,1,,221112.222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ϕϕϕϕ∂∂==+∴=++∂∂∂∂∂''=+=-=-+∴=-=-+∂∂∂⎛⎫=-+++-+ ⎪⎝⎭=-+==+==⎛⎫=-++-++ ⎪⎝⎭而即所以由知带入上式,则则解析函数2. ()21,3,,.ii i i i i e ++试求()()(((()()()2(2)Ln 144(2)4ln32Ln32ln32ln1222Ln 21cos ln sin ,0,1,2,3cos(ln 3)sin(ln 3),0,1,2,i i k k i ii i k i i k i i k i k i k i ii ii eeeei k e e e e i k i eeeππππππππππππ⎛⎫⎛⎫+ ⎪⎪-+++⎝⎭⎝⎭-++-+-⎛⎫⎛⎫++-+ ⎪⎪⎝⎭⎝⎭+====+=±±====+=±±=== 解:()222,0,1,2,cos1sin1.k i i k e e e e i π⎛⎫ ⎪⎝⎭+=±±=⋅=+3. 计算 2,:122c dzc z z z =++⎰()2222220110,1,1,11,220,022z z z z i z i z c z z z c z z ++=++=+==-+=≤++≠=++解:时,而在内,故在内解析,故原式 1.计算221(1),21c z z dz c z z -+=-⎰: ()2221(2),21cz z dz c z z -+=-⎰:(1)212(21)=4 z i z z i ππ==-+解:原式 (2)2112(21)=2(41)6z z i z z i z i πππ=='=-+-=解:原式. 计算2sin()114,(1):1,(2):1,(3): 2.122c z dz c z c z c z z π+=-==-⎰其中1sin (1)sin 442.112c z z z z i i z z πππ=-⎡⎤-⎢⎥===⎢⎥+-⎢⎥⎣⎦⎰解:(1)原式1sin (1)sin 442.11c z z z z i i z z πππ=⎡⎤+⎢⎥===⎢⎥-+⎢⎥⎣⎦⎰(2)原式 12(3):2,1,11,.c z z z c c ===-以分别以为中心,为半径,做圆1222sinsin44.11c c z zdz dz i i i z z ππ=+=+=--⎰⎰原式 3、将下列函数按()1-z 的幂级数展开,并指明收敛范围。
高考物理数学物理法技巧和方法完整版及练习题及解析
高考物理数学物理法技巧和方法完整版及练习题及解析一、数学物理法1.小华站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动。
当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示。
已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g 。
忽略手的运动半径和空气阻力。
(1)问绳能承受的最大拉力多大?(2)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?【答案】(1)113mg ;(2)2d 23。
【解析】 【分析】 【详解】(1)设绳断后球飞行的时间为t ,由平抛运动规律有 竖直方向21142d gt = 水平方向D =v 1t解得v 12gd设绳能承受的最大拉力大小为F max ,这也是球受到绳的最大拉力的大小,球做圆周运动的半径为34R d =由圆周运动向心力公式,有F max -mg =21mv R得F max =113mg(2)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F max -mg =m 23v l解得v 3=83gl 绳断后球做平抛运动,竖直位移为y=d -l水平位移为x ,时间为t 1,由平抛运动规律有213112d l gt x v t -=,=得x =4()3l d l 当l =2d时,x 有最大值 x max =23d2.某校物理兴趣小组决定举行遥控赛车比赛,比赛路径如图所示.可视为质点的赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入半径为R 的光滑竖直半圆轨道,并通过半圆轨道的最高点C ,才算完成比赛.B 是半圆轨道的最低点,水平直线轨道和半圆轨道相切于B 点.已知赛车质量m =0.5kg ,通电后以额定功率P =2W 工作,进入竖直圆轨道前受到的阻力恒为F f =0.4N ,随后在运动中受到的阻力均可不计,L =10.00m ,R =0.40m ,(g 取10m/s 2).求:(1)要使赛车能通过C 点完成比赛,通过C 点的速度至少多大? (2)赛车恰能完成比赛时,在半圆轨道的B 点对轨道的压力多大 (3)要使赛车完成比赛,电动机至少工作多长时间t ?(4)若电动机工作时间为t 0=5s ,当R 为多少时赛车既能完成比赛且飞出的水平距离又最大,水平距离最大是多少?【答案】(1)2m/s (2)25/m s ,30N (3)t =4.5s (4)R =0.3m ,1.2m 【解析】【分析】赛车恰好通过最高点时,靠重力提供向心力,根据牛顿第二定律求出通过C 点的最小速度.根据机械能守恒定律求出赛车在B 点的最小速度,根据牛顿第二定律求出赛车对轨道的压力.对A 到B 过程运用动能定理,求出电动机从A 到B 至少工作的时间.根据动能定理求出赛车到达最高点的速度,结合平抛运动的规律求出水平位移,通过数学知识求出水平位移的最大值. 【详解】(1)当赛车恰好过C 点时在B 点对轨道压力最小,赛车在B 点对有:2Cv mg m R=解得:2m/s C v ===...①(2)对赛车从B 到C 由机械能守恒得:2211222B C mv mv mg R =+⋅…② 赛车在B 处,由牛顿第二定律可得:2N Bv F mg m R-=…③由①②③得:B v ==N 630N F mg ==由牛顿第三定律知,对轨道的压力大小等于30N ; (3)对赛车从A 到B 由动能定理得:2102f B Pt F L mv -=- 解得:4.5s t =(4)对赛车从A 到C 由动能定理得:20012'2f Pt F L mg R mv --⋅=, 赛车飞出C 后有:212'2R gt =0x v t =解得:x =所以当'0.3m R =时,x 最大:max 1.2m x =答:(1)要使赛车能通过C 点完成比赛,通过C 点的速度至少为2m/s ; (2)赛车恰能完成比赛时,在半圆轨道的B 点对轨道的压力等于30N ; (3)要使赛车完成比赛,电动机至少工作 4.5s t =;(4)若电动机工作时间为t 0=5s ,当R 为0.3m 时赛车既能完成比赛且飞出的水平距离又最大,最大水平距离max 1.2m x =.3.质量为m 的物块,以同一大小的初速度0v 沿不同倾角的斜面向上滑动,物块与斜面间的动摩擦因数恒定,当斜面与水平面所夹倾角θ不同时,物块沿斜面上滑至速度为0时的位移x 也不同,其x θ-关系如图所示。
数学物理方法习题解答(完整版)
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
物理数学物理法练习全集含解析
物理数学物理法练习全集含解析一、数学物理法1.如图所示,空间有场强E =1.0×102V/m 竖直向下的电场,长L =0.8m 不可伸长的轻绳固定于O 点.另一端系一质量m =0.5kg 带电q =+5×10-2C 的小球.拉起小球至绳水平后在A 点无初速度释放,当小球运动至O 点的正下方B 点时绳恰好断裂,小球继续运动并垂直打在同一竖直平面且与水平面成θ=53°、无限大的挡板MN 上的C 点.试求:(1)小球运动到B 点时速度大小及绳子的最大张力; (2)小球运动到C 点时速度大小及A 、C 两点的电势差;(3)当小球运动至C 点时,突然施加一恒力F 作用在小球上,同时把挡板迅速水平向右移至某处,若小球仍能垂直打在档板上,所加恒力F 的最小值。
【答案】(1)30N ; (2)125V ; (3)0~127︒︒ 【解析】 【分析】 【详解】(1)小球到B 点时速度为v ,A 到B 由动能定理21()2mg qE L mv +=2()v F mg qE m L-+=解得42/v m s =F=30N(2)高AC 高度为h AC ,C 点速度为v 1152m/s sin v v θ==211()2AC mg qE h mv +=U =Eh AC解得U =125V(3)加恒力后,小球做匀速直线运动或者匀加速直线运动,设F 与竖直方向夹角为α,当小球匀速直线运动时α=0,当小球匀加速直线运动时,F 的最小值为F 1,F 没有最大值1()sin 8N F mg qE θ=+=F 与竖直方向的最大夹角为180127αθ=︒-=︒ 0127α≤≤︒F ≥8N2.如图所示,在xoy 平面内y 轴右侧有一范围足够大的匀强磁场,磁感应强度大小为B ,磁场方向垂直纸面向外;分成I 和II 两个区域,I 区域的宽度为d ,右侧磁场II 区域还存在平行于xoy 平面的匀强电场,场强大小为E =22B qdm,电场方向沿y 轴正方向。
物理数学方法试题及答案
物理数学方法试题及答案一、选择题(每题2分,共10分)1. 以下哪项不是傅里叶变换的性质?A. 线性B. 可逆性C. 尺度变换D. 能量守恒答案:D2. 拉普拉斯变换的收敛区域是:A. 左半平面B. 右半平面C. 全平面D. 虚轴答案:B3. 以下哪项是线性微分方程的特征?A. 可解性B. 唯一性C. 线性叠加原理D. 非线性答案:C4. 在复数域中,以下哪个表达式表示复数的模?A. |z|B. z^2C. z*zD. z/|z|答案:A5. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = sin(x)D. f(x) = cos(x)答案:B二、填空题(每题3分,共15分)1. 傅里叶级数展开中,周期函数的系数可以通过______计算得到。
答案:傅里叶系数2. 拉普拉斯变换中,s = σ + jω代表的是______。
答案:复频域3. 线性微分方程的解可以表示为______的线性组合。
答案:特解4. 复数z = a + bi的共轭复数是______。
答案:a - bi5. 波动方程的一般解可以表示为______和______的函数。
答案:空间变量;时间变量三、简答题(每题5分,共20分)1. 简述傅里叶变换和拉普拉斯变换的区别。
答案:傅里叶变换主要用于处理周期信号,将时间域信号转换到频域;而拉普拉斯变换适用于非周期信号,将时间域信号转换到复频域。
2. 什么是波动方程?请给出其一般形式。
答案:波动方程是描述波动现象的偏微分方程,一般形式为∂²u/∂t² = c²∂²u/∂x²,其中u是波函数,c是波速。
3. 请解释什么是特征值和特征向量,并给出一个例子。
答案:特征值是线性变换中,使得变换后的向量与原向量方向相同(或相反)的标量。
特征向量则是对应的非零向量。
例如,对于矩阵A,如果存在非零向量v和标量λ,使得Av = λv,则λ是A的特征值,v是对应的特征向量。
【物理】物理数学物理法题20套(带答案)含解析
【物理】物理数学物理法题20套(带答案)含解析一、数学物理法1. 两块平行正对的水平金属板AB, 极板长 , 板间距离 , 在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场, 磁感应强度 , 方向垂直纸面向里。
两极板间电势差UAB 随时间变化规律如右图所示。
现有带正电的粒子流以 的速度沿水平中线 连续射入电场中, 粒子的比荷 , 重力忽略不计, 在每个粒子通过电场的极短时间内, 电场视为匀强电场(两板外无电场)。
求:(1)要使带电粒子射出水平金属板, 两金属板间电势差UAB 取值范围;(2)若粒子在距 点下方0.05m 处射入磁场, 从MN 上某点射出磁场, 此过程出射点与入射点间的距离 ;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为 , 此时粒子在电场中做类平抛运动, 加速大小为a,时间为t1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知, 要使带电粒子射出水平金属板, 两板间电势差100V 100V AB U -≤≤(2)如图所示从 点下方0.05m 处射入磁场的粒子速度大小为v, 速度水平分量大小为 , 竖直分量大小为 , 速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R, 则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v1, 速度水平分量大小为 , 竖直分量大小为vy1, 速度偏向角为α, 则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为 , 则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2. 如图, 在长方体玻璃砖内部有一半球形气泡, 球心为O, 半径为R, 其平面部分与玻璃砖表面平行, 球面部分与玻璃砖相切于O'点。
物理数学物理法练习题含答案及解析
物理数学物理法练习题含答案及解析物理和数学是自然界的两个重要学科,它们之间有着紧密的联系。
物理数学是一门研究物理学中的数学方法和应用的学科,对于学习物理学和数学学科的学生来说,理解物理数学的基本概念和方法非常重要。
本文将为大家提供一些物理数学物理法的练习题,并附带答案及解析,希望能帮助大家加深对物理数学物理法的理解。
物理数学物理法练习题一:1. 对于一维的匀强磁场,其磁感应强度与位置关系为B(x)=B0(1-αx),求出在此磁场中的磁场力。
答案:由洛伦兹力公式F=q(v×B),其中q为电荷量,v为速度,B为磁感应强度。
在一维情况下,速度的方向与磁场垂直,即v⊥B。
则磁场力可表示为F=qvB=qvB0(1-αx)。
解析:根据洛伦兹力公式,磁场力的大小与电荷量、速度以及磁感应强度的乘积有关。
在一维匀强磁场中,磁感应强度与位置存在线性关系,根据此关系可以得到磁场力的表达式。
物理数学物理法练习题二:2. 在直角坐标系中,由一个点电荷产生的静电场强度为E=3xi+4yj,其中i和j为单位矢量,求出点电荷的电荷量。
答案:静电场的强度和电荷量的关系由高斯定律给出,即E=ρ/ε0,其中E为静电场强度,ρ为电荷密度,ε0为真空中的介电常数。
在此题中,静电场强度为E=3xi+4yj,代入高斯定律可得ρ/ε0=3xi+4yj。
解析:根据高斯定律,静电场的强度与电荷量的关系是一个线性关系。
通过求解此关系方程组,我们可以确定电荷量的值。
物理数学物理法练习题三:3. 一根长为L的均质细杆,质量为m,绕过其一端的固定轴按垂直于杆的方向以角速度ω旋转,求杆上离轴一端的质点的动能。
答案:质点的动能可表示为K=1/2Iω^2,其中K为动能,I为转动惯量,ω为角速度。
对于质点来说,其距离轴的距离为r=L,转动惯量为I=1/3mL^2。
代入公式,动能可表示为K=1/2(1/3mL^2)ω^2=1/6mL^2ω^2。
解析:根据转动惯量的定义和动能的定义,我们可以通过计算转动惯量和角速度的乘积来确定质点的动能。
数学物理方法答案(完整版)
高等数学 第四册(第三版) 数学物理方法 答案(完整版)第七章 一维波动方程的傅氏解1. 今有一弦,其两端被钉子钉紧,作自由,它的初位移为: 2.(01)()(2)(12)hx x x h x x ϕ≤<⎧=⎨-≤≤⎩,初速度为0,试求其付氏解,其中h 为已知常数。
解:所求问题是一维波动方程的混合问题:2(12,0)(0,)(,)0(0)(01)(,0)(2)(12)(,0)0tt xx t u a u x t u t u l t t hx x u x h x x u x ⎧=<<>⎪==≥⎪⎪≤≤⎧⎨=⎨⎪-≤≤⎩⎪⎪=⎩,根据前面分离变量解法得其傅氏解为:1(,)(cossin )sin n n n n at n at n xu x t C D l l l πππ∞==+∑。
其中,122201228()sin [sin (2)sin ]222l n n n n hC d h d h d l l n πξπξπξϕξξξξξξπ==+-=⎰⎰⎰,0n D =,于是所求傅氏解为:2218(,)cos sin n h n at n xu x t n l l πππ∞==∑2.将前题之初始条件改为:(1)(10)()(1)(01)h x x x h x x ϕ+-≤≤⎧=⎨-≤≤⎩,试求其傅氏解。
解:所求问题为一维波动方程的混合问题:211((1)sin (1)sin n n l l l h d h d πξπξξξξξ--=++-⎰⎰n c 012222211(sinsinsin )n n n h d d d πξπξπξξξξξ--=++⎰⎰⎰2282sin h n n ππ=22821(,)sin cossinh n n at n x lln n u x t ππππ∞=∴=∑。
3今有一弦,其两端0x =和x l =为钉所固定,作自由摇动,它的初位移为0。
初速度为[](2()0(2,c x x x βϕβ≤≤⎧=⎨∉⎩,其中c 为常数,0,l αβ<<<试求其傅氏解。
数学物理方法习题解答
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
高考物理数学物理法技巧和方法完整版及练习题及解析
高考物理数学物理法技巧和方法完整版及练习题及解析一、数学物理法1.两块平行正对的水平金属板AB ,极板长0.2m L =,板间距离0.2m d =,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度3510T B -=⨯,方向垂直纸面向里。
两极板间电势差U AB 随时间变化规律如右图所示。
现有带正电的粒子流以5010m/s v =的速度沿水平中线OO '连续射入电场中,粒子的比荷810C/kg qm=,重力忽略不计,在每个粒子通过电场的极短时间内,电场视为匀强电场(两板外无电场)。
求: (1)要使带电粒子射出水平金属板,两金属板间电势差U AB 取值范围;(2)若粒子在距O '点下方0.05m 处射入磁场,从MN 上某点射出磁场,此过程出射点与入射点间的距离y ∆;(3)所有粒子在磁场中运动的最长时间t 。
【答案】(1)100V 100V AB U -≤≤;(2)0.4m ;(3) 69.4210s -⨯ 【解析】 【分析】 【详解】(1)带电粒子刚好穿过对应偏转电压最大为m U ,此时粒子在电场中做类平抛运动,加速大小为a ,时间为t 1。
水平方向上01L v t =①竖直方向上21122d at =② 又由于mU qma d=③ 联立①②③得m 100V U =由题意可知,要使带电粒子射出水平金属板,两板间电势差100V 100V AB U -≤≤(2)如图所示从O '点下方0.05m 处射入磁场的粒子速度大小为v ,速度水平分量大小为0v ,竖直分量大小为y v ,速度偏向角为θ。
粒子在磁场中圆周运动的轨道半径为R ,则2mv qvB R=④ 0cos v v θ=⑤2cos y R θ∆=⑥联立④⑤⑥得20.4m mv y qB∆== (3)从极板下边界射入磁场的粒子在磁场中运动的时间最长。
如图所示粒子进入磁场速度大小为v 1,速度水平分量大小为01v ,竖直分量大小为v y 1,速度偏向角为α,则对粒子在电场中011L v t =⑦11022y v d t +=⑧ 联立⑦⑧得101y v v =101tan y v v α=得π4α=粒子在磁场中圆周运动的轨道半径为R',则211mv qv B R ='⑨ 1mv R qB'=⑩ 带电粒子在磁场中圆周运动的周期为T12π2πR m T v qB'==⑪在磁场中运动时间2π(π2)2πt T α--=⑫联立⑪⑫得663π10s 9.4210s t --=⨯=⨯2.如图所示,长为3l 的不可伸长的轻绳,穿过一长为l 的竖直轻质细管,两端拴着质量分别为m 、2m 的小球A 和小物块B ,开始时B 先放在细管正下方的水平地面上.手握细管轻轻摇动一段时间后,B 对地面的压力恰好为零,A 在水平面内做匀速圆周运动.已知重力加速度为g ,不计一切阻力.(1)求A 做匀速圆周运动时绳与竖直方向夹角θ; (2)求摇动细管过程中手所做的功;(3)轻摇细管可使B 在管口下的任意位置处于平衡,当B 在某一位置平衡时,管内一触发装置使绳断开,求A 做平抛运动的最大水平距离.【答案】(1)θ=45° ;(2)2(14mgl -;2l 。
数学物理方法第三版课后练习题含答案
数学物理方法第三版课后练习题含答案前言本文为数学物理方法第三版(Mathematical Methods in the Physical Sciences, 3rd Edition)的课后练习题及答案。
该书是经典的大学物理数学教材,广泛应用于物理、数学、工程等领域的学生和教师。
本文主要适用于该书的读者,希望能够帮助大家更好地掌握数学物理方法。
第一章1.1 给定函数 $f(x)=\\sin(x)$,求以下数值:(a) f(0)答:$f(0) = \\sin(0) = 0$(b) $f(\\pi)$答:$f(\\pi) = \\sin(\\pi) = 0$(c) $f(\\pi/2)$答:$f(\\pi/2) = \\sin(\\pi/2) = 1$(d) $f(-\\pi/2)$答:$f(-\\pi/2) = \\sin(-\\pi/2) = -1$1.2 给定函数f(x)=e x,求以下数值:(a) f(0)答:f(0)=e0=1(b) $f(\\ln 2)$答:$f(\\ln 2) = e^{\\ln 2} = 2$(c) $f(-\\ln 2)$答:$f(-\\ln 2) = e^{-\\ln 2} = 1/2$(d) f(−1)答:$f(-1) = e^{-1} \\approx 0.368$1.3 求解以下方程:(a) x2−2x−3=0解:使用求根公式 $x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$,得$$x = \\frac{2\\pm\\sqrt{2^2-4\\times1\\times(-3)}}{2\\times1} = -1,3 $$所以方程的根为x=−1和x=3。
(b) x3+2x2−5x−6=0解:使用因式分解法,先猜一个根为x=1,得到一个因式(x−1),然后用多项式长除法得到:x3+2x2−5x−6=(x−1)(x2+3x+6)不易得到另外两个根的精确解,所以这里只给出结果,方程的根为x=1,$x=-\\frac{3}{2}+i\\frac{\\sqrt{3}}{2}$ 和 $x=-\\frac{3}{2}-i\\frac{\\sqrt{3}}{2}$。
高考物理数学物理法技巧和方法完整版及练习题及解析
高考物理数学物理法技巧和方法完整版及练习题及解析一、数学物理法1.如图所示,在竖直边界1、2间倾斜固定一内径较小的光滑绝缘直管道,其长度为L ,上端离地面高L ,下端离地面高2L.边界1左侧有水平向右的匀强电场,场强大小为E 1(未知),边界2右侧有竖直向上的场强大小为E 2(未知)的匀强电场和垂直纸面向里的匀强磁场(图中未画出).现将质量为m 、电荷量为q 的小球从距离管上端口2L 处无初速释放,小球恰好无碰撞进入管内(即小球以平行于管道的方向进入管内),离开管道后在边界2右侧的运动轨迹为圆弧,重力加速度为g . (1)计算E 1与E 2的比值;(2)若小球第一次过边界2后,小球运动的圆弧轨迹恰好与地面相切,计算满足条件的磁感应强度B 0;(3)若小球第一次过边界2后不落到地面上(即B >B 0),计算小球在磁场中运动到最高点时,小球在磁场中的位移与小球在磁场中运动时间的比值.(若计算结果中有非特殊角的三角函数,可以直接用三角函数表示)【答案】(131;(23(23)m gL -;(3)36gL︒【解析】 【分析】根据题意,粒子先经过电场,做匀加速直线运动,在进入管中,出来以后做匀速圆周运动,画出物体的运动轨迹,再根据相关的公式和定理即可求解。
【详解】(1)设管道与水平面的夹角为α,由几何关系得:/21sin 2L L L α-== 解得:30︒=α由题意,小球在边界1受力分析如下图所示,有:1tan mg qE α=因小球进入边界2右侧区域后的轨迹为圆弧,则有:mg =qE 2解得比值:E 1 :E 2=3:1(2)设小球刚进入边界2时速度大小为v ,由动能定理有:2113sin302cos302mg L E q L mv ︒︒⋅+⋅=联立上式解得:3v gL =设小球进入E 2后,圆弧轨迹恰好与地面相切时的轨道半径为R ,如下图,由几何关系得:cos30+2L R R ︒= 代入数据解得:(23)R L =+洛伦兹力提供向心力,由牛顿第二定律得:20v qvB m R=代入数据解得:03(23)m gLB -=(3)如下图,设此时圆周运动的半径为r ,小球在磁场中运动到最高点时的位移为:2cos15S r ︒=⋅圆周运动周期为:2rT vπ=则小球运动时间为:712t T =解得比值:362cos15cos15712gLS rt T︒==︒【点睛】考察粒子在复合场中的运动。
数学物理方法习题答案
数学物理⽅法习题答案数学物理⽅法习题答案:第⼆章:1、(1)a 与b 的连线的垂直平分线;以0z 为圆⼼,2为半径的圆。
(2)左半平⾯0,x <但是除去圆22(1)2x y ++=及其内部;圆2211()416x y -+= 2、2,cos(2)sin(2)ie i πππ+; 32,2[c o s (3)s i n (3)iei πππ+; ,(c o s 1s i n 1ie e e i ?+ 3、2k eππ--; (623)i k eππ+; 42355c o s s i n 10c o s s i n s i n-+; 11()sin ()cos 22b b b b e e a i e e a --++- 1()c o s2y y ay b e e x e ----4、(1)2214u υ+=变为W 平⾯上半径为12的圆。
(2)u υ=- 平分⼆、四象限的直线。
5、(1) zie iC -+; 2(1)2i z -; ln i z,,()22u C f z ??υ==+=6、ln C z D +第三章:1、(1)i π(2)、 iie π-- (3)、 0 (4)、i π(5)、6i π2、设()!n z z e f n ξξ=z 为参变数,则()122011()1(0)2!2!1()()!n z n n n l l n n n n z z n z e d f d f i n i n z d z z e e n n d n n ξξξξξξξξπξξπξξ+=======??第四章:1、(1)2323()()ln 22z i z i z i i i i i ---+-+-(2)23313(1)2!3!e z z z ++++(3)211111()()[(1)(1)](1)11222k k k kk k z z i i i z z z i z i z i ∞=---=-=--++--<+-+∑2、(1)n z ∞=--∑(2)11()43f z z z =--- ①3z <时 11011()34kk k k z ∞++=-∑ ,34z <<时11101134k kk k k k z z -∞++=-∞=-∑∑,4z >时11111()43k kk k k z z -++=-∞-∑ ②11011()34kk k k z ∞++=-∑③ 031z <-<时1(3)kk z ∞=---∑,041z <-<时11()(4)k kk z ∞=-∑,41z ->时,21()(4)kk k z ∞=--∑ 3、(1)两个奇点 1,z z ==∞ 所以,1z =为()f z 的⼆阶极点。
数学物理方法习题解答
第一章 复变函数1.1 复数与复数运算【1】下列式子在复数平面上各具有怎样的意义? 5,arg ,Re ,z a z b αβ<<<<(,,a αβ和b 为实常数)解:射线ϕα=与ϕβ=,直线x a =与x b =所围成的梯形。
7,111z z -≤+解:11111z z z z -≤⇒-≤++,令z x iy =+,则11z z -≤+即()()2222110x y x y x -+≤++⇒≥。
即复数平面的右半平面0x ≥。
【2】将下列复数用代数式,三角式和指数式几种形式表示出来。
3,1+解:代数式即:1z =+;2ρ=,且z 的辐角主值arg 3z π=,因此三角式:2cos2sin33z i ππ=+;指数式:232i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
7,1i 1i-+解:21i (1i)2i i 1i(1i)(1i)2---===-++-,因此,其代数式:i z =-,三角式:33cos sin22z i ππ=+;指数式:322i k i z e eππϕρ⎛⎫+ ⎪⎝⎭==,k ∈ 。
【3】计算下列数值。
(a ,b 和ϕ为实常数)2,解:将被开方的i 用指数式表示:22ei k i ππ⎛⎫+ ⎪⎝⎭=,k ∈ 。
那么2322eexp 63i k k i ππππ⎛⎫+ ⎪⎝⎭⎡⎤⎛⎫==+ ⎪⎢⎥⎝⎭⎣⎦,k ∈ 。
7,cos cos 2cos 3cos n ϕϕϕϕ++++ 解:因为,cos R e (1)ik k e k n ϕϕ=≤≤,因此()[]2323cos cos 2cos 3cos R e R e R e R e (1)R e R e 1cos cos(1)sin sin(1)R e 1cos sin 222sin sin cos 222R e 2sin sin 2i i i in i in i i i in i n e eeee e eeeee n i n i n n n i ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++=++++⎡⎤-=++++=⎢⎥-⎣⎦⎧⎫-++-+⎪⎪=⎨⎬--⎪⎪⎩⎭++⎛⎫- ⎪⎝⎭= 222(1)2sin 2R e sin cos 2221(1)sin sin sin sin cos 22222R e sin sin2sin222n i i n i n e i e n n n n e ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++⎡⎤⎢⎥⎢⎥=⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦⎛⎫++- ⎪⎝⎭===1.2 复变函数【2】计算下列数值。
高考物理数学物理法技巧和方法完整版及练习题含解析
高考物理数学物理法技巧和方法完整版及练习题含解析一、数学物理法1.如图所示,在x ≤0的区域内存在方向竖直向上、电场强度大小为E 的匀强电场,在x >0的区域内存在方向垂直纸面向外的匀强磁场。
现一带正电的粒子从x 轴上坐标为(-2l ,0)的A 点以速度v 0沿x 轴正方向进入电场,从y 轴上坐标为(0,l )的B 点进入磁场,带电粒子在x >0的区域内运动一段圆弧后,从y 轴上的C 点(未画出)离开磁场。
已知磁场的磁感应强度大小为,不计带电粒子的重力。
求: (1)带电粒子的比荷; (2)C 点的坐标。
【答案】(1)202v qm lE=;(2)(0,-3t )【解析】 【详解】(1)带电粒子在电场中做类平抛运动,x 轴方向02l v t =y 轴方向212qE l t m=联立解得202v qm lE=(2)设带电粒子经过B 点时的速度方向与水平方向成θ角00tan 1yqE t v m v v θ===解得45θ=︒则带电粒子经过B 点时的速度02v v =由洛伦兹力提供向心力得2mv qvB r= 解得22mvr l qB== 带电粒子在磁场中的运动轨迹如图所示根据几何知识可知弦BC 的长度24L r l ==43l l l -=故C 点的坐标为(0,-3t )。
2.如图所示,空间有场强E =1.0×102V/m 竖直向下的电场,长L =0.8m 不可伸长的轻绳固定于O 点.另一端系一质量m =0.5kg 带电q =+5×10-2C 的小球.拉起小球至绳水平后在A 点无初速度释放,当小球运动至O 点的正下方B 点时绳恰好断裂,小球继续运动并垂直打在同一竖直平面且与水平面成θ=53°、无限大的挡板MN 上的C 点.试求:(1)小球运动到B 点时速度大小及绳子的最大张力; (2)小球运动到C 点时速度大小及A 、C 两点的电势差;(3)当小球运动至C 点时,突然施加一恒力F 作用在小球上,同时把挡板迅速水平向右移至某处,若小球仍能垂直打在档板上,所加恒力F 的最小值。
数学物理方法习题及答案
数学物理⽅法习题及答案数学物理⽅法习题第⼀章:应⽤⽮量代数⽅法证明下列恒等式 1、3r ?= 2、0r ??=3、()()()()()A B B A B A A B A B =?-?-?+?4、21()0r ?=5、()0A = 第⼆章:1、下列各式在复平⾯上的意义是什么? (1)0;2Z a Z b z z -=--=(2)0arg4z i z i π-<<+; 1Re()2z =2、把下列复数分别⽤代数式、三⾓式和指数式表⽰出来。
1;1i i e ++3、计算数值(a 和b 为实常数,x 为实变数)sin5ii ? sin sin()iaz ib za ib e -+4、函数1W z =将z 平⾯的下列曲线变为W 平⾯上的什么曲线?(1)224x y += (2)y x =5、已知解析函数()f z 的实部(,)u x y 或虚部(,)x y υ,求解析函数。
(1)22sin ;,(0)0;,(1)0x u e y u x y xy f u f ?==-+===;(2)(00)f υ==6、已知等势线族的⽅程为22x y +=常数,求复势。
第三章:1、计算环路积分:2211132124sin4(1).(2).11sin (3).(4).()231(5).(1)(3)zz z i z z z z z e dz dzz z ze dz dzz z z dzz z ππ+=+====-+--+-2、证明:21()!2!n n z n l z z e d n i n ξξπξξ=其中l 是含有0ξ=的闭合曲线。
3、估计积分值222iidz z +≤?第四章: 1、泰勒展开(1) ln z 在0z i = (2)11ze-在00z = (3)函数211z z -+在1z = 2、(1)1()(1)f z z z =-在区域01z <<展成洛朗级数。
(2)1()(3)(4)f z z z =--按要求展开为泰勒级数或洛朗级数:①以0z =为中⼼展开;②在0z =的邻域展开;③在奇点的去⼼邻域中展开;④以奇点为中⼼展开。
《数学物理方法》答案
z 4 + a4 = 0 ( a > 0) 。
4
⎛z⎞ ⎜ ⎟ = −1 ( a > 0 ) 4 4 ; 解:由题意 z = − a ,所以有 ⎝ a ⎠
θ + 2 kπ i ⎛z⎞ z iπ = cos π + sin π = i e = e 4 (k = 0,1, 2,3) ⎜ ⎟ ⎝a⎠ ;所以 a ;
k = 0, ±1, ±2, ⋅⋅⋅
π
+ i 2kπ = ln 2 + i ( + 2kπ ) 4 4
π
3i = eiLn 3 = ei (ln 3+ 2 kπ ) = cos ln 3 + i sin ln 3 e 2+i = e 2 ei = e 2 (cos1 + i sin1) sin z lim =1 z →0 z 22,求证 sin z sin( x + iy ) lim = lim z →∞ x , y →∞ z x + iy 证: z = x + iy (x,y,均为实数),所以
z = z2 = z3 = 1; 试证明 z1 , z2 , z3 是一 11.设 z1 , z2 , z3 三点适合条件 z1 + z2 + z3 = 0 及 1
个内接于单位圆
z =1 的正三角形的顶点。
∴ z1 = − z2 − z3 ; z2 = − z3 − z1; z3 = − z1 − z2 ; 证明: z1 + z2 + z3 = 0;
∂v ∂u = e x cos y − y sin ye x + x cos ye x = e x ( x cos y − y sin y ) + e x cos y ∂ y ∂x ; ∂u ∂v = −e x ( x sin y + sin y + y cos y ) = e x ( y cos y + x sin y + sin y ) ∂y ; ∂x ∂u ∂v ∂u ∂v = ; =− ∂x 。 满足 ∂x ∂y ∂y x, y ) 可微且满足 C − R 条件,故函数在 z 平面上解析。 即函数在 z 平面上 (
数学物理方法习题解答(完整版)
数学物理方法习题解答(完整版)数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux=?,0v y ?=?,u v x y ??≠??。
于是u 与v 在z 平面上处处不满足C -R 条件,所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ??= =??。
v vx y==0 ??。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y, 在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ===='=+=-= ? ?????????。
或:()()()2*000lim lim lim 0z z x y z f z x i y z→?→?=?=?'==?=?-?=?。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=?→?→?→+?+?+??==+??→。
【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z zz z==??】3、设333322()z 0()z=00x y i x y f z x y ?+++≠?=+,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ?-+≠?=+?+??, 33222222(,)=00x y x y v x y x y x y ?++≠?=+?+??。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
3300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u yy →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。
(0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =-()f z ∴ 在原点上满足C -R 条件。
但33332200()(0)()lim lim ()()z z f z f x y i x y zx y x iy →→--++=++。
令y 沿y kx =趋于0,则3333334343222220()1(1)1(1)lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。
4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上必为常数。
(1)()z f 在区域D 上为实函数; (2)()*z f 在区域D 上解析; (3)()Re z f 在区域D 上是常数。
证明:(1)令()(,)(,)f z u x y iv x y =+。
由于()z f 在区域D 上为实函数,所以在区域D 上(,)0v x y =。
()f z 在区域D 上解析。
由C -R 条件得0u v x y∂∂==∂∂,0u vy x ∂∂=-=∂∂。
∴在区域D 上(,)u x y 为常数。
从而()z f 在区域D 上为常数。
(2)令()(,)(,)f z u x y iv x y =+,则*()(,)(,)f z u x y iv x y =-。
()f z 在区域D 上解析。
由C -R 条件得,u v u vx y y x∂∂∂∂= =-∂∂∂∂。
(1) 又*()f z 在区域D 上解析,由C -R 条件得,u v u v x y y x∂∂∂∂=- =∂∂∂∂。
(2) 联立(1)和(2),得0u u v v x y x y∂∂∂∂====∂∂∂∂。
,u v ∴在区域D 上均为常数,从而()f z 在区域D 上为常数。
(3)令()()(),,f z u x y iv x y =+,则()Re (),f z u x y =。
由题设知(),u x y 在区域D 上为常数,0u u x y∂∂∴==∂∂。
又由C -R 条件得,在区域D 上0,0v u v u x y y x∂∂∂∂=-= ==∂∂∂∂,于是v 在区域D 上为常数。
,u v ∴在区域D 上均为常数,从而在区域D 上()f z 为常数。
5、证明2xy 不能成为z 的一个解析函数的实部。
证明:令2u xy =,2222022u ux x x y∂∂+=+=∂∂。
u ∴ 不满足拉普拉斯方程。
从而它不能成为z 的一个解析函数的实部。
6、若z x iy =+,试证:(1)sin sin cosh cos sinh z x y i x y =+; (2)cos cos cosh sin sinh z x y i x y =-; (3)222sin sin sinh z x y +=; (4)222cos cos sinh z x y =+。
证明:(1)sin sin()sin cos()cos sin()z x iy x iy x iy =+=+cos()cos ,sin()sinh iy hy iy i y = =, sin sin cosh cos sinh z x y i x y ∴=+。
(2)cos cos()cos cos()sin sin()z x iy x iy x iy =+=- cos()cos ,sin()sinh iy hy iy i y = =, cos cos cosh sin sinh z x y i x y =-。
(3)222sin (sin cosh )(cos sinh )z x y x y =+2222sin cosh cos sinh x y x y =+ 2222sin (1sinh )cos sinh x y x y =++222222sin (sin cos )sinh sin sinh x x x y x y =++=+。
(4)2222222cos (cos cosh )(sin sinh )cos cosh sin sinh z x y x y x y x y =+=+ 2222cos (1sinh )sin sinh x y x y =++ 22222cos cos sinh sin sinh x x y x y =++222222cos (cos sin )sinh cos sinh x x x y x y =++=+。
7、试证若函数()f z 和()z ϕ在0z 解析。
()()()0000,0f z z z ϕϕ'==≠,则()()()()000lim z z z f z f z z ϕϕ→'='。
(复变函数的洛必达法则) 证明:00000000000000000()()()()lim()()()()lim lim lim ()()()()()()()()lim z z z z z z z z z z f z f z f z f z f z z z z z f z f z f z z z z z z z z z z z z z ϕϕϕϕϕϕϕϕ→→→→→--'---====--'---。
或倒过来做。
8、求证:0sin lim 1z zz →=。
证明:000sin (sin )lim lim limcos 1z z z z z z z z→→→'==='。
第二章习题解答 9、利用积分估值,证明a .()22ii x iy dz π-+≤⎰ 积分路径是从i -到i 的 右半圆周。
b .证明222iidzz+≤⎰积分路径是直线段。
证明:a .(方法一)()()222244iiiiiixiy dz xiydz x y dz ---+≤+=+⎰⎰⎰42242222()iiiix x y y dz x y dz π--≤++=+=⎰⎰。
(方法二)在半圆周221x y +=上,221,1x y ≤ ≤,从而42424422x x y y x y x y ≤ , ≤⇒+≤+在半圆周221x y +=上,2244221x iy x y x y +=+≤+=,44max 1cx y +=,()222222ii iiiiiixiy dz x iy dz x y dz dz π----+≤+≤+==⎰⎰⎰⎰。
或:()2244max ii cx iy dz x y ππ-+≤+=⎰。
b .证:222111maxmaxmax11z x iz x iz x z =+=+===+ 2221max 22iiz x idz z z +=+∴ ≤⋅=⎰。
10、不用计算,证明下列积分之值均为零,其中c 均为圆心在原点,半径为1的单位圆周。
a .cos c dz z⎰;b .256z c e dz z z ++⎰。
证明:a .1cos z 的奇点为1,0,1,2n z n n π⎛⎫=+=± ⎪⎝⎭,由于1n z >,所以它们均不在以原点为圆心的单位圆内。
1cos z∴在以原点为圆心的单位圆内无奇点,处处解析。
由柯西定理: 0cos cdzz=⎰。
b .256(2)(3)z ze e z z z z =++++的奇点为12z =-,23z =-,它们均不在以原点为圆心的单位圆内。
256ze z z ∴ ++在以原点为圆心的单位圆内处处解析。
由柯西定理:2056z c e dzz z =++⎰。
11、计算a .()221:21cz z dz c z z -+=-⎰;b .()()2221:21cz z dzc z z -+=-⎰。
解: a .221z z -+在2z =所围区域内解析,且1z =在2z =所围区域内。
由柯西积分公式得221212(21)2241z c z z dz i z z i i z πππ=-+=-+=⨯=-⎰。
b .221z z -+ 在2z =所围区域内解析,且1z =在2z =所围区域内。