08第八章--相关与回归分析

合集下载

第八章 相关分析与回归分析

第八章 相关分析与回归分析
第8章 回归分析
下一页
返回本节首页
19
③在数据区域中输入B2:C11,选择“系列产 生在—列”,如下图所示,单击“下一步” 按钮。
上一页
第8章 回归分析
下一页
返回本节首页
20
④打开“图例”页面,取消图例,省略标题,如 下图所示。
上一页
第8章 回归分析
下一页
返回本节首页
21
⑤单击“完成”按钮,便得到XY散点图如下图 所示。
n 8, x 36.4, x 207.54 , y 104214 y 880, . xy 4544 6
2 2
r
n xy x y n x2 x 2 n y2 y 2 8 4544 6 36.4 880 .
第8章 回归分析
40
(二)回归分析的种类: 1、按自变量 x 的多少,分为一元回归和多 元回归; 2、按 y 与 x 关系的形式,分为线性回归和 非线性回归。
第8章 回归分析
41
二、一元线性回归分析
x y 62 86 80 110 115 132 135 160
42
(一)一元线性回归方程:
2、非线性相关:当一个变量变动时, 另一个变量也相应发生变动,但这种变 动是不均等的。
第8章 回归分析
9
㈢根据相关关系的方向 1、正相关:两个变量间的变化方向一 致,都是增长趋势或下降趋势。 2、负相关:两个变量变化趋势相反。
上一页
第8章 回归分析
下一页
返回本节首页
10
(四)根据相关关系的程度 1、完全相关:两个变量之间呈函数关系 2、不相关:两个变量彼此互不影响,其 数量的变化各自独立

第八章 相关与回归分析

第八章 相关与回归分析

相关系数的特点:
相关系数的取值在-1与1之间。 相关系数的取值在之间。 =0时 表明X 没有线性相关关系。 当r=0时,表明X与Y没有线性相关关系。 表明X 当 时,表明X与Y存在一定的线性相关关 系; 表明X 为正相关; 若 表明X与Y 为正相关; 表明X 为负相关。 若 表明X与Y 为负相关。 表明X 完全线性相关; 当 时,表明X与Y完全线性相关; r=1, 完全正相关; 若r=1,称X与Y完全正相关; r=完全负相关。 若r=-1,称X与Y完全负相关
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2 11 10.8 10.6 10.4 10.2 10 0 5 10
相关关系的类型
25
● 从变量相关关系变化的方向 方向看 方向 正相关——变量同方向变化 正相关 负相关——变量反方向变化 负相关 ● 从变量相关的程度看 完全相关 不完全相关 不相关
x
最小二乘法 ˆ ˆ (α 和 β 的计算公式)
根据最小二乘法, 根据最小二乘法,可得求解 和 的公式如下
最小二乘估计的性质 ——高斯 马尔可夫定理 高斯—马尔可夫定理 前提: 在基本假定满足时
最小二乘估计是因变量的线性函数 线性函数 最小二乘估计是无偏估计 无偏估计,即 无偏估计 在所有的线性无偏估计中,回归系数的最小二 乘估计的方差最小 方差最小。 方差最小
结论:
回归系数的最小二乘估计是最佳线性无偏估计 最佳线性无偏估计
四、简单线性回归模型的检验
回归模型的检验包括: 回归模型的检验包括: 理论意义检验: 理论意义检验:主要涉及参数估计值的符号和取 值区间,检验它们与实质性科学的理论以及人们 的实践经验是否相符。 一级检验: 一级检验:又称统计学检验,利用统计学的抽样 理论来检验样本回归方程的可靠性,具体分为拟 合优度检验和显著性检验。 二级检验: 二级检验:又称计量经济学检验,它是对标准线 性回归模型的假设条件是否满足进行检验,包括 自相关检验、异方差检验、多重共线性检验等。

统计学原理第八章相关与回归分析

统计学原理第八章相关与回归分析
相关分析的内容 1.判断现象之间是否存在相关关系; 2.如果存在相关关系,则要进一步判断相
关关系的种类和关系的紧密程度; 3.对相关系数进行显著性检验。
回归分析的内容
• 1. 建立反映变量间依存关系的数学模型 即回归方程;
• 2.对回归方程进行显著性检验; • 3.用回归过程进行预测。
回归分析和相关分析的主要区别
4.相关系数的绝对值越接近于1,表示相关 程度越强;越接近于0,表示相关程度越 弱。具体标准为:
R 的绝对值:0.3以下 微弱相关;
0.3-0.5 低度相关;
0.5-0.8 显著相关;
0.8以上 高度相关。
以上结论必须建立在对相关系数的显著性 检验基础之上。
三、相关系数的显著性检验
显著性检验的具体步骤:
资料:
销售量 500
(公斤)
价格 10
(元)
相关表

700 9
900 7
600 9
1000 800 89
1200 6
销售量 500
(公斤)
价格 10
(元)
600 9
700 9
800 9
900 7
1000 8
1200 6
相关图(散点图)
完全正线性相关
正线性相关
完全负线性相关
负线性相关
非线性相关
一、一元线性回归方程
❖ 只涉及一个自变量的回归
❖ 因变量y与自变量x之间为线性关系
➢ 被预测或被解释的变量称为因变量,用y表示
➢ 用来预测或用来解释因变量的一个或多个变量称为
自变量,用x表示
❖ 因变量与自变量之间的关系用一个线性方 程来表示
一元线性回归模型
❖ 一元线性回归模型可表示为

最新8相关与回归分析汇总

最新8相关与回归分析汇总

第八章 相关与回归分析
总体相关系数:根据总体全部数据计算的相关 系数,记为 。
样本相关系数:根据样本数据计算的相关系数, 记为r 。
第八章 相关与回归分析
样本相关系数的计算公式为: ······①=
第八章 相关与回归分析
为了根据原始数据计算r,可由①式推导出简 化计算公式:
··········②
存在线性相关关系。
第八章 相关与回归分析
r的取值一般在-1<r<1之间,不同取值反映两个 变量之间的线性关系的密切程度不同:
(1) ≥0.8时,可视为高度相关; (2)0.5≤ <0.8时,可视为中度相关; (3)0.3≤ <0.5时,可视为低度相关; (4) <0.3时,说明两个变量之间相关程度极弱,
可视为不线性相关。 注意:以上说明必须建立在对相关系数的显著性进
行检验的基础上的。
第八章 相关与回归分析
三、相关关系的显著性检验 (一)r的抽样分布 当样本数据来自正态总体时,随n的增大,r的抽
样分布趋于正态分布,尤其是在总体相关系数很 小或接近0时,趋于正态分布的趋势很明显。 当总体相关系数远离0时,除非n非常大,否则r的 抽样分布呈一定的偏态。只有当总体相关系数接 近0,而样本容量n很大时,才能认为r是接近于正 态分布的随机变量。
第八章 相关与回归分析
例:某商品的销售额与销售量之间的关系。设 销售额为y,销售量为x,销售价格为p,则x与 y之间的关系可表示为y=px。
例:企业的原材料消耗额y与产量x1,单位产品 消耗x2、原材料价格x3之间的关系可表示为y= x1 x2 x3。
第八章 相关与回归分析
定义: 变量之间存在的不确定性数量关系,称为相
关关系。
例:子女的身高y与其父母身高x之间的关系。 例:农作物的单位面积产量y与施肥量x之间的关

[课件]第八章 直线回归与相关分析PPT

[课件]第八章 直线回归与相关分析PPT
Q SS U 283 176 . 4 106 . 6 y
(2)F检验:
U 176 . 4 F ( n 2 ) ( 5 2 ) 4 . 96 Q 106 . 6
因为 F , 4 . 96 F 10 . 13 0 . 05 ( 1 , 3 ) .05 。说明小白鼠体重和日龄间 所以, p 0 的直线关系不显著。
相关分析(correlation analysis)3
研究“一因一果”,即一个自变量与一个依 变量的回归分析称为一元回归分析;
直线回归分析 曲线回归分析
研究“多因一果”,即多个自变量与一个依 变量的回归分析称为多元回归分析。
多元线性回归分析
多元非线性回归分析
第二节:直线回归
Linear Regression
回归和相关分析结果仅适用于自变量的试验取值 范围。
9
2. 进行直线回归分析时应符合的基本条件 (基本假定) (1)x是没有误差的固定变量;而y是随机 变量,具有随机误差。 (2)x的任一值都对应着一个y的总体,且 呈正态分布。
(3)随机误差是相互独立的,且呈正态分
布。
10
对两个变量间的线性关系的显著性进行检验时, 采用的方法是 F 检验或 t 检验。 直线回归中,只有一个自变量,所以回归平方和 的自由度为1,离回归平方和的自由度为n-2 。 1. 计算回归平方和U和离回归平方和Q:
序号 日龄 x 体重 y 1 6 12 2 9 17 3 12 22 4 15 25 5 18 29
13
(一)求回归方程: (1)由观测值计算6个一级数据
n 5
x 6 9 12 15 18 60 x 6 9 12 15 18 810

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题参考答案一、名词解释函数关系:函数关系亦称确定性关系,是指变量(现象)之间存在的严格确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,必定有另一个且只有一个变量有确定的值与之对应。

相关关系:是指变量(现象)之间存在着非严格、不确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,可以有另一变量的若干数值与之相对应。

这种关系不能用完全确定的函数来表示。

相关分析:相关分析主要是研究两个或者两个以上随机变量之间相互依存关系的方向和密切程度的方法,直线相关用相关系数表示,曲线相关用相关指数表示,多元相关用复相关系数表示。

回归分析:回归分析是研究某一随机变量关于另一个(或多个)非随机变量之间数量关系变动趋势的方法。

其目的在于根据已知非随机变量来估计和预测随机变量的总体均值。

单相关:单相关是指仅涉及两个变量的相关关系。

复相关:复相关是指一个变量对两个或者两个以上其他变量的相关关系。

正相关:正相关是指两个变量的变化方向是一致的,当一个变量的值增加(或减少)时,另一变量的值也随之增加(或减少)。

负相关:负相关是指两个变量的变化方向相反,即当一个变量的值增加(或减少)时,另一个变量的值会随之减少(或增加)。

线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈一条直线,则称为线性相关。

非线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈现出某种曲线形式,则为非线性相关。

相关系数:相关系数是衡量变量之间线性相关密切程度及相关方向的统计分析指标。

取值在-1到1之间。

两个变量之间的简单样本相关系数的计算公式为:()()niix x y y r --∑二、单项选择1.B;2.D;3.D;4.C;5.A;6.D 。

三、判断题(正确的打“√”,错误的打“×”) 1.×; 2.×; 3.√; 4.×; 5.×; 6.×; 7.×; 8.√. 四、简答题1、什么是相关关系?相关关系与函数关系有什么区别?答:相关关系,是指变量(现象)之间存在着非严格、不确定的依存关系。

第八章 相关与回归分析PPT课件

第八章 相关与回归分析PPT课件


的形态分
非线性回归
第21页/共44页
相关分析与回归分析的关系
(一)区别 • 1、相关分析的任务是确定两个变量之间相关的方向和密切
程度,用相关系数来表示。回归分析的任务是寻找自变量因 自变量影响关系的数学表达式。用数学模型来表示 • 2、相关分析不必确定两变量中哪个是自变量,哪个是因变 量,是两个变量之间的双向关系,没有主从之分;而回归关 系是两个变量之间的单向关系,是自变量对因变量的影响关 系。 • 回归分析中必须区分因变量与自变量。
• 3、将α与β代入直线方程的通式,得到回归方程。
• 4、回归系数及方程的有效性检验
第30页/共44页
一般原理:最小二乘法
y
(xn , yn)
(x2 , y2)
} ei = yi^-yi
(x1 , y1)
(xi , yi)
yˆ x
x
第31页/共44页
(六)一元线性回归方程的检验
1、一元线性回归方程的检验的意义 • 根据样本数据计算出的回归方程可能有一定的抽样
Model
Sum of
df Mean
F
Sig.
Squares
Square
1 Regressio 27768.798
1 27768.798 87.271
.000
n
Residual 67456.573
212 318.191
Total 95225.371
213
a Predictors: (Constant), DQ1

yˆ=a+b1x1+b2x2+…+bKxK
• 分析指标与过程同一元线性。
• (二)计算机操作

第八章相关与回归分析Correlation and Regression Analysis

第八章相关与回归分析Correlation and Regression Analysis
变量之间的函数关系和相关关系在一定条件下可以相互转化。 客观现象的函数关系可以用数学分析的方法去研究,而研究客观现
象的相关关系必须借助于统计学中的相关与回归分析方法。
Chap 08-4
相关关系的类型
从相关关系涉及的变量数量看:单相关和复相关 一个变量对另一变量的相关关系,称为单相关; 一个变量对两个以上变量的相关关系时,称为复相关; 从变量相关关系的表现形式看:线性相关和非线性相关 从变量相关关系变化的方向看:正相关和负相关 从变量相关的程度看:完全相关〔函数关系〕、不完全相
或:
r
n xtyt xt yt
[n ( xt2)( xt)2]n [( yt2)( yt)2]
Chap 08-7
2 简单线性相关与回归分析
2.1 简单线性相关系数及检验 2.2 总体回归函数与样本回归函数 2.3 回归系数的估计 2.4 简单线性回归模型的检验 2.5 简单线性回归模型预测
Chap 08-8
相关系数
总体相关系数〔 population correlation coefficient〕 ρ 是反映两变量之间线性相关程度的 一种特征值,表现为一个常数。
关、不相关
Chap 08-5
相关分析与回归分析
而样本回归函数中 的和 是随机变量,其具体数值随所抽取的样本观测值不同而变动。
是当 x 等于 0 时 y 的平均估计值 S越小说明实际观测点与所拟合的样本回归线的离差程度越小,即样本回归线具有较强的代表性,反之,S越大说明实际观测点与所拟 合的样本回归线的离差程度越大,即回归线的代表性越差。
Chap 08-1
本节学习目标
通过本节的学习,你应该能够:
理解和掌握相关分析和回归分析的原理 估计一元线性回归模型,并对模型进行检验 利用计算机软件估计多元线性回归模型,并对模型进行

第8章 相关与回归分析

第8章 相关与回归分析

4、在相关关系中,变量之间是平等关系,不存在自变量和因变量。 、在相关关系中,变量之间是平等关系,不存在自变量和因变量。
而在回归分析中必须明确划分自变量和因变量。 而在回归分析中必须明确划分自变量和因变量。
8-9
统计学
STATISTICS
8.2 简单线性相关与回归分析
8 - 10
STATISTICS
8-5
统计学
STATISTICS
(三)从变量相关关系变化的方向看 从变量相关关系变化的方向看 变化的方向 正相关: A 正相关:变量同方向变化 , 即同增同减 (A) 同增同减 负相关:变量反方向变化, 负相关:变量反方向变化, 即一增一减 (B) B 一增一减 从变量相关的程度 相关的程度看 (四)从变量相关的程度看
完全相关 (B) 不完全相关 (A) 不相关 (C)
8-6
25 20 15 10 5 0 0 2 4 6 8 10 12
25 20 15 10 5 0 0 2 4 6 8 10 12
C
35 30 25 20 15 10 5 0 0 5 10 15
统计学
STATISTICS
三、回归分析
回归一词的由来: 回归一词的由来:
8 - 13
见第218页例题 页例题 见第 页例
统计学
STATISTICS
相关系数的特点: 相关系数的特点:
1、r 的取值范围是 − 1 ≤ r ≤ 1 。 、 2、r<0时,β<0 为负相关;r>0时, β>0 为正相关。 为负相关; 为正相关。 、 时 时 3、|r|=1,为完全相关。r =1,为完全正相关;r = -1, 、 ,为完全相关。 ,为完全正相关; , 为完全负正相关。 为完全负正相关。 4、r = 0,不存在线性相关。 、 线性相关。 ,不存在线性相关 5、|r|越趋于 表示两变量线性关系越密切;|r|越趋于 、 越趋于 表示两变量线性关系越密切; 越趋于 越趋于1表示两变量线性关系越密切 越趋于0 表示两变量线性关系越不密切。 表示两变量线性关系越不密切。 线性关系越不密切 6、r是一个随机变量。 、 是一个随机变量 是一个随机变量。

生物统计附试验设计第八章直线回归与相关分析ppt课件

生物统计附试验设计第八章直线回归与相关分析ppt课件
全部偏差平方和为:
Q ei2 (y yˆ)2 y (a bx)2
利用最小二乘法,即使偏差平方和最小 的方法求a与b的值。
Q a
2 ( y
a
bx)
0
Q b
2 ( y
a
bx)x
0
na ( x)b y
根据微积分 学中求极值 的原理,将Q 对a与b求偏 导数并令其 等于0:
( x)a ( x)2 b xy
平行关系/相关关系(两个以上变量之间共
同受到另外因素的影响,无自变量与依变
量之分)
X身高
Y体重
X体重
Y身高
在大量测量各种身高人群的体重时会发现,在同样 身高下,体重并不完全一样。在同样体重下,身高 并不完全一样。但在每一身高/体重下,有一确定 的体重/身高。
身高与体重之间存在相关关系。
平行关系/相关关系(两个以上变量之间共 同受到另外因素的影响,无自变量与依变 量之分)
Sr
检验的计算公式为:
Sr (1 r2 ) /(n 2)
Sr—相关系数标准误
F
(1
r2 r2) (n
2)
df1 1, df2 n 2
此外,还可以直接采用查表法对相关系 数r进行显著性检验。先根据自由度n-2查临
界r值(附表8),得r0.05、 r0.01。
若|r|<r0.05 ,P>0.05,则相关系数r不 显著;
椰子树的产果树与树高之间无直线相关关系。
当样本太小时,即使r值达到0.7996,样本也可
能来自总体相关系数ρ=0的总体。
不能直观地由r值判断两变数间的相关密切程度。 试验或抽样时,所取的样本容量n大一些,由此计
算出来的r值才能参考价值。
四、相关与回归的关系

统计学原理第8章相关与回归分析[精]

统计学原理第8章相关与回归分析[精]

估计标准误差就是因变量的估计值yc与实际值y之间差异 公 的平均程度。记为Syx,它的基本公式为:


式中,Syx表示估计标准误差;下标yx表示y依x的回归方程; y是因变量的实际值;yc是因变量的估计值。
例8.4以例8.1的资料计算估计标准误差。
步骤: 1.设计一张计算表,将已知x的值代入回归方程求出对应的yc的值 2.计算离差y-yc并加以平方求和 3.求出估计标准误差Syx。
数关系。
当r=0时,表示x与y完全没有线性相关。
当0<|r|<1时,表示x与y存在着一定的线性相关。一般分四个
等级,判断标准如下:
若0<|r|<0.3,则称x与y为微弱相关;
若0.3<|r|<0.5, 则称x与y为低度相关;
若0.5<|r|<0.8, 则称x与y为显著相关;
若0.8<|r|<1, 则称x与y为高度相关。
8.3.2简单直线回归方程
a, b是待定参数 利用最小二乘法 得到a,b求值,再反解得到方程式
建立回归直线的过程:列计算表,求出∑xy,∑x2,∑y2,x,y; 计算Lxy,Lxx和Lyy的值;求出b和a的值并写出方程
例 8.2某工厂某产品的产量与单位成本资料见表8.2,试 求单位成本依产量的回归直线方程。
★ 填空题 (1) 现象之间的相关关系,从相关因素的个数看,可分为()和();从相关的形式
的两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,

统计学原理第八章相关分析与回归分析

统计学原理第八章相关分析与回归分析

21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6

24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Cov( X ,Y )
Var( X ) Var(Y )
第一节 相关分析
二、相关关系的描述与度量
相关系数
总体相关系数通常是未知的。一般我们从总体中
随机抽取一定样本容量n的样本,利用样本相关系数作 为总体相关系数的估计。样本相关系数r的计算公式为 :
一、函数关系与相关关系 二、相关关系的描述与度量
第一节 相关分析
一、函数关系与相关关系
变量之间有确定的关系,称为函数关系。如销售额与 价格、销售量的关系,圆的面积与半径的关系等,这 些可由数学来给出描述
变量之间有关系,但不确定,称为相关关系。如学生 的学习时间与考试成绩之间的关系。还有:居民消费 与居民家庭收入的关系、受教育年限与工资水平的关 系、储蓄利率与银行年末储蓄额之间关系等。
第一节 相关分析
二、相关关系的描述与度量
相关分析一般按照以下步骤进行: (1)确认变量之间是否存在关系,如果存在关系,
确认它们之间是否是相关关系。(绘制散点图) (2)如果是相关关系,确认变量之间关系的类型、
方向与强度。(计算相关系数) (3)样本所反映的变量之间的关系能否代表总体变
量之间的关系?(相关系数的显著性检验)
第八章 相关与回归分析
为解决此问题,高尔顿(1886)设父亲的身 高为自变量x,儿子的身高为因变量y,收集了父 亲和他们成年儿子的身高数据,从( x ,y )的 散点图、直线模型得到直观启发,将最小二乘法
(高斯,1801)用到身高数据,结果是:矮于父
辈平均身高父亲的儿子有高于父亲的趋势,而高
于父辈平均身高父亲的儿子有矮于父亲的趋势,
从统计角度来看,回归分析的一个基础和前 提是考察变量之间需要有一定的相关关系,相关 与回归分析是本章学习的内容。
回归分析可以认为是一种跨学科的综合分析 方法
经济学
数理经 济学
数 学
经济统 计学
回归 分析


数理统 计学

5
第八章 相关与回归分析
第一节 相关分析 第二节 一元线性回归
第一节 相关分析
12
0
0
10
20
30
40
50
60
70
第一节 相关分析
二、相关关系的描述与度量
相关分析的分类 从相关的方向来看,相关关系分为正相关和负
相关,如果当一个变量的数量增加,另一个变 量也随之增加,称为正相关。如考试成绩一般 随着复习时间的增加而提高,因此成绩与复习 时间是正相关关系。如果当一个变量的数量变 化,而另一个变量的数量向相反的方向变动, 则称为负相关。
即有“回归”到父辈平均身高的趋势,这就是统 计学上“回归”最早的涵义。
高尔顿创立了回归分析,也成为了生物统计 学的奠基人。
第八章 相关与回归分析
该案例涉及到的统计学分析方法是回归分析 (regression analysis),其是确定两种或两种以 上变量之间相互依赖的定量关系的一种重要统计 分析方法,回归分析对科学和社会经济的发展产 生了巨大的作用和贡献,其是数学、经济问题、 统计分析相结合的成果!
第一节 相关分析
二、相关关系的描述与度量
1.散点图
使用相关分析解决实际问题时,通常通过绘制 两个变量之间的散点图,初步直观地判断变量 之间相关关系的类型、方向和强弱程度。
第一节 相关分析
二、相关关系的描述与度量
2. 散点图示例
20
16
12
8
4
0
0
5
10
15
20
20
16
12
8
4
0
0
5 10 15 20
第一节 相关分析
销售额
800
700
600
500
400
300
200
100
0
0
10
20
30
40
50
客户联系次数
第一节 相关分析
二、相关关系的描述与度量
相关系数
相关系数是测度 用方法。
相关关系方向与强弱程度的常
相关系数分为两种:一种是总体相关系数,其是用
于测度和之间真实的线性相关程度,一般以下相关系
数计算公式为:
20
16
12
8
4
0
0
5
10
15
20
16
12
8
4
0
0
5
10
15
20
第一节 相关分析
二、相关关系的描述与度量
从相关关系的强弱来看,相关关系可以划分为 完全相关、不完全相关与不相关。完全相关是 指一个变量的取值完全取决于另外一个变量, 实际上此时可以将变量之间的关系理解为函数 关系。如果两个变量的观测点很凌乱,毫无规 律可循,那么两个变量就存在不相关的关系。 如果两个变量之间的相关程度介于完全相关与 不相关之间,那么称之为不完全相关。
经济管理类“十二五”规划教材
统计学
-从典型案例到问题和思想
第八章 相关与回归分析
【典型案例9】高尔顿用统计学验证了父辈身 高与儿子身高的关系
我们通常会观察到:父亲高一点、儿子就高 一点,父亲矮一点、儿子就矮一点,这称为正相 关关系。对于矮父亲来说,由于高一点会有更多 机会的原因,矮父亲希望儿子高一点,即矮父亲 的问题是:儿子身高有高于父亲的趋势吗?同样 ,对于高父亲来说,由于矮一点生活更方便的原 因,高父亲希望儿子矮一点,即高父亲的问题是 :儿子身高有矮于父亲的趋势吗?
第一节 相关分析
二、相关关系的描述与度量
从相关的形式来看,相关关系可以划分为线性 相关与非线性相关看,当变量之间的关系大概 呈现出线性关系时,称之为线性相关。当变量 之间的关系大概呈现出某种曲线方程的关系, 称之为非线性相关。
第一节 相关分析
二、相关关系的描述与度量
请问以下散点图哪个意味着线性相关?哪个 意味着非线性相关)
第一节 相关分析
相关分析的作用
寻找变量之间数量方面的相互变动规律,为进一 步研究现象之间的内在因果联系提供数据参考 ;
许多有趣的经济金融科学问题的提出往往源于变 量之间的相关关系,比如,城市特征(是否是旅 游城市)与当地物价之间的关系、中小企业数量 与地下(非法)金融规模之间的关系,等等 请同学们再举一些相关关系的例子
第一节 相关分析
二、相关关系的描述与度量
请判断哪个是完全相关?哪个是不完全相关?
20
16
12
8
4
0
0
5
10
15
20
120
100
80
60
40
20
0
0
10
20
30
40
50
60
70
第一节 相关分析
二、相关关系的描述与度量
【例8-1 】 假如某公司想研究与客户的联系次数与销售额 之间是否存在某种【关例8系-1】,收集了下面n=10个 月的样本信息,其中x列表示某月与客户的联 系次数,y列给出的是该月公司的销售额(见 课本),绘制x,y的散点图。
相关文档
最新文档