Simufact.Welding-6.0-热源二次开发初步教程
(完整)1_UG二次开发实用教程 第一章
![(完整)1_UG二次开发实用教程 第一章](https://img.taocdn.com/s3/m/9891c48a59eef8c75ebfb38c.png)
第1章二次开发应用初步UG/NX是当今世界上最先进和高度集成的、面向制造行业的CAD/CAE/CAM软件系统,可用于产品的整个开发过程,包括产品概念设计、建模、分析和加工。
UG/NX以其强大的设计和加工功能而著称,可以支持目前市场上销售的不同厂家的所有工作站及微机平台,广泛应用于通用机械、模具、汽车及航空航天领域,被很多世界著名公司选定为企业计算机辅助设计、分析、制造的标准。
从20世纪60年代起UG就一直代表着工程制造业CAD/CAM软件产品的最高水平。
20世纪90年代,UG进入中国市场,受到广大CAD/CAM用户的欢迎。
UG在中国的用户已超过1000多家,装机量达到350 多套。
这是因为UG是一个集成化、全面、一体的软件,它包括设计、加工、分析和最流行的产品数据管理(PDM),给企业提供了一个全面的解决方案。
1.1 CAD软件的二次开发随着CAD应用领域的不断扩大和应用水平的不断提高,用户需求与CAD系统规模之间的矛盾日益增加,没有一个CAD系统能够完全满足用户的各种需求。
作为商品化的CAD软件产品,是否拥有一个开放的体系结构,是衡量该软件的优劣性、适用性和生命力的重要标志,而是否拥有一个开发简便、运行高效的二次开发平台又是开放式体系结构的核心和关键。
目前,主流的CAD软件都具有用户定制功能并提供二次开发工具。
通过CAD软件的二次开发工具可以把商品化、通用化的CAD系统用户化、本地化、即以CAD系统为基础平台,在软件开发商所提供的开发环境与编程接口基础之上,根据自身的技术需要研制开发符合相关标准和适合企业实际应用的用户化、专业化、知识化、集成化软件,以进一步提高产品研发的效率。
在通用CAD基础上融入专业知识构建专用CAD系统是当前深化CAD应用的潮流。
把用户的设计思想转化为特定的新功能需要以下基本要素,这些基本要素构成了CAD软件二次开发平台的基本结构:(1)通用CAD软件——管理层。
通用CAD软件是整个开发的基础,是二次开发应用程序的宿主。
simufact简述及对比
![simufact简述及对比](https://img.taocdn.com/s3/m/801173503c1ec5da50e27024.png)
1、Simufact软件简述Simufact公司从1995年就为MSC公司提供金属成形有限元源程序,且注重技术的发展,拥有多项专利技术。
Simufact.forming是MSC.SuperForm和MSC.SuperForge的升级版本,由德国Simufact公司和美国MSC.Software公司达成协议,基于MSC.Superform和MSC.SuperForge的基础上开发的独立软件。
Simufact将原MSC.SuperForge的易用性和MSC.Superform的精确性完美的结合在一起。
可以对多种材料加工工艺进行仿真计算,是世界上唯一一款多工艺仿真优化平台。
Simufact软件功能:模锻、辊锻、旋压、环轧、摆辗、楔横轧、穿孔斜轧、开坯锻、多向锻造、挤压等体积成形工艺,以及板材冲压、液压、热成形、轧制和管材弯曲、径向锻造、轧制以及材料在加工过程中的模具受力、微观组织、相变热处理和焊接工艺仿真。
软件核心:简单易用、精确、功能强大、求解快我们的竞争对手软件主要有:Abaqus、Deform、Forge、Qform、Marc、Sysweld、Pam-stamp。
2、总体介绍DEFORM、forge、Qform与simufact中forming模块即原superforge模块比较相似,都擦用windows风格界面,以上这些相对于MARC、ANSYS、ABAQUS 等通用软件来说都属于专业软件。
而simufact公司将原superform即原MARC的求解器融入到其中,使simufact软件较之DEFORM、FORGE、QFORM等更加专业,更加高端,成为一款专注于材料加工工艺的仿真优化平台。
QForm由俄罗斯Quantor公司专家基于有限元计算方法开发而成Qform,专门用于解决锻造问题,具有简单明了友好操作界面,初始化参数准备,具有全自动向导功能,模拟过程自动完成,而现在Qform在中国被使用较少,目前国内用户主要集中在锻压协会的一些会员单位,操作较简单,功能较simufact和DEFORM来说较少。
simufact.welding焊接模拟教程.pdf
![simufact.welding焊接模拟教程.pdf](https://img.taocdn.com/s3/m/b9d6861c0640be1e650e52ea551810a6f524c8a7.png)
simufact.welding焊接模拟教程.pdfsimufact.welding焊接模拟教程案例文件,请使用simufact.welding3.1.0及以上版本打开之前一直都是发的forming的教程,而simufact.welding网上的资料相对较少,其实simufact.welding软件也是一款很不错的软件,以往我们做焊接非线性大多数都是用marc,但是marc那个不人性化的界面,以及建模的复杂,让新手们望而却步。
simufact基于marc 和ife.weldsim两个求解器,取长补短,开发了极易使用的模拟软件,今天我就带大家一起来体验一下吧。
欢迎捧场噢!1、打开simufact.welding3.1.0软件。
点击新建按钮创建一个新的仿真模拟。
2、在弹出的界面中设定工作名称及保存位置。
点击ok确定3、在新弹出的界面中,设定重力方向、工件数量、工作平台数量、完全固定夹具数量、力固定夹具数量、数量,设定完成后点击ok确定重力方向:按照实际与所建立的几何坐标系来设定。
如图所示,模型空间坐标系如下图所示,焊接构件放置于地面工作平台上,因此设定重力方向为Z的负方向。
工件数量:图示为两个工件,上方柱形构件及下方行构件。
数量设置为2工作平台:起支撑作用,图示,蓝色构件下面的黄色构件为工作平台,一些复杂形状的构件焊接时,内部支撑夹具形状要复杂一些,但是道理是一样的。
它们对工件起到支撑作用。
完全固定夹具:根据实际中夹具工装设定,意为XYZ方向均不可动。
里固定:施加一定的力,使工件固定。
如图示蓝色板类件上面的四个小圆柱,通过它们施加一定的力,让压在工作平台上。
数量:中用到的机械手数量,有些工艺需要多个机械手同时进行焊接,按照实际定义即可。
本案例为一个机械手,顺序焊接底部四条直线焊缝,没道焊缝之间间隔一段时间(机械手转向)。
4、在软件catalog空白区域点击鼠标右键,在弹出的对话框中选择Geometries(几何)——Import(导入),然后在弹出的对话框中选择要导入的几何模型,可以一次性导入所有模型,在后面弹出的单位选择对话框中选择你建模时所用的单位,然后将use for all geometries前面勾选,意为所有几何模型的单元都采用当前单位。
Maximo二次开发培训
![Maximo二次开发培训](https://img.taocdn.com/s3/m/ea60940348d7c1c708a1456c.png)
二次开发培训1、二次开发介绍1.1、对象及属性设计好表结构后,通过MAXIMO中“数据库配置”应用程序创建表。
创建过程中需要注意以下属性:1.1.1、对象选项1.1.2、属性选项1.2、MBO介绍如果需要在新建的对象中加入特殊的业务逻辑,则需要自己编写MBO,并部署到相应的对象。
操作方法是在数据库配置应用程序中,找到指定的对象,并在“类”字段处输入值。
如下图所示:1.2.1、MBO介绍Mbo可理解为数据库中某一条记录,其方法都是对记录的操作,如:添加、删除、修改等。
1.2.1.1、MBO中常用的方法1.2.2、MboSet介绍MboSet可以理解为Mbo的集合,既多个Mbo。
其方法都是对整个Mbo集合的操作。
1.2.2.1、MboSet常用方法1.2.3、字段绑定逻辑介绍如果需要在指定的字段上加入特殊的业务逻辑,则需要自己classes,并部署到相应的字段上。
必须继承psdi.mbo.MboValueAdapter或psdi.mbo.MAXTableDomain(弹框)。
操作方法是在数据库配置应用程序中,找到指定的对象,并在“类”字段处输入值。
保存修改后,需要停止服务,执行configdb.bat使更改生效。
如下图所示:1.2.3.1、字段绑定类中常用的方法1.3、AppBean介绍AppBean用于实现MAXIMO6中应用程序的界面操作控制,如界面的新建、保存、发送工作流等。
在HARV-EAM系统中可参考“采购单”应用程序的AppBean,harv.webclient.beans.po.CtmPOAppBean。
1.3.1、AppBean常用方法介绍1.4、DataBean介绍DataBean用于实现MAXIMO6中特定数据源的界面操作控制,如弹出窗口中按钮的事件等。
在HARV-EAM系统中可参考“采购单”应用程序的DataBean,XXX对应按钮的事件2、开发工具配置2.1、启动eclipse启动eclipse,File—〉New—〉Project2.2、新建工程选择Java Project输入工程名称配置工程所需的JDK,如果生产环境是websphere,则eclipse中的JDK必须配置为WebSphere 的jdk。
基于Simufact welding仿真在弧焊机器人教学中的研究
![基于Simufact welding仿真在弧焊机器人教学中的研究](https://img.taocdn.com/s3/m/3d5b622beef9aef8941ea76e58fafab069dc44c8.png)
内燃机与配件0引言自2010年起我院开设焊接机器人应用与维护专业以来,培养焊工7000多人,焊接机器人操作大约5000多人,目前在校生焊工400多人。
为服务地方经济发展,培养以徐工集团为核心的制造型企业,探索一种高效、快捷、低成本的教学途径,提升学生焊接工艺参数设置能力,提高焊接机器人教学质量,本文研究将Simufact 焊接仿真应用到焊接机器人应用与维护专业教学中,以达到期望效果。
在焊接领域用于仿真模拟工具有许多,由于焊接加工过程是与温度、应力变形和冶金组织状态相互作用和影响、常会发生较为复杂的物理变化。
如果利用仿真模拟再现整个焊接过程对学生来说,不仅焊接工艺参数对焊缝成形影响有直观的感受,且能掌握建立焊接工艺各参数相互影响关系。
因此,在技工院校焊接机器人应用与维护专业教学过程中,运用Simufact welding 仿真软件对焊缝成形过程进行模拟教学有着重要的意义。
1Simufact 焊接有限元建立Simufact 焊接有限元焊接仿真通过导入焊接组件的网格化零件,构建有限元焊件模型;设置合理的环境参数和焊接参数对整个焊接过程进行高度模拟;最后,对Simufact 导出的数据和图像进行分析。
在导入网格化焊接组件时,建议运用多种网格方式,在焊缝周边较细的网格可以准确地获得高梯度温度。
如果出现网格的划分算法不太兼容的现象,建议对焊件进行独立网格划分的处理,这样会避免了不兼容现象的干涉和影响。
通常焊接件对兼容的网格设计既费时又有难度,所以,一般采用不兼容网格划分算法。
运用Solidworks三维软件建模后再Hypermesh 划分网格,最后保存。
建立仿真模型的建立是否合理直接关系到预处理时间,直观的用户界面对模拟过程起到事倍功半的效果。
在建立焊接结构时,可以用三维软件自行绘制焊接组件,如装夹夹具可以预定义组。
在运用有限元软件分析时,需要对焊件定义求解器、焊枪数量、设置跟踪点、加载焊件组件以及边界条件的设置。
Simufact.Welding 6.0 热源二次开发初步教程
![Simufact.Welding 6.0 热源二次开发初步教程](https://img.taocdn.com/s3/m/ebadef87647d27284b7351d0.png)
Simufact.Welding 6.0 热源二次开发初步教程1 主要目的:开始随时间变化的焊接热源,如脉冲热源2 基本要求:1)脉冲热源频率:8Hz2)脉宽30ms3)其它略3 软件安装1)simufact.welding 6.02)VS20103)Intel Visual Fortran Composer XE 20133 基本步骤3.1 软件设置安装完之后需要配置path、Lib和include三个环境变量。
以下列出环境变量值作为参考(需要根据VS和fortran的安装位置不同进行相应的修改)。
---注:以下部分为参考网上容,需要根据具体实际修改,如下面采用的是VS2012,XE2015,根据需要修改Path:C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\ToolsC:\Program Files (x86)\Intel\Composer XE 2015\redist\intel64\mklC:\Program Files (x86)\Intel\Composer XE 2015\bin\intel64C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDEC:\Program Files (x86)\Windows Kits\8.1\Windows Performance Toolkit\C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\binC:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin\x64C:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\BinC:\Program Files (x86)\Intel\MPI\5.0.1.037\intel64\binC:\Program Files (x86)\Intel\Trace Analyzer and Collector\9.0.1.035\binLib:C:\Program Files (x86)\Intel\Composer XE 2015\compiler\lib\intel64C:\Program Files (x86)\Intel\Composer XE 2015\mkl\lib\intel64C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\lib\amd64C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\libC:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Lib\x64C:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\LibINCLUDE:C:\Program Files (x86)\Intel\Composer XE 2015\compiler\includeC:\Program Files (x86)\Intel\Composer XE 2015\mkl\includeC:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\includeC:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Includea3.2 常规建立并设置simufact.welding工程建立如下常规的simufact.welding工程(常规建立过程省略)图1 常规工程主要坐标系为:沿X方向宽50mm,沿y方向板厚10mm,沿z方向长度50mm,焊接沿着z 负方向,焊接起始点坐标(50,10,-50)【单位mm】,建立对称的一半模型。
simufact.welding焊接模拟教程(2020年整理).doc
![simufact.welding焊接模拟教程(2020年整理).doc](https://img.taocdn.com/s3/m/942e08ca33687e21af45a9ea.png)
simufact.welding焊接模拟教程案例文件,请使用simufact.welding3.1.0及以上版本打开之前一直都是发的forming的教程,而simufact.welding网上的资料相对较少,其实simufact.welding软件也是一款很不错的软件,以往我们做焊接非线性大多数都是用marc,但是marc那个不人性化的界面,以及建模的复杂,让新手们望而却步。
simufact基于marc和ife.weldsim两个求解器,取长补短,开发了极易使用的模拟软件,今天我就带大家一起来体验一下吧。
欢迎捧场噢!1、打开simufact.welding3.1.0软件。
点击新建按钮创建一个新的仿真模拟。
2、在弹出的界面中设定工作名称及保存位置。
点击ok确定3、在新弹出的界面中,设定重力方向、工件数量、工作平台数量、完全固定夹具数量、力固定夹具数量、数量,设定完成后点击ok确定重力方向:按照实际与所建立的几何坐标系来设定。
如图所示,模型空间坐标系如下图所示,焊接构件放置于地面工作平台上,因此设定重力方向为Z的负方向。
工件数量:图示为两个工件,上方柱形构件及下方行构件。
数量设置为2工作平台:起支撑作用,图示,蓝色构件下面的黄色构件为工作平台,一些复杂形状的构件焊接时,内部支撑夹具形状要复杂一些,但是道理是一样的。
它们对工件起到支撑作用。
完全固定夹具:根据实际中夹具工装设定,意为XYZ方向均不可动。
里固定:施加一定的力,使工件固定。
如图示蓝色板类件上面的四个小圆柱,通过它们施加一定的力,让压在工作平台上。
数量:中用到的机械手数量,有些工艺需要多个机械手同时进行焊接,按照实际定义即可。
本案例为一个机械手,顺序焊接底部四条直线焊缝,没道焊缝之间间隔一段时间(机械手转向)。
4、在软件catalog空白区域点击鼠标右键,在弹出的对话框中选择Geometries(几何)——Import(导入),然后在弹出的对话框中选择要导入的几何模型,可以一次性导入所有模型,在后面弹出的单位选择对话框中选择你建模时所用的单位,然后将use for all geometries前面勾选,意为所有几何模型的单元都采用当前单位。
Simufact.Welding-6.0-热源二次开发初步教程
![Simufact.Welding-6.0-热源二次开发初步教程](https://img.taocdn.com/s3/m/73ac1f46a300a6c30d229f1b.png)
Simufact.Welding 6.0 热源二次开发初步教程1 主要目的:开始随时间变化的焊接热源,如脉冲热源2 基本要求:1)脉冲热源频率:8Hz2)脉宽30ms3)其它略3 软件安装1)simufact.welding 6.02)VS20103)Intel Visual Fortran Composer XE 20133 基本步骤3.1 软件设置安装完之后需要配置path、Lib和include三个环境变量。
以下列出环境变量值作为参考(需要根据VS和fortran的安装位置不同进行相应的修改)。
---注:以下部分为参考网上内容,需要根据具体实际修改,如下面采用的是VS2012,XE2015,根据需要修改Path:C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\ToolsC:\Program Files (x86)\Intel\Composer XE 2015\redist\intel64\mklC:\Program Files (x86)\Intel\Composer XE 2015\bin\intel64C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDEC:\Program Files (x86)\Windows Kits\8.1\Windows Performance Toolkit\C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\binC:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin\x64C:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\BinC:\Program Files (x86)\Intel\MPI\5.0.1.037\intel64\binC:\Program Files (x86)\Intel\Trace Analyzer and Collector\9.0.1.035\binLib:C:\Program Files (x86)\Intel\Composer XE 2015\compiler\lib\intel64C:\Program Files (x86)\Intel\Composer XE 2015\mkl\lib\intel64C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\lib\amd64C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\libC:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Lib\x64C:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\LibINCLUDE:C:\Program Files (x86)\Intel\Composer XE 2015\compiler\includeC:\Program Files (x86)\Intel\Composer XE 2015\mkl\includeC:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\includeC:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Includea3.2 常规建立并设置simufact.welding工程建立如下常规的simufact.welding工程(常规建立过程省略)图1 常规工程主要坐标系为:沿X方向宽50mm,沿y方向板厚10mm,沿z方向长度50mm,焊接沿着z 负方向,焊接起始点坐标(50,10,-50)【单位mm】,建立对称的一半模型。
simufact简述及对比
![simufact简述及对比](https://img.taocdn.com/s3/m/801173503c1ec5da50e27024.png)
1、Simufact软件简述Simufact公司从1995年就为MSC公司提供金属成形有限元源程序,且注重技术的发展,拥有多项专利技术。
Simufact.forming是MSC.SuperForm和MSC.SuperForge的升级版本,由德国Simufact公司和美国MSC.Software公司达成协议,基于MSC.Superform和MSC.SuperForge的基础上开发的独立软件。
Simufact将原MSC.SuperForge的易用性和MSC.Superform的精确性完美的结合在一起。
可以对多种材料加工工艺进行仿真计算,是世界上唯一一款多工艺仿真优化平台。
Simufact软件功能:模锻、辊锻、旋压、环轧、摆辗、楔横轧、穿孔斜轧、开坯锻、多向锻造、挤压等体积成形工艺,以及板材冲压、液压、热成形、轧制和管材弯曲、径向锻造、轧制以及材料在加工过程中的模具受力、微观组织、相变热处理和焊接工艺仿真。
软件核心:简单易用、精确、功能强大、求解快我们的竞争对手软件主要有:Abaqus、Deform、Forge、Qform、Marc、Sysweld、Pam-stamp。
2、总体介绍DEFORM、forge、Qform与simufact中forming模块即原superforge模块比较相似,都擦用windows风格界面,以上这些相对于MARC、ANSYS、ABAQUS 等通用软件来说都属于专业软件。
而simufact公司将原superform即原MARC的求解器融入到其中,使simufact软件较之DEFORM、FORGE、QFORM等更加专业,更加高端,成为一款专注于材料加工工艺的仿真优化平台。
QForm由俄罗斯Quantor公司专家基于有限元计算方法开发而成Qform,专门用于解决锻造问题,具有简单明了友好操作界面,初始化参数准备,具有全自动向导功能,模拟过程自动完成,而现在Qform在中国被使用较少,目前国内用户主要集中在锻压协会的一些会员单位,操作较简单,功能较simufact和DEFORM来说较少。
deform 二次开发
![deform 二次开发](https://img.taocdn.com/s3/m/dde1ebeb5ef7ba0d4a733b73.png)
DEFORM二次开发的一点小心得!前一段时间闲着没事,看了DEFORM的help文件.和众位兄弟交流一下.||仿真|设计|有限元|虚拟仪器1d8S"Q!x0~9m!~.Q5U6{9^ 用户子程序实现过程:第一步:所需文件准备:把DEF_SIM目录下的def_usr.f ,DEF_SIM_USR_ABsoft70.gui , DEF_SIM_P4_USR_ABsoft70.gui ,DEF_SIM_P4_USR_LIB.lib , DEF_SIM_USR_LIB.lib和lib目录下的所有.lib 文件拷到工作目录下。
备份DEF_SIM.exe ,DEF_SIM_P4.exe两个文件。
第二步:编写源程序。
对于新手可以使用模版自带的子程序,对于材料流动应力子程序模版里头本身就自带有一个,所以可以不需要自己编写。
(我就利用过自带的作过模拟,把前面的常数设置为10和100分别模拟)仿真分析,有限元,模拟,计算,力学,航空,航天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM(k/b8|0^9b)y第三步:用absoft7.0或以上版本打开DEF_SIM_USR_ABsoft70.gui 文档,指定好library files,用工作目录下的lib文件来替换原来默认的lib 文件,上述做完后直接点build就ok了,自动生成了DEF_SIM.exe。
重复上面的过程打开DEF_SIM_P4_USR_ABsoft70.gui 文档生成DEF_SIM_P4.exe。
第三步:用生成的DEF_SIM.exe ,DEF_SIM_P4.exe替换原来的这两个文件。
第四步,运行模型。
对于流动应力子程序,只要在material那里选择子程序就ok了。
仿真分析,有限元,模拟,计算,力学,航空,航天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent8]0P&E B,L+{&Z W%?/b注:3D中必须是DEF_SIM.exe,而DEF_SIM—P4.exe不好!(我也不知道原因,师兄是这么说的!)8]$M*q)v3V;V仿真分析,有限元,模拟,计算,力学,航空,航天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM#d1I1k6D0F&n"r4j还有一个问题,关于DEFORM的text运行模式.在安装目录下面,有如下几个需要了解的文件:<1>DEF_PRE.EXE;<2>DEF_ARM_DEF_PRE.EXE这是前处理,DOS界面输入前处理参数设置,记录每次设置时的操作,按一定格式记录在记事本上面,这个很重要,二次开发可能需要这个文件.具体参见help.DEF_ARM_ 这是运行命令.具体格式见help.SimWe仿真论坛5O+[7_:v$x7~;?,i6e3q下面是关键:通过fortran子程序调用DEFORM.具体如下.我用的是visual fortran6.6.仿真分析,有限元,模拟,计算,力学,航空,航天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM b/O#G3N!D3G1_:c7x5}9v'Eresult=system('E:\DEFORM3D\V5_0\DEF_PRE.EXE')(启动前处理,弹出DEF_PRE.EXE界面)3A;}%^5}/q3Iresult=system('E:\DEFORM3D\V5_0\DEF_PRE.EXE<INI.TXT')(迚行前处理参数设置,INI.TXT是记录每次设置时的操作命令流),譬如一个简单的操作命令流:5Y+M3d$x;C<CR>"m%e'o&V2O!b%l2SimWe仿真论坛4j-v-M-a(l9A1仿真分析,有限元,模拟,计算,力学,航空,航天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent/c*W(t2h!~ @$N GXXXX.KEY (key文件,需要copy到你的子程序目录下)<CR>E||仿真|设计|有限元|虚拟仪器+P(E;u'r5H8r%}7仿真分析,有限元,模拟,计算,力学,航空,航天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM0u'n*V&U.w,S'C2仿真分析,有限元,模拟,计算,力学,航空,航天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM!K*i4n8l0jXXXX.DB(生成DB文件)||仿真|设计|有限元|虚拟仪器$e(W'V%d.G*T-n<CR>E:z;P'_/`9E RY<CR>result=system('E:\DEFORM3D\V5_0\DEF_ARM_ XXXX B')(运行DB文件,XXXX为文件名,B表示batch模式运行)仿真分析,有限元,模拟,计算,力学,航空,航天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM B&d5~0X1@1D)J.\*~注意运行过程中,有可能生成临时文件,如FOR003等,会影响模拟迚行,可通过fortran命令open和write操作清除.以上可以实现一些特殊的操作.如运动子程序等.上述即是我的一点小体会.很多我也不是很懂,自己的课题也不是DEFORM二次开发,也不专长编程.呵呵,希望对大家有所帮助!仿真分析,有限元,模拟,Re:请问能不能帖个自己二次开发加本构方程的例子这是我尝试过的关于流动应力的二次开发,希望能给没有做过二次开发的朋友一点经验~~~现在要好好研究二次开发和有限元软件的核心机制了~~~4S"]!F$i7W"E$S+u)e共同迚步~~~!E,]*w"f6y/W'u+Y(s-e+N9|.Bprogram USRMTRreal YS,TEPS,EFEPS,TEM仿真分析,有限元,模拟,计算,力学,航空,航天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM%[,L9o#s(`(|)D1Hread (*,*,*)TEPS,EFEPS,TEM 仿真分析,有限元,模拟,计算,力学,航空,航天,ANSYS,MSC,ABAQUS,ALGOR,Adina,COMSOL,FEMLAB,Matlab,Fl uent,CFD,CAE,CAD,CAM$P#]2R3L;T!z"m)F4[YS=123.5237-1.238956*TEM+3.8584*LOG10(EFEPS)+6.7852*TEPS-1.29*TEM*TEPS+52.895*LOG10(EFEPS)*TEPS+0.00088442*TEM*TE M"^/}-p&S!r7?"t'L/@Print *,YSENDSimWe仿真论坛&u%B;c f(k0f'G.m$A6r相信看了这个程序后,大家对二次开发肯定有个初步的了解了~||仿真|设计|有限元|虚拟仪器(`5Q4n0s;H3u8O7e5T呵~用户子程序具体实现心得结合论坛上各位大虾的经验和自带帮助,前段时间动手试了一下用户子程序的实现过程,现将自己的一些体会与大家共享,相信对做二次开发的新手有用用户子程序实现过程:第一步:所需文件准备:把DEF_SIM目录下的def_usr.f ,DEF_SIM_USR_ABsoft70.gui , DEF_SIM_P4_USR_ABsoft70.gui ,DEF_SIM_P4_USR_LIB.lib , DEF_SIM_USR_LIB.lib和lib目录下的所有.lib 文件拷到工作目录下。
simufact.welding焊接软件操作
![simufact.welding焊接软件操作](https://img.taocdn.com/s3/m/b965ebd0240c844769eaee01.png)
在Simufact.welding 中整个焊接过程仿真按下述步骤进行:1)生成新的焊接仿真分析项目2)导入模型3)设置边界条件4)设置焊接路径5)定义焊接热源6)设置焊接材料7)求解器设置8)提交计算9)结果后处理具体分析过程如下:1)生成新的分析项目a)点击桌面simufact.welding 2.5.1快捷方式启动simufact.welding软件,或者Windows开始菜单中点击simufact.welding 2.5.1。
启动之后整个simufact.welding界面如下:b)选择并按下extras→settings菜单。
c)弹出settings对话框,选择units/unit system。
Simufact.Welding焊接仿真软件提供五种单位制形式:International system of units (SI system)SI-mm unit systemImperial unit system——英制单位United States Customary System——美制单位User-defined unit system选择user-defined unit system,自行设置单位。
比较重要的单位:时间(s)、温度(℃)、长度(mm)和压强(MPa),设置好之后点击apply。
d)点击directories设置存储路径。
点击按钮弹出对话框,设置存储路径,也可进行其它路径的设置,点击apply,点击OK,关闭settings窗口。
e)点击菜单栏project→new新建分析项目。
输入项目名称。
此名称不能超过20个字符,且字符范围为:“A-Z”,“a-z”、“0-9”和连字符。
点击OK。
弹出分析项目设置对话框,可在窗口右端description中输入此分析项目的相关信息,其他设置如下:设置周围环境温度ambient temperature、重力加速度gravity、求解器solver及仿真所需模型部件components 数量的设置。
Simufact.welding实际案例分析
![Simufact.welding实际案例分析](https://img.taocdn.com/s3/m/fac7b842a58da0116d174985.png)
3.1有限元模型的建立有限元模型:材料:16MnCr5,常温屈服应力约为400Mpa 左右。
焊接两个零部件相连处的三道焊缝 焊接工艺及参数:采用机械手进行焊接,焊缝之间移动时间约为8S ,整个焊接过程约为650S 。
焊接参数:焊接电压:30V ,焊接电流150A ,焊接速度400cm/min ;图8为建立的焊接仿真模型。
图8为建立的焊接仿真模型为了分析3条焊缝采用何种焊接顺序焊后变形最小,我们需要计算不同焊接顺序合焊接方向。
经过初步分析,一共三条焊缝,同时考虑焊接先后顺序和焊接方向时,一共有24种不同的工艺。
如图9所示,如图9(a)表示的焊接工艺,先焊“1”,然后顺时针依次焊接“2”和“3”,焊接方向按照顺时针为“+”,逆时针为“-”,我们就将这种工艺表示为:“123”,以此为标准。
如图9(b)所示的工艺,先焊“2”,方向为逆时针,因此表示为“-2“。
然后顺时针焊“1”,最后顺时针焊“3”。
就表示为:“-213”。
(a )123 (b )-213图9 焊接顺序和焊接方向示意图3.2 结果分析在Simfact.welding 中,焊接宏观分析主要有三方面,即焊接残余应力分析、焊后变形分析和焊接温度场分析。
在工程上,前两种分析更为重要,更具有实际意义。
经过计算24种不同焊接顺序和焊接方向后,得到了如下结果:其中有7种工艺由于变形量较大,导致计算不收敛。
由于-132与-123基本类似,得知-123计算不收敛后,于是没有对-132进行计算。
这里我们仅对计算完成的进行详细结果分析。
表1为计算结果211-23的详细列表:工艺序号计算结果工艺序号计算结果工艺序号计算结果工艺序号计算结果1 2 3 计算完成-1 2 3 不收敛-1 -2 3 计算完成-1 2 -3 不收敛1 32 计算完成-13 2 没有计算-1 -3 2 计算完成-1 3 -2 计算完成2 3 1 不收敛-2 3 1 计算完成-2 -3 1 计算完成-2 3 -1 计算完成2 13 计算完成-2 1 3 计算完成-2 -1 3 计算完成-2 1 -3 计算完成3 1 2 计算完成-3 1 2 不收敛-3 -1 2 不收敛-3 1 -2 计算完成3 2 1 计算完成-3 2 1 不收敛-3 -2 1 计算完成-3 2 -1 不收敛表1 计算结果汇总图10所示为以上7种不收敛情况的计算结果。
Simufact.welding 5.0 中文教程 - 第六章
![Simufact.welding 5.0 中文教程 - 第六章](https://img.taocdn.com/s3/m/1d460a4a0975f46526d3e17f.png)
6 电阻点焊(Resistance spot welding )目录6.1电阻焊基本知识点 (4)6.2工件的电阻特性 (5)6.3电阻焊的仿真计算 (7)6.4焊枪运动与电极库 (8)6.5Simufact.welding中的电阻点焊仿真 (9)6.6后处理 (20)6.6.1电势 (20)6.6.2电流密度 (22)6.6.3热-电能量密度 (22)6.6.4接触导电率 (22)6.7几个注意点 (23)6.8局限性 (23)6.9参考文献 (24)关键词:电阻点焊、3D、网格自动细化教程级别:焊接仿真基础培训、Simufact.welding基础培训。
主要内容:本章节讲述的是基本电阻点焊的理论、应用背景以及如何simufact.welding中建立仿真过程,并且详细阐述了电阻点焊的后处理注意点。
图6.1 电阻点焊仿真案例6.1电阻焊基本知识点电阻焊工艺因其适用范围广,对材料的作用影响区很小,并且在生产过程中很容易进行质量管理等优点,如今已经广泛地被应用在汽车制造业中。
电阻焊有多种不同的焊接类型,不过他们都是基于焦耳作用产生热源的。
下表显示了不同类型的区别。
●电阻点焊(Resistance spot welding)●凸焊(Projection welding)●滚焊(Seam welding)●电阻电容焊(Capacitor discharge welding)图6.2 电阻焊的各种分类电阻焊是一种将两个导电组件在接触部位局部加热熔化,然后进行连接的焊接工艺。
熔化区域冷却凝固,会产生一个牢固的焊接接头,这是一个由外部作用力和温度扩散同时作用的过程。
电阻焊可以被看成是一系列电阻的串联模型,最大的电阻可以视为是电能转化为热能的主要因素。
如下图所示的串联电路:图6.3 电阻焊工艺的简化示意图焦耳热效应,是指将电能(电子的动能)转化为热能(导体原子的动能)。
对于一个稳定电流电路来说,其热通量可以由以下公式表示:公式6.1 稳定电路的热通量6.2工件的电阻特性如上所述,电阻焊工艺可以简化成一系列电阻串联的模型。
基于simufact.welding的中厚板多层多道焊数值模拟分析
![基于simufact.welding的中厚板多层多道焊数值模拟分析](https://img.taocdn.com/s3/m/0749a00f182e453610661ed9ad51f01dc28157ca.png)
• 95•针对中厚板的多层多道混合气体保护焊在焊接过程中焊接顺序对焊接质量的影响,特别是焊接应力导致的焊接形变问题。
本文采用simufact.welding 焊接仿真软件对焊接过程进行数值模拟分析,对V 型焊缝进行建模仿真分析,得出不同焊接顺序对焊接形变的影响。
实验表明:顺序焊接比交叉焊接的最终焊接形变量更小,反向顺序最终焊接形变量略小于正向焊接形变量。
随着工业焊接自动化的发展,自动化焊接技术在制造业中发挥着越来越大的作用,但是由于焊接过程是一个受热不均匀的热循环过程,焊接过程中冷金属与热金属形变的不一致性导致焊接母材产生焊接应力,进而影响了焊接构件的最终焊接质量。
焊接结构破坏事故许多是由焊接应力和焊接变形所引起的。
其中,焊接形变和焊接裂纹是最普遍的现象。
本文以中厚板三层六道V 型焊缝为研究对象,运用simufact.welding 焊接仿真软件研究不同焊接顺序对焊接形变的影响,为实际中厚板多层多道焊接提供了指导意义。
1 焊接模型利用S o l i d w o r k s 进行焊接三维模型构建,包括了两块200mm ×200mm ×10mm 的Q235低碳钢板、六条焊道且钢板一侧打磨有45°角的坡口。
确定好装配关系后将焊接三维模型保存为parasolid 格式文件,再将该模型导入Hypermesh 软件进行网格划分,获得其有限元模型,生成bdf 格式文件后将其导入simufact.welding 几何模型之中进行仿真实验。
此外,在simufact.welding 软件中绘制焊接构件支撑平台,并且对焊接构件施加非完全约束,分别位于钢板的四个顶点用于模拟实际焊接过程中的固定夹具,每个夹具施加以200N 的力,方向垂直于钢板向下。
整体焊接有限元模型如图1所示,焊道有限元模型如图2所示。
2 simufact.welding环境参数配置2.1 热源模型选择常见的焊接热源模型有高斯热源模型、椭圆模型和双椭圆模型。
simufact welding焊接热源高斯参数
![simufact welding焊接热源高斯参数](https://img.taocdn.com/s3/m/451c644dcd1755270722192e453610661fd95a7a.png)
simufact welding焊接热源高斯参数
Simufact Welding 是一款强大的焊接模拟软件,用于模拟和分析焊接过程中的热、应力和变形。
在 Simufact Welding 中,高斯热源是一种常用的热源模型,用于描述焊接过程中热源的分布。
高斯热源的参数主要包括:热源半径(Radius)、热源高度(Height)、热流密度(Heat Flux Density)和热源中心位置(Center Position)。
这些参数对于模拟焊接过程和预测焊接结果至关重要。
热源半径是高斯热源的横向范围,它决定了热源在工件上的分布范围。
在 Simufact Welding 中,可以通过调整热源半径来模拟不同焊接方法的热源分布,例如焊条电弧焊、激光焊等。
热源高度描述了热源沿工件表面的垂直分布。
在 Simufact Welding 中,可以通过调整热源高度来模拟不同焊接方法的熔深和熔宽。
热流密度表示单位时间内通过单位面积的热流量,它决定了焊接过程中的热量输入。
在Simufact Welding 中,可以通过调整热流密度来模拟不同焊接方法的热量输入。
热源中心位置决定了高斯热源在工件上的位置。
在 Simufact Welding 中,可以通过调整热源中心位置来模拟不同焊接方法的起始点和结束点。
综上所述,Simufact Welding 中的高斯热源参数对于模拟和分析焊接过程至关重要。
通过合理设置这些参数,可以更准确地预测焊接结果,优化焊接工艺,提高焊接质量。
Simufact.welding 5.0 中文教程 - 第六章
![Simufact.welding 5.0 中文教程 - 第六章](https://img.taocdn.com/s3/m/1d460a4a0975f46526d3e17f.png)
6 电阻点焊(Resistance spot welding )目录6.1电阻焊基本知识点 (4)6.2工件的电阻特性 (5)6.3电阻焊的仿真计算 (7)6.4焊枪运动与电极库 (8)6.5Simufact.welding中的电阻点焊仿真 (9)6.6后处理 (20)6.6.1电势 (20)6.6.2电流密度 (22)6.6.3热-电能量密度 (22)6.6.4接触导电率 (22)6.7几个注意点 (23)6.8局限性 (23)6.9参考文献 (24)关键词:电阻点焊、3D、网格自动细化教程级别:焊接仿真基础培训、Simufact.welding基础培训。
主要内容:本章节讲述的是基本电阻点焊的理论、应用背景以及如何simufact.welding中建立仿真过程,并且详细阐述了电阻点焊的后处理注意点。
图6.1 电阻点焊仿真案例6.1电阻焊基本知识点电阻焊工艺因其适用范围广,对材料的作用影响区很小,并且在生产过程中很容易进行质量管理等优点,如今已经广泛地被应用在汽车制造业中。
电阻焊有多种不同的焊接类型,不过他们都是基于焦耳作用产生热源的。
下表显示了不同类型的区别。
●电阻点焊(Resistance spot welding)●凸焊(Projection welding)●滚焊(Seam welding)●电阻电容焊(Capacitor discharge welding)图6.2 电阻焊的各种分类电阻焊是一种将两个导电组件在接触部位局部加热熔化,然后进行连接的焊接工艺。
熔化区域冷却凝固,会产生一个牢固的焊接接头,这是一个由外部作用力和温度扩散同时作用的过程。
电阻焊可以被看成是一系列电阻的串联模型,最大的电阻可以视为是电能转化为热能的主要因素。
如下图所示的串联电路:图6.3 电阻焊工艺的简化示意图焦耳热效应,是指将电能(电子的动能)转化为热能(导体原子的动能)。
对于一个稳定电流电路来说,其热通量可以由以下公式表示:公式6.1 稳定电路的热通量6.2工件的电阻特性如上所述,电阻焊工艺可以简化成一系列电阻串联的模型。
Simufact.welding实际案例分析
![Simufact.welding实际案例分析](https://img.taocdn.com/s3/m/b5f8c0de5022aaea998f0f4f.png)
3.1有限元模型的建立有限元模型:材料:16MnCr5,常温屈服应力约为400Mpa 左右。
焊接两个零部件相连处的三道焊缝 焊接工艺及参数:采用机械手进行焊接,焊缝之间移动时间约为8S ,整个焊接过程约为650S 。
焊接参数:焊接电压:30V ,焊接电流150A ,焊接速度400cm/min ;图8为建立的焊接仿真模型。
图8为建立的焊接仿真模型为了分析3条焊缝采用何种焊接顺序焊后变形最小,我们需要计算不同焊接顺序合焊接方向。
经过初步分析,一共三条焊缝,同时考虑焊接先后顺序和焊接方向时,一共有24种不同的工艺。
如图9所示,如图9(a)表示的焊接工艺,先焊“1”,然后顺时针依次焊接“2”和“3”,焊接方向按照顺时针为“+”,逆时针为“-”,我们就将这种工艺表示为:“123”,以此为标准。
如图9(b)所示的工艺,先焊“2”,方向为逆时针,因此表示为“-2“。
然后顺时针焊“1”,最后顺时针焊“3”。
就表示为:“-213”。
(a )123 (b )-213图9 焊接顺序和焊接方向示意图3.2 结果分析在Simfact.welding 中,焊接宏观分析主要有三方面,即焊接残余应力分析、焊后变形分析和焊接温度场分析。
在工程上,前两种分析更为重要,更具有实际意义。
经过计算24种不同焊接顺序和焊接方向后,得到了如下结果:其中有7种工艺由于变形量较大,导致计算不收敛。
由于-132与-123基本类似,得知-123计算不收敛后,于是没有对-132进行计算。
这里我们仅对计算完成的进行详细结果分析。
表1为计算结果211-23的详细列表:工艺序号计算结果工艺序号计算结果工艺序号计算结果工艺序号计算结果1 2 3 计算完成-1 2 3 不收敛-1 -2 3 计算完成-1 2 -3 不收敛1 32 计算完成-13 2 没有计算-1 -3 2 计算完成-1 3 -2 计算完成2 3 1 不收敛-2 3 1 计算完成-2 -3 1 计算完成-2 3 -1 计算完成2 13 计算完成-2 1 3 计算完成-2 -1 3 计算完成-2 1 -3 计算完成3 1 2 计算完成-3 1 2 不收敛-3 -1 2 不收敛-3 1 -2 计算完成3 2 1 计算完成-3 2 1 不收敛-3 -2 1 计算完成-3 2 -1 不收敛表1 计算结果汇总图10所示为以上7种不收敛情况的计算结果。
simufact软件培训(详细版)
![simufact软件培训(详细版)](https://img.taocdn.com/s3/m/a56a95f20242a8956bece456.png)
simufact软件培训主讲人:刘雨生时间:2013年8月22日1/29主要内容:●simufact软件简介●旋压模拟2/29一、Simufact简介Simufact是基于原Superform和Superforge开发出来的先进的材料加工及热处理工艺仿真平台,包括锻造、自由锻、辊锻、挤压、旋压、摆碾、径向锻造等材料加工工艺。
特点:1、提供有限元法和有限体积法两种求解方法。
2、可模拟正火、退火、淬火、回火、时效、感应加热、冷却相变等材料热处理工艺及微观组织转变模拟。
3、拥有材料数据库及加工设备数据库,设备数据库中包括锻锤、曲柄压力机、液压机、机械压力机和辊锻机。
3/294/29二、3653100旋压实例分析1 创建作业选择锻造类型模拟类别求解器模具个数5/292 导入几何模型在对象储备区右击,Modal→From file ,在弹出的对话框中选择要导入的模型,然后将导入的模型拖到进程树。
6/297/293 定义材料1)在对象储备区右击,Material →Library,在材料库中选取材料SPHD2)选择材料,将材料拖入坯料的下面,完成材料定义8/294 定义运动1)在对象储备区右击,Press →Manual9/292)定义旋转10/293)定义进给11/2912/294)定义芯模旋转轴:在芯模上右击设置旋转轴,逆时针选择三个点(上下模都要定义)5)将2)和3)中定义的运动形式拖入到模型树,将模具分别拖入到旋转和进给运动的下面13/2914/295 定义摩擦1)在对象储备区右击,Friction →Manual,摩擦类型选择剪切摩擦(第二个),设定摩擦系数。
2)给模具定义摩擦将1)中设定的摩擦拖入到模具下方15/2916/296定义温度1)在对象储备区右击,定义温度2)定义模具温度:默认为20℃17/293)定义坯料温度:默认为20℃18/294)将2)和3)中定义的温度分别拖入模具和坯料19/297 网格划分1)双击坯料下方的Mesh打开网格划分界面20/2921/292)选择合适的网格尺寸和细化等级划分网格3)网格重划分准则定义22/298 接触定义1)在SheetSolidFe3D上右击,在弹出的对话框中选择Insert--FE contact table插入接触表。
simufact.welding焊接模拟教程.pptx
![simufact.welding焊接模拟教程.pptx](https://img.taocdn.com/s3/m/f2820954964bcf84b8d57b19.png)
学海无 涯
4、在软件 catalog 空白区域点击鼠标右键,在弹出的对话框中选择 Geometries(几何)——Import(导入),然后在弹出的对话框中选择要导入的几 何模型,可以一次性导入所有模型,在后面弹出的单位选择对话框中选择你建模 时所用的单位,然后将 use for all geometries 前面勾选,意为所有几何模型 的单元都采用当前单位。注意:导入的必须是划分好的网格,因为,仿真需要质 量比较好的单元,目前 simufact.welding 软件只支持六面体单元的计算,所以 需要大家自己通过网格划分工具进行网格划分,预计下一个版本的软件中会带有 自动网格划分工具,但是如果你想将仿真做准确,最好不要用自动划分的单元, 还是麻烦一点手动建模吧。
19、切换到 Fillet generation 菜单生成焊缝生死单元,首先选择 Fillet geometry 后面下拉框的 generate fillet,待下面激活后,勾选 Alignment to data points(按照数据点生成生死单元,可以通过本参数,使生成的生死单元 与工件个节点匹配),设定各个参数如图所示,将鼠标停留在 a、b 区域右侧会 出现参数含义示意图。设定完成后,点击 preview,右侧区域会出现生死单元截 面示意图。同理定义其它三条焊缝的生死单元,参数设置均一致。点击 ok 确定。
学海无 涯 13、在 Trajectories 上点击鼠标右键,选择 copy,重复三次。
学海无 涯
14、鼠标左键双击 trajectory-2,在弹出的对话框中点击删除,删除所有坐标 点,点击 yes 确定。
15、点击节点图标,选择第二条焊缝节点,如图所示,定义第二条焊缝路径,点 击 ok 确定。同理定义其它两条焊缝路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Simufact.Welding 6.0 热源二次开发初步教程1 主要目的:开始随时间变化的焊接热源,如脉冲热源2 基本要求:1)脉冲热源频率:8Hz2)脉宽30ms3)其它略3 软件安装1)simufact.welding 6.02)VS20103)Intel Visual Fortran Composer XE 20133 基本步骤3.1 软件设置安装完之后需要配置path、Lib和include三个环境变量。
以下列出环境变量值作为参考(需要根据VS和fortran的安装位置不同进行相应的修改)。
---注:以下部分为参考网上内容,需要根据具体实际修改,如下面采用的是VS2012,XE2015,根据需要修改Path:C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\ToolsC:\Program Files (x86)\Intel\Composer XE 2015\redist\intel64\mklC:\Program Files (x86)\Intel\Composer XE 2015\bin\intel64C:\Program Files (x86)\Microsoft Visual Studio 12.0\Common7\IDEC:\Program Files (x86)\Windows Kits\8.1\Windows Performance Toolkit\C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin\amd64C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\binC:\Program Files (x86)\Microsoft SDKs\Windows\v7.0A\Bin\x64C:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\BinC:\Program Files (x86)\Intel\MPI\5.0.1.037\intel64\binC:\Program Files (x86)\Intel\Trace Analyzer and Collector\9.0.1.035\binLib:C:\Program Files (x86)\Intel\Composer XE 2015\compiler\lib\intel64C:\Program Files (x86)\Intel\Composer XE 2015\mkl\lib\intel64C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\lib\amd64C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\libC:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Lib\x64C:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\LibINCLUDE:C:\Program Files (x86)\Intel\Composer XE 2015\compiler\includeC:\Program Files (x86)\Intel\Composer XE 2015\mkl\includeC:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\includeC:\Program Files (x86)\Microsoft SDKs\Windows\v7.1A\Includea3.2 常规建立并设置simufact.welding工程建立如下常规的simufact.welding工程(常规建立过程省略)图1 常规工程主要坐标系为:沿X方向宽50mm,沿y方向板厚10mm,沿z方向长度50mm,焊接沿着z 负方向,焊接起始点坐标(50,10,-50)【单位mm】,建立对称的一半模型。
3.3 建立.f子函数subroutine uweldflux(f,temflu,mibody,welddim,time)c f(1) flux value (to be defined)c f(2) derivative of flux with respect to temperaturec (to be defined; optional, this might improve thec convergence behavior)cc temflu(1) estimated temperaturec temflu(2) previous volumetric fluxc temflu(3) temperature at beginning of incrementc temflu(4,5,6)integration point coordinatesc mibody(1) element numberc mibody(2) flux typec mibody(3) integration point numberc mibody(4) flux index - not used if table inputc mibody(5) not usedc mibody(6) =1 : heat transferc =2 : joulec =3 : bearingc =4 : electrostaticc =5 : magnetostaticc =6 : acousticc mibody(7) internal element numberc mibody(8) layer number for heat transfer shells elementsc and volume fluxc mibody(9) Not usedc mibody(10) boundary condition number if table inputc time timecdimension mibody(*),temflu(*),welddim(*)real*8 finteger mibodyreal*8 temflu,time,welddimc* * * * * *c OPEN(UNIT=10,FILE='HELLO.TXT',POSITION='APPEND')a=0.003b=0.003c=0.003v=0.01T0=0.125temp=0.03xis=1zq=ceiling(time/T0)if(abs(MOD(time-temp,T0)).LT.1e-6) thenxis=0c write(10,*) time, 111else if(abs(MOD(time,T0)).LT.1e-6) thenxis=1c write(10,*) time,222else if ((time.LT.(zq*T0)).and.(time.GT.((zq-1)*T0+temp))) then xis=0c write(10,*) time, 333elsexis=1c write(10,*) time, 444end ifd=0.05-v*timeq=7000*0.7pi=3.14x=temflu(4)y=temflu(5)z=temflu(6)mibody(6)=1y0=0.009x0=0.05heat=6*sqrt(3.0)*q/(a*b*c*pi)ex=exp(-3*(z-d)**2/c**2-3*(y-y0)**2/b**2-3*(x-x0)**2/a**2)f=heat*ex*xisc write(10,*) time, xis,fc close(10)returnend并存为文件名rey.f33.4 开始子函数运行1)点击常规项目的运行按钮图2 点击运行按钮点击后出现运行对话框,不用管它,直接关闭。
图3 运行对话框(直接关闭)2)此时找到你常规工程下的_Run_文件夹位置并打开该文件夹图4 该工程的_Run_文件夹会发现该文件夹下面有Process.dat文件和run.bat文件。
3)用记事本方式打开并修改Process.dat文件(此步不可少!)找到“WELD FLUX - Definitions of Motion and Flux Parameters for Weld Heat Source”这一行,并修改这一行下面的第5行第三列的值改为3,如下图中的6改为3图5 修改前图6 修改后修改完成后保存。
4)用记事本打开并修改run.bat文件图7 修改前run.bat中的call后面为你的simufact.welding6.0安装后run_sfMarc.bat的位置我的上述内容改为:call"E:\software\special\simufact6\simufact\welding\6.0\solver\simufact\sfMarc\sf_t ools\run_sfMarc.bat" -nthread_solver 2 -nthread_elem 2 -j F:\study\softwarestudy\software\simufact\marc_link\marc\Process\_Run_\Process.d at -u F:\study\softwarestudy\software\marc\udf_weldtool\rey.f -save yes需要说明的是:-j 后面增加刚才修改的Process.dat的位置-u 后面增加刚才rey.f文件的位置增加-save yes修改完成后并保存退出5)命令运行run.bat图8 点击红色框中的黑色小三角并选择“Open a shell”图9 点击红色框中的黑色小三角并选择“Open a shell”在出现的对话框中输入“run.bat”并回车运行一段时间后可以看到Results出现,即可得到想要的结果。
热源的脉冲效果如下:。