微分方程数值解第一章答案-文档资料

合集下载

偏微分方程数值习题解答

偏微分方程数值习题解答

偏微分⽅程数值习题解答李微分⽅程数值解习题解答 1-1 如果0)0('=?,则称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是⽅程组 b Ax =的解证明:由)(λ?的定义与内积的性线性性质,得),()),((21)()(0000x x b x x x x A x x J λλλλλ?+-++=+=),(2),()(200x Ax x b Ax x J λλ+-+=),(),()(0'x Ax x b Ax λλ?+-=必要性:由0)0('=?,得,对于任何n R x ∈,有0),(0=-x b Ax ,由线性代数结论知,b Ax b Ax ==-00,0充分性: 由b Ax =0,对于任何n R x ∈,0|),(),()0(00'=+-==λλ?x Ax x b Ax即0x 是)(x J 的驻点. §1-2补充: 证明)(x f 的不同的⼴义导数⼏乎处处相等.证明:设)(2I L f ∈,)(,221I L g g ∈为)(x f 的⼴义导数,由⼴义导数的定义可知,对于任意)()(0I C x ∞∈?,有-=ba ba dx x x f dx x x g )()()()('1?? ??-=ba ba dx x x f dx x x g )()()()('2?? 两式相减,得到)(0)()(021I C x g g ba ∞∈?=- 由变分基本引理,21g g -⼏乎处处为零,即21,g g ⼏乎处处相等.补充:证明),(v u a 的连续性条件(1.2.21) 证明: 设'|)(|,|)(|M x q M x p ≤≤,由Schwarz 不等式||||.||||||||.|||||)(||),(|'''''v u M v u M dx quv v pu v u a ba +≤+=?11*||||.||||2v u M ≤,其中},max{'*M M M =习题:1 设)('x f 为)(x f 的⼀阶⼴义导数,试⽤类似的⽅法定义)(x f 的k 阶导数,...2,1(=k ) 解:⼀阶⼴义导数的定义,主要是从经典导数经过分部积分得到的关系式来定义,因此可得到如下定义:对于)()(2I L x f ∈,若有)()(2I L x g ∈,使得对于任意的)(0I C ∞∈?,有 ?-=bak kba dx x x f dx x x g )()()1()()()(??则称)(x f 有k 阶⼴义导数,)(x g 称为)(x f 的k 阶⼴义导数,并记kk dxfd x g =)(注:⾼阶⼴义导数不是通过递推定义的,可能有⾼阶导数⽽没有低阶导数.2.利⽤)(2I L 的完全性证明))()((1I H I H m 是Hilbert 空间.证明:只证)(1I H 的完全性.设}{n f 为)(1I H 的基本列,即0||||||||||||0''01→-+-=-m n m n m n f f f f f f因此知}{},{'n n f f 都是)(2I L 中的基本列(按)(2I L 的范数).由)(2I L 的完全性,存在)(,2I L g f ∈,使0||||,0||||0'0→-→-g f f f n n ,以下证明0||||1→-f f n (关键证明dxdfg =)由Schwarz 不等式,有00||||.|||||)())()((|??f f x x f x f n ba n -≤-?00'''|||||||||)())()((|??f f dx x x g x f n ba n -≤-?对于任意的)()(0I C x ∞∈?,成⽴=∞a ba n n dx x x f dx x x f )()()()(lim ??=∞→ba b a nn dx x x g dx x x f )()()()(lim '??由?-=ba n ba ndx x x f dx x x f )()()()(''??取极限得到dx x x f dx x x g ba ba ??-=)()()()('??即')(f x g =,即)(1I H f ∈,且0||||||||||||0''01→-+-=-f f f f f f n n n故)(1I H 中的基本列是收敛的,)(1I H 是完全的. 3.证明⾮齐次两点边值问题证明:边界条件齐次化令)()(0a x x u -+=βα,则0u u w -=满⾜齐次边界条件.w 满⾜的⽅程为00Lu f Lu Lu Lw -=-=,即w 对应的边值问题为==-=0)(,0)('b w a w Lu f Lw (P) 由定理知,问题P 与下列变分问题等价求)(min )(,**12*1w J w J H C w Ew E ∈=∈其中),(),(21)(0*w Lu f w w a w J --=.⽽Cu u a u Lu u J u u Lu f u u u u a w J +-+=-----=),(),()(~),(),(21)(000000*⽽200)()(),(),(C b u b p u u a u Lu +-=-β从⽽**)()()(~)(C b u b p u Jw J +-=β则关于w 的变分问题P 等价于:求α=∈)(,12*a u H C u使得)(min )()(*1u J u J a u H u α=∈=其中)()(),(),(21)(b u b p u f u u a u J β--=4就边值问题(1.2.28)建⽴虚功原理解:令)(0a x u -+=βα,0u u w -=,则w 满⾜)(,0)('00==-=-=b w a w Lu f Lu Lu Lw等价于:1E H v ∈?0),(),(0=--v Lu f v Lw应⽤分部积分,+-=-=-b a b a b a dx dx dv dx dw p v dx dw p vdx dx du p dx d v dx dw p dx d |)()),((还原u ,)()(),(),(),(),(),(),(),(),(000b v b p v f v u a v u a v Lu v f v u a v Lu f v w a β--=-+-=--于是,边值问题等价于:求α=∈)(,1a u H u ,使得1E H v ∈?,成⽴0)()(),(),(=--b v b p v f v u a β注:形式上与⽤v 去乘⽅程两端,应⽤分部积分得到的相同. 5试建⽴与边值问题等价的变分问题.解:取解函数空间为)(20I H ,对于任意)(20I H v ∈⽤v 乘⽅程两端,应⽤分部积分,得到0),(),(44=-+=-v f u dx ud v f Lu⽽??-==b a b a b a dx dxdvdx u d v dx u d vdx dx u d v dx u d .|),(33334444 dx dxv d dx u d dx dx vd dx u d dx dv dx u d b a b a b a ??=+-=2222222222| 上式为),(][2222v f dx uv dx vd dx u d b a =+?定义dx uv dxvd dx u d v u a ba ][),(2222+=?,为双线性形式.变分问题为:求)(20I H u ∈,)(20I H v ∈?),(),(v f v u a =1-41.⽤Galerkin Ritz -⽅法求边值问题==<<=+-1)1(,0)0(102"u u x x u u 的第n 次近似)(x u n ,基函数n i x i x i ,...,2,1),sin()(==π?解:(1)边界条件齐次化:令x u =0,0u u w -=,则w 满⾜齐次边界条件,且)1(,0)0(20==-=-=w w x x Lu Lu Lw第n 次近似n w 取为∑==n i i i n c w 1,其中),...2,1(n i c i =满⾜的Galerkin Ritz -⽅程为n j x x c a j ni i j i ,...,2,1),(),(21=-=∑= ⼜xd jx ix ij dx x j x i dxx j x i ij dx a j i jij i ?-=+=+=ππππππππ)cos()cos(2)sin()sin()cos()cos()(),(1010210''-+πππjx ix sin sin 21由三⾓函数的正交性,得到≠=+=j i j i i a j i ,0,212),(22π??⽽]1)1[()(2)sin()1(),(3102--=-=-?jj j dx x j x x x x ππ? 于是得到+-=-=为偶数为奇数j j j j a x x c j j j j 0 )1()(8),(),(2232ππ最后得到∑+=-+---+=]21[1233])12(1[)12(])12sin[(8)(n k n k k x k x x u ππ 2.在题1中,⽤0)1(=u 代替右边值条件,)(x u n 是⽤Galerkin Ritz -⽅法求解相应问题的第n 次近似,证明)(x u n 按)1,0(2L 收敛到)(x u ,并估计误差.证明:n u 对应的级数绝对收敛,由}{sin x i π的完全性知极限就是解)(x u ,其误差估计为338nR n π≤3.就边值问题(1.2.28)和基函数),...,2,1()()(n i a x x i i =-=?,写出Galerkin Ritz -⽅程解:边界条件齐次化,取)(0a x u -+=βα,0u u w -=, w 对应的微分⽅程为)(,0)('00==-=-=b w a w Lu f Lu Lu Lw对应的变分⽅程为0),(),(0=--v Lu f v w a)]([)(000a x q dx dpqu dx du p dx d Lu -++-=+-=βαβ+-=-ba b a dx x pv b v b p v dxdp )()()(' 变分⽅程为dx v qu x pv b v b p v f v w a ba ?--+=])([)()(),(),(0'ββ取n i a x x i i ,...,2,1,)()(=-=?,则Galerkin -Ritz ⽅程为∑-++--+=-=ba i ba i i nj j jidxa x x q dx a x i x pb b p fc a )]()[()()()()(),(),(11βαβ?β??+=ba j i j i j i dx q p a ][),(''取1,0,1===f q p ,具体计算1=n , )(1),(11a b dx a ba -==221)(21)()()(21a b a b a b a b d -=---+-=ββ, )(211a b c -=,即解)(2101a x u u -+= 2=n :22111)()(2),(),(),(a b dx a x a a b a ba -=-=-=3222)(34)(4),(a b dx a x a ba -=-=3223222)(31)()()(31)(2)()(a b a b a b a b dxa x ab dx a x d ba b a -=---+-=---+-=??ββββ得到⽅程组为 --=----3221322)(31)(21c )(34)()(a b a b c a b a b a b a b特别取1,0==b a ,有= 31213411121c c求解得到1,21,6131122=-=-=c c c其解为202)(21)(a x a x u u ---+=C h2 椭圆与抛物型⽅程有限元法§1.1 ⽤线性元求下列边值问题的数值解: 10,2sin242"<<=+-x x y y ππ0)1(,0)0('==y y此题改为4/1,0)1()0(,1"====+-h y y y y解: 取2/1=h ,)2,1,0(==j jh x j ,21,y y 为未知数. Galerkin 形式的变分⽅程为),(),(v f v Lu =,其中+-=10210"4),(uvdx vdx u v Lu π,?=1)(2sin 2),(dx x xv v f π⼜dx v u dx v u v u vdx u =+-=-10''10''10'10"|因此dx uv v u v u a )4(),(12''?+=π在单元],[1i i i x x I -=中,应⽤仿射变换(局部坐标)hx x i 1--=ξ节点基函数为)3,2,1(,0,,,1)(111=≤≤-=≤≤-=-=--+i other x x x h x x x x x h x x x i i i i i i i ξξξξ?-+++=++=1022210222222'111)1(41]41[]4[),(1021ξξπξξπ?πd h d hh dxa x x x x取2/1=h ,则计算得124),(211π??+=a122)1(41[),(210221πξξξπ??+-=-+-=?d h h a-+++=10101)1)(2121(2sin )0(2sin [2),(ξξξπξξξπ?d d h h f ??-++=1010)1(4)1(sin 2sin ξξξπξξξπd d hξξξπ?d h f ?+=102)2121(2sin 2),(代数⽅程组为= ),(),(),(),(),(),(212122212111f f y y a a a a 代如求值.取4/1=h ,未知节点值为4321,,,u u u u ,⽅程为4,3,2,1),(),(41==∑=j f ua j i iji应⽤局部坐标ξ表⽰,-+++=10221022])1(41[)41(),(ξξπξξπ??d hh d h h a j j248]88[21022πξξπ+=+=?dξξξπ??d hh a j j ])1(41[),(1021?-+-=++964)1(164212πξξξπ+-=-+-=?d 964),(21π??+-=-j j a系数矩阵为}964,248,964{222πππ+-++-=diag A取1=f ,41)1(),(1010=-+=??ξξξξ?d h d h f j-+++=+10110)1)]((2sin[2)](2sin[2),(ξξξπξξξπd h x h d h x h f j j j -++++=1010)1)](4 41(2sin[21)]44(2sin[42ξξξπξξξπd j d j++?=+++++-+=100110|)]8)1([cos(821]8)1(sin[21]8)1(sin[]8)(sin[21ξππξξπξξξπξπj d j d j j+2.就⾮齐次第三边值条件22'11')()(,)()(βαβα=+=+b u b u a u a u导出有限元⽅程.解:设⽅程为f qu pu Lu =+-='')( 则由),()]()[()()]()[()(),(|),)((''1122'''''v pu a u a v a p b u b v b p v pu v pu v pu b a----=-=αβαβ变分形式为:),(1b a H v ∈?)()()()(),()()()()()()(),(),(1212''a v a p b v b p v f a v a u a p b v b u b p v qu v pu ββαα-+=-++)(),(0b u u a u u N ==记)()()()(),()()()()()()()(),(),(),(1212''a v a p b v b p v f v F a v a u a p b v b u b p v qu v pu v u A ββαα-+=-++=则上述变分形式可表⽰为)(),(v F v u A =设节点基函数为),...,2,1,0)((N j x j =? 则有限元⽅程为),...,1,0()(),(0N j F u A j Ni i j i ==∑=具体计算使⽤标准坐标ξ.。

常微分方程第二版答案第一章

常微分方程第二版答案第一章

常微分方程第二版答案第一章【篇一:常微分方程第一章】程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,dy2dyd2ydy()?t?y?0. ?b?cy?f(t)例如 , dtdtdtdt2(2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏?2t?t?2t?2t?2t?4微分方程. 例如 , . ???02222?t?x?x?y?z本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程.3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数.例如,d2ydy?b?cy?f(t) 是二阶常微分方程; 2dtdt?2t?t?2t?2t?2t?4与是二阶偏微分方程. ???02222?t?x?x?y?z4. n阶常微分方程的一般形式:dydnyf(t,y,,...,n)?0,dtdtdydnydydnydnyn)是t,y,,...,n的已知函数,而且一定含有n的这里f(t,y,dtdtdtdtdt 项;y是未知函数,t是自变量. 5. 线性与非线性:dydnydydny,...,n)?0的左端是y及,...,n的一次有理式,(1)如果方程f(t,y,dtdtdtdtdydny,...,n)?0为n阶线性微分方程. 则称f(t,y,dtdt(2)一般n阶线性微分方程具有形式:dnydn?1ydy?a(t)?...?a(t)?an(t)y?f(t)1n?1nn?1dtdtdt这里a1(t),…, an(t),f(t)是t的已知函数.(3)不是线性方程的方程称为非线性方程. (4)举例:d2ydy?cy?f(t)是二阶线性微分方程;方程2?bdtdtd2?g方程2?sin??0是二阶非线性微分方程;ldt方程(dy2dy)?t?y?0是一阶非线性微分方程. dtdt6. 解和隐式解:dydny,...,n)?0后,能使它变为恒等式,则如果将函数y??(t)代入方程f(t,y,dtdt)?0决定的隐函数y??(t)是称函数y??(t)为方程的解. 如果关系式?(t,y方程的解,则称?(t,y)?0为方程的隐式解. 7. 通解与特解:把含有n个独立的任意常数c1,c2,...,cn的解 y??(t,c1,c2,...,cn)称为n阶方程dydnyf(t,y,,...,n)?0的通解. 其中解对常数的独立性是指,对?及其 n?1阶导数dtdtd?dn?1?,...,n?1关于n个常数 c1,c2,...,cn的雅可比行列式不为0, 即 dtdt ???c1????c1???(n?1)?c1???c2????c2???(n?1)?c2??????cn????cn??0.??(n?1)??cn为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.dydny,...,n)?0的初始条件是常见的定解条件是初始条件, n阶微分方程f(t,y,dtdtdydn?1y(1)(n?1)?y0,...,n?1?y0指如下的n个条件:t?t0,y?y0,,这里dtdt(1)(n?1)是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓t0,y0,y0,...,y0定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程形如dy?f(t)?(y)的方程为变量分离方程,其中f(t),?(y)分别为t,y的连续函数.dt方程解法如下:若?(y)?0,则dy?f(t)dt?(y)dy??(y)??f(t)dt?c上式确定方程的隐式通解. 如果存在y0,使得??y0??0,则y?y0也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程dyy?g()的方程为齐次方程,g?u?为u的连续函数. dttydydu?t?u,从而原方程变为解法如下:做变量替换u?,即y?ut,有tdtdtdudug(u)?ut?u?g(u),整理有?,此为变量分离方程,可求解. dtdtt形如 (2) 形如dya1t?b1y?c1的方程, 其中a1??a2,?b1,?b2,?c1,?c2为常数. ?dta2t?b2y?c2?a1b1c1???k的情形. a2b2c2此时方程化为dy?k,可解得y?kt?c. dt?a1a2b1b2?0,即a1b1??k的情形: a2b2ku?c1dudy?a2?b2?a2?b2dtdtu?c2令 u?a2t?b2y, 则有此为变量分离方程. ?a1b1a2b2?0的情形y. t对c1?c2?0的情况, 直接做变量替换u?当c1,c2不全为零, 求 ? ?a1t?b1y?c1?0的解为?a2t?b2y?c2?0?t??. ??y???t?t??令 ? , 则方程组化为y?y???原方程化为3.一阶线性微分方程?a1t?by1?0. ?at?by?0?22dya1t?byy??g()的齐次方程可求解. dta2t?byt(1) 一般形式:a(t)dydy?p(t)y?qt(的形式). dtp(t)dtdy,?c为任意常数. ?p(t)y,通解为ce?(2) 一阶齐次线性微分方程:dtdy?p(t)y?q(t),q(t)?0. (3) 一阶非齐次线性微分方程:dt性质1 必有零解 y?0;性质2 通解等于任意常数c与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 p(t) 为常数, 此时方程为(4) 齐次线性微分方程的性质dy?ay?q(t), a为常数. dt对应齐次方程的通解为ce, 只需再求一个特解, 这时根据q(t)为特定的函数,bt可猜测不同的形式特解. 事实上, 当q(t)?ae, a,b为给定常数, 且b?a 时at可设待定特解为ce, 而当b?a时, 可设特解形式为cte, 后代入方程可确定待定常数c. 当q(t)为cosat,??sinat或它们的线性组合时, 其中a为给定常数. 这时可设待定特解为bcosat?csinat代入方程后确定b,?c的值. 当btbtq(t)具有多项式形式a0tn?a1tn?1???an?1t?an, 其中a0,?a1,??an 为给定常数且a0?0, 这时可设待定特解为b0t?bt1nn?1???bn?1t?bn代入方程可求得bi,?i?0,1?,??,n的值. 对于q(t)有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令y?c(t)e?p(t)dt,代入方程,求出c(t)后可求得通解为【篇二:微分方程数值解法(戴嘉尊_第二版)习题讲解】答杨韧吴世良(编)成都信息工程学院数学学院二o一o年四月编写目录第一章常微分方程数值解 ......................................................................3 第二章抛物型方程的差分方法 ..............................................................8 第三章椭圆型方程的差分方法 ............................................................16 第四章双曲型方程的差分方法 (25)第一章常微分方程数值解1.解: 由欧拉公式得yn1 yn hf (xn, yn) yn h( 由梯形公式得 yn1 ynyn2 11 2 1x n2yn 2 ) yn 0.2yn20.1 1xn2h[ f (xn, yn)f (xn1, yn1)]1 2 1x n2 1h [(22yn 2 )(1x 11 2 1 2 h( 1xn 2 n12y 2 n1 )]1 1x 2n1yn hynhy 2 n1) )12 1 x n12hy n1 yn1 yn hyn2121 2 h( 1xn1 1x 2n1yn1欧拉公式计算结果xn114h(yn hyn2 2h12 1 2 h( 1xn))yn y(xn ) y(xn)yn0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1000 0.1970 0.2854 0.3609 0.4210 0.4656 0.4957 0.5137 0.5219 0.52270 0.0990 0.1923 0.2752 0.3448 0.4000 0.4412 0.4698 0.4878 0.4972 0.50000 0.0010 0.0047 0.0102 0.0160 0.0210 0.0244 0.0259 0.0259 0.0247 0.0227梯形公式计算结果xnyny(xn )y(xn)yn0 0 0 0【篇三:常微分方程习题】下列两个微分方程的公共解。

《数值分析》第一章答案

《数值分析》第一章答案

《数值分析》第一章答案习题11.以下各表示的近似数,问具有几位有效数字?并将它舍入成有效数。

(1)*1x =451.023, 1x =451.01;(2)*2x =-0.045 113, 2x =-0.045 18;(3)*3x =23.421 3, 3x =23.460 4;(4)*4x =31, 4x =0.333 3;(5)*5x =23.496, 5x =23.494;(6)*6x =96×510, 6x =96.1×510;(7)*7x =0.000 96, 7x =0.96×310-;(8)*8x =-8 700, 8x =-8 700.3。

解:(1) =*1x 451.023 =1x 451.01=-1*1x x 0.01311021-?≤,1x 具有4位有效数字。

→1x 451.0(2) -=*2x 0.045 113 -=2x 0.045 18=-<?-2*241021x x 0.045 18045113.0-=0.000 06731021-?<2x 具有2位有效数字,045.02-→x(3)=*3x 23.4213 =3x 23.4604=-3*3x x =-4604.234213.23=-4213.234604.231 10210391.0-?≤3x 具有3位有效数字,4.233→x (不能写为23.5) (4) =*4x 31 ,=4x 0.3333=-4*4x x 41021000033.0-?<,4x 具有4位有效数字,=4x 0.3333(5) =*5x 23.496,=5x 23.494=-5*5x x =-494.23496.2321021002.0-?<5x具有4位有效数字,→5x 23.50 (不能写为23.49)(6) =*6x 51096?71096.0?==6x 5101.96?710961.0?==-6*6x x 710001.0-?72101021--??≤6x 具有2位有效数字,57610961096.0?=?=x (7) =*7x 0.00096 371096.0-?=x3*71096.0-?=x =-7*7x x 0 7x 精确(8) 8700*8-=x 8x 3.8700-=8*8x x -010213.0?≤=8x 具有4位有效数字,8x 8700-=精确2.以下各数均为有效数字: (1) 0.1062 + 0.947; (3)2.747?6.83;(2)23.46―12.753; (4)1.473 / 0.064 。

数值分析第一章书后答案(7)

数值分析第一章书后答案(7)

第七章非线性方程求根一、重点内容提要 (一)问题简介 求单变量函数方程()0f x = (7.1)的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为函数()f x 的零点.若()f x 可以分解为()(*)()mf x x xg x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有(1)()(*)'(*)...(*)0,(*)m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法1.二分法设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在(a,b)内仅有一个根.令00,a a b b ==,计算0001()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若00()()0f a f x <,则令10,10a a b x ==,得新的有根区间11[,]a b .0011[,][,]a b a b ⊂,11001()2b a b a -=-.再令1111()2x a b =+计算1()f x ,同上法得出新的有根区间22[,]a b ,如此反复进行,可得一有根区间套1100...[,][,]...[,]n n n n a b a b a b --⊂⊂⊂⊂且110011*,0,1,2,...,()...()22n n n n n n a x b n b a b a b a --<<=-=-==-.故1l i m ()0,l i m l i m ()*2n n n n n n n nb a x a b x →∞→∞→∞-==+=因此,1()2n n n x a b =+可作为()0f x =的近似根,且有误差估计11|*|()2n n x x b a +-≤- (7.2)2.迭代法将方程式(7.1)等价变形为 ()x x ϕ= (7.3)若要求*x 满足(*)0f x =则*(*)x x ϕ=;反之亦然.称*x 为函数()x ϕ的一个不动点.求方程(7.1)的根等价于求()x ϕ的不动点由式(7.3)产生的不动点迭代关系式(也称简单迭代法)为1(),0,1,2...k k x x k ϕ+== (7.4)函数()x ϕ称为迭代函数.如果对任意1(),0,1,2...k k x x k ϕ+==,由式(7.4)产生的序列{}k x 有极限l i m *k k x x →∞=则称不动点迭代法(7.4)收敛.定理7.1(不动点存在性定理)设()[,]x C a b ϕ∈满足以下两个条件: 1.对任意[,]x a b ∈有();a x b ϕ≤≤2.存在正常数1L <,使对任意,[,]x y a b ∈,都有|()()|||x y x y ϕϕ-≤- (7.5) 则()x ϕ在[,]a b 上存在惟一的不动点*x .定理7.2(不动点迭代法的全局收敛性定理)设()[,]x C a b ϕ∈满足定理7.1中的两个条件,则对任意0[,]x a b ∈,由(7.4)式得到的迭代序列{}k x 收敛.到()x ϕ的不动点,并有误差估计式1|*|||1k k k L x x x x L --≤-- (7.6) 和 1|*|||1kk k k L x x x x L --≤-- (7.7)定理7.3(不动点迭代法的局部收敛性定理)设*x 为()x ϕ的不动点,'()x ϕ在*x 的某个邻域连续,且|'()|1x ϕ<,则迭代法(7.4)局部收敛.收敛阶的概念 设迭代过程(7.4)收敛于方程()x x ϕ=的根*x ,如果迭代误差*k k e x x =-当k →∞时成产下列渐近关系式1(0)k k e C C e +→≠常数 (7.8)则称该迭代过程是p 阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.定理7.4(收敛阶定理)对于迭代过程(7.4),如果()()K x ϕ在所求根*x 的邻近连续,并且(1)()'(*)''(*)...(*)0(*)0p p x x x x ϕϕϕϕ-====≠ (7.9)则该迭代过程在点*x 的邻近是收敛的,并有()11lim(*)!p k p k ke x e p ϕ+→∞= (7.10)斯蒂芬森(Steffensen)迭代法 当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为21(),()()20,1,2,...k k k k k k k k k k ky x z y y x x x z y x k ϕϕ+==-=--+= (7.11)此法也可写成如下不动点迭代式12(),0,1,2,...(())()(())2()k k x x k x x x x x x x ψϕψϕϕϕ+==-=--+ (7.12)定理7.5(斯蒂芬森迭代收敛定理) 设*x 为式(7.12)中()x ψ的不动点,则*x 是()x ϕ的不动点;设''()x ϕ存在,'(*)1x ϕ≠,则*x 是()x ψ的不动点,则斯蒂芬森迭代法(7.11)是2阶收敛的.3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为其迭代函数为1(),0,1,2,...'()k k k k f x x x k f x +=-= (7.13)()()'()f x x x f x ϕ=-牛顿迭代法的收敛速度 当(*)0,'(*)0,''(*)0f x f x f x =≠≠时,容易证明,'(*)0f x ≠,''(*)''(*)0'(*)f x x f x ϕ=≠,由定理7.4知,牛顿迭代法是平方收敛的,且12''(*)l i m 2'(*)k k k e f x e f x +→∞= (7.14) 重根情形的牛顿迭代法 当*x 是()0f x =的m 重根(2)m ≥时,迭代函数()()'()f x x x f x ϕ=-在*x 处的导数1'(*)10x m ϕ=-≠,且|'(*)|1x ϕ<.所以牛顿迭代法求重根只是线性收敛.若*x 的重数m 知道,则迭代式1(),0,1,2,...'()k k k k f x x x mk f x +==-= (7.15)求重根二阶收敛.当m 未知时,*x 一定是函数()()'()f x x f x μ=的单重零点,此时迭代式1()()'()'()['()]()''()0,1,2,...k k kk k k k k k k x f x f x x x x x f x f x f xk μμ+=-=--= (7.16)也是二阶收敛的.简化牛顿法 如下迭代法10(),0,1,2,...'()k k k f x x x k f x +=-=称为简化牛顿法或平行弦法.牛顿下山法 为防止迭代不收敛,可采用牛顿下山法.具体方法见教材. 4.弦截法将牛顿迭代法(7.13)中的'()k f x 用()f x 在1k x -,k x处的一阶差商来代替,即可得弦截法111()()()()k k k k k k k f x x x x x f x f x ++-=--- (7.17)定理7.6假设()f x 在其零点*x 的邻域:|*|x x δ∆-≤内具有二阶连续导数,且对任意x ∈∆有'()0f x ≠,又初值01,x x ∈∆,,则当邻域∆充分小时,弦截法(7.17)将按阶151.6182p +=≈收敛到*x .这里p 是方程210λλ--=的正根.5.抛物线法弦截法可以理解为用过11(,()),(())k k k k x f x x f x ---两点的直线方程的根近似替()0f x =的根.若已知()0f x =的三个近似根kx ,1k x -,2k x -用过112(,()),(,()),(,())k kk kkk x fxx f x x f x ----的抛物线方程的根近似代替()0f x =的根,所得的迭代法称为抛物线法,也称密勒(Muller)法. 当()f x 在*x 的邻近有三阶连续导数,'(*)0f x ≠,则抛物线法局部收敛,且收敛阶为1.839 1.84p =≈.二、知识结构图10[1,2]1x x --=≤≤--∈3-3-6k k 32三、常考题型及典型题精解例7-1 证明方程x 在上有一个实根x*,并用二分法求这个根,要求|x -x*|10.若要求|x -x*|10,需二分区间[1,2]多少次?解 设f(x)=x ,则f(1)=-1<0,f(2)=5>0,故方程f(x)=0在[1,2]上有根x*.又因f'(x)=3x -1,所以当x [1,2]时,f'(x)>0,即f (x)=0在[1,2]上有惟一实根x*.用二分法计算结果如表7-1所示.表7-1k ka kb kx ()k f x 的符号0 1 2 3 4 5 6 7 81 1 1.25 1.251.3125 1.3125 1.3125 1.3204 1.32432 1.51.5 1.375 1.375 1.13438 1.3282 1.3282 1.32821.5 1.251.375 1.3125 1.3438 1.3282 1.3204 1.3243 1.3263+ - + - + + - - +9 1.3243 1.3263 1.3253 +610x e -≤≤⨯≤≤≤≤≥∈-3-39910-6k k k+101此时x =1.3253满足|x -x*|0.9771010,可以作为x*的近2似值.1若要求|x -x*|,只需|x -x*|10即可,解得k+119.932,2即只需把[1,2]二分20次就能满足精度要求.例7-2 已知函数方程(x-2)=1,(1)确定有根区间[a,b];(2)构造不动点迭代公式使之对任意初始近似x [a,b],31|10.k x ---<k 迭代方法均收敛;(3)用所构造的公式计算根的近似值,要求|x1lim lim x x x x x e e e e →+∞→-∞∞∞∞∈解 (1)令f(x)=(x-2)-1,由于f(2)=-1<0,f(3)=-1>0,因此区间[2,3]是方程f(x)=0的一个有根区间.又因f'(x)=(x-1),f(x)=+,f(x)=-1,f'(1)=--1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-,+)内有且仅有一根x*,即x*[2,3].2'k k x x x x x x e e e e e e e ϕϕϕ-----∈∈≤≤≤∀∈k+100k+1(2)将(x-2)=1等价变形为x=2+,x [2,3].则(x)=2+.由于当x [2,3]时2(x)3,|(x)|=|-|<1故不动点迭代法x =2+,k=0,1,2,...,对x [2,3]均收敛.(3)取x =2.5,利用x =2+进行迭代计算,结果如表7-2所示.表7-2k k x1||k k x x --0 1 2 3 42.5 2.082084999 2.124670004 2.119472387 2.1200949760.417915001 0.042585005 0.0005197617 0.0006225894 2.120094976.73cos 3120cos c k x x x x ϕ≈=--+=∈≤4k+10-30k+1k+1k 此时x 已满足误差要求,即x*例 考虑求解方程2的迭代公式2x =4+,k=0,1,2,...3(1)试证:对任意初始近似x R,该方法收敛;(2)取x =4,求根的近似值x ,要求|x -x |10;(3)所给方法的收敛阶是多少?2解 (1)由迭代公式知,迭代函数(x)=4+3{}os ,(,).|'sin |1(,)x x x ϕϕϕ∈-∞+∞≤<-∞+∞∀∈0k 022由于(x)的值域介于(4-)与(4+)之间,且3322(x)|=|-33故根据定理7.1,7.2知,(x)在内存在惟一的不动点x*,且对x R,迭代公式得到的序列x 收敛于x*.(2) 取x =4,迭代计算结果如表7-3所示.表7-3k k x1||k k x x --0 1 2 3 4 543.564237587 3.391995168 3.354124827 3.348333384 3.3475299030.435762413 0.172242419 0.037870341 0.005791443 0.000803481此时5x 已满足误差要求,即5* 3.347529903x x ≈=(3)由于'(*)0.1363231290x ϕ≈≠,故根据定理7 .4知方法是线性收敛的,并且有1lim'(*)k k k e x e ϕ+→∞=。

常微分方程第二版答案第一章

常微分方程第二版答案第一章

常微分方程第二版答案第一章【篇一:常微分方程第一章】程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,dy2dyd2ydy()?t?y?0. ?b?cy?f(t)例如 , dtdtdtdt2(2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏?2t?t?2t?2t?2t?4微分方程. 例如 , . ???02222?t?x?x?y?z本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程.3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数.例如,d2ydy?b?cy?f(t) 是二阶常微分方程; 2dtdt?2t?t?2t?2t?2t?4与是二阶偏微分方程. ???02222?t?x?x?y?z4. n阶常微分方程的一般形式:dydnyf(t,y,,...,n)?0,dtdtdydnydydnydnyn)是t,y,,...,n的已知函数,而且一定含有n的这里f(t,y,dtdtdtdtdt 项;y是未知函数,t是自变量. 5. 线性与非线性:dydnydydny,...,n)?0的左端是y及,...,n的一次有理式,(1)如果方程f(t,y,dtdtdtdtdydny,...,n)?0为n阶线性微分方程. 则称f(t,y,dtdt(2)一般n阶线性微分方程具有形式:dnydn?1ydy?a(t)?...?a(t)?an(t)y?f(t)1n?1nn?1dtdtdt这里a1(t),…, an(t),f(t)是t的已知函数.(3)不是线性方程的方程称为非线性方程. (4)举例:d2ydy?cy?f(t)是二阶线性微分方程;方程2?bdtdtd2?g方程2?sin??0是二阶非线性微分方程;ldt方程(dy2dy)?t?y?0是一阶非线性微分方程. dtdt6. 解和隐式解:dydny,...,n)?0后,能使它变为恒等式,则如果将函数y??(t)代入方程f(t,y,dtdt)?0决定的隐函数y??(t)是称函数y??(t)为方程的解. 如果关系式?(t,y方程的解,则称?(t,y)?0为方程的隐式解. 7. 通解与特解:把含有n个独立的任意常数c1,c2,...,cn的解 y??(t,c1,c2,...,cn)称为n阶方程dydnyf(t,y,,...,n)?0的通解. 其中解对常数的独立性是指,对?及其 n?1阶导数dtdtd?dn?1?,...,n?1关于n个常数 c1,c2,...,cn的雅可比行列式不为0, 即 dtdt ???c1????c1???(n?1)?c1???c2????c2???(n?1)?c2??????cn????cn??0.??(n?1)??cn为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.dydny,...,n)?0的初始条件是常见的定解条件是初始条件, n阶微分方程f(t,y,dtdtdydn?1y(1)(n?1)?y0,...,n?1?y0指如下的n个条件:t?t0,y?y0,,这里dtdt(1)(n?1)是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓t0,y0,y0,...,y0定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程形如dy?f(t)?(y)的方程为变量分离方程,其中f(t),?(y)分别为t,y的连续函数.dt方程解法如下:若?(y)?0,则dy?f(t)dt?(y)dy??(y)??f(t)dt?c上式确定方程的隐式通解. 如果存在y0,使得??y0??0,则y?y0也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程dyy?g()的方程为齐次方程,g?u?为u的连续函数. dttydydu?t?u,从而原方程变为解法如下:做变量替换u?,即y?ut,有tdtdtdudug(u)?ut?u?g(u),整理有?,此为变量分离方程,可求解. dtdtt形如 (2) 形如dya1t?b1y?c1的方程, 其中a1??a2,?b1,?b2,?c1,?c2为常数. ?dta2t?b2y?c2?a1b1c1???k的情形. a2b2c2此时方程化为dy?k,可解得y?kt?c. dt?a1a2b1b2?0,即a1b1??k的情形: a2b2ku?c1dudy?a2?b2?a2?b2dtdtu?c2令 u?a2t?b2y, 则有此为变量分离方程. ?a1b1a2b2?0的情形y. t对c1?c2?0的情况, 直接做变量替换u?当c1,c2不全为零, 求 ? ?a1t?b1y?c1?0的解为?a2t?b2y?c2?0?t??. ??y???t?t??令 ? , 则方程组化为y?y???原方程化为3.一阶线性微分方程?a1t?by1?0. ?at?by?0?22dya1t?byy??g()的齐次方程可求解. dta2t?byt(1) 一般形式:a(t)dy?b(t)y?c(t)?0,若a(t)?0,则可写成 dtdy?p(t)y?qt(的形式). dtp(t)dtdy,?c为任意常数. ?p(t)y,通解为ce?(2) 一阶齐次线性微分方程:dtdy?p(t)y?q(t),q(t)?0. (3) 一阶非齐次线性微分方程:dt性质1 必有零解 y?0;性质2 通解等于任意常数c与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 p(t) 为常数, 此时方程为(4) 齐次线性微分方程的性质dy?ay?q(t), a为常数. dt对应齐次方程的通解为ce, 只需再求一个特解, 这时根据q(t)为特定的函数,bt可猜测不同的形式特解. 事实上, 当q(t)?ae, a,b为给定常数, 且b?a 时at可设待定特解为ce, 而当b?a时, 可设特解形式为cte, 后代入方程可确定待定常数c. 当q(t)为cosat,??sinat或它们的线性组合时, 其中a为给定常数. 这时可设待定特解为bcosat?csinat代入方程后确定b,?c的值. 当btbtq(t)具有多项式形式a0tn?a1tn?1???an?1t?an, 其中a0,?a1,??an 为给定常数且a0?0, 这时可设待定特解为b0t?bt1nn?1???bn?1t?bn代入方程可求得bi,?i?0,1?,??,n的值. 对于q(t)有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令y?c(t)e?p(t)dt,代入方程,求出c(t)后可求得通解为【篇二:常微分课后答案2.1】>1.dy?2xy,并求满足初始条件:x=0,y=1的特解. dx解:对原式进行变量分离得1dy?2xdx,两边同时积分得:lny?yc?1,故它的特解为y?ex。

微分方程数值解法答案

微分方程数值解法答案

微分⽅程数值解法答案包括基本概念,差分格式的构造、截断误差和稳定性,这些内容是贯穿整个教材的主线。

解答问题关键在过程,能够显⽰出你已经掌握了书上的内容,知道了解题⽅法。

这次考试题⽬的类型:20分的选择题,主要是基本概念的理解,后⾯有五个⼤题,包括差分格式的构造、截断误差和稳定性。

习题⼀1.略2. y y x f -=),(,梯形公式:n n n n n n y hh y y y h y y )121(),(2111+-+=+-=+++,所以0122)1(01])121[()121()121(y hh y h h y h h y hhn h h n n n +--+--+-+=+-+==+-+= ,当0→h 时,x n e y -→。

同理可以证明预报-校正法收敛到微分⽅程的解.3.局部截断误差的推导同欧拉公式;整体截断误差:++++++-++≤1),())(,(11111n nx x n n n n n n n dx y x f x y x f R εε11)(++-++≤n n n y x y Lh R ε,这⾥R R n ≤ ⽽111)(+++-=n n n y x y ε,所以 R Lh n n +=-+εε1)1(,不妨设1()]11111[1111101---++-+-+-≤≤-+-=n n n n Lh Lh Lh R Lh Lh R Lh εεε ]1[2)(02)(00-+≤--x X L x X L eLh R eε4.中点公式的局部截断误差: dx x y x f hx y h x f x y x f yx y n n x x n n n n n n))](,(2)(,2())(,([)(11*1?+++-=-++dx x y x f hx y h x f h x y h x f h x y x y dxx y x f hx y h x f hx y h x f h x y h x f x y x f n n n n x x n n n n n n n x x n n n n n n n n))](,(2)(,2())2(,2([)]2()([))](,(2)(,2())2(,2())2(,2())(,([11++-++++'-'=++-+++++-=??++所以上式为+--+''=?++dx hx x x y e n nx x n n n )2()(11θdx x y x f h x y h x f h x y h x f n n n n x x n n n n))](,(2)(,2())2(,2([1++-++?+ 3218)(LMh h x y Lh e n n ≤+''≤+?中点公式的整体截断误差:dx y x f hy h x f x y x f y x y y x y n n x x n n n n n n n n)],(2,2())(,([)()(111?+++-+-=-++dxy x f hy h x f x y x f h x y h x f x y x f hx y h x f x y x f y x y n n n n n n n n x x n n n n n n n n))],(2,2()))(,(2)(,2()))(,(2)(,2())(,([)(1++-+++++-+-=?+因⽽n n n L h Lh R εεε)21(1+++≤+,R L h Lh n n +++≤-122)21(εε≤≤])21()21(1[2)21(1222222022-+++++++--+++n nL h Lh L h Lh Lh Lh RL h Lh ε )1(00-+≤--x X L x X L e LhR eε 5.略 6.略 7.略8.(1)欧拉法:2.0≤h ;四阶Runge-Kutta ⽅法:278.0≤h (2)欧拉法:3 54≤h ;四阶Runge-Kutta ⽅法:3556.5≤h(3)欧拉法:1≤h ;四阶Runge-Kutta ⽅法:278.0≤h 9.略 10.略习题21.略 2.略 3.略4.差分格式写成矩阵形式为:n n M n M n n n M n M n n e u u u u r t r r r t r r r t r r r t u u u u +?--------= --+-+-++12211221121212121 αβαααβαααβαααβ矩阵的特征值为:)cos(221Mj r r t j πααβλ+-?-=,要使格式稳定,则特征值须满⾜t c j ?+≤1λ,即21≤r α5.利⽤泰勒展式可以得到古典隐式差分格式的截断误差为)(2h t O +?。

(完整word版)偏微分方程数值解法答案

(完整word版)偏微分方程数值解法答案

1. 课本2p 有证明2. 课本812,p p 有说明3. 课本1520,p p 有说明4. Rit2法,设n u 是u 的n 维子空间,12,...n ϕϕϕ是n u 的一组基底,n u 中的任一元素n u 可表为1nn i i i u c ϕ==∑,则,1111()(,)(,)(,)(,)22j nnn n n n i j i j j i j j J u a u u f u a c c c f ϕϕϕ===-=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ϕϕϕϕ=,令()0n jJ u c ∂=∂,从而得到12,...n c c c 满足1(,)(,),1,2...niji j i a c f j n ϕϕϕ===∑,通过解线性方程组,求的i c ,代入1nn i i i u c ϕ==∑,从而得到近似解n u 的过程称为Rit2法简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1nn i ii u c ϕ==∑,利用,1111()(,)(,)(,)(,)22j nnn n n n i j i j j i j j J u a u u f u a c c c f ϕϕϕ===-=-∑∑确定i c ,求得近似解n u 的过程Galerkin 法:为求得1nn i ii u c ϕ==∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,)n a u V f V =,对任意nV u ∈或(取,1j V j nϕ=≤≤)1(,)(,),1,2...nijij i a cf j n ϕϕϕ===∑的情况下确定i c ,从而得到近似解1nn i i i u c ϕ==∑的过程称Galerkin 法为 Rit2-Galerkin 法方程:1(,)(,)nijij i a cf ϕϕϕ==∑5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。

微分方程数值解

微分方程数值解
y n1
此时有:
h2 y n hf ( xn , y n ) f x ( xn , y n ) f y ( xn , y n ) f ( xn , y n ) 2


h2 y( xn1 ) y( xn ) hf xn , y( xn ) f x xn , y( xn ) f y xn y( xn ) f xn , y( xn ) 0(h 3 ) 2
称 yn1 显然局部截断误差 en y ( xn ) y n y ( xn ) y ( x n 1 ) h xn 1 , y ( xn 1 ), h
q 1 j d3 y ( xn ) y ( xn 1 ) h y ( xn 1 ) dx3 j 1 j! 0(h q 1 )
h y n 1 y ( x n ) [ f ( x n , y ( x n )) f ( x n 1 , y n 1 )] 2 见书本 前面已经指出,梯形法是一个隐式格式 h y n 1 y n [ f ( x n , y n ) f ( x n 1 , y n 1 )] ① 2 如何求解 yn1 ,我们采取迭代法,其格式如下:
dx
f ( x, y ) dy f ( x, y )dx dy
y0
y
x0 h
x0
f ( x, y )dx
y( x0 h) y( x0 )

x0 h
x0
f ( x, y)dx
求如图1.1曲边梯形的面积最直接的方法就是用矩形面积 hf ( x0 , y0 ) 代替整个曲边梯形面积。则 y( x0 h) y( x0 ) hf ( x0 , y0 )

微积分第一章课外习题参考答案

微积分第一章课外习题参考答案
微积分第一章课外习题参考答案
9
p4.3.证明 : { xn }有界, M 0, 使得 | xn | M , n 1,2,
n
.
0, lim yn 0, N ,当n N 时, | yn |

M | xn yn || xn || yn | , lim xn yn 0.
微积分课外习题参考答案
微积分第一章课外习题参考答案
1
第一章 极限与连续
微积分第一章课外习题参考答案
2
预备知识(1-2)
p1. 一.1. { x | x 3且x 0} . 2. [1,1],[2k ,(2k 1) ], k Z . 1 x 3. 1 1 e x 1 1 x1 , x2 , 1 x1 1 e x 1 x 1 . x 1
x0 1 三. f [ g ( x )] 0 x0 1 x 0 e | x | 1 g[ f ( x )] 1 | x | 1 注意作图形. 1 | x | 1 e
微积分第一章课外习题参考答案 5
p2. 四 . 证明: f ( x ) f (2a x ) f (2b 2a x ) f [2(b a ) x ] 周期 T 2 | b a | . 五 . 证明 f ( x ) log a ( x x 1)
8
p4.
2.
解 :由题意,
n 2
1 1 1 ( 1) P1 Pn 1 2 3 2 2 2 2n 2 1 n 1 1 n 1 1 ( ) 2 2( ) 2 2 1 3 1 2 1 n 1 2 2( ) 2 2 lim P1 Pn lim n n 3 3

数学物理方程,偏微分方程答案第一章1-25 课后答案

数学物理方程,偏微分方程答案第一章1-25 课后答案
o
x
u ( x, t )
1 [(h x at ) ( x at ) (h x at ) ( x at )] 2(h x)
u v u u 2v [(h x) 2 (u ) (h x) (h x) 2 (h x)(u 2 ) x x x x x x
( x) s( x)u tt ( ESu x ) x
ww w.
利用微分中值定理,消去 x ,再令 x 0 得
u ∣ x 0 k[u (0, t ) v(t )] x u ( u ) ∣ x 0 f (t ). x
E
x 2 u x 2 2u 3. 试证:圆锥形枢轴的纵振动方程为 E [(1 ) ] (1 ) x h x h t 2
t有
即对任何 x, G(x) C 0 又 G(x)=
(1) 如果初始条件在 x 轴的区间[x 1 ,x 2 ]上发生变化,那末对应的解在区间[ x1 ,
1 1 x C ( x) ( )d x 2 2a 0 2a
x 2 ]的影响区域以外不发生变化;
w.
2u x 2 t x
2

u (t 2 x 2 y 2 ) 2 x x
da

同理 所以 运动方程为:
2

且 T ( x) 的方向总是沿着弦在 x 点处的切线方向。仍以 u ( x, t ) 表示弦上各点在时刻 t 沿垂直于 x 轴 方向的位移,取弦段 ( x, x x), 则弦段两端张力在 u 轴方向的投影分别为
+
x at 1 (h ) ( )d . 2a(h x) x at
即为初值问题的解散。 2.问初始条件 ( x) 与 ( x) 满足怎样的条件时,齐次波动方程初值问题的解仅由右传播波

数值分析第一章绪论习题答案

数值分析第一章绪论习题答案

第一章绪论1设x 0, x的相对误差为「.,求In x的误差。

* * e* x * _x解:近似值x*的相对误差为:.=e*x* x*1 而In x 的误差为e In x* =lnx*「lnx e*x*进而有;(ln x*)::.2•设x的相对误差为2%求x n的相对误差。

解:设f(x—,则函数的条件数为Cp^胡1n A.x nx .又7 f '(x)= nx n」C p|=nn又;;r((x*) n) : C p ;,x*)且e r (x*)为2.;r((x*)n) 0.02 n3 •下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:X; h.1021 , x;=0.031 , x3 =385.6 x;=56.430, x5 =7 1.0.解:x;=1.1021是五位有效数字;X2 =0.031是二位有效数字;X3 =385.6是四位有效数字;x4 = 56.430是五位有效数字;x5 -7 1.0.是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:⑴ 为+X2+X4,(2) x-i x2x3,(3) x2/ x4.* * * *其中X1,X2,X3,x4均为第3题所给的数。

解:*1 4;(x-| ) 102* 1 3;(x 2) 102* 1 1;(x 3) 10 * 1 3;(x 4) 102* 1 1;(x 5) 102 (1);(为 X 2 X 4)=;(为)亠:(x 2)亠:(x 4)=1 10 4 110 J 丄 10^2 2 2= 1.05 10”* * * (2)(X 1X 2X 3)* * * ** * ** *X 1X 2 8(X 3) + X 2X 3 g(xj + X 1X 3 名(X 2)1 1 0.031 汉 385.6 汉?汉10鼻 + 1.1021 域 385.6 汉?汉10(3) XX 2/X 4)X 40.031 110” 56.430 丄 10’2 256.430 56.430=10°5计算球体积要使相对误差限为 1,问度量半径R 时允许的相对误差限是多少? 43解:球体体积为V R 3则何种函数的条件数为=1.1021汉 0.031 汉 * 汉10」+0.215RV' R 4 - R2Ik -3;r(V*) : C pL;r(R*) =3;r(R*)1故度量半径R时允许的相对误差限为;r(R*) 1 :0.3336•设Y0=28,按递推公式丄J783 (n=1,2,…)100计算到Y oo。

微分方程数值解法李荣华答案

微分方程数值解法李荣华答案

微分方程数值解法李荣华答案【篇一:高阶常微分方程的数值求解】t>谷照升(长春工程学院理学院,长春,130012)摘要对经典初始条件的高阶常微分方程,给出其数值求解方法。

该方法比runge-kutta法具有更好的适应性、易用性、计算速度和可控制的更高精度。

关键词常微分方程;数值解;算法中图分类号: o241.81文献标识码: a 11 引言求解复杂的1阶常微分方程,通常只能采用数值解法。

数值解法一般又以runge-kutta法为主。

对高阶常微分方程,则通常是将其转化为1阶常微分方程组,再用runge-kutta法求解[1, 2]。

但这种通用性方法,在精度、软件计算的适应度方面,常常不够理想,甚至得不到结果。

针对不同的广普性方程类型,可以建立更具针对性的计算方法。

例如,针对三类边值条件和特定形式的方程,已经有有相应的差分法和有限元法。

每一种更具针对性的方法,都有其更高的精度和更为健壮的算法,当然也存在其必然的局限性。

本文对如下形式的2阶常微分方程?d2ydy?a(x)?b(x)y?f(x)?2dxdx?? x∈[a, b](1) ?y(a)?ya?y?(a)?y?a???给出了完整、方便、高效的单步法数值求解算法,并将其推广到任意高阶问题的求解。

2 算法思路:将[a, b]分割为a=x0 x1…xn=b,步长?xi?xi?xi?1。

从i=1开始,利用数值积分公式,通过[xi-1, xi]上的数值积分,先求y??(xi),再求出y?(xi),最后求y(xi)。

依次取i=2, 3, … ,n,得到各点y??(xi)、y?(xi)、y(xi)的近似值。

根据数值积分的算法不同,主要有两种不同的计算公式。

2.1、矩形数值积分算法矩形算法形式简单,精度偏低。

基于不同的积分形式,又可以得到3种不同的计算公式,其精1 基金项目:吉林省自然科学基金项目(201215115)1度无显著差别。

此处仅给出与2.2梯形算法最为接近的一种。

微分方程数值解法(戴嘉尊)习题解答

微分方程数值解法(戴嘉尊)习题解答

+
R Lh
(eL( X
− x0 )
−1)
电子文档制作:成都信息工程学院 数学学院 杨韧 吴世良,2010 年 4 月
成都信息工程学院>>精品课程>>微分方程数值解
11、解:令 f(x,y)=-y+x+1
y y y x y x y x = + h(− + +1) = (1− h) + h( +1) = 0.9 + + 0.1
0.0988*1.0e-3
0.9
0.4973
0.4972
0.0640*1.0e-3
1
0.5002
0.5000
0.1773*1.0e-3
2.解:显然, y = e−x 是原初值问题的准确解。 由梯形公式得
整理可得: 于是:
yn+1
=
yn
+
h 2
[
f
(
xn
,
yn
)
+
f
(xn+1, yn+1)]
=
yn
+
h 2
成都信息工程学院>>精品课程>>微分方程数值解
微分方程数值解 习题解答
杨韧 吴世良(编)
成都信息工程学院 数学学院
二 O 一 O 年四月编写
电子文档制作:成都信息工程学院 数学学院 杨韧 吴世良,2010 年 4 月

成都信息工程学院>>精品课程>>微分方程数值解

第一章 常微分方程数值解 ......................................................................3 第二章 抛物型方程的差分方法 ..............................................................8 第三章 椭圆型方程的差分方法 ............................................................16 第四章 双曲型方程的差分方法 ............................................................25

第一章常微分方程初值问题数值解法

第一章常微分方程初值问题数值解法

(1.2.3)
其中rn,k(t)为插值余项。 代到(1.2.2)式中得
u ( tn +1 ) = u ( tn ) +
舍去余项 并用uj代替u(tj)即得

tn+1 tn
Ln , k ( t ) dt + ∫ t rn , k ( t ) dt
tn+1
n
(1.2.4 (1.2.5)
Rn , k = ∫
⎡ ∑ ⎣α u
j =0
j =0
αk ≠ 0
(1.2.1)
j n+ j
⎤ − hβ j f n + j ⎦ = 0(数值解满足的差分方程)
因此称(1.2.1)为多步法 或 k-步法。 又因为(1.2.1)关于 u n + j , f n + j 是线性的,所以称为线性多步法。 为使多步法的计算能够进行,除给定的初值u0 外,还要 知道附加初值u1,u2,…,uk-1 ,这可用其它方法计算。 若 β k = 0 则称(1.2.1)是显式的; 若 β k ≠ 0 则方法(1.2.1)是隐式的。 例如,一般线性二步法可写成:
f ( t , u ( t ) ) = Ln , k +1 ( t ) + rn , k +1 ( t )
其中rn,k+1(t)为插值余项。 同理即
un +1 = un + h ∑ bk +1i f ( tn −i +1 , un −i +1 )
i =0
k +1
其中
bk +1i
=∫ ∏
−1
j =0 j ≠i
0
k +1

微分方程数值解第一章答案

微分方程数值解第一章答案
参考书:
微分方程数值解法 李荣华等编, 高教出版社
• 课堂授课+计算实验 • 考核方式: 平时作业+课堂+期末考试 • 任课教师 •
1
教学内容
• 第一章、常微分方程的数值解法 • 第二章、椭圆型方程的差分方法 • 第七章、椭圆型方程的有限元方法 • 第四章、抛物型方程的差分方法 • 第五章、双曲型方程的差分格式
x (a bx)t x ' ax bx2 x
Logistic方程
14
常微分方程举例3
问题1.3 并不是所有的方程可以用初等积分法求出其 解, 例如形式上很简单的里卡蒂(Riccati)方程
x' t2 x2
不能用初等函数表示通解. 寻求方程非解析函数的其它形式解, 显得非常必要。 而数值求解就是其重要的一个方法
问题得真解;即收敛性问题 ② 误差估计 ③ 产生得舍入误差,在以后得各步计算中,是否会
无限制扩大;稳定性问题
32
数值求解微分方程过程示意
区域剖分
微分方程离散

初始和边界条件处理

解的存在性、唯一性

离散系统的 性态研究
解的收敛性和收敛速度

解的稳定性
递推计算或解线 性代数方程组
得到数值解
33
作业
18
举例2
• P55 习题1 利用Euler方法求数值解 初值问题u' 1 u, u(0) 1 2 步长h=0.1, 解区间[0,1]
• 绘制折线,与真解比较
19
Matlab实现 u=null(1);h=0.1;u0=1; u(1)=u0+h*0.5*u0; for n=1:9
u(n+1)=u(n)+h*0.5*u(n); end t=0:0.1:1;un=[u0,u]; plot(t,un,'ro','Linewidth',2) ut=exp(0.5*t); hold on plot(t,ut,'Linewidth',2)

微分方程数值解答案

微分方程数值解答案
19
举例2
• P55 习题1 利用Euler方法求数值解 初值问题u' 1 u, u(0) 1 2 步长h=0.1, 解区间[0,1]
• 绘制折线,与真解比较
20
Matlab实现 u=null(1);h=0.1;u0=1; u(1)=u0+h*0.5*u0; for n=1:9
u(n+1)=u(n)+h*0.5*u(n); end t=0:0.1:1;un=[u0,u]; plot(t,un,'ro','Linewidth',2) ut=exp(0.5*t); hold on plot(t,ut,'Linewidth',2)
y xy, y 2 y 3 y e x ,
(t2 x)dt xdx 0,
z x y, x
9
➢ 微分方程的阶 方程中未知函数导数的最高阶数叫做微分方程的阶. 例如:
一阶微分方程
三阶微分方程 一阶微分方程
10
➢ 解, 通解, 特解
微分方程的解 — 是使方程成为恒等式的函数. 例y ex满足方程y y,是方程的一个解
y( x0 )
y0 ,
y( x0 )
y0 ,
,
y(n1) ( x0 )
y (n1) 0

dy dx
=2
x
y x1 =2
2) n 阶方程的边界条件(或边值条件):

y f (x, y, y), 0 x 1,
y(0)
0,
y(1) 0.
12
2 初值问题:标量形式
考虑一阶常微分方程初值问题:
• 课堂授课+计算实验 • 考核方式: 平时作业+课堂+期末考试 • 任课教师 •

微分方程数值解法(戴嘉尊)习题解答

微分方程数值解法(戴嘉尊)习题解答

n+1
n
n
n
n
n
n
n
(n=0,1,2,…………9)
y y y x y x = + h [− + +1 + (− + +1)]
n+1
n2
n
n
n+1
n+1
y x y x h
=(1- )
2
+ h ( + 1) + h (-
n2 n
2
+
n+1
n+1 + 1 )
y x y x =0.95 + 0.05( +1) + 0.05(− + +1)
h 2
f
(xn , y(xn )) −
yn

h 2
f (xn , yn )) |

Lh[|
y(xn ) −
yn
|+
h 2
|
f (xn , y(xn )) −
h 2
f (xn , yn )) |]

Lh(|
εn
|
+
h 2
L
|
y ( xn
)

yn
|]

Lh(1 +
h 2
L)
|
εn
|
综上有:
|
ε n+1
|≤|
(xn ,
yn ))]dx
∫=
xn+1 [y′(x) −
xn
y′(x +
h 2
)]
+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: Euler公式为: u n 1u nh (tn 2 1 0 0 u n 2) 由 h 0 .1 , u 0 0 计 算 得 u 1 u 0 h [ ( 0 h ) 2 1 0 0 u 0 2 ] 0 u 2 u 1 h [ ( 1 h ) 2 1 0 0 u 1 2 ] 0 .0 0 1 u 3 u 2 h [ ( 2 h ) 2 1 0 0 u 2 2 ] 0 .0 0 5 1
• 常微分方程基本概念 • 常微分方程初值问题 • Euler法及其基本问题 • 线性多步方法 • 数值稳定性 • Runge-Kutta方法
第一章 基本概念
7
1: 常微分方程的基本概念
➢ 微分方程: 常微分方程和偏微分方程 ➢阶 ➢ 解,通解和特解 ➢ 定解问题: 初值问题和边值问题
8
➢ 微分方程: 常微分方程和偏微分方程
微分方程数值解第一章答案
参考书:
微分方程数值解法 李荣华等编, 高教出版社
• 课堂授课+计算实验 • 考核方式: 平时作业+课堂+期末考试 • 任课教师 •
2
教学内容
• 第一章、常微分方程的数值解法 • 第二章、椭圆型方程的差分方法 • 第七章、椭圆型方程的有限元方法 • 第四章、抛物型方程的差分方法 • 第五章、双曲型方程的差分格式
联系着自变量, 未知函数及其导数(微分)的方程, 称为微分方程 .
常微分方程 :未知函数是一元函数 分类
偏微分方程 :未知函数是多元函数
yxy, y2y3yex,
(t2x)dtxdx0,
z x y, x
9
➢ 微分方程的阶
方程中未知函数导数的最高阶数叫做微分方程的阶.
例如: y' y
dy y dx
21
节点 ti 数值解un 精确解ut
0.0 1.0000
0.1 1.0500
0.2 1.1025
0.3 1.1576
0.4 1.2155
19
举例2
• P55 习题1 利用Euler方法求数值解 初 值 问 题 u'1u, u(0)1 2 步长h=0.1, 解区间[0,1]
• 绘制折线,与真解比较
20
Matlab实现 u=null(1);h=0.1;u0=1; u(1)=u0+h*0.5*u0; for n=1:9
u(n+1)=u(n)+h*0.5*u(n); end t=0:0.1:1;un=[u0,u]; plot(t,un,'ro','Linewidth',2) ut=exp(0.5*t); hold on plot(t,ut,'Linewidth',2)
特解 — 不含任意常数的解.
例 y C e x 是 方 程 y y 的 通 解 .
例 y 2 e x 是 方 程 y y 的 特 解 .
11
➢ 定解条件: 初值问题和边值问题
定解条件 — 确定通解中任意常数的条件.
1) n 阶方程的初始条件(或初值条件):
y ( x 0 ) y 0 ,y ( x 0 ) y 0 , ,y ( n 1 ) ( x 0 ) y 0 ( n 1 )
3
第一章 常微分方程初值问题 的数值解法
• 教学目标 • 教学重点 • 教学过程
第一章 基本概念
4
教学目标
─了解ODE数值解法的基本内容, ─掌握Euler法和线性多步方法, ─会判断常用方法的优劣之处.
5
教学重点
• 基本概念和Euler法 • 线性多步方法 • 稳定性
第一章 基本概念
6
教学过程
16
2 Euler方法
考虑一阶常微分方程初值问题
(1)
u' f(t,u),
u(t0)u0
t0 t T,
在 (t0,T ]上 取 N 个 点 tn 1tnh n 1, n0,1 ,...,N 1 ,
如 果 步 长 h n 1 = h , 那 么 称 为 等 步 长 .
17
计算在离散点(节点)的值,有
x (abx)t x'axbx2 x
Logistic方程
15
常微分方程举例3
问题1.3 并不是所有的方程可以用初等积分法求出其 解, 例如形式上很简单的里卡蒂(Riccati)方程
x't2 x2
不能用初等函数表示通解. 寻求方程非解析函数的其它形式解, 显得非常必要。 而数值求解就是其重要的一个方法
x a t x'ax(a0) x
14
常微分方程来源举例2
问题1.2 世界上生物种类多种多样, 对特定生物种群的 数量进行预测,是制定对该生物实施保护还是控制的 依据. 设t时刻某种群的数量为x(t),单位时间内种群数
量的增加量Δ x和当时数量的比值为a-bx(t),其中a,
b>0为常数. 这样得到方程
13
常微分方程来源举例1
问题1.1 上上世纪初英国物理学家Rutherford发现放射 性元素的原子是不稳定的,在每一段时间内总有一定比 例的原子自然衰变而形成新元素的原子. 记t时刻放射性物质的原子数为x(t), 据观测单位时间 内衰变原子的个数Δx与当时放射性原子数x(t)之比为 常数a. 考虑到放射过程中Δ x<0, 因此a<0为负实数. 这 时有方程
(2 ) u n u 0 1 u u (n t 0)h f(tn ,u n), n0 ,1 ,...,N 1
这就是Euler法的计算公式
18
举例1
• 利用Euler方法计算初值问题
初 值 问 题 u ' t2 1 0 0 u 2 , u ( 0 ) 0的解在Biblioteka =0.3处的数值解.步长h=0.1
一阶微分方程
dy ydx
y'''x" yyex 三阶微分方程
y'32yxxe 一阶微分方程
10
➢ 解, 通解, 特解
微分方程的解 — 是使方程成为恒等式的函数. 例 y e x 满 足 方 程 y y , 是 方 程 的 一 个 解
通解 — 解中所含独立的任意常数的个数与方程 的阶数相同. (微分方程的绝大部分解)

dy dx
=
2
x
y x1 =2
2) n 阶方程的边界条件(或边值条件):
例 yy(0)f(0x,,yy,(1 y)) ,00.x1,
12
2 初值问题:标量形式
考虑一阶常微分方程初值问题:
u' f(t,u),
u(t0)u0
t0 t T,
存在性:f(t,u)在定义域上连续
唯一性:f(t,u)关于u满足Lipschitz条件
相关文档
最新文档