电磁环境和电磁波传播模型.
电磁波传播与电磁环境控制
电磁波传播与电磁环境控制电磁波传播是一种普遍存在于自然界和人造环境中的现象。
它们是一种电磁辐射,与光波、射线和声波一起被认为是日常生活中最普遍的形式之一。
电磁波的能量可以通过许多介质和环境传播,例如水、大气和建筑材料等。
这种能量传播在无线通信、卫星技术、雷达系统、遥感数据和医学成像等许多应用中都发挥着重要作用。
然而,电磁波辐射也可能对人类健康和环境造成负面影响。
对大多数人来说,暴露于电磁波辐射水平的最高安全限值之内是安全的。
然而,那些长期暴露在较高的电磁辐射水平下,可能会出现头痛、失眠、视力模糊和其他相关健康问题。
在事先评估和控制电磁环境方面,需要了解电磁波如何在不同介质和环境中传播,以及如何通过防护手段来保护生命和财产的安全。
电磁波在空气中和其他介质中传播的速度有所不同。
在真空中,电磁波速度为光速,大约为每秒299,792,458米。
然而,电磁波在不同介质中传播的速度不同,取决于介质中的介电常数和磁通量。
在水中,电磁波的传播速度仅为真空中光速的3/4,并且在更密集的介质中,传播速度可能会更慢。
这些因素影响了电磁波在不同媒介和环境中的传播规律。
在日常生活中,人们常常受到许多不同类型的电磁波辐射。
例如,电视、手机、微波炉和计算机等电子设备都会产生电磁波。
此外,电力线、通信工具和雷达系统等设施也会产生大量的电磁波。
在大多数情况下,这些设备使用微弱的电磁波,对人类健康和环境没有任何危害。
但是,电磁波的强度和频率可能对生命、健康和环境造成威胁。
为此,人们需要采取措施来评估和控制电磁环境。
在某些情况下,可以通过使用防护设备、使用屏蔽材料或在辐射源周围施加屏蔽来减小电磁辐射的强度。
例如,在医疗图像设备中,屏蔽可以用于防止电磁波对患者和医务人员造成伤害。
此外,在工作场所和家庭中,屏蔽也可用于减轻电磁波对人体和设备的影响。
另一种控制电磁环境的方法是尽可能减小电磁辐射的来源。
这可以通过在设计和开发电子设备时考虑减少电磁波辐射、使用更低频率的电磁波、使用更弱的电磁波以及在设备工作时采取措施来实现。
电磁环境与传播途径
9
• 核电磁脉冲辐射 核电磁脉冲辐射是能量很大的一种特殊的辐射干 扰源。爆炸核武器时,核辐射与周围环境相互作 用,使带电粒子强烈运动,由此产生核电磁脉冲。
• 电弧辐射 当开关、继电器触点开启和闭合时,触点间会产 生电弧。特别是在驱动电感负载时,这种现象更 为明显。
10
11
12
13
3.3频谱的使用与管理
频谱是一个有限的自然资源。
频谱分配必须以频谱利用的有效性和合理性为 基础,既要充分有效地利用频谱资源,又要保 证相互之间不存在电磁干扰,即满足电磁兼容 性。
频谱管理就是为了实现电磁频谱的有效管理、 保护和合理利用等,确保各类无线电业务的有 效进行,包括了无线电频谱资源的频率划分、 指配和控制。
注:l/f噪声:功率谱与振动数f的倒数成比例,背景 能量的涌动。
5
➢ 在地球表面存在着地磁场,它是一种自然场。 ➢ 在海拔高度500km处存在着大气电离层。 ➢ 宇宙噪声主要来自太阳辐射和银河系无线电辐射。 ➢ 太阳辐射可分为热辐射和非热辐射两类,热辐射
频谱从十几兆赫到30GHz,在太阳黑子剧烈活动 期的辐射强度比静止期大60dB。 ➢ 银河系无线电辐射频率在150MHz~200MHz频段 内。因此宇宙噪声在20MHz~500MHz频率范围 内影响相当明显。
21
静电放电试验装置
22
静电的放电与人体放电模型
当人体接近导电物体时(最坏的情况是接触到一个 金属物体,例如仪器外壳、集成电路的管脚等), 如果空气气隙上的电位梯度足够高,电荷会以火 花的形式转移到那个物体上。 下图给出了人体静电放电的等效电路。
电磁波的传播与吸收知识点总结
电磁波的传播与吸收知识点总结电磁波是由电场和磁场相互作用而产生的一种辐射能量,其传播与吸收具有一定的特点和规律。
本文将对电磁波的传播与吸收相关知识点进行总结,并深入探讨其机制与应用。
一、电磁波的传播方式电磁波的传播方式分为三种:地面传播、大气传播和空间传播。
1. 地面传播地面传播是指电磁波在地面上传播的方式,主要通过地面的反射和绕射来实现。
反射是指当电磁波遇到物体表面时,部分能量被物体表面反射回去;绕射是指当电磁波遇到物体边缘时,会绕过物体障碍物的边缘而传播。
2. 大气传播大气传播是指电磁波在地球大气层中传播的方式,主要通过大气层的吸收和散射来实现。
大气层对不同波长的电磁波有不同的吸收特性,例如电离层对较短波长的电磁波具有强烈吸收能力,而较长波长的电磁波相对较容易穿透。
3. 空间传播空间传播是指电磁波在真空中传播的方式,由于真空中没有物体存在,所以电磁波可以自由传播。
在空间传播中,电磁波保持其波动特性,传播速度为光速。
二、电磁波的吸收机制电磁波在传播过程中会被物体吸收,吸收的机制主要包括反射、散射和吸收。
1. 反射当电磁波遇到物体边界时,部分能量会被物体表面反射回去,反射的能量与入射能量有关系。
反射率越高,物体对电磁波的吸收越小。
2. 散射散射是指电磁波遇到物体表面或物体内部的不均匀介质时,会发生方向改变。
散射会使电磁波重新分布,一部分能量被吸收,一部分被散射出去。
3. 吸收吸收是指电磁波被物体吸收转化为其他形式能量的过程,被吸收的能量会转化为热能、化学能等。
物体的吸收能力与其材料特性有关,不同的物体对电磁波的吸收程度有所差异。
三、电磁波传播与吸收的应用电磁波的传播与吸收机制广泛应用于通信、无线电、雷达、遥感等领域。
1. 通信电磁波的传播性质是无线通信的基础,通过电磁波的传播,可以实现无线电话、无线网络、卫星通信等。
不同频段的电磁波具有不同的传播特性,可以根据需求选择合适的频段进行通信。
2. 无线电无线电是利用电磁波传播信息的技术,通过调制和解调的方式将信息转化为电磁波,并利用电磁波的传播特性进行无线通信。
电磁波传播的三级损耗模型
电磁波传播的三级损耗模型
1、电磁波传播损耗预测目的
掌握基站周围所有地点处接收信号的平均强度及变化特点,以便为网络覆盖的研究以及整个网络设计提供基础。
2、方法
根据测试数据分析归纳出基于不同环境的经验模型,在此基础上对模型进行校正,使其更加接近实际,更准确
3、确定传播环境的主要因素
(1)自然地形(高山、丘陵、平原、水域等)
(2)人工建筑的数量、高度、分布和材料特性
(3)该地区的植被特征
(4)天气状况
(5)自然和人为的电磁噪声状况
(6)系统的工作频率和移动台运动等因素
4、常用的几种室外电波传播损耗预测模型
(1)Hata模型
广泛使用的一种适用于宏蜂窝的中值路径损耗预测的传播模型。
根据应用频率的不同,分为Okumura-Hata模型和COST 231Hata模型。
(2)CCIR模型;
(3)LEE模型;
(4)COST 231 Walfisch-Ikegami模型。
电磁波传播模式及概念
电磁波传播模式及概念
电磁波传播是指电磁场在空间中的传递过程。
电磁波是由电场和磁场交替变化的波动组成,其传播方式主要有以下几种:
1、空间传播:电磁波在自由空间(无介质)中传播,如无线通信、雷达、光通信等应用中的电磁波传播。
2、导播传播:电磁波在特定介质中传播,如光纤通信中的光波、无线电波在空气、水等介质中的传播。
3、折射:电磁波从一种介质进入另一种介质时,由于介质密度、电导率等特性不同,传播速度发生变化,导致传播方向改变。
4、反射:电磁波遇到物体表面时,部分能量被反射,形成反射波。
如雷达探测、无线通信中的信号反射等。
5、衍射:电磁波遇到障碍物或通过狭缝时,波前发生弯曲,形成衍射现象。
衍射分为菲涅耳衍射和夫琅禾费衍射两类。
6、干涉:当两个或多个电磁波在同一空间叠加时,根据波的相位差产生干涉现象,表现为亮暗相间的干涉条纹。
电磁波的概念:
电磁波是由电场和磁场交替变化的波动组成,二者互相垂直。
在任何介质中,电磁波的传播速度都与该介质的性质有关。
在真空中,电磁波的传播速度等于光速(约为3×10^8 米/秒)。
根据波长的不同,电磁波可分为无线电波、微波、红外光、可见光、紫外光、X射线、γ射线等。
我们日常生活中遇到的无线通信、广播电视、光通信等均依
赖于电磁波的传播。
电磁波传播过程中可能受到环境、介质、设备等因素的影响,如衰减、反射、折射等。
为了实现高效、稳定的电磁波传播,科学家和工程师们进行了大量研究和实践。
无线电波的传播模型分析
无线电波的传播模型分析无线电通信是人类社会发展进程中的一项重要成就,也是21世纪信息科学的重要组成部分,使用了无线电波传播技术。
无线电波是以电磁场的形式传输的,具有广泛的覆盖范围,便捷性和实时性等诸多优点。
本文将从无线电波的传播模型分析来介绍无线电通信中的传播特性和影响因素。
一、无线电波的传播模型无线电波作为电磁波,传播模型主要分为两种类型:地面波和空间波。
1.地面波地面波也叫地波,是在地球表面与大气继电器的相互作用下产生的,主要依靠短波的反射和散射。
它的传播方式具有一定的局限性,主要适用于频率较低的波段,例如中、低频的AM广播。
由于地波的传播距离有限,因此它的应用范围受到限制。
2.空间波空间波是指在大气层高度以上发送无线电信号产生的波,主要依靠大气继电器的传播方式。
空间波分为直接波、反射波和绕射波。
其中,直接波是指在天线发射的无线电波沿着一条直线传播到达接收方,主要应用于近距离的通信;反射波是指无线电波在大气层中反射,从而到达接收方;绕射波则是指无线电波在距离障碍物一定距离处发生弯曲而传输到接收方。
由于空间波传播距离远,因此被广泛应用于广播、卫星通信和移动通信等领域。
二、无线电波传播特性的影响因素1.频率无线电波向外辐射是以电磁场的形式进行的,不同频率的波对传输距离、传输损耗等有着直接的影响。
频率低的电磁波,因其波长长,具有较好的穿透性,不易受到障碍物的阻碍,有利于传播距离较远的环境;高频无线电波因其波长短,具有更弱的穿透性,主要适用于短距离传输。
根据频率的不同,无线电波传输的特性也会有所区别。
2.天线高度和功率天线是信息传输的重要载体,其高度和功率决定了无线电波的传输效果。
天线高度可以影响电波的传播距离和传输覆盖面积,高天线通信的距离更远,更通畅;天线功率的大小则决定了无线电信号传输的能力,功率越大,传输的距离越远。
在实际应用中,高度和功率的大小应该结合实际情况进行权衡,以达到最佳效果。
3.障碍物和地形无线电波的传输受到障碍物和地形的影响。
无线电波空间传播模型
无线电波空间传播模型一、引言无线电波是一种电磁波,它的传播是通过空间介质进行的。
无线电波的传播模型是对无线电波在空间中传播过程的一种描述和模拟。
了解无线电波空间传播模型对于实现高效的无线通信系统设计和优化至关重要。
本文将介绍几种常见的无线电波空间传播模型,包括自由空间传播模型、二维和三维传播模型以及多径传播模型。
二、自由空间传播模型自由空间传播模型是最简单也是最常用的一种传播模型。
它假设无线电波在真空中传播,没有遇到任何障碍物和干扰。
根据自由空间传播模型,无线电波的传播损耗与距离的平方成反比。
具体而言,传播损耗(L)可以通过以下公式计算:L = 20log(d) + 20log(f) + 20log(4π/c)其中,d是发送端和接收端之间的距离,f是无线电波的频率,c是光速。
自由空间传播模型适用于开阔的空间环境,如农村、海洋等,但在城市和山区等环境中,由于有大量建筑物和地形等障碍物的存在,自由空间传播模型并不适用。
三、二维和三维传播模型二维和三维传播模型考虑了障碍物和地形等因素对无线电波传播的影响。
在二维传播模型中,地面被简化为平面,建筑物和其他障碍物被建模为二维形状。
在三维传播模型中,地面和建筑物等障碍物被建模为三维形状。
为了计算二维和三维传播模型中的传播损耗,常用的方法是射线追踪。
射线追踪将无线电波视为一束射线,通过计算射线与障碍物的相交点,从而确定传播路径和传播损耗。
射线追踪可以基于几何光学原理进行,也可以使用电磁波的波动性质进行更精确的计算。
四、多径传播模型多径传播模型是一种复杂的传播模型,考虑了多个传播路径和多个传播信号的叠加效应。
当无线电波传播过程中遇到建筑物、地形等障碍物时,会发生反射、折射和散射等现象,导致信号在接收端出现多个传播路径。
这些多个传播路径的信号叠加在一起,会引起传播信号的衰减和时延扩展。
多径传播模型通常使用统计方法进行建模和仿真。
常见的多径传播模型包括瑞利衰落模型和莱斯衰落模型。
无线射频基础知识-无线传播原理与传播模型
P波段:230~1000MHz; L波段:1000MHz~2000MHz;
大家熟知的GPS系统,其工作频率就在此波段(1575MHz左右);
S波段:2000MHz~4000MHz; C波段:4000MHz~8000MHz;目前主要用于卫星电视转播; X波段:8000MHz~12.5GHz;目前主要用于微波中继; Ku波段:12.5GHz~18GHz;目前主要用于微波中继和卫星电视转播; K波段:18GHz~26.5GHz; Ka波段:26.5GHz~40GHz; 频率越低,传播损耗越小,覆盖距离越远,绕射能力越强。但是,低频段频率 资源紧张,系统容量有限,因此主要应用于广播、电视、寻呼等系统。 高频段频率资源丰富,系统容量大;但是频率越高,传播损耗越大,覆盖距离 越近,绕射能力越弱。另外频率越高,技术难度越大,系统的成本也相应提高。
慢衰落损耗是由于在电波传播路径上受到建筑物及山丘等的阻挡所产生的阴影 效应而产生的损耗。它反映了中等范围内数百波长量级接收电平的均值变化而 产生的损耗,一般遵从对数正态分布。 快衰落损耗是由于多径传播而产生的损耗,它反映微观小范围内数十波长量级 接收电平的均值变化而产生的损耗,一般遵从瑞利分布或莱斯分布。快衰落又 可以细分为以下3类:
从公式可以推导出以下结论:
无线电波在地面传播时,在同样的传播距离上,其传播损耗比自由空间传播时 要大得多:当取值为4时,距离d加倍,传播损耗增加12dB,即:信号衰减16 倍; 增加天线高度,可以减少传播损耗。
华为技术有限公司 版权所有 未经许可不得扩散
无线射频基础知识-无线传播原理与传播模型
在规划和建设一个移动通信网时,从频段的确定、频率分配、无线电波的覆盖范围、计 算通信概率及系统间的电磁干扰,直到最终确定无线设备的参数,都必须依靠对电波传 播特性的研究、了解和据此得到的传播模型进行场强预测。
无线电波传播原理及主要传播模型
无线电波传播原理1无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.1 电磁场与电磁波基础1820年奥斯特电磁1831年法拉第磁电产生产生变化的电场磁场变化的磁场电场激发?电磁场理论麦克斯韦在总结前人工作的基础上,提出了著名的电磁场理论(经典电磁场理论),指出变化电场和变化磁场形成了统一的电磁场,预言电磁场能以波动的形式在空间传播,称为电磁波;并得到电磁波在真空中传播的速度等于光速,从而断定光在本质上就是一种电磁波。
后来,赫兹用振荡电路产生了电磁波,使麦克斯韦的学说得到了实验证明,为电学和光学奠定了统一的基础。
因此,麦克斯韦的经典电磁场理论是人类对电磁规律的历史性总结,是19世纪物理学发展的最辉煌成就,是物理学发展史上一个重要的里程碑。
电磁波的诞生赫兹----德国物理学家赫兹对人类伟大的贡献是用实验证实了电磁波的存在,发现了光电效应。
1888年,成了近代科学史上的一座里程碑。
开创了无线电电子技术的新纪元。
赫兹用各种实验,证明了不仅电磁波的性质和光波相同,而且传播速度也相同,并可发生反射、折射、干涉、衍射和偏振等现象,即电磁波服从一般波动所具有的一切规律。
如果空间的电场或磁场变化是周期性的,我们用周期和频率来描述变化快慢。
电磁场变化过程中产生的电磁波的频率等于电磁场的变化频率;电磁波在传播中从一种介质进入另一种介质时,其频率不会发生改变,但其传播速度会发生改变。
电磁波的应用从1888年赫兹用实验证明了电磁波的存在,1895年俄国科学家波波夫发明了第一个无线电报系统。
1914年语音通信成为可能。
1920年商业无线电广播开始使用。
20世纪30年代发明了雷达。
40年代雷达和通讯得到飞速发展,自50年代第一颗人造卫星上天,卫星通讯事业得到迅猛发展。
如今电磁波已在通讯、遥感、空间控测、军事应用、科学研究等诸多方面得到广泛的应用。
无线电通信的起源1897 年:马可尼完成无线通信试验——电报发收两端距离为18 海里试验是在固定站与一艘拖船之间进行的20 世纪初:两次世界大战导致无线通信蓬勃发展步话机、对讲机等1941 年美陆军就开始装备步话机短波波段,电子管电磁波分类-按传输方式电磁波分类-按传输方式电磁波分类-按波长电磁波分类-按波长各波段电磁波特点长波通信:沿地面传播,衰减小、穿透能力强 中波通信:地波传播及夜晚电离层反射传播 短波通信:天波传播,适合远距离传输超短波通信:直线传播,视距通信,广播电视、移动通信微波通信:工作频带宽,长距离接力通信第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析传播途径①建筑物反射波②绕射波③直射波④地面反射波①建筑物反射波②绕射波③直射波④地面反射波第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.3 无线传播环境•问题:移动通信比较固定通信有那些特殊性呢?•多径无线传播无线路径是一个很复杂的传播媒介•手机发射功率有限手机的发射功率客观限制了蜂窝小区的服务范围手机电池寿命和对人体危害决定了发射功率大小•频率资源有限带宽一定信道编码等占用额外频率资源频率需要被重复利用==> 产生同频干扰•用户行为的不确定性第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析无线信道分析在移动通信研究中的意义无线通信系统的信道十分复杂:9地理环境的复杂性和多样性9用户移动的随机性9多径传播无线信道是制约移动通信质量的主要因素无线信道是研究各种技术的主要推动力量无线信道的建模对于整个移动通信系统仿真的正确性和可靠性有着举足轻重的意义1.4 无线信道分析•无线信道中的损耗一般分为三个层次:—大尺度(又称路径损耗)【path loss】—中等尺度(阴影衰落、慢衰落)【shadowing】—小尺度衰落(快衰落)【fast fading】无线信道分析场强平均值随距离增加而衰减(路径损耗,大尺度衰落)•电磁波在空间传播的损耗场强中值呈慢速变化(慢衰落,阴影衰落,中等尺度衰落)•由地形地貌导致场强瞬时值呈快速变化(快衰落,小尺度衰落)•多径效应——由移动体周围的局部散射体引起的多径传播,表现为快衰落•多普勒效应——由移动体的运动引起,多径条件下引起频谱展宽三种衰落区别•大尺度衰落主要是路径损耗,可用自由空间传播模型来近似;其特点是:慢变,信道在很长时间内可以认为是恒定的,而且衰落的幅度很小。
电磁波传播模型及参数估计方法研究
电磁波传播模型及参数估计方法研究随着科技的不断发展,人类对电磁波的利用也越来越广泛。
电磁波的传播模型和参数估计方法则成为了研究电磁波技术的重要内容。
本文将从理论与实践两个角度,分别探讨电磁波传播模型及参数估计方法的研究现状和未来趋势。
一、电磁波传播模型研究现状电磁波传播模型是描述电磁波在空气、自由空间、海水、建筑物等介质中传播特性的数学模型。
传播模型主要包括三个部分:信号源模型、传播通道模型和接收机模型。
其中传播通道模型是指对电磁波在传播通道中各种干扰和衰减等因素的建模和预测。
目前电磁波传播模型主要有两种:一种是物理模型,它通过建立计算机模型,模拟电磁波的传播规律;另一种是统计模型,它通过对采集到的实测数据进行统计分析,来推导出电磁波的传播模型。
物理模型主要基于传输线理论、辐射场理论等基础理论,通过对无线通信环境的建模计算,提供传播损耗、时延、多径传播等参数。
但是物理模型在真实场景中的适用性存在一定的局限性,因为真实环境中的电磁波传播特征非常复杂,且随环境、时间的变化而经常发生变化,具有一定的随机性。
而统计模型主要依靠实际采集的数据,对数据进行统计分析,构建历史数据库,利用数据分析、机器学习等技术得到高精度的传播模型,适用范围广,具有较好的实际应用前景。
二、电磁波参数估计方法研究现状电磁波参数估计方法是指利用统计学、数学分析等手段,对电磁波的传播距离、传播速度、折射率、频率响应等参数进行估计和推导的技术方法。
电磁波参数估计方法主要包括三类:最小二乘法、波束形成法和卡尔曼滤波法。
最小二乘法是一种应用最广泛的参数求解方法,它通过求解误差平方和最小的线性方程组来得到最优解,适用范围广,但精度有限。
波束形成法通过利用多个天线接收信号后,对信号进行加权和相位校正等处理,从而实现对信号方向性的提高和参数估计精度的提高。
波束形成法可以在固定天线数的情况下提高接收信号的信噪比,但是需要消耗大量的计算资源。
卡尔曼滤波法是指对状态量进行预测和估计,并实时更新和调节状态量的方法,适用于非线性和信号噪声较大的情况,但容易受到系统模型误差的影响。
电磁波的传播与衰减
研究方法:可以通过建立数学模型、仿真实验和现场测量等方法研究多径传播特性。
应用:多径传播模型广泛应用于无线通信、雷达、遥感等领域。
特点:多径传播会导致信号强度波动、时延扩展和频率选择性衰落等现象。
定义:电磁波在传播过程中遇到障碍物时,会发生反射、散射和绕射等现象,形成多径传播。
电磁波的衰减应用
地面反射损耗:电磁波在地面反射时的能量损耗
多径效应损耗:电磁波在传播过程中受到多径效应的影响导致的能量损耗
建筑物穿透损耗:电磁波在建筑物中穿透时的能量损耗
穿透损耗
穿透损耗的定义:电磁波在传播过程中,由于介质的吸收和散射作用,导致能量损失的现象
穿透损耗的影响因素:介质的性质、电磁波的频率、传播距离等
波动方程的形式:∂²Φ/∂t² = c²ΔΦ
波动方程的解:Φ(r,t) = A*exp(-i(ωt-k·r))
波动方程的应用:分析电磁波的传播、反射、折射等现象
传输线方程
传输线方程的定义:描述电磁波在传输线中的传播特性
传输线方程的解:可以求解出电磁波的传播速度和衰减
传输线方程的应用:用于分析电磁波的传播和衰减,以及设计传输线
有线传输系统的优点:传输速度快、稳定性高、抗干扰能力强
有线传输系统的缺点:建设成本高、灵活性差、维护困难
有线传输系统的应用:电话、电视、互联网等
无线传输系统
无线传输系统的组成:发射器、接收器、天线、信道等
电磁波的传播介质:空气、真空、固体、液体等
电磁波的传播速度:与介质的电导率、磁导率、电场强度、磁场强度等因素有关
穿透损耗的计算:可以通过公式计算得出,与介质的吸收系数和散射系数有关
穿透损耗的应用:在无线通信、雷达、遥感等领域,需要考虑穿透损耗对信号传输的影响,并采取相应的措施减少损耗。
常用的五种电波传播损耗预测模型
常用的五种电波传播损耗预测模型下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、介绍电波传播损耗预测模型在通信领域具有重要的应用价值,它们可以帮助工程师和研究人员预测无线通信中的信号衰减情况,从而设计出更可靠的通信系统。
基于电磁波传播模型的室内定位算法研究
基于电磁波传播模型的室内定位算法研究室内定位是指在室内环境中确定移动设备的位置。
对于无线通信技术而言,室内定位一直是一个具有挑战性的问题。
在缺乏全球定位系统(GPS)的室内环境中,我们需要一种可靠的室内定位算法。
基于电磁波传播模型的室内定位算法正是通过分析和建立电磁波在室内环境中的传播模型来实现的。
基于电磁波传播模型的室内定位算法主要包括三个步骤:信号特征提取、信号传播模型建立和位置估计。
首先,信号特征提取是室内定位算法的基础。
通过测量、分析和处理接收到的无线信号,我们可以提取出一些关键的信号特征,如信号强度、到达时间差、相位差等。
这些信号特征可以用来描述信号在室内环境中的传播过程,为后续的信号传播模型建立提供基础。
其次,信号传播模型建立是基于电磁波传播模型的室内定位算法的核心。
它通过分析和建立电磁波在室内环境中的传播模型,即描述信号在室内环境中传播的数学模型,来实现室内定位。
常用的传播模型包括路径损耗模型、多径传播模型等。
路径损耗模型描述了信号在室内环境中随着距离的增加而衰减的过程,多径传播模型描述了信号在室内环境中因多个反射、散射、绕射等效应导致的多条路径传播的过程。
根据实际测量数据与模型拟合,可以估计出室内环境中的传播参数,如路径损耗指数、多径传播参数等。
最后,位置估计是基于电磁波传播模型的室内定位算法的最终目标。
通过信号特征提取和信号传播模型建立,我们可以得到一组信号特征和对应的传播模型参数。
在位置估计阶段,我们可以利用这些信息来估计移动设备的位置。
常用的位置估计算法包括最小二乘法、加权最小二乘法、粒子滤波等。
这些算法通过对信号特征和传播模型参数进行处理和分析,以得到最可能的位置估计结果。
综上所述,基于电磁波传播模型的室内定位算法是通过分析和建立电磁波在室内环境中的传播模型来实现室内定位的。
它包括信号特征提取、信号传播模型建立和位置估计三个步骤。
通过这些步骤的处理和分析,我们可以得到移动设备在室内环境中的位置估计结果。
电磁信号传播模型及其在无线通信中的应用
电磁信号传播模型及其在无线通信中的应用随着无线通信技术的快速发展,电磁信号传播模型在无线通信系统中的应用变得越来越重要。
电磁信号的传播模型可以用来预测无线信号的覆盖范围、信号强度以及信噪比等关键参数,从而为无线通信系统的设计和优化提供基础信息。
一、电磁信号传播模型的基本原理无线信号的传播是通过电磁波在空间中的传播实现的。
电磁波是由电场和磁场互相作用而产生的,在空间中以波动的形式传播。
电磁信号传播模型描述了无线信号在空间中传播过程中的衰减和散射现象。
1. 自由空间传播模型自由空间传播模型是最简单的一种传播模型,适用于开阔的空间环境,例如在没有任何遮挡物的室外空间。
自由空间传播模型中,信号的衰减主要受到距离的影响,衰减与距离的平方成反比。
根据自由空间传播模型可以推导出无线信号的传输距离和传输速率之间的关系。
2. 多径传播模型多径传播模型是用来描述信号在存在反射、折射和散射等现象时的传播过程。
在城市环境中,信号往往会经历多次反射和散射,导致信号的衰减和多路径效应。
多径传播模型使用复杂的数学模型来描述信号在非理想环境中的传播过程,例如瑞利衰落模型和莱斯衰落模型等。
3. 阻尼传播模型阻尼传播模型是指信号在通过物质时由于材料的吸收和散射而衰减的过程。
在具有一定厚度的物质介质中,信号在传播过程中会受到阻尼的影响,导致信号的衰减。
阻尼传播模型通过材料的介电常数和磁导率等参数来描述信号的衰减情况。
二、电磁信号传播模型在无线通信中的应用电磁信号传播模型在无线通信系统中有着广泛的应用。
以下将从无线信号覆盖、网络规划和资源分配三方面介绍电磁信号传播模型在无线通信中的应用。
1. 无线信号覆盖通过电磁信号传播模型,可以对无线信号的覆盖范围进行预测和优化。
无线通信系统的设计者可以利用传播模型确定基站的布放位置和天线高度,以实现最佳的覆盖效果。
在实际的网络规划中,可以根据传播模型预测信号的衰减和多路径效应,从而确定合适的基站密度和信号传输功率,以满足不同场景下的通信需求。
电磁环境仿真
战术训练通信电磁环境仿真研究摘要战场电磁环境对信息化条件下作战的影响日益显著,对战场电磁环境进行模拟仿真,为部队平常训练提供一种有效手段已成为军事训练中迫切需要解决的一个课题。
本课题旨在重点研究战术训练时如何定量地模拟通信电磁环境,建立电磁环境的计算模型。
为此,本文提出一种定量模拟战术训练所需的通信电磁环境的方法,其基本应用模式是把通信电磁环境拆分成波源模型、传播模型、背景噪声模型、地理因素影响模型、天气因素影响模型分别研究,最后合成构成通信电磁环境模型。
这种方法是在对战术训练通信电磁环境需求进行充分分析的基础上提出的一种量化式建模方法,具有适应性强、可扩展性强的特点,可用于指导部(分)队战术训练通信电磁环境构建。
本文应用MATLAB仿真工具对通信电磁环境进行仿真验证。
本文有效地构造电磁环境仿真模型。
经过验证,所构造的电磁环境符合电磁环境特性,并能基本满足战术训练需要。
关键词战术训练通信电磁环境模拟仿真ABSTRACTThe influence on war action which electromagnetic environment in Battlefield imposes is more notable under condition of information, so simulation for electromagnetic environment in battlefield for which can provide an effective way for troops common training has become a project which need to solve urgently in military training. The project aims to the research how to simulate communication electromagnetic environment quantitatively how to build calculation model of electromagnetic environment, and how to evaluate the construction electromagnetic environment reasonably. Therefore, this paper presents a method which can simulate the communication electromagnetic environment of armor mechanization forces (stacks) for tactical training quantitatively. In the method the basic idea is that divides the communication electromagnetic environment into waves model, propagation model, background noise model, geographical model and weather model firstly, then to research all the models, finally to synthesize the communication electromagnetic environment model from these models. This method is a quantitative way which is put forward on basis of the full demand analysis of communication electromagnetic environment tactical training. It has characteristics of high adaptability and scalability. It can guide the construction of communication electromagnetic environment for forces (stacks) tactical train.The constructive communication electromagnetic environment is verified in this paper by using MATLAB simulation tools. This paper construct simulation mode of electromagnetic environment effectively. After verification, the constructive electromagnetic environment has the electromagnetic environment characteristics, and it can meet the needs of armor mechanization (points) team tactical train.Keywords Tactical train; Communication electromagnetic environment; Simulation; Emulate第1章绪论1.1 选题背景及意义随着信息技术的飞速发展,信息战正日益引起各国军队的关注和重视,未来的战场必将是一个信息化的战场。
电磁波的产生和传播规律
电磁波的产生和传播规律电磁波是由电场和磁场交替变化而产生的一种能量传播现象。
它们以光速在真空或介质中传播,对人类的通信、生活和科学研究有着重要的意义。
本文将探讨电磁波的产生和传播规律,以便更好地理解这一现象。
一、产生环境与机制电磁波可以在多种环境中产生,最常见的就是电磁场中的运动电荷。
当电荷受到外界扰动或变化时,就会产生电场和磁场的变化,进而形成电磁波。
例如,当我们使用手机进行通话时,手机中的天线将电场和磁场变化转化为电磁波,从而传播到接收端。
在电磁波的产生机制中,振荡和加速运动是两个重要的因素。
当电荷进行周期性的振动运动时,会引起电场和磁场的周期性变化,从而产生一种频率和波长确定的电磁波。
而当电荷加速运动时,由于电流的存在,同样会产生电磁波。
这就是为什么无线电台产生电磁波的原因,电子在天线上进行快速加速运动,从而激发电磁波的辐射。
二、电磁波的传播规律电磁波的传播主要遵循麦克斯韦方程组和光学定律。
根据麦克斯韦方程组,电磁波遵循安培定律和法拉第电磁感应定律。
电场和磁场的变化源自于彼此之间的相互作用,它们的变化通过电磁波的形式传播。
电磁波在真空中传播的速度是恒定不变的,即光速。
根据光学定律,光速在各种介质中传播时会相应降低,这称为光的折射现象。
当电磁波从一种介质传播到另一种介质时,会发生折射和反射,这就产生了光的看到和色散现象。
电磁波除了在真空和介质中传播外,还可以发生衍射和干涉现象。
衍射是指电磁波在遇到障碍物或缝隙时发生弯曲和扩散。
干涉是指电磁波在遇到两个或多个波源时发生加强或抵消的现象。
这两种现象是由电磁波的波动性质所决定的,它们在光的传播和成像中具有重要作用。
三、应用领域与前景电磁波的产生和传播规律不仅仅是一种理论知识,也是人类社会中的关键技术基础。
通过对电磁波的深入研究,我们可以更好地应用于通信、雷达、医学成像和遥感等领域。
在通信领域,电磁波是无线信号传输的基础。
通过对电磁波的调制、解调和编码,我们可以实现无线电话、移动互联网和卫星通信等应用。
室内覆盖无线电波传播及模型
三、室内覆盖无线电波传播及模型(一)、室内覆盖模型的选用1、室内覆盖模型的选用下面进行室内模型的比较,如下表所示:表3-1 室内模型的比较上面介绍的Oku mura传播模型,对于室外覆盖预测应用较好,但不适合室内电波传播的预测,因为室内电波传播的特点是微小区,直射波。
在大厅内的传播更接近于自由空间的传播模型情况:Lm=32.45+20lgf+20lgd 式3.1.1根据公式,可计算出对应不同距离的损耗值如表3-2所示。
表3-2对应不同距离的损耗值一般情况室内分布系统天线口的辐射功率不大于17dBm,当综合考虑建筑物结构的衰耗,较多取13dBm,此时不同距离对应的场强值如下表3-3所示。
表3-3不同距离对应的场强值考虑到楼内多层之间的传播情况,加上传播环境的差异较大,因此也经常使用ITU推荐的室内传播模型进行设计。
其计算公式是:Lm=20lgf+Nlgd+L f(n)-28dB 式3.1.2式中:N——距离损耗系数;f——频率(MHz);d——距离;L f——楼层穿透损耗(dB);N——楼层数。
2、设计原则(1)、设计原则以最少的设备满足设计要求;(2)、不会因增加室内覆盖系统而影响整个网络的性能;(3)、兼容所有移动通信体制:CDMA800,GSM900,DCS1800,3G(2GHz 频段,增加新的系统简单方便;)(4)、使用寿命长,具有远程监控能力,管理维护方便;(5)、综合考虑性价比。
a根据现场实测和OMC统计,室内通话质量良好,无乒乓切换发生.b95%室内覆盖,保证在95%以上所需要室内覆盖的地区,不论空闲和通话状态用户占用室内信道。
c95%室内用户占用,保证95%以上的信道占用由室内用户产生。
并尽可能达到100%。
d无信号泄漏,保证室内信号不对室外网络产生干扰,室内信号在覆盖边界(如窗口)在保证室内通话基础上不会太强。
e环保性,保证室内信号在规定的最高电平以内,一般规定在人员经常停留地区最高信号接收电平不超过-25dBm。
电磁环境和电磁波传播模型概述
电磁环境和电磁波传播模型概述在现代社会,电磁波对人类生活和通讯起着至关重要的作用。
了解电磁环境和电磁波传播模型对于有效利用和管理电磁频谱资源至关重要。
本文将从电磁环境和电磁波传播模型的基本概念开始,深入探讨电磁波在不同环境下的传播特性,以及常见的电磁波传播模型和方法。
电磁环境的基本概念电磁环境是指周围存在的电磁场的总体情况,包括电场、磁场和电磁波。
电磁场是由电荷和电流产生的物理现象,具有能量传输和信息传输的功能。
电磁波是一种通过电磁场传播的能量波动,具有波长、频率和波速等特性。
在现代通信系统中,电磁环境是指通信设备与周围环境中其他电磁干扰源之间的电磁相互作用情况。
良好的电磁环境可以有效减少通信系统的干扰和损耗,提高通信质量和可靠性。
电磁波的传播特性电磁波在空间传播时会受到多种因素的影响,包括传播距离、传播介质、障碍物以及其他干扰源等。
常见的电磁波传播特性包括:•自由空间传播:电磁波在没有任何障碍物的自由空间中传播,遵循辐射公式和功率衰减规律。
•多路径传播:由于信号在传播途中可能遇到反射、折射、绕射等现象,导致信号到达接收端的路径不止一条,产生多径效应。
•多普勒效应:信号源或接收端相对运动导致频率的变化,产生多普勒频移现象。
•阴影效应:信号在传播途中受到障碍物阻挡而形成阴影区域,影响信号的接收质量和强度。
电磁波传播模型和方法为了更好地研究和分析电磁波在不同环境下的传播特性,人们提出了各种电磁波传播模型和方法。
常见的电磁波传播模型包括:•自由空间传播模型:基于辐射传播理论,适用于开阔的空间环境,如卫星通信和雷达系统。
•束缚传播模型:考虑建筑物和地形等障碍物对信号的影响,用于城市和室内通信系统设计。
•统计模型:通过对大量实测数据的统计分析,建立适用于特定地区或场景的电磁波传播模型。
除了模型建立外,还有一些常用的电磁波传播方法,如:•射线追踪法:通过追踪电磁波在空间中的传播路径,计算信号到达接收端的路径损耗和相位变化。
电磁波传播与环境的相互作用
电磁波传播与环境的相互作用电磁波是一种特殊的能量传播方式,广泛应用于通信、雷达、无线电等领域。
然而,电磁波的传播不仅仅局限于技术应用,它还与自然环境有着密切的相互作用。
本文将探讨电磁波在空气、水、地球表面及建筑物等环境中的传播特点以及对环境的可能影响。
1. 空气中的电磁波传播空气是电磁波传播的主要媒介之一,不同频率的电磁波在空气中传播具有不同特点。
无线电波是一种较长波长的电磁波,能够穿透大气层并传播到远处。
而较高频率的微波和红外线则容易与空气中的气体分子相互作用,导致较短的传播距离。
此外,空气中存在的水汽、氢氧化物和颗粒物等也会对电磁波的传播产生影响。
特别是雾、云、雨等天气条件下,水汽会对电磁波吸收和散射,导致信号衰减和多径效应的出现。
由于这种现象的存在,电磁波通信在恶劣天气条件下的可靠性会降低。
2. 水中的电磁波传播对于水中的电磁波传播,主要包括水面传播和水下传播两种情况。
在水面传播中,电磁波的传播受到海平面的反射和折射影响。
对于海洋雷达等应用,海面反射的信号可以提供目标信息。
而在水下传播中,由于水的折射率较大,导致电磁波传播速度变慢,同时衰减也较大。
这对于水声通信和水下勘探等应用来说是一个挑战。
通常采用的方法是在水下安装专门的传输设备,以弥补信号衰减和传播延迟。
3. 地球表面的电磁波传播地球表面包括陆地和海洋,电磁波的传播在这两种环境下也存在一些特殊情况。
例如,地球表面的地形和建筑物会对电磁波的传播产生阻隔和散射,影响通信信号的质量。
山脉、建筑物以及树木等都可能成为信号的障碍物,导致信号衰减和多径效应。
此外,地球表面的大气层中也存在电离层,它对电磁波的传播有一定的影响。
特别是对于较高频率的电磁波,电离层会产生反射和折射效应,使信号传播到更远的地方。
4. 建筑物对电磁波的影响在城市环境中,建筑物的存在对电磁波的传播会产生显著的影响。
高楼大厦可能会阻挡无线信号的传播,导致信号较弱或者无法到达某些区域。
电磁波传播特性理论与模拟研究
电磁波传播特性理论与模拟研究第一章电磁波传播基础电磁波是指在空间中传播的电场和磁场的振荡,常见的电磁波有微波、射频波、无线电波等。
电磁波具有一系列的特性,其中最重要的特性是传播特性。
电磁波的传播是指愈变愈弱地向周围传播,传播距离和功率的关系是指数函数关系,即功率随距离的平方增长。
电磁波的传播特性与频率、传播介质等因素密切相关。
第二章电磁波传输模型为了更好地研究电磁波的传播特性,科学家们建立了一系列的电磁波传输模型。
这些模型主要包括自由空间传输模型、满空间传输模型、地面传输模型、衰减模型等。
其中自由空间传输模型是最基本的模型,指的是在没有遇到任何障碍物的情况下,电磁波在空气中传播的模型。
满空间传输模型则是在介质中传播的模型,主要应用于射频和微波领域,其计算方法和自由空间传输模型相似。
地面传输模型主要应用于电台通信和雷达等领域,其计算方法不同于自由空间传输模型,需要考虑大地效应和建筑物等障碍物的影响。
衰减模型则是文献中颇为常见的一种模型,其主要用于计算信号的损耗,同时也是研究电磁波传播特性的一个重要模型。
第三章电磁波传输模拟随着在通信、雷达、无线电等领域的广泛应用,人们需要了解和模拟电磁波在特定环境下的传播特性。
为此,科学家们开发了一系列的电磁波传输模拟软件,涵盖多种模型和算法。
其中比较常见的电磁波传输模拟软件包括HFSS、CST、ADS等。
这些软件各自有其独特的特点和优势,可用于解决不同领域中的电磁波传输问题,如高频电路设计、天线设计、微波和毫米波电路等。
第四章电磁波传播仿真应用实例一些实际的应用案例可以帮助我们更好地理解电磁波传播特性的研究。
例如,在通信领域,考虑到城市建筑的影响,需要进行电磁波传播仿真,以研究无线电网络的性能。
在雷达领域,电磁波传播仿真可用于优化雷达天线方向图,提高雷达的探测距离和分辨率。
在高频电路设计中,模拟电磁波传输可以帮助设计师优化电路结构,提高电路的工作效率和稳定性。
第五章总结电磁波传播特性是电磁学中的核心问题之一,对研发新型电子元器件和无线通信技术具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
斜坡地形的修正因子Ksp
参数
倾角θm 收发天线间距d
(4)水陆混合地形修正因子
水陆混合地形: 区域中既有水面, 又有陆地 水陆混合地形 修正因子Ks(>0)
水域信号比陆地强 参数
5.室外传播模型
在室外的传播环境中,按照覆盖区域的不同,室外传播模型可以分为宏 蜂窝模型和微蜂窝模型。 在宏蜂窝场景中,基站发射功率可达到几十瓦特,蜂窝覆盖半径为几公 里至几十公里。 相比于宏蜂窝场景,微蜂窝覆盖范围小一些,一般为200米至1000米,基 站高度一般为3m至10m,发射功率一般为10mw至IW,所预测的区域 一般为市区街道等人口密集区域。 最常用的室外传播环境模型包括Okumura模型、Hata模型、车载传 播模型、双折线模型、Lee模型、Mallllattan传播模型、Berg模型、 Xia.H模型等。
水面位置位于 BTS侧/MS侧 水面距离与全距离比例 全距离d
6.室内传播模型
6.1室内无线环境特征 室内无线环境的特点是传输功率较小,覆盖距离更近,环境的变动更大。对于不同 的建筑物而言,室内布置、材料结构、建筑物尺度和应用类型等因素的变化更大, 这就使得传播环境产生了很大的差异。 即使在同一个建筑物的不同位置,其传播环境也不尽相同,甚至差别很大。例如, 信号电平很大程度上依赖于建筑物内的门是开还是关。不同材料制成的墙体和障碍 物对信号有不同的阻隔,因此路径损耗衰减指数变化也比较大,甚至建筑物窗口的 数量也影响楼层间的损耗。墙壁和地板的穿入损耗,根据建筑材料的不同而变化, 从轻质编织物的3dB,到混凝土砖块结构的13~20dB。 建筑物的内在结构会引起无线电波的反射、绕射、透射和散射,也就是引起发射信 号通过不止一条途径到达接收端,就是多径现象。
4.1直射
4.2反射
当电磁波遇到比其波长大得多的物体时,或者在不同介质交界处时,发生 反射。在理想介质表面上发生反射是没有能量损失的。但是实际中都是非 理想介质表面,故存在一定的能量损失。
发生反射时,入射射线、反射射线以及反射点都在同一个平面内,入射射 线与反射射线的夹角等于反射射线与反射点法线的夹角,这就是电磁波的 反射定理。
反射定理的基本原 理图
4.2反射
4.3绕射
绕射是指电磁波传播路径上,当尺寸相当大的障碍物产生遮挡 时,在障碍物背后的阴影区中产生电磁波。当入射射线遇到散 射体边界面的边缘、拐角、尖顶和凸曲面时,会产生一新的绕射 射线。在边缘绕射情况下,边缘绕射射线与边缘的夹角等于入射 射线与边缘的夹角。一条入射射线会激起无穷多条绕射射线,它 们都位于一个以绕射点为顶点的圆锥面上。圆锥轴就是绕射点 所在边缘的切线,圆锥的半顶角等于入射射线与边缘切线的夹角。
产生于粗糙表面、 小物体或其它不规 则物体
4.1直射
电磁波可以认为是自由空间内的传播,即在均匀的、所有方向 都可认为是无限大的理想电介质内的传播。对于自由空间内的 传播,在从源出发的任一给定方向上,超过某一由源尺寸和波 长决定的距离后,电磁波的每一矢量的大小均与离开源的距离 成反比。 直射波又称为空间波,是由发射点从空间直线传播到接收点的 无线电波。直射波传播距离一般限于视距范围。在传播过程中, 它的强度衰减较慢,超短波和微波通信就是利用直射波传播的。
5.1Okumura模型
相对于自由空间的传输损耗与频率和 距离之间的关系
5.1Okumura模型
奥村模型(Okumura)是最常用的传播模型,比较简单,分析起来比较方便,常用 于无线网络的设计中。 奥村模型得名于奥村,奥村在20世纪60年代测量了日本东京等地无线信号的传播特 性,根据测量数据得到了一些统计图表,用于对信号衰耗的估计。 奥村模型有一定的适用范围,例如,载波频率从150~2 000 MHz;离基站不能太近, 有效距离为1~100 km;天线高度要在30 m以上。
4.3绕射
一致性绕射理论基本原理图
4.4散射
当电磁波入射到宏观物体或微观电子上时,引起物体上的诱导 电荷和电流,或改变电子运动,从而向各个方向辐射电磁波, 这个过程叫做电磁波的散射。散射传播是由天线辐射出去的电 磁波投射到低空大气层或电离层中不均匀介质时产生散射,其 中一部分到达接收点。散射传播距离远,但是效率低,不易操 作,使用并不广泛。
5.1Okumura模型
Hata在奥村模型上做了改进,将统计图表转换为公式,这样计算信号衰耗就不必查 图表,非常方便,而且还适合计算机处理。尽管如此,这些公式仍然统称为奥村模 型。 在城市,奥村模型描述为以下的Hata公式: Lp = 69.55 + 26.16 lg f - 13.82 lg hb - a(hm) +(44.9 - 6.55 lg hb) lg d 式中,Lp对应路径损耗;f 代表载波频率;hb代表基站的等效高度;hm代表终端的 等效高度;d代表基站与终端之间的距离;a(hm) 是与终端有关的修正因子,当终 端的等效高度为1.5 m时a(hm) 被忽略。
无线信道环境
电波传播面临的是随时变化、复杂的无线信道 环境。
首先传播环境十分复杂,传播机理多种多样, 几乎包括了电波传播的所有过程,如直射,绕 射,反射,散射和透射等。
其次,由于移动台的移动性,传播参数随时变 化,引起接受场强,时延等参数的快速波动。
移动通信系统的无线传播主要是利用了电磁波的直达 波和反射波。 在设计移动通信系统或对移动通信系统的覆盖进行分 析时,研究电磁波的传播是非常重要的,这主要有以 下两个原因: 第一,用于计算不同覆盖小区的信号强度。在大多数 情况下,每个覆盖区域包括直达波和反射波。
室外传播模型
Hata模型
Okumura-Hata 模型 COST 231 Hata模型
CCIR模型
LEE模型 COST 231 Walfisch-Ikegami 模型
Байду номын сангаас
常用的 几种室 外电波 传播损 耗预测 模型
5.1Okumura模型
okumura模型是okumura等人根据在日本大量测试数据统计出的以曲线表 示的传播模型。该模型是预测城区信号时使用最广泛的模型。它以准平坦地 形大城市市区的中值场强或路径损耗为参考,对其他传播环境和地形条件等 因素分别以校正因子的形式进行修正。 Okumura等人的模型基于经验数据,这些数据源于在各种不规则地形和环 境分布下进行的详细的传播测试。这些结果以统计方法进行分析并合成为图 表。在城区准光滑地形下可以得到中值场强的基本预测结果。在开阔地带或 郊区都有可供使用的修正因子。其他的一些修正因子包括起伏的丘陵地貌, 孤立的山峰,混合的陆地海面路径,街道走向,一般的斜坡地貌等等,这使 得最终的预测结果接近于实际环境中的场强值。
电磁环境和电磁波传播模型
1.什么是电磁环境?
电磁环境是在特定区域内各种电子设备在该区域产 生的电磁波信息的总和。 空间电磁环境研究的主要内容是空间电磁辐射强度。
2.研究电磁环境对移动通信的意义?
在已知地形、地物、频率和收发天线的高度等数据的条件下,可利用这 些模型估算基站服务区内的场强分布。 在已知地形和地物的条件下,可以利用这些模型对移动通信网进行规划 与设计。 在对已部署的网络进行优化时,可以利用这些模型对网络的质量经行评 估,并对调整天线高度,天线倾斜角度和频率配置等参数所带来的影响 做出预测,从而为网络优化提供指导性意见。 无线传播环境决定了电波传播的损耗,然而由于电波传播环境极为复杂, 所以在研究建立电磁传播预测模型时,人们常常根据测试数据分析归纳 出基于不同环境的经验模型,在此基础上对模型进行校正,以使其更加 接近实际,更准确。
2 h sin i s exp 8
s
4.5透射
电磁波的透射也称为电磁波的折射,其原理与反射一 样都是发生在两种介质的交界处,只是反射的电磁波 返回原介质中,而透射的电磁波则进入到另一种介质 中。由于电磁波在两种介质中的传播速度不同,故在 两种介质的交界处传播方向发生改变,射线经过两次 透射后穿过墙体。
5.2.不规则地形修正因子
丘陵地修正因子 孤立山岳的修正因子 斜坡地形的修正因子
水陆混合地形修正因子
(1)丘陵地修正因子
32
丘陵地:连绵、起伏高度有限
33
丘陵地修正因子Kh 、微小修正因子Khf
参数:△h:自MS向发射BTS方向延伸10km范围内,地形起伏的90%与10%处的高 度差。 预测点靠近山峰处与山谷处衰耗不同,考虑微小修正因子Khf (近山峰处>0;近山谷 处<0) 在丘陵地预测时,须同时使用Kh和Khf
传播损耗和 弥散 阴影衰落 多径衰落 多普勒频移
3.电磁波传播公式
3.电磁波传播公式
4.电磁波的传播机制
电磁波最基本的五种传播机制为直射,反 射,绕射,散射和透射。
电波的传播机制
反射
阻挡体比传输波长 大的多的物体 产生多径衰落的主 要因素
基本电波 的传播机制
绕射
阻挡体为尖利边缘
散射
5.1Okumura模型
除了城市以外,奥村模型还分别针对郊区、农村和开阔地定义了相应的公式。 一般天线的高度为30 m,考虑到上行信号的频率为1.9 GHz,可以简化Hata公式中 上行信号损耗计算公式,为: Lp = A+35.2 lg d 其中,城市环境A为134.7,郊区环境A为127.5,农村环境A为115.4。 同样地,考虑到下行信号的频率为2.1 GHz,可以简化Hata公式中下行信号损耗计 算公式,为:
Lp = A+35.2 lg d
其中,城市环境A为135.8,郊区环境A为128.6,农村环境A为116.5。