平面向量的基本概念
平面向量知识点总结(精华)
必修4 平面向量知识点小结一、向量的基本概念1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示 .注意:不能说向量就是有向线段,为什么?提示:向量可以平移.举例 1 已知A(1,2),B(4,2),则把向量u A u B ur按向量a r( 1,3)平移后得到的向量是. 结果:(3,0)2.零向量:长度为 0 的向量叫零向量,记作:0r,规定:零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与u A uu B r共线uuur的单位向量是u A u B ur );| AB|4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;5.平行向量(也叫共线向量):方向相同或相反的非零向量a r、b r叫做平行向量,记作:a r∥b r,规定:零向量和任何向量平行 . 注:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有r0);④三点A、B、C 共线u A uu B r、u A u C ur共线.6.相反向量:长度相等方向相反的向量叫做相反向量 . a r的相反向量记作a r.举例 2 如下列命题:(1)若|a r | |b r | ,则a r b r. (2)两个向量相等的充要条件是它们的起点相同,终点相同 . (3)若u A u B uru D u C u r,则ABCD是平行四边形 .(4)若ABCD是平行四边形,则u A uu B r u D u C uur.(5)若a r b r,b r c r,则a r c r.(6)若a r / /b r,b r / /c r则a r / /c r.其中正确的是. 结果:(4)(5)二、向量的表示方法1.几何表示:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;2. 符号表示 :用一个小写的英文字母来表示,如 a r ,b r , c r 等;3. 坐标表示 :在平面内建立直角坐标系,以与 x 轴、 y 轴方向相同 的两个单位向量 i r , r j 为基底,则平面内的任一向量 a r 可表示为 a r xi r y r j (x, y ) ,称 ( x, y )为向量 a r 的坐标, a r (x, y )叫做向量 a r 的坐标表示 .结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标 相同.三、平面向量的基本定理定理 设e r 1,e r 2同一平面内的一组基底向量, a r 是该平面内任一向量, 则存在唯一实数对 ( 1, 2),使 a r 1e r 1 2e r 2.1)定理核心: a rλ1e r 1 λ2er 2;(2)从左向右看,是对向量 a r的分解,且表达式唯一;反之,是对向量 a r的合成 .(3)向量的正交分解:当 e r 1,e r 2时,就说 a r λ1r e 1 λ2r e 2为对向量 a r的正交分 解.举例 3 (1)若 a r(1,1), b r(1, 1), c r( 1,2) ,则 c r. 结果:1r 3 r a b.22(2)下列向量组中, 能作为平面内所有向量基底的是 B A. e r 1(0,0) , e r 2(1, 2) B. r e 1( 1,2) , e r 2(5,7) C. r e 1(3,5) , e r 2(6,10)(1)模:| a r | | | |a r |;(2)方向:当 0时, a r 的方向与 a r 的方向相同,当D. e r 1(2, 3) , 1, 3 ,24(3)已知u A u D ur ,u B u E ur分别是 可用向量 a r,b r表示为 . (4)已知 △ABC 中,点 值是 . 结果: 0 四、实数与向量的积 实数 与向量 a r 的积是 下: △ABC 的边 BC ,AC 上的中线 ,且 u A u D ura r4r a2果 结上 边B u u r Bu u u u ru u ru u u u r C u 的u u r u u 个向量,记作 a r ,它的长度和方向规定如方向与a r的方向相反,当0时,a r r0,注意:a r 0.五、平面向量的数量积1. 两个向量的夹角:对于非零向量a r,b r,)称为向量a r,b r的夹角. uuur r作OAa r,u ru u把r bAOB (0当 0时, a r , b r 同向;当 时, a r , b r 反向;当 2时,a r ,b r 垂直. 2. 平面向量的数量积 :如果两个非零向量 a r , b r ,它们的夹角为 , 我们把数量 | a r || b r | cos 叫做 a r 与b r 的数量积(或内积或点积) ,记作: a r b r , 即 a r b r |a r | |b r |cos .规定:零向量与任一向量的数量积是 0. 注:数量积是一个实数,不再是一个向量 举例 4(1)△ ABC 中,| u A uu B r| 3 ,|u A uu C r| 4 ,|u B u C ur| 5 ,则 9.uuur uuur AB BC果:结果:2)已知a r1,21,b r0, 12,c ra rkb r,d ra rb r,c r与d r的夹角为 4,则k1. 3)已知 |a r| 2,|b r| 5, a rb r3,则 |a rb r| ___ . 结果: 23. 4)已知 ra, rb 是两个非零向量,且| a r| |b r| |a rb r|,则a r与a rb r的夹角为 30o . 结果: 3.向量b r 在向量 a r上的投影: |b r | cos ,它是一个实数,但不一定大于 0. 举例 5 已知|a r| 3,|b r| 5,且 a rb r12 ,则向量 a r在向量 b r上的投影为 ___ . 结果: 152.54. a r b r 的几何意义 :数量积 a r b r 等于a r 的模|a r |与b r 在a r 上的投影的积 .5. 向量数量积的性质 :设两个非零向量 a r , ( 1) a r b a r b 0 ; (2)当 a r 、 b 同向时, a r b |a r | |b|,特别地, a r b r |a r | | b r |是a r 、 b r同向的充要分条件 ; 当a r 、 b r 反向时, a r b r |a r | |b r |,a r b r |a r | 件; 当 为锐角时, a r b r 0,且 a r 、b r 不同向, 充分条件 ; 当 为钝角时, a r b r 0 ,且 a r 、 b r 不反向; 充分条件 .(3)非零向量 a r , b r 夹角b r ,其夹角为 ,则:a r 2|b r |是a r 、 b r 反向的充要分条 ab ab 的计算公式: cos 0 是 为锐角的 必要不 0 是 为钝角的 必要不 | a r a ||b b r | ;④ a r b r |a r ||b r | . 举例 6 取值范1)已知 a r( ,2 ) , b r(3 ,2) ,如果 a r与b r的夹角为锐角,则 的 3或 0且 3;(2)已知△OFQ 的面积为 S ,且u O u F ur u F u Q ur 1,若12 S 23,则u O u F ur, u F u Q ur夹角的 取值范围是 _____ . 结果: 4, 3;43①用 k 表示 a rb r;②求 a rb r的最小值,并求此时 a r与b r的夹角 的大小. 结果:① a rb r k 4k 1(k 0) ;②最小值为 12, 60o. 六、向量的运算1. 几何运算 (1)向量加法运算法则:①平行四边形法则;②三角形法则 . r 运算形式:若 u A uu B r a r , u B uu C r b r ,则向量u A uu C r 叫做 a r与b 的和,即 r r uuur uuur uuur a b AB BC AC ;作图:略 . 注:平行四边形法则只适用于不共线的向量 .(2)向量的减法 运算法则:三角形法则 . 运算形式:若 u A uu B r a r , u A u C ur b r ,则 a r b r u A u B ur u A uu C r C uu A ur ,即由减向量的终 点指向被减向量的终点 .作图:略 .注:减向量与被减向量的起点相同 .举例 7( 1)化简:①u A u B uru B u C urC uuD ur;② u A uu B ru A u D uru D uu C ur;③uuur uuur uuur uuur uuur uuur r (AB CD) (AC BD) . 结果:① AD ;② CB ;③ 0;(2)若正方形 ABCD 的边长为 1,u A u B ura r,u B u C urb r,u A u C ur rc ,则 |a rb rc r|.结果: 2 2 ;(3)若O 是△ABC 所在平面内一点,且满足 O uu B urO uu C ur u O u B urO uu C ur2u O u A ur,则△ABC 的 形状为 . 结果:直角三角形;( 4)若 D 为 △ ABC 的边 BC 的中点, △ ABC 所在平面内有一点 P ,满足 u P u A ur u B u P urC uu P ur r0,设 || u u PAu u DuP ur r || ,则 的值为 . 结果:2;(5)若点O 是 △ABC 的外心,且 u O u A ur u O uu B r u C uu O r r0 ,则△ABC 的内角 C 为 . 结果: 120o.2. 坐标运算 :设 a r (x 1,y 1) ,b (x 2,y 2) ,则(1)向量的加减法运算 :a r b (x 1 x 2,y 1 y 2),a r b (x 1 x 2,y 1 y 2) . 举例 8 (1)已知3)已知 a r(cos x,sin x) , rb (cos y,sin y) ,且满足 |k ra b | 3|a rkb|其中 k 0 )点A(2,3) ,B(5,4) ,C(7,10) ,若u A uu P r u A uu B ru A uu C r( R) ,则当 ______ 时,点P在第一、三象限的角平分线上 . 结果:21;(2)已知 A(2,3) , B(1,4) ,且21 u A u B ur (sin x,cos y), x, y ( 2,2),则 x y . 结 果: 6 或2;(3)已知作用在点 A(1,1)的三个力 F 1(3,4) ,F 2(2, 5) , F 3(3,1) ,则合力 F u r u Fur 1u F ur 2 u F ur 3的终点坐标是 . 结果: (9,1) .(2)实数与向量的积 : a r (x 1,y 1) ( x 1, y 1).(3)若 A(x 1, y 1) , B(x 2, y 2) ,则 u A u B ur (x 2 x 1,y 2 y 1) ,即一个向量的坐标等 于表示这个向量的有向线段的终点坐标减去起点坐标 .举例 9 设A(2,3) , B( 1,5) ,且 u A uu C r 13u A u B ur, u A u D ur 3u A u B ur,则 C,D 的坐标分别是3举例 10 已知向量 a r(sin x,cos x ) , b (sin x ,sin x) , c r( 1,0) .(1)若 x 3,求向量 a r、 c r的夹角;3(2)若x [38 , 4],函数 f(x) a rb r的最大值为 12,求 的值.结果:(1)150o;8 4 22) 21或 2 1.5)向量的模 : a r2 |a r |2 x 2 y 2 |a r | x 2 y 2 . 举例 11 已知 a r ,b r 均为单位向量,它们的夹角为 . 结果: 13 .位向量,则 P 点斜坐标为 (x,y) .1)若点 P 的斜坐标为 (2, 2) ,求 P 到 O 的距离 |PO| ;2)求以O 为圆心, 1为半径的圆在斜坐标系 xOy 中的方程.结果:( 1) 2;(2) x 2y 2xy 1 0 . 七、向量的运算律 1. 交换律: a r 2. 结合律: a r 3. 分配律: ( r b rr arr a)r b rr a r a rr a r c )r br b r( r b r b( r ar ) r b r r a(r r 举例 13 给出下列命题:ar (b c r ) a r b a r c r a r (b c r ) (a r b) c r结果: (1,131),( 7,9).4)平面向量数量积yxx r b60o,那么 |a r3b r|6)两点间的距离 :若 A(x 1, y 1) , B(x 2,y 2),则|AB| (x 2 x 1)2 (y 2 y 1)2 . 举例 12 如图,在平面斜坐标系 于斜坐标系 的斜坐标是这样定义的:若 u O u P urxe r 1方向的单 xOy 中, xOy 60o,平y 面上任一点 P关ye r 2,其中 e r 1,e r 2分别为60o与 x 轴、④ 若a rb r0,则 a r0r或b r r0;⑤若 a r b r c rb r则a r c r;⑥ |a r |2 a r 2;⑦ ar a r2bb a r ; ⑧ (a rb r )2 a r 2 b r 2;⑨ (a rb r )2 a r 22a rb rb r 2. 其中正确的是 . 结果:①⑥⑨ . 说明:(1)向量运算和实数运算有类似的地方也有区别:对于一个 向量等式, 可以移项,两边平方、两边同乘以一个实数, 两边同时取模, 两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一 个向量,切记两向量不能相除 ( 相约) ; (2)向量的“乘法”不满足结合律,即 八、向量平行 (共线) 的充要条件 a r //b a r b (a r b)2 (|a r ||b|)2 举例 14 (1) 若向量 a r (x,1) , 相同. 结果: 2. ( 2)已知 a r (1,1) ,b (4,x) ,u r果:4. uuur uuur (3)设 PA ( k,12) , PB (4,5) , 果: 2 或 11. 九、向量垂直的充要条件0. (4,x) ,当 x x 1 y 2 y 1 x 2r br br rrb ar r 2b , uu urPC r v ar (b c r) (a rb) c r,为什么? 时, a r 与b r共线且方向 2a r b ,且 u r //v r,则 x(10, k) , 则k时, A,B,C 共线 . y 1 y 2 0.|AB AC AB AC特别地 uuur uuuruuur uuur .|AB | |AC | |AB | | AC |举例 15 (1)已知 u O u A ur( 1,2) ,O uu B ur(3,m) , (2)以原点 O 和 A(4,2)为两个顶点作等腰直角三角形 B 的坐标是 .结果: (1,3) 或( 3,-1)); (3)已知 n r(a,b)向量 n rm r,且|n r| |m r| ,则m r的坐标是 ( b,a) . 十、线段的定比分点1. 定义:设点 P 是直线 P 1P 2上异于 P 1、 P 2的任意一点,若存在一个实 数 ,使 u P u 1P ur u P u P ur 2 ,则实数 叫做点 P 分有向线段 P 1P 2 所成的比 , P 点叫 做有向线段 u P u 1u P ur 2的以定比为 的定比分点 . 2. 的符号与分点 P 的位置之间的关系 (1) P 内分线段 P 1P 2 ,即点P 在线段 P 1P 2上 0; (2) P 外分线段 u P u 1u P u 2r 时,①点 P 在线段 P 1P 2的延长线上 P 在线段 P 1P 2的反向延长线上 1 0.x 1x 2 uuuruuur uuur 若OA OB ,则 m. 结果: OAB , B 90 ,则点 32; 结果: (b, a)或1,②点比为 1.举例 16 若点 P 分u A u B ur所成的比为 43,则 A 分u B u P ur所成的比为 .结果: 73.33. 线段的定比分点坐标公式 :设 P 1(x 1, y 1) , P 2( x 2, y 2) ,点P(x, y)分有向线段 u P u 1u P u 2r 所成的比为 ,则定比分x 1 x 21 y 1 y 2x 1时,就得到线段 P 1P 2的中点坐标公式y说明:(1) 的意义,即分别为分点,起点,终点的坐标 . (2)在具体计算时应根据题设条件,灵活地确定起点,分点和 终点,并根据这些点确定对应的定比举例 17 (1)若 M( 3, 2) ,N(6, 1),且 结果: ( 6, 37) ;3(2)已知 A(a,0) , B(3,2 a),直线 y 1ax 与线段 AB 交于M ,且u A u M uur 2u M uu B ur,则 a r. 结果:2或 4 .十一、平移公式如果点 P(x,y)按向量 a r (h,k) 平移至 P(x,y) ,则 x x h,;曲线 f(x,y) 0按 y y k.向量 a r (h,k) 平移得曲线 f(x h,y k) 0.说明:( 1)函数按向量平移与平常“左加右减”有何联系?( 2) 向量平移具有坐标不变性,可别忘了啊!举例 18 (1)按向量 a r 把(2, 3)平移到(1, 2) ,则按向量 a r把点( 7,2)平 移到点 ________ . 结果: ( 8,3) ;(2)函数 y sin 2x 的图象按向量 a r平移后,所得函数的解析式是点坐标公式为特别地,当1).x 1 x 2 , 2 y 1 y 2 .2 在使用定比分点的坐标公式时, 应明确 (x,y) ,(x 1,y 1)、(x 2,y 2)13uM uuN ur,则点 P 的坐标为 uuu ury cos2x 1 ,则a r _________ . 结果:( ,1) .4 十二、向量中一些常用的结论1. 一个封闭图形首尾连接而成的向量和为零向量,要注意运用;2.模的性质:|a r| |b r| |a r b r| |a r| |b r|.(1)右边等号成立条件: (2)左边等号成立条件: (3)当 a r 、b r 不共线 |a r | 3. 三角形重心公式在 △ABC 中,若 A(x 1, y 1) , B(x 2,y 2) , C(x 3,y 3) ,则其重 心的 坐标为举例 19 若△ABC 的三边的中点分别为 心的坐标为 . 结果: 32,34.335. 三角形“三心”的向量表示G 为△ ABC 的重心,特别地 u P uu A r u P u Bur u P u C ur 0r G为△ ABC 的重心 .uuur uuur uuur uuur uuur uuur(2)PA PB PB PC PC PA P 为△ ABC 的垂心 .uuuur uuur uuuur uuur uuuur uuur( 3 ) |AB|PC |BC|PA |CA|PB 0 P 为 △ ABC 的 内 心 ; 向 量 uuur uuur uu A u B ur uu A u C ur ( 0)所在直线过 △ ABC 的内心. |AB | | AC |6.点 P 分有向线段 u P 1uu P ur 2所成的比 向量形式设点 P 分有向线段 P 1P 2所成的比为 ,若 M 为平面内的任一点,则 uuuur uuuur uuuur uuuur u M uu P r MP 1MP 2,特别地 P 为有向线段 u P u 1u P ur 2的中点 u M uu P r MP 1MP 2. 127. 向 量 u P u A ur ,u P u B ur ,u P u C ur 中三终 点 A,B,C 共线 存 在实数 , ,使得 uuuruuur uuur PA PB PC 且1.举例 20 平面直角坐标系中, O 为坐标原点,已知两点 A(3,1) ,B( 1,3), 若点 C满足 OC 1OA 2OB ,其中 1, 2R 且 1 21, 则点 C 的轨迹是 . 结 果:直线 AB .a r 、b 同向或a r 、b a r 、b r 反向或r rr rrG(x 1 x 2 x 3 3y 1y 2y 3 ) 3)A(2,1) 、B( 3,4)、C( 1, 1),则 △ ABC 的重 uuur 1 uuur uuur uuur1) PG (PA PB PC)r。
平面向量的解析几何应用
平面向量的解析几何应用平面向量是解析几何中一个重要的概念,它在几何学中有着广泛的应用。
本文将介绍平面向量的基本概念及其在解析几何中的应用。
一、平面向量的基本概念平面向量是指在平面内用有向线段表示的量。
它具有大小和方向两个重要的特征。
平面向量常用字母加上箭头进行表示,例如向量a用符号→a表示。
平面向量有一系列常用的运算,包括加法、减法、数乘和点乘等。
其中,向量的加法和减法可以通过平行四边形法则进行计算,数乘则是将向量与一个标量相乘,点乘则是两个向量相乘并求和的运算。
二、平面向量的坐标表示平面向量也可以用坐标进行表示。
通常情况下,我们将平面上的一个点的坐标表示为(x, y),那么该点对应的平面向量可以表示为(→a) = (x, y)。
在平面直角坐标系中,平面向量还可以用分量表示。
例如,向量→a可以表示为(→a) = a1i + a2j,其中a1和a2分别是向量在x轴和y 轴上的分量,i和j分别是x轴和y轴的单位向量。
三、1. 向量的位移平面向量的位移是指描述一个点从一个位置移动到另一个位置的向量。
我们可以利用平面向量的减法来计算两个点之间的位移向量。
2. 向量的共线与共面如果两个向量的方向相同或相反,则它们是共线的;如果三个向量在同一平面上,则它们是共面的。
通过判断向量的共线关系和共面关系,我们可以解决许多几何问题,例如判断三点是否共线等。
3. 向量的垂直关系两个向量垂直的条件是它们的点积等于零。
通过应用向量的点乘运算,我们可以判断两个向量是否垂直。
4. 向量的投影平面向量的投影指的是将一个向量投影到另一个向量上的过程。
通过计算向量的投影,我们可以解决直角三角形的问题,例如计算角度、长度等。
5. 三角形的面积三角形的面积可以通过平面向量的叉乘运算来计算。
通过计算三个顶点所对应的向量的叉乘,我们可以得到三角形的面积。
6. 直线和平面的关系平面向量可以用来描述直线和平面的关系。
例如,我们可以用平面向量表示直线的方向,利用向量运算来判断两个直线是否平行或垂直,以及直线和平面的交点等。
2020年高一下学期第1讲:平面向量的基本概念与线性运算(含解析)
4若两个向量相等,则它们的起点和终点分另重合;
5若a//b,b//c,则a//C.
A.0个B.1个C.2个D.3个
2.下列命题中,正确的是()
a.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点总是一平行四边形的四个顶点
十、十muruur r
和0A交于E,设AB占,AO b
(1)用向量a与b表示向量Oc,CD;
…uuumu,亠
(2)若OE OA,求实数的值.
26.如图,已知ABC的面积为14,D、E分别为边AB、BC上的点,且AD:DB BE:EC2:1,AE
(1)求及;
rr uuu
(2)用aLeabharlann b表示BP;(3)求PAC的面积.
动点
uuu
P满足OP
uur
OA
uuur
/AB
(uuu
|AB|
uuur
AC、
-uuu^),
|AC|
[0,),则P的轨迹一定通过
ABC的()
A.外心
B.内心
C.重心
D.垂心
1 2.如图,四边形ABCD是正方形,
延长CD至E,
使得
DE CD.若动点P从点A出发,沿正方形
A点,其中
UUU
AP
UUL
AB
AE,下列判断正确的是()
3
|CB|,
若
AB BC,贝U(
)
2
2
5
5
A .-
B .-
C.
D.
3
3
3
3
5.已知|a11,
rrr
高中数学平面向量知识点总结
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算 1向量的概念:①向量:既有大小又有方向的量向量一般用c b a,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a;坐标表示法),(y x yj xi a向量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a|向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行零向量a =0 |a|=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别)③单位向量:模为1个单位长度的向量向量0a 为单位向量 |0a|=1④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a大小相等,方向相同),(),(2211y x y x 2121y y x x2向量加法求两个向量和的运算叫做向量的加法设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u ur u u u r =AC u u u r(1)a a a 00;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u rL ,但这时必须“首尾相连”.3向量的减法① 相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a,零向量的相反向量仍是零向量关于相反向量有: (i ))(a =a ; (ii) a +(a )=(a )+a =0;(iii)若a 、b是互为相反向量,则a =b ,b =a ,a +b =0②向量减法:向量a 加上b 的相反向量叫做a 与b的差, 记作:)(b a b a求两个向量差的运算,叫做向量的减法③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)4实数与向量的积:①实数λ与向量a 的积是一个向量,记作λa,它的长度与方向规定如下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a的方向相反;当0 时,0a ,方向是任意的②数乘向量满足交换律、结合律与分配律 5两个向量共线定理:向量b 与非零向量a共线 有且只有一个实数 ,使得b =a6平面向量的基本定理:如果21,e e是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 7 特别注意:(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件 (3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点例1 给出下列命题:① 若|a r |=|b r |,则a r =b r;② 若A ,B ,C ,D 是不共线的四点,则AB DC u u u r u u u r是四边形ABCD 为平行四边形的充要条件;③ 若a r =b r ,b r =c r ,则a r =c r ,④a r =b r 的充要条件是|a r |=|b r |且a r //b r;⑤ 若a r //b r ,b r //c r ,则a r //c r ,解:①不正确.两个向量的长度相等,但它们的方向不一定相同.② 正确.∵ AB DC u u u r u u u r ,∴ ||||AB DC u u u r u u u r且//AB DC u u u r u u u r ,又 A ,B ,C ,D 是不共线的四点,∴ 四边形 ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则,//AB DC u u u r u u u r 且||||AB DC u u u r u u u r,因此,AB DC u u u r u u u r.③ 正确.∵ a r =b r ,∴ a r ,b r的长度相等且方向相同;又b r =c r ,∴ b r ,c r的长度相等且方向相同,∴ a r ,c r 的长度相等且方向相同,故a r =c r .④ 不正确.当a r //b r 且方向相反时,即使|a r |=|b r |,也不能得到a r =b r,故|a r |=|b r |且a r //b r 不是a r =b r的充要条件,而是必要不充分条件. ⑤ 不正确.考虑b r =0r这种特殊情况.综上所述,正确命题的序号是②③.点评:本例主要复习向量的基本概念.向量的基本概念较多,因而容易遗忘.为此,复习一方面要构建良好的知识结构,另一方面要善于与物理中、生活中的模型进行类比和联想.例2 设A 、B 、C 、D 、O 是平面上的任意五点,试化简: ①AB BC CD u u u r u u u r u u u r ,②DB AC BD u u u r u u u r u u u r ③OA OC OB CO u u u r u u u r u u u r u u u r解:①原式= ()AB BC CD AC CD AD u u u r u u u r u u u r u u u r u u u r u u u r②原式= ()0DB BD AC AC AC u u u r u u u r u u u r r u u u r u u u r③原式= ()()()0OB OA OC CO AB OC CO AB AB u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r r u u u r例3设非零向量a r 、b r 不共线,c r =k a r +b r ,d r =a r +k b r (k R),若c r∥d r ,试求k解:∵c r∥d r∴由向量共线的充要条件得:c r=λd r (λ R) 即 k a r +b r =λ(a r +k b r ) ∴(k λ) a r+ (1 λk ) b r = 0r又∵a r 、b r不共线∴由平面向量的基本定理 1010k k k二.平面向量的坐标表示1平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j r r 作为基底由平面向量的基本定理知,该平面内的任一向量a r可表示成a xi yj r r r ,由于a r 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a r的坐标,记作a r =(x,y),其中x 叫作a r在x 轴上的坐标,y 叫做在y 轴上的坐标(1)相等的向量坐标相同,坐标相同的向量是相等的向量(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y rr(2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r(3) 若a r =(x,y),则 a r=( x, y)(4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5) 若 1122,,,a x y b x y r r ,则1212a b x x y y rr若a b rr ,则02121 y y x x3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算运算类型几何方法 坐标方法 运算性质向 量 的 加 法1平行四边形法则 2三角形法则 1212(,)a b x x y y r r a b b a)()(c b a c b aAB BC AC u u u r u u u r u u u r向 量 的 减 法 三角形法则 1212(,)a b x x y y rr )(b a b aAB BA u u u r u u u r OB OA AB u u u r u u u r u u u r向 量 的 乘 法a是一个向量,满足:>0时,a 与a同向;<0时,a 与a异向;=0时, a =0),(y x a a a)()(a a a)( b a b a )(a ∥b a b向 量的 数量 积b a•是一个数 0 a 或0b 时, b a•=0 0 a 且0 b 时,•b a b a b a,cos |||| 1212a b x x y y • rra b b a • •)()()(b a b a b a • • • c b c a c b a • • • )(22||a a ,22||y x a||||||b a b a •例1 已知向量(1,2),(,1),2a b x u a b r r r r r ,2v a b rr r ,且//u v r r ,求实数x 的值解:因为(1,2),(,1),2a b x u a b r r r r r,2v a b r r r所以(1,2)2(,1)(21,4)u x x r ,2(1,2)(,1)(2,3)v x x r又因为//u v r r所以3(21)4(2)0x x ,即105x解得12x例2已知点)6,2(),4,4(),0,4(C B A ,试用向量方法求直线AC 和OB (O 为坐标原点)交点P 的坐标解:设(,)P x y ,则(,),(4,)OP x y AP x y u u u r u u u r因为P 是AC 与OB 的交点所以P 在直线AC 上,也在直线OB 上即得//,//OP OB AP AC u u u r u u u r u u u r u u u r由点)6,2(),4,4(),0,4(C B A 得,(2,6),(4,4)AC OB u u u r u u u r得方程组6(4)20440x y x y解之得33x y故直线AC 与OB 的交点P 的坐标为(3,3)三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a r 与b r ,它们的夹角为 ,则a r ·b r =︱a r︱·︱b r ︱cos叫做a r 与b r的数量积(或内积) 规定0a r r2向量的投影:︱b r ︱cos =||a ba r r r ∈R ,称为向量b r 在a r 方向上的投影投影的绝对值称为射影3数量积的几何意义: a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r5乘法公式成立: 2222a b a b a b a b r r r r r r r r ;2222a b a a b br r r r r r 222a a b b r r r r6平面向量数量积的运算律:①交换律成立:a b b a r r r r②对实数的结合律成立:a b a b a b R r r r r r r③分配律成立: a b c a c b c r r r r r r r c a b rr r特别注意:(1)结合律不成立: a b c a b c r r r r r r;(2)消去律不成立a b a cr r r r 不能得到b c r r(3)a b r r =0不能得到a r =0r或b r =0r7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y r r,则a r ·b r =1212x x y y8a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800 )叫做向量a r 与b r的夹角cos =cos ,a ba b a b • •r r r r r r =当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r 与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r ⊥b r10两个非零向量垂直的充要条件: a ⊥b a ·b=O 2121 y y x x 平面向量数量积的性质例1 判断下列各命题正确与否:(1)00a r;(2)00a r r ;(3)若0,a a b a c r r r r r,则b c r r ;⑷若a b a c r r r r ,则b c r r 当且仅当0a rr 时成立; (5)()()a b c a b c r r r r r r 对任意,,a b c r r r向量都成立;(6)对任意向量a r,有22a a r r解:⑴错; ⑵对; ⑶错; ⑷错; ⑸ 错;⑹对例2已知两单位向量a r 与b r 的夹角为0120,若2,3c a b d b a r r r r r r ,试求c r 与d r的夹角解:由题意,1a b r r ,且a r 与b r的夹角为0120,所以,01cos1202a b a b r r r r ,2c c c r r rQ (2)(2)a b a b r r r r 22447a a b b r r r r ,c r同理可得d r而c d r r 2217(2)(3)7322a b b a a b b a r r r r r r r r ,设 为c r与d r 的夹角, 则1829117137217cos1829117arccos点评:向量的模的求法和向量间的乘法计算可见一斑例3 已知 4,3a r, 1,2b r ,,m a b r r r 2n a b r r r ,按下列条件求实数的值(1)m n r r ;(2)//m n r r;(3)m n r r 解: 4,32,m a b r r r 27,8n a b rr r (1)m n r r 082374 952;(2)//m n r r 072384 21 ;(3)m n r r 088458723422222点评:此例展示了向量在坐标形式下的基本运算。
§5-1 平面向量的基本概念
2
.
0
•
x
P ( x1 , y1 )
[举例说明 举例说明] 举例说明
如已知A(2,),B(3,),则 : 6 8 AB =
(3 − 2) + (8 − 6)
2
2
= 5 ; BA =
(2 − 3) + (6 − 8)
2
2
= 5.
[向量的模的计算] 向量的模的计算]
例2:已知平面直角坐标系中,点M(-1,7), 已知平面直角坐标系中, MN 点N(5,-10)求: MN. 10) 解:由两点间的距离公式得: 由两点间的距离公式得:
3、向量的平行与相等 两个向量的方向相同或相反叫做两个向量平行; 两个向量的方向相同或相反叫做两个向量平行; 两个向量的方向相同且模相等叫做两个向量相等. 两个向量的方向相同且模相等叫做两个向量相等. 4、把与 AB 的模相等且方向相反的向量叫做 AB 的 、 负向量:记作- 负向量:记作-BA. ∴AB=-BA . - 5、长度为 0 的向量叫做零向量:零向量方向不确定 、 的向量叫做零向量:零向量方向不确定. 叫做零向量 6、向量的模的计算:即,平面直角坐标系中两点间 向量的模的计算: 的距离公式. 的距离公式.
. P(1,3)
A(0,1)
0
x
(2)∵向量长度就是向量的模, ) 向量长度就是向量的模 的长度就是|AP|,即: ∴AP的长度就是 的长度就是 , |AP|= (1 − 0) 2 + (3 − 1) 2 = 5 ;|0P| = 12 + 32 = 10 .
uuu r PQ 例5: 是以二次函数y = 2 x 2 + 1图象上的顶点P为 uuu r 始点、Q为终点的向量,且 PQ = 2,求Q的坐标。
平面向量知识点梳理
平面向量知识点梳理第一篇:一、平面向量的基本概念及表示方法1. 平面向量的定义:平面向量是具有大小和方向的量,用箭头表示。
2. 平面向量的表示方法:平面向量通常用有向线段来表示,线段的长度表示向量的大小,箭头的方向表示向量的方向。
二、平面向量的运算法则1. 向量的加法:将两个向量的起点放在一起,然后将两个箭头相连,连接结果的箭头即为两个向量相加的结果。
2. 向量的减法:将两个向量的起点放在一起,然后将第二个向量取反,再按向量加法的法则进行运算。
3. 向量的数乘:将向量的长度与一个数相乘,结果的方向保持不变,只改变了大小。
三、平面向量的性质1. 平面向量的相等:两个向量的大小和方向完全相同,则它们是相等的。
2. 平面向量的负向量:具有相同大小但方向相反的向量称为原向量的负向量。
3. 平面向量的数量积:两个向量的数量积等于两个向量的模长的乘积与它们夹角的余弦值的乘积。
4. 平面向量的夹角:两个向量的夹角是一个锐角,它与它们的余弦值有关。
5. 平面向量的线性相关与线性无关:若存在不全为零的实数使得向量的线性组合等于零向量,则称这些向量线性相关;否则称这些向量线性无关。
四、平面向量的坐标表示1. 平面向量的坐标表示方法:平面向量可以用有序数对或者列向量来表示。
2. 平面向量的坐标运算:平面向量的加法、减法和数乘运算可以通过对应元素之间的运算来进行。
五、平面向量的标准表示1. 平面向量的标准表示方法:平面向量可以表示为单位向量与它的长度的乘积。
2. 平面向量的标准化:将向量除以它的模长,使其成为单位向量。
六、平面向量的数量积1. 平面向量的数量积的计算:将两个向量的对应坐标相乘,再将相乘结果相加。
2. 平面向量的数量积与夹角:两个向量的数量积等于它们的模长的乘积与它们的夹角的余弦值的乘积。
以上是平面向量的一些基本概念、运算法则、性质和表示方法的梳理。
通过学习平面向量,我们可以更好地理解和应用向量的概念,并在几何问题中进行计算和推导。
平面向量知识点总结归纳
平面向量知识点总结归纳在数学中,平面向量是一个有大小和方向的量,常用于解决几何和代数的问题。
平面向量具有许多重要的性质和应用,本文将对平面向量的相关知识点进行总结归纳。
一、基本概念1. 平面向量的表示:平面向量通常用字母加上一个箭头来表示,例如向量a可以写作a→,其中箭头表示向量的方向。
2. 平行向量:两个向量具有相同或相反的方向时,称它们为平行向量。
平行向量的模长相等。
3. 零向量:所有分量都为零的向量称为零向量,用0→表示。
零向量的模长为0。
4. 向量共线:如果两个向量的方向相同或相反,它们被称为共线向量。
二、向量运算1. 向量加法:向量加法是指将两个向量的对应分量相加得到一个新向量。
向量加法满足交换律和结合律。
2. 向量减法:向量减法是指将两个向量的对应分量相减得到一个新向量。
向量减法可以转化为向量加法,即a→ - b→ = a→ + (-b→)。
3. 数乘运算:向量与一个实数相乘,可以改变向量的大小和方向,称为数乘运算。
4. 内积运算:向量的内积又称为点乘运算,表示两个向量之间的夹角关系。
内积的结果是一个实数,可以用向量的模长和夹角的余弦表示。
5. 外积运算:向量的外积又称为叉乘运算,用于求得两个向量所确定的平行四边形的面积和方向。
外积的结果是一个向量。
三、向量的性质1. 平行四边形法则:如果将两个向量的起点放在一起,则另外两个端点形成的四边形为平行四边形。
2. 模长计算:向量的模长是指向量的长度,可以用勾股定理计算。
3. 单位向量:模长为1的向量称为单位向量,可以通过将向量除以它的模长得到。
4. 点积性质:点积具有分配律、交换律和数量积与夹角的余弦值相关等性质。
5. 叉积性质:叉积具有反交换律、分配律和数量积与夹角的正弦值相关等性质。
四、向量的应用1. 几何问题:平面向量可以用于解决几何问题,如线段的平移、直线的垂直和平行判定等。
2. 物理学中的力:力可以用向量表示,通过向量运算可以求得多个力的合力和分力。
平面向量基础知识
平面向量一、平面向量的基本概念㈠、向量的概念:我们把既有大小又有方向的量叫向量1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母AB 表示.(AB 的大小──长度称为向量的模,记作|AB|. )3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.4.向量与有向线段的区别:⑴向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;⑵有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.5、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.6、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:⑴综合①、②才是平行向量的完整定义;⑵向量a、b、c平行,记作a∥b∥c.7、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:⑴向量a与b相等,记作a=b;⑵零向量与零向量相等;⑶任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关........... 8、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关..........). 说明:⑴平行向量可以在同一直线上,要区别于两平行线的位置关系;⑵共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.二、 向量的加法与减法1、位移问题:①某人从A 到B ,再从B 按原方向到C ,则两次的位移和:AB BC AC +=②某人从A 到B ,再从B 按反方向到C ,则两次的位移和:AB BC AC +=③某车从A 到B ,再从B 改变方向到C ,则两次的位移和:AB BC AC +=④船速为AB,水速为BC ,则船单位时间内的位移:AB BC AC +=2、向量的加法:求两个向量的和的运算,叫做向量的加法。
平面向量知识点归纳
平面向量知识点归纳一、平面向量的基本概念1、向量的定义既有大小又有方向的量叫做向量。
物理学中又叫做矢量。
2、向量的表示(1)几何表示:用有向线段表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
(2)字母表示:通常在印刷时用黑体小写字母 a、b、c 等来表示向量,手写时可写成带箭头的小写字母。
3、向量的模向量的大小叫做向量的模,记作或。
4、零向量长度为 0 的向量叫做零向量,记作。
零向量的方向是任意的。
5、单位向量长度等于 1 个单位长度的向量叫做单位向量。
6、平行向量(共线向量)方向相同或相反的非零向量叫做平行向量,也叫共线向量。
规定:零向量与任意向量平行。
7、相等向量长度相等且方向相同的向量叫做相等向量。
8、相反向量长度相等且方向相反的向量叫做相反向量。
二、平面向量的线性运算1、向量的加法(1)三角形法则:已知非零向量、,在平面内任取一点 A,作,,则向量叫做与的和,记作,即。
(2)平行四边形法则:已知两个不共线的向量、,作,,以、为邻边作平行四边形 ABCD,则对角线上的向量就是与的和。
(3)运算性质:交换律;结合律。
2、向量的减法(1)三角形法则:已知非零向量、,在平面内任取一点 O,作,,则向量叫做与的差,记作,即。
(2)几何意义:可以表示为从向量的终点指向向量的终点的向量。
3、向量的数乘(1)定义:实数与向量的积是一个向量,记作,它的长度与方向规定如下:①;②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,。
(2)运算律:结合律;分配律,。
三、平面向量的基本定理及坐标表示1、平面向量基本定理如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使。
2、平面向量的坐标表示在平面直角坐标系中,分别取与 x 轴、y 轴方向相同的两个单位向量、作为基底,对于平面内的一个向量,有且只有一对实数 x、y,使得,则有序数对叫做向量的坐标,记作,其中 x 叫做在 x 轴上的坐标,y 叫做在 y 轴上的坐标。
平面向量基本定理与共面向量基本定理的区别
平面向量基本定理与共面向量基本定理的区别1. 向量的基本理解说到向量,有的人可能会觉得它神秘兮兮的,像是某种高深的黑魔法。
其实,它就是一个有大小和方向的东西,就像你一拳打出去,那种力量和意思。
你看,打人的时候,要是力量不够,那基本没什么威慑力;但是方向得对,才不会打偏了去。
简单地说,向量就像是在描述一个“旅行”的路线,既要说出“要去哪”,还得告诉你“走得多远”。
所以,当我们说平面向量的时候,就是在说这条路在一个平面上的。
1.1 平面向量的概念和性质平面向量呢?它其实只是在二维的空间里走动,比如说在一张纸上。
想象一下,你在纸上画的那个箭头,箭头的长度代表了力量,而箭头的方向就是你要去的路。
平面向量的基本定理就告诉我们,如何用简单的数学法则来搞定这些向量,包括加法、减法、数量乘法等等,简直就像是给你上了一堂“向量入门课”。
小伙伴们,记住了,这是心灵手巧的基础哦。
1.2 线性组合的美妙而且,平面向量还可以组合在一起,就像你把几种食材混在一起做出一道美味的菜。
我们叫这种组合“线性组合”,就像用几种调料,能做出千变万化的口味一样。
你只需要随意选择几个线性无关的向量,加加减减,就能得到很多新的向量。
有点美吧,对吧?而且,数学上这个性质让我们对向量的运用游刃有余,谁说学数学就得面无表情呢!2. 共面向量的脉络好了,聊完了平面向量,我们得转向共面向量了。
共面向量的意思是说,这些向量要在同一个平面上搞事情,就像一群朋友一起在同一个地方聚会。
你说这多简直太方便了,大家可以互相交流、分享资源,不用到处跑。
2.1 共面向量的特性共面向量之间,有个很酷的特点,就是你可以把它们用同一个平面表示出来的线性组合,这就像说你家这群朋友,大家联系得非常紧密,不管是在一起喝茶还是打麻将,都是一盘棋。
这个欢快的气氛能让问题变得简单明了,形势严峻的时候,有朋友在旁边一起出谋划策,那种感觉可是一流的。
2.2 应用场景说到应用,大家知道吗?在现实生活中,很多时候都需要我们考虑到共面向量的情况。
高中数学平面向量知识点总结及常见题型
高中数学平面向量知识点总结及常见题型平面向量一、向量的基本概念与基本运算1.向量的概念:向量是既有大小又有方向的量。
向量一般用a、b、c等字母来表示,或用有向线段的起点与终点的大写字母表示,如:AB(几何表示法)或a(坐标表示法)。
向量的大小即向量的模(长度),记作|AB|或|a|。
向量不能比较大小,但向量的模可以比较大小。
②零向量:长度为0的向量,记为0,其方向是任意的,与任意向量平行。
③单位向量:模为1个单位长度的向量。
向量a为单位向量|a|=1.④平行向量(共线向量):方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上。
方向相同或相反的向量,称为平行向量,记作a∥b。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
⑤相等向量:长度相等且方向相同的向量。
相等向量经过平移后总可以重合,记为a b。
大小相等,方向相同(x1,y1)(x2,y2)x1x2,y1y2.2.向量加法求两个向量和的运算叫做向量的加法。
设AB a,BC b,则a+b=AB BC=AC。
1)0+a=a;(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。
当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则。
向量加法的三角形法则可推广至多个向量相加:AB BC CD…+PQ QR AR,但这时必须“首尾相连”。
3.向量的减法①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量,记作a。
零向量的相反向量仍是零向量。
关于相反向量有:(i)(a)=a;(ii) a+(a)=(a)+a=0.iii) 若向量a、b互为相反向量,则a=-b,b=-a,a+b=0.向量减法:向量a加上b的相反向量叫做a与b的差,记作a-b=a+(-b),求两个向量差的运算,叫做向量的减法。
平面向量模块
平面向量模块一、基本概念:1、向量:既有大小又有方向的量叫向量.2.平行向量:若非零向量,a b 方向相同或相反,则//a b ;规定零向量与任一向量平行3、向量相等:b a =⇔ 模相等,方向相同;相反向量:b a-=⇔模相等,方向相反4、两个非零向量a 、b 的夹角:做OA =a ;OB =b ;AOB ∠叫做a 与b的夹角。
5、坐标表示:i 、j 分别是与x 轴、y 轴同向的单位向量,若=aj y i x +,则()y x ,叫做a 的坐标。
6.向量a 在b 方向上的投影:设θ为a 、b 的夹角,则cos a θ为a 在b 方向上的投影二、基本运算:运算 向量形式坐标形式:()11,y x a =;()22,y x b =加法三角形法则(作图):=+BC AB AC平行四边形法则(作图):AB AD +=ACa +b=()2121,y y x x ++减法作图:=-AC AB CBa -b=()2121,y y x x --数乘a λ是一个向量,=aλ||||a λ方向:0>λ时,与a 同向;0<λ时,与a 反向;0=λ时,0=a λ()11,y x a λλλ=数量积 a ·b=θcos ||||b a a ·b=2121y y x x +A BC ABC DABC三、基本定理、公式:1、平面向量基本定理:若1e 与2e 不共线,则对平面内的任意一个向量a,有且只有一对实数1λ、2λ;使得=a2211e e λλ+。
2、向量的模:a=a a ⋅=22y x +;非零向量a 与b 的夹角:=θcos 222221212121||||y x y x y y x x b a ba +++=⋅3、向量平行:a ∥b⇔b a λ=⇔1221y x y x =; 向量垂直:a ⊥b⇔0=⋅b a ⇔02121=+y y x x4、中点坐标公式:⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x ;四、复习题1、在下列命题中,正确命题的个数为 .①a ·0=0;②0·a=0;③(→a ·→b )→c =→a (→b ·→c ) ④b a b a +=-,则0=b ;⑤→a ·→b -→b ·→a =→0;⑥1===→→→c b a ,且→a ∥→b ,→b ∥→c ,则→a 与→c 是模相等且同向或反向的两个向量⑦ a ·b =0,则a 与b中至少有一个为0; 2、化简下列各式:(1))(CD AB --)(BD AC -= ; (2)BA CO BO OC OA -+++= . (3))(MB AB ++)(BC BO ++OM =__________3.已知平面内三点A (-1,0),B (x ,6),P (3,4),且−→−AP =λ−→−PB ,x 和λ的值分别为( ) A .-7,2 B .5,2 C .-7,52 D .5,524、向量a ,b 满足6=a ,10=b ,则b a -的取值范围是 .5、已知6=a ,8=b ,10=-b a ,则=+b a .6、已知OA =1e ,OB =2e ,且1==OB OA .∠AOB =︒120,又5=OC , 且OC 平分∠AOB ,用1e ,2e 表示OC = .7、已知∆ABC 顶点A (―1,12-),B (2,3)及重心坐标G (1,12),则顶点C 的坐标为__________8.已知O (0,0)和A (6,3)两点,若点P 在直线OA 上,且2PA OP =,又P 是线段OB 的中点,则点B 的坐标是 9、已知3,2==b a ,且4=⋅b a ,则向量b 在向量a 上的投影为 .10、已知|a |=3,|b |=4,且|a -b |=37,则a 与b的夹角为 .11.已知(1,2),(1,1)a b ==,且a 与a b λ+的夹角为锐角,则实数λ的取值范围为_____________________ 12.已知点A (4,1),B (-2,7),P 是直线AB 是一点,且||2||AP PB =,求P 的坐标。
平面向量知识点总结(精华)
平面向量知识点总结(精华)一、向量的基本概念1. 向量的定义向量是既有大小又有方向的量。
例如,物理学中的力、位移等都是向量。
我们可以用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
向量的表示:几何表示:用有向线段AB表示,其中\(A为起点,\(B为终点。
字母表示:用小写字母a、b、c等表示。
2. 向量的模向量AB或a的大小称为向量的模,记作AB或a。
模是一个非负实数,例如,若a=(x,y),则a=x^2+y^2。
3. 零向量长度为\(0的向量称为零向量,记作0。
零向量的方向是任意的。
4. 单位向量模等于\(1的向量称为单位向量。
对于非零向量a,与它同方向的单位向量记作e=aa。
例如,向量a=(3,4),则a= 5,同方向的单位向量e=(35,45)。
5. 平行向量(共线向量)方向相同或相反的非零向量称为平行向量。
规定:零向量与任意向量平行。
若向量a与b平行,记作a。
例如,a=(1,2),b=(2,4),因为b = 2a,所以a。
6. 相等向量长度相等且方向相同的向量称为相等向量。
若AB=CD,则\(A与\(C重合,\(B与\(D重合,且AB=CD,方向相同。
二、向量的运算1. 向量的加法三角形法则:已知向量a、b,在平面内任取一点\(A,作AB=a,BC=b,则AC=a+b。
平行四边形法则:已知向量a、b,以同一点\(O为起点作OA=a,OB=b,以\(OA、\(OB为邻边作平行四边形\(OACB,则OC=a+b。
向量加法的运算律:交换律:a+b=b+a。
结合律:\((a+b)+c=a+(b+c)。
2. 向量的减法相反向量:与向量a长度相等,方向相反的向量称为a 的相反向量,记作a。
向量减法的定义:ab=a+(b)。
其几何意义是:已知向量a、b,在平面内任取一点\(O,作OA=a,OB=b,则BA=ab。
3. 向量的数乘定义:实数\(与向量a的乘积是一个向量,记作a。
平面向量知识点归纳
平面向量知识点归纳平面向量是高中数学中的一个基本概念,同时也是高中数学中比较难理解和掌握的知识点之一。
下面我们将结合实例,对平面向量的定义、加减和数量积等知识点进行简明归纳。
一、平面向量的定义平面向量又称二维向量,是具有大小和方向的有向线段,通常用字母加箭头表示(如:$\vec{a}$)。
在直角坐标系中,平面向量可以表示成一个有序实数对$(a,b)$。
例如:已知点$A(1,2)$和点$B(3,4)$,连接这两个点所得的有向线段$\vec{AB}$就是一个平面向量,它的坐标表示为$\vec{AB}=(3-1,4-2)=(2,2)$。
二、平面向量的加减平面向量的加减法是指将两个向量相加(或相减)所得的向量,即$\vec{a}+\vec{b}$(或$\vec{a}-\vec{b}$),其坐标分别相加(或相减)。
例如:已知向量$\vec{a}=(1,2)$和向量$\vec{b}=(3,4)$,则$\vec{a}+\vec{b}=(1+3,2+4)=(4,6)$;$\vec{a}-\vec{b}=(1-3,2-4)=(-2,-2)$。
另外,平面向量加减法还满足以下性质:(1)交换律:$\vec{a}+\vec{b}=\vec{b}+\vec{a}$;$\vec{a}-\vec{b}=-\vec{b}+\vec{a}$(2)结合律:$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$(3)零向量:对于任意向量$\vec{a}$,有$\vec{a}+\vec{0}=\vec{a}$,$\vec{a}-\vec{a}=\vec{0}$。
其中,$\vec{0}=(0,0)$。
三、平面向量的数量积平面向量的数量积又称为点积或内积,表示为$\vec{a} \cdot \vec{b}$,它的值为两个向量的模长乘积与它们夹角的余弦值,并可以用各个分量表示出来。
$\vec{a} \cdot \vec{b}=|\vec{a}| \cdot |\vec{b}| \cdot cos\theta=a_xb_x+a_yb_y$其中,$|\vec{a}|=\sqrt{a_x^2+a_y^2}$,$|\vec{b}|=\sqrt{b_x^2+b_y^2}$,$\theta$表示$\vec{a}$与$\vec{b}$之间的夹角。
平面向量结合律证明
平面向量结合律证明平面向量结合律是数学中的一条重要定理,用于证明平面向量的加法满足结合律。
在本文中,将以从简到繁的方式,逐步讲解并证明平面向量结合律的原理和推论,旨在帮助读者全面理解并掌握这一概念。
1. 平面向量的基本概念平面向量是空间中具有大小和方向的量,通常用有向线段表示。
对于平面向量$\vec{AB}$,A和B为向量的起点和终点。
向量的大小称为模,记作$|\vec{AB}|$;向量的方向则由A指向B确定。
2. 平面向量的加法两个平面向量$\vec{AB}$和$\vec{BC}$可以进行加法运算,结果记作$\vec{AC}$。
根据平行四边形法则,可以通过将$\vec{AB}$和$\vec{BC}$的起点放在一起,然后连接终点,得到一个新的向量$\vec{AC}$,其起点为A,终点为C。
3. 平面向量的结合律的定义平面向量的结合律是指对于任意三个向量$\vec{AB}$,$\vec{BC}$和$\vec{CD}$,有$(\vec{AB} + \vec{BC}) + \vec{CD} = \vec{AB} + (\vec{BC} + \vec{CD})$。
4. 平面向量结合律的证明将向量$\vec{AB}$和$\vec{BC}$放在一起,连接终点得到向量$\vec{AC}$,则根据平面向量的加法定义有$\vec{AB} + \vec{BC} = \vec{AC}$。
接下来,将向量$\vec{AC}$和$\vec{CD}$放在一起,连接终点得到向量$\vec{AD}$,则根据平面向量的加法定义有$\vec{AC} + \vec{CD} = \vec{AD}$。
注意到,向量$\vec{AD}$的起点为A,终点为D,与$(\vec{AB} +\vec{BC}) + \vec{CD}$的起点和终点相同。
同样地,向量$\vec{AB}+ (\vec{BC} + \vec{CD})$的起点也为A,终点为D。
高考数学中的平面向量基本概念及相关性质
高考数学中的平面向量基本概念及相关性质随着人们生活中科技的快速发展,数学的地位越来越重要。
高考数学是整个中学阶段最关键的考试之一,考查学生的数学运算能力和逻辑思维能力。
在高考数学中,平面向量是一个重要的概念,涉及多个方面的知识,而且在实际生活中也有很广泛的应用,因此深入理解平面向量的基本概念及相关性质,对于提高数学水平和应对高考具有重要意义。
一. 矢量的概念和表示平面向量,又称矢量,是由大小和方向决定的量。
矢量可以用有向线段表示,有向线段的长度表示矢量的大小,而方向则是有向线段的方向。
例如,有向线段AB表示一个矢量,长度为5,方向为从A指向B。
记作$\overrightarrow{AB}$,其中上方的箭头表示矢量方向。
二. 矢量的加法和减法矢量的加法和减法是矢量数乘的特殊情形。
设$\overrightarrow{a}$和$\overrightarrow{b}$是两个矢量,$\lambda$是一个实数,则:(1)矢量加法 $\overrightarrow{a}+\overrightarrow{b}$表示从起点为$\overrightarrow{a}$的有向线段终点作为起点,画一条有向线段使之终点与$\overrightarrow{b}$的终点重合,这条线段的长度与方向所表示的量即为$\overrightarrow{a}+\overrightarrow{b}$。
(2)矢量减法 $\overrightarrow{a}-\overrightarrow{b}$表示从起点为$\overrightarrow{a}$的有向线段终点作为起点,画一条有向线段使之终点与$\overrightarrow{b}$的终点重合,这条线段的方向相反,长度为$\left| \overrightarrow{a} \right|-\left|\overrightarrow{b}\right|$,所表示的量即为$\overrightarrow{a}-\overrightarrow{b}$。
平面向量的基本概念和基本定理
【平面向量】(1)平面向量的基本概念和基本定理: 考点..1.重要的概念.....①基本概念向量、向量的模(长度),向量的表示,自由向量、相等向量,相反向量,位置向量,零向量、共线向量、单位向量、基线、数乘向量、基向量、坐标、正交基底、向量的数量积、夹角、正射影 考点..2.重要的定理..... ②基本定理:平行向量基本定理(掌握)、平面向量基本定理(了解)向量共线定理 向量b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa ∥b (b≠0)的充要条件是x 1y 2-x 2y 1=0平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e (2)平面向量的基本运算:(几何运算、代数运算、坐标运算) 考点3重要的运算 ① 向量的加法几何运算:如图,已知向量a 、在平面内任取一点A ,作a AB =,b BC =,则向量AC叫做a 与b 的和,记作b a +,即 AC BC AB b a =+=+特殊情况:(1)BBabba +ba +AABC C)2()3(对于零向量与任一向量a ,有 a a a =+=+00向量加法的运算律:a +b =b +a (a +b ) +c =a + (b +c )向量的加法的代数运算:AC BC AB b a =+=+向量的加法的坐标运算: 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=, ② 向量的减法向量的减法的几何运算: 减法的三角形法则作法:在平面内取一点O , 作OA = a , OB = b , 则BA = a - b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量注意:1︒AB 表示a - b 强调:差向量“箭头”指向被减数 2︒用“相反向量”定义法作差向量,a - b = a + (-b ) 显然,此法作图较繁,但最后作图可统一a ∥b ∥c a - b = a + (-b ) a - b 向量减法的运算律:向量的减法的代数运算:AB =OB -OA向量的减法的坐标运算:若),(11y x a =,),(22y x b =,则b a -),(2121y y x x --= 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)③ 向量的数乘 向量的数乘的几何计算示例:已知非零向量a ,作出a +a +a 和(-a )+(-a )+(-a) OC =BC AB OA ++=a +a +a =3aPN =MN QM PQ ++=(-a )+(-a )+(-a )=-3a向量的数乘的运算律: 结合律:λ(μa )=(λμ)a①第一分配律:(λ+μ)a =λa +μa②第二分配律:λ(a +b )=λa+λb ③向量的数乘的代数运算:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a|(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa=0a -bA AB B B’ O a -ba a bb O A O Ba -ba -b B A O -b向量的数乘的坐标运算若),(y x a =和实数λ,则),(y x a λλλ=④向量的数量积向量的数量积的几何计算:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π)并规定0与任何向量的数量积为0向量的数量积的几何意义: 数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积 投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b | 两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的范围0︒≤θ≤180︒向量的数量积的运算律:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积 两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量1︒e ⋅a = a ⋅e =|a |cos θ 2︒a ⊥b ⇔ a ⋅b = 03︒当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |特别的a ⋅a = |a |2或a a a ⋅=||4︒cos θ =||||b a ba ⋅C5︒|a ⋅b | ≤ |a ||b |向量的数量积的代数运算: 交换律:a ⋅ b = b ⋅ a数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb ) 分配律:(a + b )⋅c = a ⋅c + b ⋅c一般地,(a·b)с≠a(b·с)a·с=b·с,с≠0a=b有如下常用性质:a2=|a|2, (a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2向量的数量积的坐标运算已知两个非零向量),(11y x a = ,),(22y x b = b a⋅2121y y x x += 设),(11y x a = ,),(22y x b = ,则b a⊥⇔02121=+y y x x 平面内两点间的距离公式(1)设),(y x a = ,则222||y x a +=或22||y x a +=(2)如果表示向量a的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式).两向量夹角的余弦(πθ≤≤0)co s θ =||||b a ba ⋅⋅222221212121y x y x y y x x +++=典型例题例1如图,一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,同时河水的流速为h km /2,求船的实际航行的速度的大小与方向(用与流速间的夹角表示). 解:例2 已知a(1, 2),b (2, 3),c (-2, 5),求证:△ABC 是直角三角形证明:例3 设a = (5, -7),b = (-6, -4),求a ⋅b解:例4已知a= (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x解:例5已知a =(1,3),b =(3+1,3-1),则a 与b的夹角是多少?例6 如图,以原点和A (5, 2)为顶点作等腰直角△ABC ,使∠b = 90︒,求点b和向量AB 的坐标 解:例7 在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角,求k 值 解:例8若非零向量a 和b 满足|a +b |=|a -b |证明:a ⊥b证法一:证法二:例9 已知向量a 是以点A (3,-1)为起点,且与向量b =(-3,4)垂直的单位向量,求a 的终点坐标说明:向量的坐标表示是终点坐标减去起始点的坐标,所以向量的坐标与点的坐标既有联系又有区别,二者不能混淆本章知识网络结构运算 类型 几何方法坐标方法运算性质向 量 的 加 法 1平行四边形法则2三角形法则),(2121y y x x b a ++=+a b b a +=+)()(c b a c b a ++=++ AC BC AB =+向 量 的 减 法三角形法则),(2121y y x x b a --=-)(b a b a -+=-BA AB -= AB OA OB =-向 量 的 乘 法1a λ是一个向量,满足: 2λ>0时,a λ与a 同向;λ<0时,a λ与a 异向;λ=0时, a λ=0),(y x a λλλ=a a )()(λμμλ=a a a μλμλ+=+)(b a b a λλλ+=+)(a ∥b a b λ=⇔向 量 的 数 量 积b a •是一个数 10=a 或0=b 时, b a •=020≠a 且0≠b 时,),cos(||||b a b a b a =•2121y y x x b a +=•a b b a •=•)()()(b a b a b a •=•=•λλλc b c a c b a •+•=•+)( 22||a a =22||y x a +=||||||b a b a ≤•重要定理、公式:........(1)平面向量基本定理21,e e是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数21,λλ,使2211e e aλλ+= (2)两个向量平行的充要条件MO N BAD Ca ∥b ⇔a=λb ⇔01221=-y x y x(3)两个向量垂直的充要条件a ⊥b ⇔a ·b=O ⇔02121=+y y x x平面向量习题1、已知,OAOB a b ,且||||2a b ,∠AOB=60°,则||a b =____;a b 与b 的夹角为_____.2.已知点G 是ABC ∆的重心, ()AG AB AC λμλμ=+∈R ,,那么λμ+=_____; 若︒=∠120A ,2AB AC ⋅=-AG __________ .3.已知△ABC 的三个顶点A 、B 、C 及所在平面内一点P 满足AB PC PB PA =++,则点△BC P 与△ABP 的面积分别为s 1,s 2,则s 1:s 2=_________4.如图,AB 是半圆O 的直径,C , D 是弧AB 三等分点,M , N 是线段AB 的三等分点,若OA = 6,则→MD ·→NC 的值是 .5、在半径为1的圆周上按顺序均匀分布着A 1,A 2,A 3,A 4,A 5,A 6六个点.则122323343445455656616112A A A A A A A A A A A A A A A A A A A A A A A A ⋅+⋅+⋅+⋅+⋅+⋅= .6、已知||1,||2,0,OA OB OA OB ==⋅=点C 在AOB ∠内,且045AOC ∠=,设OC mOA nOB =+,其中,m n R ∈,则mn等于__________. 7、已知在同一平面上的三个单位向量,,a b c ,它们相互之间的夹角均为120o ,且|1ka b c ++>|,则实数k 的取值范围是8.设向量),1,2(),2cos ,1(==b a θ)1,sin 21(),1,sin 4(θθ==d c ,其中)4,0(πθ∈.(1)求d c b a ⋅-⋅的取值范围;(2)若函数)()(|,1|)(d c f b a f x x f ⋅⋅-=与比较的大小9.已知m R ∈, 2 (1, )a x m =-+,1 (1, )b m x =+, (, )x c m x m=-+.(Ⅰ)当1m =-时,求使不等式 1a c ⋅<成立的x 的取值范围; (Ⅱ)求使不等式 0a b ⋅>成立的x 的取值范围.10.在平面直角坐标系中,O 为坐标原点,已知向量(1,2)a =-,又点(8,0),(,),(sin ,)(0)2A B n t C k t πθθ≤≤(1)若,AB a ⊥且||5||AB OA =,求向量OB ;(2)若向量AC 与向量a 共线,当4>时,且sin t θ取最大值为4时,求OA OC • 解:一、考题选析:例1、已知向量(2,3),(3,)a b λ=-=,若//a b ,则λ等于( )A 、23 B 、2- C 、92- D 、23- 例2、设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,则mλ的取值范围是( ) A、[]16,-B、[48],C、]1[,-∞ D、]61[,-例3、在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A 、23B 、13C 、13-D 、23-例4、设平面向量321,,a a a 的和0321=++a a a 。
高中数学平面向量知识点总结
高中数学必修4之平面向量 知识点归纳一.向量的基本概念与基本运算1、向量的概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 2、向量加法:设,AB a BC b ==,则a+b =AB BC +=AC (1)a a a=+=+00;(2)向量加法满足交换律与结合律; AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”.3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ⋅=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反;当0=λ时,0 =a λ,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线⇔有且只有一个实数λ,使得b =a λ6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+,记作a =(x,y)。
2平面向量的坐标运算:(1) 若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±±(2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =--(3) 若a =(x,y),则λa =(λx, λy)(4) 若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=(5) 若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅若a b ⊥,则02121=⋅+⋅y y x x三.平面向量的数量积 1两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,则a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积(或内积) 规定00a ⋅= 2向量的投影:︱b ︱cos θ=||a b a ⋅∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 3数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积4向量的模与平方的关系:22||a a a a ⋅==5乘法公式成立:()()2222a b a b a b a b +⋅-=-=-;()2222a b a a b b ±=±⋅+222a a b b =±⋅+ 6平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅ ②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈ ③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±特别注意:(1)结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅; (2)消去律不成立a b a c ⋅=⋅不能得到b c =⋅(3)a b ⋅=0不能得到a =0或b =07两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =121x x y y + 8向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ(001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b ∙<>=∙= 当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题 9垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥b 10两个非零向量垂直的充要条件:a ⊥b ⇔a ·b =O ⇔2121=+y y x x 平面向量数量积的性质。
平面向量的概念PPT课件
04
平面向量数量积概念及性 质
数量积定义及几何意义
数量积定义
两个向量的数量积是一个标量,等于它们模长的乘积与它们夹 角余弦的乘积。
几何意义
数量积反映了两个向量的相对位置和角度关系,正值表示同向, 负值表示反向,零表示垂直。
数量积性质及运算规律
性质
满足交换律、分配律、结合律,与标量乘法相容等。
运算规律
向量坐标与点坐标关系
向量坐标
向量坐标是由起点指向终点的有 向线段,在直角坐标系中可以用
两个坐标值表示。
点坐标
点坐标是直角坐标系中点的位置表 示,同样可以用两个坐标值表示。
关系
向量坐标与点坐标密切相关,向量 的起点和终点坐标可以决定向量的 坐标,而点的坐标可以用来表示向 量的起点或终点。
向量运算坐标表示法
坐标法求解向量问题
求解向量坐标
通过已知点的坐标和向量的关系,可以 求解向量的坐标。
求解向量模长
通过向量的坐标可以计算向量的模长, 进而求解与模长相关的问题。
求解向量夹角
通过向量的坐标可以计算向量的夹角, 进而求解与夹角相关的问题。
求解向量运算结果
通过向量的坐标表示法可以求解向量的 加法、减法和数乘运算结果。
向量运算满足基本定律
加法结合律
(a + b) + c = a + (b + c)
数乘结合律
(kl)a = k(la)
加法交换律
a+b=b+a
数乘分配律
k(a + b) = ka + kb
向量共线定理,使得b = λa
03
平面向量坐标表示法
直角坐标系中向量表示方法
第五章 平面向量
第一节平面向量的概念与线性运算一、知识梳理1.向量的有关概念(1).向量:既有 ,又有的量叫向量;通常记为 ;长度为的向量是零向量,记作: ; 的向量,叫单位向量.(2).平行向量(或共线向量)记作: ;规定:零向量与任何向量 .(3).相等向量:(4).相反向量:2.向量加法与减法(1).向量加法按法则或法则;向量加运算律:交换律: ;结合律:(2).向量减法作法:3.实数与向量的积(1). 实数与向量a的积是一个向量,记作,它的长度与方向规定如下:长度:方向:(2).运算律4.共线定理:5.平面向量基本定理:6.基底:二、考点分析考点一:平面向量的基本概念例1.给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a//b;⑤若a//b,b//c,则a//c;其中正确的序号是。
例2:设0为单位向量,(1)若为平面内的某个向量,则=||·0;(2) 若与a0平行,则=||·0;(3)若与0平行且||=1,则=0。
上述命题中,假命题个数是()A.0 B.1 C.2 D.3考点二:平面向量的线性运算例2:如图所示,已知正六边形ABCDEF,O是它的中心,若BA=a,BC=b,试用a,b将向考点三:平面向量共线定理例3:如图所示,△ABC 中,点M 是BC 的中点,点N 在AC 边上,且AN=2NC,AM 与BN 相交于点P,求AP :PM 的值.三、课堂检测1.(2010•四川)设点M 是线段BC 的中点,点A 在直线BC 外,2BC =16,||||,AB AC AB AC +=-则|AM |=( )A.8B.4C.2D.12.已知△ABC 中,点D 在BC 边上,且2,,CD DB CD r AB sAC ==+则r+s 的值是( )24..33A B C.-3 D.0 3.平面向量a,b 共线的充要条件是( )A.a,b 方向相同B.a,b 两向量中至少有一个为0C.存在λ∈R,使b=λ aD.存在不全为零的实数λ1,λ2,使λ1a+λ2b=04.已知O 、A 、B 是平面上的三个点,直线AB 上有一点C,满足20,AC CB +=则OC 等于( )2112.2.2..3333A OA OB B OA OBC OA OBD OA OB --+--+5.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,2,2,DC BD CE EA AF FB ===则AD BE CF ++与()BCA.反向平行B.同向平行C.不平行D.无法判断6.已知a,b 是不共线的向量,AB =λa+b,AC =a+μb,(λ,μ∈R),那么A 、B 、C 三点共线的充要条件为()A.λ+μ=2B.λ-μ=1C.λμ=-1D.λμ=1 7、关于非零向量,有下列四个命题 ① “||+||=||”的充要条件是“方向相同”; ② “||+||=||”的充要条件是“方向相反”; ③ “||+||=||”的充要条件是“有相等的模”;④“||-||=||”的充要条件是“方向相同”;其中真命题的个数是(A ) 1个 (B )2个 (C )3个 (D )4个8.若点O 是△ABC 所在平面内的一点,且满足|||2|OB OC OB OC OA -=+-,则△ABC 的形状为________.9.在平行四边形ABCD 中,E 、F 分别是边CD 和BC 的中点,若AC =λAE +u ,AF 其中λ,u∈R,则λ+u=________.10.如图,平面内有三个向量OA 、OB 、,OC 其中OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且|OA |=|OB |=1,|OC |=若OC =λOA +μOB (λ,μ∈R),则λ+μ的值为_______11.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB,AC 于不同的两点M,N,若,,AB mAM AC nAN ==则m+n 的值为________.第二节 平面向量的基本定理及坐标表示一、知识梳理1.平面向量基本定理如果e 1,e 2是同一平面内的两个 向量,那么对于这一平面内的任意向量a , 一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组 . 2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b = ,a -b = , λa = ,|a |= (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→= , |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔ . 基础检测1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( )(2)若a ,b 不共线,且λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(3)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.( )(4)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可表示成x 1x 2=y 1y 2.( )2.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2) 3.设向量a =(x,1),b =(4,x ),且a ,b 方向相反,则x 的值是( ) A .2 B .-2 C .±2 D .04.已知平行四边形ABCD 中,AD ―→=(3,7),AB ―→=(-2,3),对角线AC 与BD 交于点O ,则CO ―→的坐标为( )A.⎝⎛⎭⎫-12,5B.⎝⎛⎭⎫12,5C.⎝⎛⎭⎫12,-5D.⎝⎛⎭⎫-12,-5 5.已知向量a =(1,3),b =(-2,k ),且(a +2b )∥(3a -b ),则实数k =________.6.在▱ABCD 中,AB ―→=a ,AD ―→=b ,AN ―→=3NC ―→,M 为BC 的中点,则MN ―→=________(用a ,b 表示).二、考点分析考点一 平面向量基本定理及其应用例1.1.如图,在△ABC 中,BE 是边AC 的中线,O 是边BE 的中点,若AB =a ,AC =b ,则AO =( )A.12a +12b B.12a +13b C.14a +12b D.12a +14b2.已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则2x -y =________.3.如图,已知▱ABCD 的边BC ,CD 的中点分别是K ,L ,且AK ―→=e 1,AL ―→=e 2,试用e 1,e 2表示BC ―→,4.如图,以向量OA ―→=a ,OB ―→=b 为邻边作▱OADB ,BM ―→=13BC ―→,CN ―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→.✧ 方法总结1.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决. (2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.考点二 平面向量的坐标运算例2.1.若向量a =(2,1),b =(-1,2),c =⎝⎭⎫0,52,则c 可用向量a ,b 表示为( ) A.12a +b B .-12a -b C.32a +12b D.32a -12b 2.(2018·江西九校联考)已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.3.已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b ,(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN ―→的坐标.✧ 方法总结平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量的加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.要注意点的坐标和向量的坐标之间的关系,一个向量的坐标等于向量终点的坐标减去始点的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 考点三 平面向量共线的坐标表示例3.已知a =(1,0),b =(2,1).(1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值.1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb .2.共线问题解含参,列出方程求得解向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.变式3.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ) A.14 B.12 C .1 D .2三、课堂检测1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b =( )A .(-3,4)B .(3,4)C .(3,-4)D .(-3,-4)2.若向量AB ―→=(2,4),AC ―→=(1,3),则BC ―→=( )A .(1,1)B .(-1,-1)C .(3,7)D .(-3,-7)3.已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( )A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)4.在平行四边形ABCD 中,AC 为一条对角线,若AB ―→=(2,4),AC ―→=(1,3),则BD ―→=( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)5.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(c os A ,sin B )平行,则A =( )A.π6B.π3C.π2D.2π36.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则PQ ―→=( )A.13a +13b B .-13a +13b C.13a -13b D .-13a -13b 7.已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R),则m -n 的值为________. 8.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .9.已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________. 10.已知梯形ABCD ,其中AB ∥DC ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.5.已知A (-3,0),B (0,3),O 为坐标原点,C 在第二象限,且∠AOC =30°,OC ―→=λOA ―→+OB ―→,则实数λ的值为________.3.(1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c . 4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( ) (3)由a ·b =0可得a =0或b =0.( ) (4)(a ·b )c =a (b ·c ).( )(5)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( ) 2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |的值为( ) A .12 B .6 C .3 3D .33.已知向量a ,b 满足|a |=1,|b |=23,a 与b 的夹角的余弦值为sin 17π3,则b ·(2a -b )等于( ) A .2 B .-1 C .-6D .-184.(2017·全国卷Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A .a ⊥b B .|a |=|b | C .a ∥bD .|a |>|b |5.(2017·全国卷Ⅰ)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________. 6.已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a 方向上的投影为________.二、考点分析考点一 平面向量的数量积的运算1.设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 C.32 D.522.已知向量a 与b 的夹角为60°,且a =(-2,-6),|b |=10,则a ·b =________. 3.已知两个单位向量e 1,e 2的夹角为π3,若向量b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=________.✧ 方法总结向量数量积的2种运算方法4.(2018·云南第一次统一检测)在▱ABCD 中,|AB ―→|=8,|AD ―→|=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .125.(2018·石家庄质检)在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则λμ的值为________.6.(2017·北京高考)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO ―→·AP ―→的最大值为________. ✧ 方法总结计算有关平面几何中数量积的方法(1)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后再根据平面向量的数量积的定义进行计算求解.(2)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算法则求得.考点二 平面向量数量积的性质角度(一) 平面向量的模1.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________ 2.如图,在△ABC 中,O 为BC 的中点,若AB =1,AC =3,AB ―→与AC ―→的夹角为60°,则|OA ―→|=________.✧ 方法总结 求向量模的常用方法(2)若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.角度(二) 平面向量的夹角3.(2018·成都二诊)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6B.5π6C.π4D.3π44.已知平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .2 ✧ 方法总结求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系; (2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. [注意] 〈a ,b 〉∈[0,π].角度(三) 平面向量的垂直5.(2018·湘中名校联考)已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( )A .1 B. 2 C. 3 D .26.已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.✧方法总结1.利用坐标运算证明两个向量的垂直问题坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.变式2.1.(2018·广东五校协作体诊断)已知向量a =(λ,1),b =(λ+2,1),若|a +b |=|a -b |,则实数λ的值为( )A .-1B .2C .1D .-22.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.3.已知AB ―→·BC ―→=0,|AB ―→|=1,|BC ―→|=2,AD ―→·DC ―→=0,则|BD ―→|的最大值为________.考点三 平面向量与三角函数的综合例3.(2017·江苏高考)已知向量a =(c os x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.✧ 方法总结平面向量与三角函数的综合问题的解题思路(1)给出的向量坐标中含有三角函数,求角的大小,解题思路是运用向量共线或垂直的坐标表示,或等式成立的条件等,得到三角函数的关系式,然后求解.(2)给出的向量坐标中含有三角函数,求向量的模或者向量的其他表达形式,解题思路是利用向量的运算,结合三角函数在定义域内的有界性或基本不等式进行求解.变式3.已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R. (1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.三、课堂检测1.(2018·洛阳第一次统一考试)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .32.已知平面向量a ,b 的夹角为π3,且a ·(a -b )=2,|a |=2,则|b |等于( )A. 2 B .2 3 C .4 D .23.已知向量a =(-1,2),b =(3,1),c =(x,4),若(a -b )⊥c ,则c ·(a +b )=( ) A .(2,12) B .(-2,12) C .14 D .104.(2018·湘中名校联考)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( ) A .13+6 2 B .2 5 C.30 D.345.若单位向量e 1,e 2的夹角为π3,向量a =e 1+λe 2(λ∈R),且|a |=32,则λ=( )A .-12 B.32-1 C.12 D.326.(2018·西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在BA ―→方向上的投影是( )A .-3 5B .-322C .3 5 D.3227.已知平面向量a ,b 满足a ·(a +b )=3,且|a |=2,|b |=1,则向量a 与b 的夹角的正弦值为________.8.(2018·张掖一诊)已知平面向量a ,b 满足|a |=|b |=1,a ⊥(a -2b ),则|a +b |=________. 9.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则向量m ,n 的夹角的余弦值为________.10.如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB ―→=4AC ―→,则OC ―→·(OB ―→-OA ―→)=________.11.(2018·惠州三调)若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( )A .等腰三角形B .直角三角形仁荣中学2019届高三文科数学一轮复习导学案------专题五 平面向量11C .正三角形D .等腰直角三角形12.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A ―→·(PB ―→+PC ―→)的最小值是( )A .-2B .-32C .-43D .-113.(2017·浙江高考)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA ―→·OB ―→,I 2=OB ―→·OC ―→,I 3=OC ―→·OD ―→,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 314.(2018·广东五校协作体第一次诊断考试)已知向量a =(1,3),b =(3,m ),且b 在a 方向上的投影为3,则向量a 与b 的夹角为________.15.已知向量a =⎝⎛⎭⎫-12,32,OA ―→=a -b ,OB ―→=a +b ,若△OAB 是以O 为直角顶点的等腰直角三角形,则△OAB 的面积为________.16.已知|a |=4,|b |=8,a 与b 的夹角是120°.(1)计算:①|a +b |,②|4a -2b |;(2)当k 为何值时,(a +2b )⊥(k a -b ).17.在平面直角坐标系xOy 中,点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB ,AC 为邻边的平行四边形两条对角线的长. (2)设实数t 满足(AB ―→-t OC ―→)·OC ―→=0,求t 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的实际背景及基本概念1.向量的概念:我们把既有大小又有方向的量叫向量。
2.数量的概念:只有大小没有方向的量叫做数量。
数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 3.有向线段:带有方向的线段叫做有向线段。
4.有向线段的三要素:起点,大小,方向 5.有向线段与向量的区别; (1)相同点:都有大小和方向(2)不同点:①有向线段有起点,方向和长度,只要起点不同就是不同的有向线段比如:上面两个有向线段是不同的有向线段。
②向量只有大小和方向,并且是可以平移的,比如:在①中的两个有向线 段表示相同(等)的向量。
③向量是用有向线段来表示的,可以认为向量是由多个有向线段连接而成 6.向量的表示方法: ①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ;7.向量的模:向量AB 的大小(长度)称为向量的模,记作|AB |. 8.零向量、单位向量概念:长度为零的向量称为零向量,记为:0。
长度为1的向量称为单位向量。
9.平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.即:0 ∥a。
说明:(1)综合①、②才是平行向量的完整定义; (2)向量a、b、c平行,记作a∥b∥c. 10.相等向量A(起点)B(终点)a长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有.. 向线段的起点无关......... 11.共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关) 说明:(1)平行向量是可以在同一直线上的。
(2)共线向量是可以相互平行的。
例1.判断下列说法是否正确,为什么? (1)平行向量是否一定方向相同? (2)不相等的向量是否一定不平行? (3)与零向量相等的向量必定是什么向量? (4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量? (6)两个非零向量相等当且仅当什么? (7)共线向量一定在同一直线上吗?解析:(1)不是,方向可以相反,可有定义得出。
(2)不是,当两个向量方向相同的时候,只要长度不相等就不是相等向量,但是是平行的。
(3)零向量 (4)零向量(5)共线向量(平行向量 (6)长度相等且方向相同 (7)不一定,可以平行。
例2.下列命题正确的是( )A.a与b共线,b与c共线,则a与c 也共线B.任意两个相等的非零向量的始点与终点是平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A 不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C ,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.BAOD EF例3.如右图所示,设O 是正六边形ABCDEF 的中心,分别写出图中与向量 →→→OC OB OA ,,相等的向量。
解:按照向量相等的定义可知:→→→==DO CB OA OB DC EO ==→→→ OC AB ED FO ===→→→→向量的加法运算及其几何意义1.向量的加法:求两个向量和的运算,叫做向量的加法. 2.三角形法则(记忆口诀:“首尾相接,从头指尾”) 3.三角形法则的来由如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a+b,即 a +bAC BC AB =+=,规定:a + 0-= 0 + a4.向量加法的字母公式:AB BC AC =→→→+5.平行四边形法则图1如图1,以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形,则以O 为起点的对角线OC 就是a 与b 的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则. 6.平行四边形法则与三角形法则的区别:(1)平行四边形法则是将两个向量的起点放在一起做出平行四边形,最终和向量的结果的起点ABCa +ba +baabbabb a+ba和两个分向量的起点是同一起点。
(2)三角形法则要求第一个向量终点和第二个向量的起点连接在一起,然后连接第一个向量的起点和第二个向量的终点组成三角形,最终和向量的结果是:由第一个向量的起点指向第二个向量的终点。
7.一般结论当a,b不共线时,|a+b|<|a|+|b|(即三角形两边之和大于第三边);当a,b共线且方向相同时,|a+b|=|a|+|b|;当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|).其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a|.一般地,我们有|a+b|≤|a|+|b|.二.例题讲解例1、已知正方形ABCD的边长为1, = a, = b, = c,则| a+b+c|等于()A.0 B.3 C.2 D.22 .解: D CA作出正方形ABCD的图形如上图所示,那么:a+b=c,所以a+b+c=2c,所以|a+b+c|=|2c|=2|c|=22,所以选D.例2.化简:(1)BC+AB;(2)DB+CD+BC;(3)AB+DF+CD+BC+FA.例3.如图所示,已知矩形ABCD中,|AD|=43,设AB=a,BC=b,BD=c,试求向量a+b+c的模.解:过D作AC的平行线,交BC的延长线于E,∴DE∥AC,AD∥BE.∴四边形ADEC为平行四边形.∴DE=AC,CE=AD.于是a+b+c=AB+BC+BD=DE+BD=BE=AD+AD=2AD,∴|a+b+c|=2|AD|=83.1.判断下列命题是否正确,若不正确,请简述理由。
①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④一个向量方向不确定当且仅当模为0;⑤共线的向量,若起点不同,则终点一定不同。
2.(1).判断下列式子是否正确,若不正确请指出错误原因.①0=0②.b-b=0(2)若将所有单位向量的起点归结在同一起点,则其终点构成的图形是___________.(3)将所有共线向量移至同一起点,终点构成的图形是什么图形?___________3.下列说法正确的是()A. 平行向量是方向相同的向量B. 长度相等的向量叫相等向量C. 零向量的长度为0D. 共线向量是在同一条直线上的向量4.若非零向量a与b共线,则以下说法下确的是()A. a与b必须在同一直线上B. a与b平行,且方向必须相同`C. a与b平行,且方向必须相反D. a与b平行=+,则四边形ABCD的形状一定是( )1、在四边形ABCD中,若AC AB AD(A) 平行四边形(B) 菱形(C) 矩形(D) 正方形2、两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a和b,那么下列命题中错误的一个是()A、a与b为平行向量B、a与b为模相等的向量C、a与b为共线向量D、a与b为相等的向量3、下列命题中正确的是( )A.单位向量都相等B.长度相等且方向相反的两个向量不一定是共线向量C.若a,b满足|a|>|b|且a与b同向,则a>bD.对于任意向量a 、b ,必有|a +b |≤|a |+|b | 平面向量的加法运算1、 用三角形法则和平行四边形法则分别画出→→+b a2、下列命题中正确的是( ) A.单位向量都相等B.长度相等且方向相反的两个向量不一定是共线向量C.若a ,b 满足|a |>|b |且a 与b 同向,则a >bD.对于任意向量a 、b ,必有|a +b |≤|a |+|b |3、已知正方形的边长为1,AB =a ,BC =b ,AC =c ,则|a +b +c |等于( )A.0B.3C.2D.224、两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a 和b ,那么下列命题中错误的一个是A 、a 与b 为平行向量B 、a 与b 为模相等的向量C 、a 与b 为共线向量D 、a 与b 为相等的向量5、在四边形ABCD 中,若AC AB AD =+,则四边形ABCD 的形状一定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形6、已知正方形ABCD 的边长为1,AB =a ,BC =b ,AC =c , 则++a b c 等于 ( )7、如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1⋅a b = (C) 22≠a b (D) =a b。