压杆的稳定性分析与设计

合集下载

压杆稳定 实验报告

压杆稳定 实验报告

压杆稳定实验报告压杆稳定实验报告一、引言在物理学中,稳定性是一个重要的概念。

对于一个物体或系统来说,稳定性意味着它能够保持在一个平衡状态,不会因外界干扰而倾倒或崩溃。

压杆稳定是一个经典的物理实验,通过改变杆的长度和重心位置,我们可以探索压杆在不同条件下的稳定性。

二、实验目的本实验的目的是通过改变压杆的长度和重心位置,观察和分析压杆在不同条件下的稳定性。

通过实验,我们可以进一步了解压杆稳定的物理原理,并探讨压杆稳定性与杆长、重心位置之间的关系。

三、实验装置和方法1. 实验装置:压杆、支架、重物、测量工具(如尺子和天平)等。

2. 实验方法:a. 将支架放置在水平的桌面上,并固定好。

b. 将压杆放在支架上,调整杆的位置和角度,使其保持平衡。

c. 在压杆的一端悬挂一个重物,称为A端。

d. 在压杆的另一端悬挂一个重物,称为B端。

e. 记录下A端和B端的质量,以及压杆的长度和角度。

f. 通过改变A端和B端的质量、压杆的长度和角度等条件,重复实验,记录数据。

四、实验结果与分析在实验中,我们通过改变A端和B端的质量、压杆的长度和角度等条件,观察压杆在不同条件下的稳定性。

下面是我们的实验结果和分析:1. 改变质量:我们分别改变A端和B端的质量,观察压杆的稳定性。

实验结果表明,当A端和B端的质量相等时,压杆更容易保持平衡。

这是因为在这种情况下,压杆的重心位置更接近中间,稳定性更高。

当A端或B端的质量增加时,压杆的稳定性减弱,容易发生倾倒。

2. 改变长度:我们改变压杆的长度,观察压杆的稳定性。

实验结果显示,当压杆的长度较短时,压杆更容易保持平衡。

这是因为较短的压杆有更小的杆长,重心位置更接近中间,稳定性更高。

当压杆的长度增加时,压杆的稳定性减弱,容易发生倾倒。

3. 改变角度:我们改变压杆的角度,观察压杆的稳定性。

实验结果表明,当压杆的角度接近水平时,压杆更容易保持平衡。

这是因为在这种情况下,压杆的重心位置更接近支点,稳定性更高。

材料力学之压杆稳定

材料力学之压杆稳定

材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。

压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。

本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。

压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。

压杆通常是一根长条形材料,两端固定或铰接。

在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。

在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。

压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。

当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。

所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。

压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。

当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。

在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。

临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。

当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。

临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。

这些方法能够给出压杆在不同边界条件下的临界压力比。

在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。

压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。

弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。

在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。

压杆的局部稳定性名词解释

压杆的局部稳定性名词解释

压杆的局部稳定性名词解释随着科技的发展,我们生活中的各个领域都得到了前所未有的改进和进步。

而在工程学领域中,一个重要的概念——压杆的局部稳定性——也备受关注。

本文将深入探讨并解释压杆的局部稳定性,帮助读者更好地理解这一概念。

1. 压杆的定义与应用在力学中,压杆是指受到压力作用的结构元素,通常用来承受和传递载荷。

压杆常用于建筑、桥梁、机械和航空器等工程中,起着支撑和稳定结构的作用。

它们通常是由材料制成的长而细的柱形结构。

而压杆的局部稳定性则是评估杆件在局部区域内受到压力时的抗变形能力和破坏承载能力。

2. 局部稳定性的意义与挑战在设计和构造压杆时,局部稳定性是一个至关重要的考虑因素。

如果柱状结构的局部区域失去稳定性,可能会发生屈曲、损坏或甚至崩溃。

局部稳定性的挑战在于,在承受压力时,结构材料可能出现屈曲或失稳。

屈曲是指材料在不均匀压力下发生弯曲,而失稳是指材料无法承受继续增加的压力而发生破坏。

因此,为了确保压杆的局部稳定性,需要采取一些措施来增强结构的强度和稳定性。

3. 影响局部稳定性的因素局部稳定性的强度取决于多个因素的相互作用,包括以下几点:(1) 杆件的尺寸和形状:杆件的截面形状和尺寸对其局部稳定性产生重要影响。

通常情况下,愈粗的杆件和愈大的截面面积,局部稳定性越高。

(2) 材料的性质:材料的强度和刚度是决定局部稳定性的关键因素。

材料强度较高且刚度大的压杆,其局部稳定性更强。

(3) 边界条件:杆件的边界条件,即杆件在整个结构中的约束情况,对局部稳定性的影响较大。

不同的边界条件会导致不同的局部稳定性表现。

(4) 外部载荷:外部载荷是压杆稳定性的主要原因之一。

较大的压力可能导致屈曲和失稳,因此必须在设计过程中合理估计和控制外部载荷。

4. 提高局部稳定性的方法为了提高压杆的局部稳定性,工程师和设计师可以采取以下几种方法:(1) 使用适当的材料:选择具有较高强度和刚度的材料,如高强度钢或复合材料,以提供更好的局部稳定性。

材料力学第九章 压杆稳定

材料力学第九章 压杆稳定

02
创新研究方法与手段
积极探索新的实验技术和数值模拟方法,提高压杆稳定研究的精度和可
靠性。
03
拓展应用领域
将压杆稳定研究成果应用于更多领域,解决实际工程问题,推动科学技
术进步。
THANKS
感谢观看
稳定性取决于压杆的初始弯曲程度、压力的大小 和杆件的材料特性。
当压杆受到微小扰动时,如果能够恢复到原来的 平衡状态,则称其为稳定;反之,则为不稳定。
压杆的临界载荷
临界载荷是指使压杆由稳定平衡 状态转变为不稳定平衡状态的载
荷。
当压杆所受压力小于临界载荷时, 压杆保持稳定平衡状态;当压力 大于临界载荷时,压杆将失去稳
相应措施进行解决。
建筑结构中的压杆问题
02
高层建筑、大跨度结构等建筑中的梁、柱等部件可能发生失稳,
需要加强设计和施工控制。
压力容器中的压杆问题
03
压力容器中的管道、支撑部件等可能发生失稳,需要采取相应
的预防和应对措施。
05
压杆稳定的未来发展与展望
压杆稳定研究的新趋势
跨学科交叉研究
压杆稳定与材料科学、计算科学、工程结构等领域相互渗透,形 成多学科交叉的研究趋势。
工程中常见的压杆问题
1 2
细长杆失稳
细长杆在压力作用下容易发生弯曲,导致失稳。
短粗杆失稳
短粗杆在压力作用下可能发生局部屈曲,导致失 稳。
3
弹性失稳
材料在压力作用下发生弹性变形,当压力超过某 一临界值时,杆件发生失稳。
解决压杆失稳的方法与措施
加强材料质量
选择优质材料,提高材料的弹 性模量和抗拉强度,以增强压
材料力学第九章 压杆稳 定
• 引言 • 压杆稳定的基本理论 • 压杆稳定的实验研究 • 压杆稳定的工程应用 • 压杆稳定的未来发展与展望

材料力学 第九章 压杆稳定分析

材料力学 第九章 压杆稳定分析

我国建筑业常用:
cr
s
1
c
2
对于A3钢、A5钢和16锰钢: 0.43,c
2E 0.56 S
c 时,由此式求临界应力 。
②s< 时:
cr s
几点重要说明:
1. 所有稳定问题(包括后续内容)均需首先计算λ以界定压 杆的属性。
2. 对一般金属材料,作如下约定:
A. λp≈100;λs≈60。故:
i
二、压杆的分类
1、大柔度杆:
cr
2E 2
P
2E P
P
100
满足 P 的杆称为大柔度杆(或 细长杆),其临界力用 欧拉公式求。
P 的杆为中小柔度杆,其 临界力不能用欧拉公式 求。
2、中柔度杆─λP>λ≥λS,即: P<≤S
直线型经验公式: cr ab
crab s
a s
b
s
60
支承情况
两端铰支
一端固定 另端铰支
两端固定
一端固定 另端自由
两端固定但可沿 横向相对移动
Pcr
Pcr
Pcr
Pcr
Pcr

l l 0.7l l 0.5l
l 2l l 0.5l
稳 时
B
B
B

D

线 形
C
C

A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Pcr 欧拉公式
Pc
r
2
l
EI
工程实例
目录
一、稳定平衡与不稳定平衡 : 1. 不稳定平衡
2. 稳定平衡
3. 稳定平衡和不稳定平衡

材料力学 第十章 压杆稳定问题

材料力学 第十章 压杆稳定问题

由杆,B处内力偶
MB Fcraq1 , q1
由梁,B处转角
MB Fcr a
q2

MBl 3EI
q1 B
MB MBl Fcra 3EI
3EI Fcr al
q2 C
l
Page21
第十章 压杆稳定问题
作业
10-2b,4,5,8
Page22
第十章 压杆稳定问题
§10-3 两端非铰支细长压杆的临界载荷
稳定平衡
b. F k l
临界(随遇)平衡
c. F k l
不稳定平衡
Fcr kl 临界载荷
F
k l
F 驱动力矩 k l 恢复力矩
Page 5
第十章 压杆稳定问题
(3)受压弹性杆受微干扰
F Fcr 稳定平衡 压杆在微弯位置不能平衡,要恢复直线
F >Fcr 不稳定平衡 压杆微弯位置不能平衡,要继续弯曲,导致失稳
(

w)
令 k2 F
EI
d 2w dx2

k
2w

k
2
l
l
FM w
x
F B
F

B F
Page24
第十章 压杆稳定问题
d 2w dx2

k2w

k 2
F
w

通解:
A
x
B
w Asinkx Bcoskx
l
考虑位移边界条件:
x 0, w 0,
B
x 0, q dw 0
Page31
第十章 压杆稳定问题
二、类比法确定临界载荷
l

压杆稳定性计算公式例题

压杆稳定性计算公式例题

压杆稳定性计算公式例题在工程结构设计中,压杆是一种常见的结构元素,用于承受压力和稳定结构。

在设计过程中,需要对压杆的稳定性进行计算,以确保结构的安全性和稳定性。

本文将介绍压杆稳定性计算的基本原理和公式,并通过一个例题进行详细说明。

压杆稳定性计算的基本原理。

压杆稳定性是指压杆在受压力作用下不会发生侧向屈曲或失稳的能力。

在进行压杆稳定性计算时,需要考虑压杆的材料、截面形状、长度、支座条件等因素,以确定其稳定性。

一般来说,压杆的稳定性可以通过欧拉公式或约束条件来计算。

欧拉公式是描述压杆稳定性的经典公式,其表达式为:Pcr = (π^2 E I) / (K L)^2。

其中,Pcr表示压杆的临界压力,E表示弹性模量,I表示截面惯性矩,K表示约束系数,L表示压杆的有效长度。

这个公式是基于理想的弹性理论,适用于较长的细杆,但在实际工程中,压杆的稳定性计算可能还需要考虑其他因素。

除了欧拉公式外,压杆稳定性计算还需要考虑约束条件。

约束条件是指压杆在受力时的支座和边界条件,对压杆的稳定性有重要影响。

在实际工程中,约束条件可以通过有限元分析等方法来确定,以获得更精确的稳定性计算结果。

压杆稳定性计算的例题分析。

下面我们通过一个例题来说明压杆稳定性计算的具体步骤和方法。

假设有一根长度为2m的钢质压杆,截面形状为矩形,截面尺寸为100mm ×50mm,弹性模量为2.1 × 10^5 N/mm^2。

现在需要计算在这根压杆上施加的最大压力,使得其不会发生侧向屈曲或失稳。

首先,我们需要计算压杆的有效长度。

对于简支压杆,其有效长度可以通过以下公式计算:Le = K L。

其中,K为约束系数,对于简支压杆,K取1。

所以,这根压杆的有效长度为2m。

接下来,我们可以使用欧拉公式来计算压杆的临界压力。

根据欧拉公式,可以得到:Pcr = (π^2 E I) / L^2。

其中,E为弹性模量,I为截面惯性矩。

根据矩形截面的惯性矩公式,可以计算得到I = (1/12) b h^3 = (1/12) 100mm (50mm)^3 = 5208333.33mm^4。

工程力学-细长压杆稳定性分析

工程力学-细长压杆稳定性分析

E为材料的弹性模量,常用单位GPa
I
为横截面的轴惯性矩,常用单位 m 4或m m4
l
为压杆长度,常用单位m或mm
μ为压杆的长度因数,反映压杆两端支承对临界力的影响。
由欧拉公式
cr
得到
Fcr 2 EI A (l ) 2 A

2 i I/A 令
2E cr ( l / i) 2
10 22 3 Iz 8873.3mm 4 12
I y I z 压杆截面必绕y轴转动而失稳,因此将Iy代入公式,计算
截面对y轴的惯性半径。
iy
Iy A

1833.3 2.89mm 22 10
0.5 800 138.4 2.89
得到矩形截面柔度为
y
l
iy

y 138.4 101 采用欧拉公式计算临界应力
cr s
s
几种材料的相应数值。
例一矩形截面压杆,两端固定,已知b=10mm,h=22mm,l=800mm,
材料为Q235钢,弹性模量E=206GPa,试计算此压杆的临界力和临界
应力。
22
10
解:1)计算压杆的柔度
压杆两端固定,μ =0.5,截面对y轴和z轴的惯性矩为:
22 10 3 Iy 1833.3mm 4 12
d0=50mm ,最大起重量 F = 90kN ,材料为 Q235 钢,规定稳定安全因 数 nw 4 ,试校核该螺旋杆稳定性。
解: 1 )螺旋杆可以简化为下端固定,上端自由的杆,长度因数
μ =2。
2)计算柔度
i
I d 0 50 12.5mm A 4 4

工程力学11-压杆的稳定性分析与设计解析

工程力学11-压杆的稳定性分析与设计解析
压杆的稳定性分析与设计
11.1.3 三种类型压杆的临界状态 压杆的分类:
细长杆 ——当F >Fcr时容易发生弹性屈曲 当F≤Fcr时不发生屈曲
中长杆 ——当F >Fcr时发生屈曲,但不再是弹性的
粗短杆 ——不会发生屈曲,失效属于强度破坏
《工程力学》
11.2
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
长细比概念三类不同压杆判断
11.3.2 三类不同压杆的区分
ห้องสมุดไป่ตู้
因,屈曲在弹性范围内导出
故有:
scr =
Fcr A
≤[sp]
在比例极限内有效
稳定平衡构形到屈曲(不稳定平衡构形)是一个 过程。
介于这个过程之间的平衡构形——临界平衡构形
或称:“临界状态” 临界载荷
处于临界状态时,杆件所受的施压载荷
称:“临界载荷”,或临界力,Fcr
《工程力学》
11.1
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
令:当材料达到比例极限时的长细比为“lp” 当材料屈服极限时的长细比为“ls”
细长杆 中长杆 粗短杆
—— l ≥ lp —— lp >l ≥ ls —— l < ls
细长压杆的临界载荷

第 11 章 压杆的稳定性问题

第 11 章 压杆的稳定性问题

直线形状平衡 稳定的
第 11 章 压杆的稳定性问题 2.不稳定性
F F>Fpcr
压杆稳定性的基本概念
直线平衡平衡状态转变为弯曲平 衡状态,扰动除去后,不能够恢 复到直线平衡状态,则称原来的 直线平衡状态是不稳定的。
FP<FPcr :在扰动作用下,
直线形状平衡 不稳定的
第 11 章 压杆的稳定性问题
第 11 章 压杆的稳定性问题
P
A
(a )
三类不同压杆的判断
h
y
b
h
B
y
P 解:正视图平 面弯曲截面绕 z 轴转。 3 P
x
P
z
l
A bh 1.0
iz Iz A
bh Iz 12

h 2 3
z
l
iz
1 2300 2
60
3
132.8 P 100
σp σe σs
压杆稳定性的基本概念
三、三种类型压杆的不同临界状态
σ
σb
ε
第 11 章 压杆的稳定性问题 欧拉临界力 §11-2 细长压杆的临界载荷---欧拉临界力
一、两端铰支的细长杆
F x F x
F
l M w x w w
压杆
微弯下平衡
内力与变形
第 11 章 压杆的稳定性问题
x
欧拉临界力
M =F w EI w〞= - M =-F w
欧拉临界力
二、其他刚性支承细长压杆临界载荷的通用公式
方法1: 同欧拉公式, 微分方程 + 边界条件 方法2: 相当长度法 在压杆中找出长度相当于两端铰支的 一段(即两端曲率为零或弯矩为零),该 段失稳曲线为半波正弦曲线,该段临界力 即压杆的临界力。

材料力学压杆稳定

材料力学压杆稳定

材料力学压杆稳定材料力学是研究物质在外力作用下的形变和破坏规律的学科。

在材料力学中,压杆是一种常见的结构元素,它能够承受压缩力,用来支撑、传递和稳定结构的荷载。

压杆的稳定性是指在外力作用下,压杆不会发生失稳或破坏。

稳定性的分析对于设计和使用压杆结构具有重要意义,可以保证结构的安全可靠性。

本文将从材料的稳定性理论出发,探讨压杆稳定的原理和影响因素。

压杆的稳定性主要受到两种力的影响:压缩力和弯曲力。

压缩力使得杆件在长轴方向上缩短,而弯曲力使得杆件发生侧向的弯曲变形。

这两种力的作用会引起杆件在截面上的应力分布,当这些应力达到一定的极限时,杆件就会发生失稳或破坏。

为了保证压杆的稳定性,需要考虑以下几个因素:1.杆件的形状和尺寸:杆件的形状和尺寸是影响压杆稳定性的重要因素。

一般来说,杆件的截面形状应当是圆形或类圆形,这样能够均匀地分配应力,在承受压力时能够更好地抵抗失稳。

此外,杆件的直径或截面积也应当足够大,以提高材料的稳定性。

2.材料的性质:材料的性质对杆件的稳定性有着重要的影响。

一般来说,杆件所使用的材料应当具有足够的强度和刚度。

强度可以提供杆件抵抗失稳的能力,而刚度可以减小失稳时的弯曲变形。

此外,材料应当具有足够的韧性,以防止杆件发生断裂。

3.杆件的支撑条件:杆件的支撑条件也会对稳定性产生影响。

一般来说,杆件的两端应当进行良好的支撑,以减小弯曲变形和失稳的发生。

支撑条件可以通过适当的连接方式、支撑点的设置和钢结构的设计来实现。

4.外力的作用:外力的作用是导致杆件发生失稳的主要原因。

外力可以包括静力荷载、动力荷载和温度荷载等。

在设计和使用压杆结构时,需要对外力进行充分的分析和计算,确保结构在外力作用下能够稳定运行。

总之,压杆的稳定性是确保结构安全可靠性的重要因素。

在材料力学中,通过对压杆受力和形变规律的分析,可以找到保证压杆稳定的途径和措施。

合理选择杆件的形状和尺寸,使用适当的材料,提供良好的支撑条件,并进行准确的外力分析和计算,可以有效地提高压杆的稳定性,确保结构的安全运行。

第十五章 压杆稳定

第十五章 压杆稳定

课题一 压杆稳定的概念
如上图,在自由端沿杆轴线方向施较小压力时,压杆处于直线平 衡状态(图a),此时若施加一微小横向干扰力,使杆处于微弯状 态(图b),然后将干扰力去除,杆经过几次左右摆动后,仍能回 复到原来的直线平衡状态(图c),这说明压杆的直线平衡状态是 稳定的。
但当压力F增大到某一数值时,压杆在微小干扰力作用下,杆即变 弯。当去除干扰力,杆不再回复到原来的直线平衡状态,而是处 于微弯平衡状态,称此时压杆的直线平衡状态不稳定。
(1)计算螺杆的柔度: i
I A
d
4 0
/
64
d0
40 mm 10mm
d
2 0
/
4
4
4
l 2 375 75
i 10
(2)计算临界应力
cr s a2 275 0.00853 压杆稳定校核与提高压杆稳定性的措施
(3)校核螺杆的稳定性。
稳定许用应力为:
[
w
]
cr nw
227 4
MPa
56.8MPa
螺杆的工作应力为: F 70 103 MPa 55.7MPa
A 40 2 / 4
[ w ]
,所以螺杆是稳定的。
二、提高压杆稳定性的措施
提高压杆的稳定性,关键在于提高压杆的临界力或临界应力。
第十五章 压杆稳定 课题三 压杆稳定校核与提高压杆稳定性的措施
对于钢材 cr s a2 对于铸铁 cr b a2
式中是与材料有关的常数,单位为MPa,其值可从表中10-2查得。
第十五章 压杆稳定
课题二 临界力和临界应力
压杆的临界应力是其柔度λ的函数,其函数图象(下图)称为临界 应力总图。
第十五章 压杆稳定

材料力学-10-压杆的稳定性问题

材料力学-10-压杆的稳定性问题
材料力学-10-压杆的稳定 性问题
欢迎来到材料力学-10-压杆的稳定性问题演示文稿。今天,我们将探讨压杆的 定义、分类以及影响其稳定性的因素。
压杆的定义和分类
压杆是一种长而细的结构元素,主要通过压力来支撑负载。根据其截面形状,压杆可以分为圆形、方形 和矩形等不同类型。
欧拉公式简介
欧拉公式是用于计算压杆的临界压力的重要公式。它基于结构的刚度和截面的几何特性,帮助我们预测 压杆在不同加载条件下的稳定性。
实例分析
通过实例分析,我们将深入探讨具体的压杆结构,并分析其稳定性问题。了 解实际案例对于理解压杆稳定性的关键因素至关重要。
结论和要点
在本演示文稿中,我们回顾了压杆的定义和分类,介绍了欧拉公式及其应用,探讨了稳定性分析的关键 因素,并通过实例分析展示了压杆的真实应用。记住这些要点,您将能够更好公式
临界压力计算公式是通过将欧拉公式代入材料的弹性模量和截面的惯性矩,从而得出压杆在理想情况下 可能失稳的临界加载。
压杆的稳定性分析
压杆的稳定性分析涉及到考虑加载条件、几何形状以及材料性质等因素。我们将使用数学模型和工程实 践来评估压杆在给定条件下的稳定性。
缺陷对稳定性的影响
压杆的稳定性可能受到结构缺陷的影响,如划伤、弯曲或异物。我们将研究 这些因素如何改变压杆的临界压力和整体稳定性。

材料力学-10-压杆的稳定问题

材料力学-10-压杆的稳定问题
其中a和b为与材料有关的常数,单位为MPa (P247) 。
10.3 长细比与压杆分类
表10-1 常用工程材料的a和b数值 (P247)
10.3 长细比与压杆分类
3、粗短杆
——不发生屈曲,而发生屈服
s
对于粗短杆,临界应力即为材料的屈服应力:
cr s
三、 临界应力总图与P、s值的确定
π EI FPcr 2 l
10.2 细长压杆的临界荷载 欧拉公式
3.两端固定
同理
M C 0, M D 0
D
FPcr
C
π EI 2 0.5l
2
π EI FPcr 2 l
2
10.2 细长压杆的临界荷载 欧拉公式
两端铰支 =1.0
一端自由, 一端固定 =2.0
一端铰支, 一端固定 =0.7
因为
1.3a
l 1 l 2 l 3
π 2 EI l 2
a
(1)
(2)
(3)
又 故
FPcr
FPcr1 FPcr2 FPcr3
(1)杆承受的压力最小,最先失稳; (3)杆承受的压力最大,最稳定。
10.2 细长压杆的临界荷载 欧拉公式
例题 2
P
c
a\2
已知:图示压杆EI ,且 杆在B支承处不能转动。 求:临界压力。
A
π 2 EI 0.5a 2
第10章 压杆的稳定问题
10.3 长细比与压杆分类
10.3 长细比与压杆分类
一、 临界应力与长细比的概念
欧拉公式应用于线弹性范围
FPcr cr p A
σcr——临界应力(critical stress); σp——材料的比例极限。 能否在计算临界荷载之前,预先判断压杆是否 发生弹性屈曲?

材料力学第11章 压杆稳定

材料力学第11章 压杆稳定

长度系数
一端固定,另一端自由 两端铰支
2 1
一端固定,另一端铰支
2 0.7
3
两端固定
1 0.5
2
第十一章 压杆稳定
§11.3 欧拉公式的使用范围 临界应力总图
一、欧拉临界应力公式及其使用范围 二、中柔度压杆的临界应力 三、小柔度压杆的临界应力 四、临界应力总图
§11.3 欧拉公式的使用范围 临界应力总图
2E 2
O 小 0 中 p 大
柔柔

度度

压压

杆杆

可见:压杆的临界应力随着其柔度的增大而减小
§11.3 欧拉公式的使用范围 临界应力总图
例1 图示用No.28a工字钢制成的立柱,两端固定,
试求立柱的临界压力。
解:1.求
F
查表:i imin iy 2.50 cm, A 55.4 cm2
ymax
欧拉公式适用于小变形情况
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
1.一端固定、另一端自由
Fcr
Fcr
2EI
Fcr (2l)2
l
l
l
Fcr
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
2.两端固定
b=20
b 2.57 MPa
h=45
cr a b y 289.6 MPa
Fcr cr A 261 kN y
n
Fcr F
4.35
nst
∴ 连杆安全
l 1=800

压杆的稳定计算

压杆的稳定计算

③ 确定该支架的许可荷载。
根据外力 F 与 BD 杆所承受压力之间的关系,只要考虑 AC 杆的平衡即可。
由 求得
M A 0,
FBD
l 2
F
3l 2
0
1 F 3 FBD
于是该支架能承受的最大荷载为
Fmax
1 3
FBDmax
1 47.0 103 3
15.7 103
N
最后确定该支架的许可荷载 [F] =15.7 kN。
3. 进行截面设计
已知压杆的长度、所用材料、支承条件以及承受的压力F,按照稳定条件计 算压杆所需的截面尺寸。由于在稳定条件式 (7-12) 中,折减系数 φ 是根据压杆的 柔度 λ 查表得到的,而在压杆的截面尺寸尚未确定之前,压杆的柔度 λ 不能确定, 所以也就不能确定折减系数 φ。因此,这类问题一般采用试算法。
为了计算方便,将临界应力的许用应力写成如下形式
cr
cr kst
(7-10)
式中:[σ] 为强度计算时的许用应力;φ 为折减系数,其值小于1。
由式(7-10) 可知,φ 值为
cr
kst
(7-11)
由式(7-11) 可知, 当[σ] 一定时,φ 取决于σcr 与kst。由于临界应力σcr值随 压杆的柔度而改变,而不同柔度的压杆一般又规定不同的稳定安全系数,所以
【例7-2】如图7-5a 所示,构架由两根直径相同的圆杆构成,杆的材料为 Q235 钢, 直径 d = 20 mm,材料的许用应力 [σ] = 170 MPa,已知 h = 0.4 m,作用力 F = 15 kN。 试校核两杆的稳定。
图7-5a 解:① 计算各杆承受的压力。 取结点 A 为研究对象,画受力分析图,如图7-5b 所示,根据平衡条件列方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l l 0.7l l 0.5l
l 2l l 0.5l
两端铰支
一端固定 另端铰支
两端固定
Pcr
Pcr
Pcr
一端固定 另端自由
Pcr
B
B
B
D
C
C
A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
2 EI Pcr l 2
Pcr
2 EI (0.7l)
2ห้องสมุดไป่ตู้
Pcr
2 EI (0.5l )
2
Pcr
2 EI (2l)2
cr
Fpcr A
p
cr为临界应(c力 ri ti casltres)s p为材料的比例极限
对于某一压杆,当临界载荷FPcr尚未算出时,不能判断式(11-9)是否满足;当 临界载荷算出后,如果式(11-9)不满足,则还需采用超过比例极限的临界载
荷计算公式重新计算。这些都会给实际设计带来不便。
能否在计算临界载荷之前,预先判断压杆是发生弹性屈曲还是发生超过比例 极限的非弹性屈曲,或者不发生屈曲而只发生强度失效?为了回答这一问题, 需要引进长细比(slenderness ratio)的概念。
3.压杆失稳:
4.压杆的临界压力
临界状态

对应的
定 平


压力
临界压力:
不 稳 度定 平 衡 Pcr
在任意微小的外界扰动下,不稳定的平衡构形会转变 为其他平衡构形。不稳定的细长压杆的直线平衡构形,在 外界的微小扰动下,将转变为弯曲的平衡构形。这一过程 称为屈曲(buckling)或失稳(lost stability)。
其中:k 2 P EI
③微分方程的解: ④确定积分常数:
yAsix nBcoxs y(0)y(L)0
即:A A s0inkBL 0BcoksL0
0
1
0
sinkL coksL
sikn L0
kn P
L EI
临界力 Pcr 是微弯下的最小压力,故,只能取n=1 ;且 杆将绕惯性矩最小的轴弯曲。
Pcr
2EImin L2
平 原来的平衡构形,外界扰动去除
衡 之后,构件仍旧能自动回复到初
始平衡构形,则称初始的平衡构
形是稳定的 (stable)。

稳 当载荷小于一定的数值时,
定 平
微小外界扰动使得某一平衡 构形偏离原来的平衡构形, 外界扰动去除之后,构件不

能自动回复到初始平衡构形,
则称初始的平衡构形是不稳
定的 (unstable)。
细长杆:发生弹性屈曲,当外
加 载 荷 FP < FPcr 时 , 不 发 出 屈 曲 ; 当 FP > FPcr 时 , 发 生 弹 性 屈 曲 , 即当载荷去除后,杆仍能由弯形 平衡构形回复到初始直线平衡 构 形。
中 长 杆 : 发 生 弹 塑 性 屈 曲 。
当 外 加 载 荷 FP < FPcr 时 , 不 发 出 屈 曲 ; 当 FP > FPcr 时 , 它 发 生 屈 曲,但不再是弹性的,这是因为 压杆上某些部分已经出现塑性变 形,即当载荷去除后,杆不能完 全由弯形平衡构形回复到初始直 线平衡 构形。
非线性弹性稳定理论已经证明了:对于细长压杆,临界平衡 构形是稳定的。
使 杆 件 处 于 临 界 状 态 的 压 缩 载 荷 称 为 临 界 载 荷 (critical loading),用FPcr表示。
11.1.3 三种类型的压杆的不同临界状态
不是所有受压杆件都会发生屈曲,也不是所有发生屈曲的 压杆都是弹性的。理论分析与试验结果都表明:根据不同的失 效形式,受压杆件可以分为三种类型,它们的临界状态和临界 载荷各不相同。
粗短杆:不发生屈曲,而发生
屈服(yield)。
11.2 细长压杆临界力的欧拉公式
一、两端铰支压杆的临界力:
假定压力已达到临界值,杆已经处于微弯状态,如图, 从挠曲线入手,求临界力。
P x
M P
P x
w
P ①弯矩: M(x,y)Pw
②挠曲线近似微分方程:
w''M Pw EI EI
w''Pww''k2w0 EI
结构构件或机器零件在压缩载荷或其他特定载荷作用下发 生变形,最终在某一位置保持平衡,这一位置称为平衡位置, 又称为平衡构形(equilibrium configuration)。
承受轴向压缩载荷的细长压杆,有可能存在两种平衡构 形——直线的平衡构形和弯曲的平衡构形。
稳 定
当载荷小于一定的数值时,微小 外界扰动使得某一平衡构形偏离
Pcr
2
EIm L2
i
n
二、此公式的应用条件:
两端铰支压杆临界力的欧拉公式
1.理想压杆; 2.线弹性范围内; 3.两端为球铰支座。
11.2.2 其他刚性支承细长压杆临界载荷的 通用公式
不同刚性支承条件下的压杆,由静力学平衡方法得到的平衡微 分方程和端部的约束条件都可能各不相同,确定临界载荷的表 达式亦因此而异,但基本分析方法和分析过程却是相同的。 对比方法:
两端固定但可沿 横向相对移动
Pcr
C— 挠曲线拐点
2 EI Pcr l 2
长度系数μ =1 0.7 =0.5 =2
=1
11.3 长细比的概念 三类不同压杆的判断
11.3.1 长细比的定义与概念
前面已经提到欧拉公式只有在弹性范围内才是适用的。这 就要求在临界载荷作用下,压杆在直线平衡构形时,其横截 面上的正应力小于或等于材料的比例极 限,即
以两端铰支的情况为依据,将其他约束的压杆的挠度曲线形状
与两端铰支压杆的挠度曲线形状比较,来推出不同约束条件下
的压杆临界应力公式。
Pcr (2ELI)m2in
压杆临界力欧拉公式的一般形式
—长度系数(或约束系数)。
各种支承约束条件下等截面细长压杆临界力的欧拉公式
支承情况
失 稳 时 挠 曲 线 形 状
临界力Pcr 欧拉公式
压杆的稳定性分析与设计
11.1 压杆稳定性的概念
构件的承载能力:
①强度 ②刚度 ③稳定性
工程中有些构 件具有足够的强度、 刚度,却不一定能 安全可靠地工作。
不稳定平衡
微小扰动就使小球远 离原来的平衡位置
稳定平衡
微小扰动使小球离开原 来的平衡位置,但扰动撤销 后小球回复到平衡位置
11.1.1 平衡位置的稳定性和不稳定性
通常,屈曲将使构件失效,并导致相关的结构发生坍 塌(collapse)。由于这种失效具有突发性,常常带来灾难性 后果。
2007年8月2日,美国明尼苏达州一座跨越密西西比河的大桥发生坍塌
11.1.2 临界状态与临界载荷
介于稳定平衡构形与不稳定平衡构形之间的平衡构形称为临 界平衡构形,或称为临界状态(critical state)。处于临界状态的 平衡构形,有时是稳定的,有时是不稳定的,也有时是中性的。
相关文档
最新文档