计量经济学复习要点1详细版.doc
计量经济学复习笔记要点
计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。
方差:变量的每个样本与均值的距离大小的概念。
标准差:对方差开根号就是标准差。
数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。
假设检验的步骤:第一步,设定假设条件。
原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。
第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。
第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。
第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。
如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。
第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。
通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。
计量经济学复习资料
计量经济学复习资料一、引言计量经济学是研究经济现象的数量关系和经济变量之间相互影响的学科。
它通过运用统计学和数学方法,以实证的方式分析经济模型和数据,以期为经济理论的验证和决策制定提供科学依据。
计量经济学作为经济学的重要分支,在经济学领域里起着举足轻重的作用。
本文将为大家提供一个关于计量经济学的复习资料,以便大家更好地复习和理解这门学科。
二、计量经济学基础1. 理论基础:回顾计量经济学的理论基础,包括经济学中的基本原理、假设和模型,以及计量经济学方法的发展演变过程。
2. 计量经济学的基本概念:介绍计量经济学中的一些基本概念,如变量、参数、模型、数据等,帮助读者建立对计量经济学基础概念的理解和认知。
三、计量经济模型1. 线性回归模型:介绍线性回归模型的基本原理和假设,包括最小二乘估计法、截距项、解释变量的选择和回归结果的解释等。
2. 多元线性回归模型:介绍多元线性回归模型的基本原理、假设和参数估计方法,包括多重共线性、异方差和自相关等问题的处理方法。
3. 非线性回归模型:介绍非线性回归模型,如对数线性模型、二项式模型和估计方法等。
4. 时间序列模型:介绍时间序列模型的基本原理、假设和参数估计方法,包括平稳性、季节性和趋势性等问题的处理方法。
四、计量经济学常用方法1. 模型诊断:介绍计量经济学中的模型诊断方法,包括残差分析、异方差检验和自相关检验等。
2. 假设检验:介绍计量经济学中的假设检验方法,包括参数显著性检验、模型拟合优度检验和模型比较等。
3. 预测方法:介绍计量经济学中的预测方法,包括时间序列分析、回归分析和面板数据分析等。
4. 因果推断:介绍计量经济学中的因果推断方法,包括工具变量法、自然实验和计量分析的注意事项等。
五、计量经济学在实际应用中的案例研究1. 劳动经济学:介绍计量经济学在劳动经济学领域的实际应用,包括劳动力市场分析、教育回报率和人力资本投资等。
2. 金融经济学:介绍计量经济学在金融经济学领域的实际应用,包括资本市场分析、投资组合选择和风险管理等。
(完整)计量经济学考试重点整理
计量经济学考试重点整理第一章:P1:什么是计量经济学?由哪三组组成?定义:“用数学方法探讨经济学可以从好几个方面着手,但任何一个方面都不能和计量经济学混为一谈。
计量经济学与经济统计学绝非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。
经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活的数量关系来说,都是必要的,但本身并非是充分条件。
三者结合起来,就是力量,这种结合便构成了计量经济学。
”P9:理论模型的设计主要包含三部分工作,即选择变量,确定变量之间的数学关系,拟定模型中待估计参数的数值范围。
P12:常用的样本数据:时间序列,截面,虚变量数据P13:样本数据的质量(4点)完整性;准确性;可比性;一致性P15-16:模型的检验(4个检验)1、经济意义检验2、统计检验拟合优度检验总体显著性检验变量显著性检验3、计量经济学检验异方差性检验序列相关性检验共线性检验4、模型预测检验稳定性检验:扩大样本重新估计预测性能检验:对样本外一点进行实际预测P16计量经济学模型成功的三要素:理论、方法和数据。
P18-20:计量经济学模型的应用1、结构分析经济学中的结构分析是对经济现象中变量之间相互关系的研究.结构分析所采用的主要方法是弹性分析、乘数分析与比较静力分析。
计量经济学模型的功能是揭示经济现象中变量之间的相互关系,即通过模型得到弹性、乘数等。
2、经济预测计量经济学模型作为一类经济数学模型,是从用于经济预测,特别是短期预测而发展起来的。
计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律为主要技术手段。
对于非稳定发展的经济过程,对于缺乏规范行为理论的经济活动,计量经济学模型预测功能失效。
模型理论方法的发展以适应预测的需要。
3、政策评价政策评价是指从许多不同的政策中选择较好的政策予以实行,或者说不同的政策对经济目标所产生的影响的差异。
《计量经济学》期末考试复习资料
《计量经济学》期末考试复习资料第一章绪论参考重点:计量经济学的一般建模过程第一章课后题(1.4。
6)1。
什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。
4。
建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和-致性;(3)估计模型参数;(4)检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。
6。
模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验.在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围.第二章经典单方程计量经济学模型:一元线性回归模型参考重点:1。
相关分析与回归分析的概念、联系以及区别?2。
总体随机项与样本随机项的区别与联系?3.为什么需要进行拟合优度检验?4.如何缩小置信区间?(P46)由上式可以看出(1).增大样本容量。
计量经济学复习重点(1)
1.计量经济学是以揭示经济活动中客观存在的_ _为内容的分支学科,挪威经济学家弗里希,将计量经济学定义为_ __、__ _、__ _三者的结合。
2.被解释变量的观测值i Y 与其回归理论值)(Y E 之间的偏差,称为__ _;被解释变量的观测值i Y 与其回归估计值i Y ˆ之间的偏差,称为__ __。
3.在多元线性回归模型中,解释变量间呈现线性关系的现象称为_ 性问题,给计量经济建模带来不利影响,因此需检验和处理它。
4.以时间序列数据为样本建立起来的计量经济模型中的随机误差项往往存在_5.普通最小二乘法得到的参数估计量具有_ _、__ _、_ _统计性质。
1.时间序列数据和横截面数据有何不同?2. 给定一元线性回归模型:t t t X Y μββ++=10 n t ,,2,1 =(1)叙述模型的基本假定;(2)写出参数0β和1β的最小二乘估计公式;(3)说明满足基本假定的最小二乘估计量的统计性质;(4)写出随机扰动项方差的无偏估计公式。
5. 随机误差项包含哪些影响因素?1、判断模型是否存在异方差的主要方法包括 、 、 、 。
2、处理模型中异方差的主要方法是 。
3、检验模型中是否存在序列自相关的方法有 、 、 、 。
4、处理模型中序列自相关的方法是 和 。
5、处理模型中多重共线性的方法 。
1、建立与应用计量经济学模型要经过那些主要步骤?( 8分)。
2、多元回归模型中应用普通最小二乘法的基本假设是什么?(6分)3、在多元线性回归中,t 检验与F 检验有何不同?在一元线性回归分析中,二者是否有等价作用(6分)?1、下列模型是否属于因果关系的计量经济学模型?为什么?(4分)(1)S t =112.0+0.12R t ,其中St 为第t 年农村居民储蓄增加额(单位:亿元),R t 为第t年城镇居民可支配收入总额(单位:亿元)。
(2)S t =112.0+0.12R t-1,其中S t 为第t 年底农村居民储蓄余额(单位:亿元),R t-1为第t-1年农村居民可支配收入总额(单位:亿元)。
(完整word版)计量经济学重点知识归纳整理(word文档良心出品)
1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。
普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。
2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。
从此意义看,加权最小二乘法也称为广义最小二乘法。
3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。
4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。
5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。
6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。
7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。
如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。
9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。
计量经济学复习要点
计量经济学复习要点第一篇:计量经济学复习要点计量经济学复习要点第一章、概率论基础1.随机事件的概念P22.古典概行例题P5例1.1P2例1.2利用第一章的知识说明抽签的合理性如何利用第一章的知识估计一个池塘有多少鱼还有一个关于晚上紧急集合穿错鞋的题目,记不太清楚了3.期望与方差的概念,切比雪夫不等式,看例题1.4-例题1.8,不要求求出数4.变异系数的概念P175.大数定律和中心极限定律(具有独立同分布的随机变量序列的有限和近似地服从正态分布)的概念P24、P25第二章、矩阵代数1.矩阵的定义,加(page29)、减(page29)、乘(page30)、转置(page30)、逆(page31)知道怎么回事2.最小二乘法P39-P41(定义最小二乘解)3.第三节没有听,求听课学霸补充第三章、数据的分析方法和参数的统计推断1.数据的分析方法(算数平均、加权算数平均、几何平均、移动平均)(1)几种分析方法的定义(2)几中分析方法的不同(3)每种分析方法的具体作用(4)移动平均法中k的选择(5)指数平滑法的意义,α的选择,P552.t分布的概率密度函数3.矩估计法定义4.几大似然估计法P65,例题3.7例题3.85.贝叶斯估计和极大极小估计(应该是只看一下概念就可以了)6.假设检验(1)基本思想P75(2)双边假设检验(3)单边假设检验(4)参数检验P807.方差分析的思想、作用和模型第四章、一元线性回归(计算题)回归方程的求法,显著性检验,经济解释(各参数的解释),不显著的解释第六章、虚拟变量的回归模型1.虚拟变量的作用及模型2.应用虚拟变量改变回归直线的截距、斜率3.对稳定性的检验第二篇:2007计量经济学复习要点2007年计量经济学课程要点归纳1.十大经典假设的证明(关于两变量模型的性质检验)2.BLUE估计量的证明3.自相关检验方法(检验方法一定要记住)4.异方差检验方法(至少三种)5.孙老师讲过的附录要留意6.异方差与自相关的补救措施7.违反十大经典假设情况下的问题怎么解决(如多重共线性,异方差,自相关问题,虚拟变量的估计)注:以上重点均是提供参考,不做考试说明计量考察的重点是对计量模型的建立与估算,结果评价与补救思路的考察,没有大量的数学计算,请同学们放心!建议大家根据参考要点确定进度,并根据孙老师上课的重点决定自己的复习范围!希望同学们认真复习,考出好成绩!王琳第三篇:计量经济学复习笔记计量经济学复习笔记CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
(完整版)计量经济学知识点(超全版)
1.经济变量:经济变量是用来描述经济因素数量水平的指标。
(3分)2.解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
(2分)它对因变量的变动做出解释,表现为方程所描述的因果关系中的“因”。
(1分)3.被解释变量:是作为研究对象的变量。
(1分)它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。
(2分)4.内生变量:是由模型系统内部因素所决定的变量,(2分)表现为具有一定概率分布的随机变量,是模型求解的结果。
(1分)5.外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。
(2分)它影响模型中的内生变量,其数值在模型求解之前就已经确定。
(1分)6.滞后变量:是滞后内生变量和滞后外生变量的合称,(1分)前期的内生变量称为滞后内生变量;(1分)前期的外生变量称为滞后外生变量。
(1分)7.前定变量:通常将外生变量和滞后变量合称为前定变量,(1分)即是在模型求解以前已经确定或需要确定的变量。
(2分)8.控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,(2分)它一般属于外生变量。
(1分)9.计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,(2分)是以数学形式对客观经济现象所作的描述和概括。
(1分)10.函数关系:如果一个变量y的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y与这个变量或这组变量之间的关系就是函数关系。
(3分)11.相关关系:如果一个变量y的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y与这个变量或这组变量之间的关系就是相关关系。
(3分)12.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。
(3分)13.高斯-马尔可夫定理:在古典假定条件下,OLS估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯-马尔可夫定理。
计量经济学主要内容复习提要
计量经济学主要内容复习提要1、 计量经济学的含义:计量经济学是以经济理论为指导,以经济事实为依据,以数学、统计学为方法,以计量经济模型的建立和应用为核心,对经济关系与经济活动的数量规律的研究的一门应用性经济学科。
2、 计量经济学的学科性质与特点计量经济学是经济理论、统计学和数学的结合,具有综合性、交叉性、边缘性的特点。
但是经济理论、统计学和数学三者的关系不是并列的,经济学提供理论基础、统计学提供资料依据,数学提供研究方法。
作为一门实证科学,计量经济学要以一定的经济理论作假设,然后通过统计资料和数学方法加以验证。
可见,经济理论既是出发点又是归宿,自始至终都是计量经济学的核心,统计数据和数学方法要服务并服从经济理论。
所以,计量经济学属于应用经济学科。
3、 数据及其分类:变量的具体取值称为数据(Data)。
根据形式不同,数据分为时间序列数据、横截面数据和合并数据。
时间序列数据(Time Series Data )是按时间顺序列排列而成的。
截面数据 (Cross Sectional Data,又译为横断面数据)是在同一时间,不同统计单位的相同统计指标组成的数据列。
合并数据(Pooled Data)中既有时间序列数据又有横截面数据。
4、计量经济模型及其构成所谓计量经济模型就是经济变量之间所存在的随机关系的一种数学表达式,其一般表达式为:(,,)y f xu β= 模型由经济变量(y 和 x )、参数(β)、 随机误差项(u )和及方程的形式f (·)等四个要素构成。
---经济变量,也就是用于描述经济活动水平的各种量,是经济计量建模的基础。
模型中的经济变量y 是分析研究的对象,将其称为因变量或被解释变量;模型右边中的经济变量x 是y 的影响因素,将其称为自变量或解释变量。
在一个方程中,解释变量可以有一个,也可以多个。
前者称为一元模型,后者称为多元模型。
----随机误差项u 是一个随机变量,用于表示模型中尚未包含的影响因素对因变量的影响,我们一般假定其满足某些条件。
计量经济学复习要点144156
计量经济学复习要点第1章 绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念 习题:C1、C2第2章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。
简单线性回归模型是只有一个解释变量的线性回归模型。
回归中的四个重要概念1. 总体回归模型(Population Regression Model ,PRM)t t t u x y ++=10ββ--代表了总体变量间的真实关系。
2. 总体回归函数(Population Regression Function ,PRF )t t x y E 10)(ββ+=--代表了总体变量间的依存规律。
3. 样本回归函数(Sample Regression Function ,SRF )tt t e x y ++=10ˆˆββ--代表了样本显示的变量关系。
4. 样本回归模型(Sample Regression Model ,SRM )tt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律。
总体回归模型与样本回归模型的主要区别是:①描述的对象不同。
总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系。
②建立模型的依据不同。
总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。
③模型性质不同。
总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。
总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。
线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数) 线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定) 普通最小二乘法(原理、推导)最小二乘法估计参数的原则是以“残差平方和最小”。
计量经济学复习要点,DOC
欢迎共阅计量经济学复习要点参考教材:李子奈潘文卿《计量经济学》 数据类型:截面、时间序列、面板第二章简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。
简单线性回归模型是只有一个解释变量的线性回归模型。
回归中的四个重要概念1. 总体回归模型(PopulationRegressionModel ,PRM)t t t u x y ++=10ββ--代表了总体变量间的真实关系。
2. 总体回归函数(PopulationRegressionFunction ,PRF )t t x y E 10)(ββ+=--代表了总体变量间的依存规律。
3. 样本回归函数(SampleRegressionFunction ,SRF )tt t e x y ++=10ˆˆββ--代表了样本显示的变量关系。
4. 样本回归模型(SampleRegressionModel ,SRM )tt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律。
总体回归模型与样本回归模型的主要区别是:①描述的对象不同。
总体回归模型描述总体中变量y与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系。
②建立模型的依据不同。
总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。
③模型性质不同。
总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。
总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。
线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数) 线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定) 普通最小二乘法(原理、推导)最小二乘法估计参数的原则是以“残差平方和最小”。
计量经济学复习知识要点
第一章导论第一节计量经济学的涵义和性质计量经济学是以一定的经济理论和实际统计资料为依据,运用数学、统计学方法和计算机技师,通过建立计量经济模型,定量分析经济变量之间的随机因果关系。
计量经济学是经济学的一个重要分支,以揭示经济活动中客观存在的数量关系的理论与方法为主要内容,其核心是建立计量经济学模型。
第二节计量经济学的内容体系及与其他学科的关系一、计量经济学与经济学、统计学、数理统计学学科间的关系计量经济学是经济理论、统计学和数学的综合。
经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。
统计学是关于如何惧、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。
数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。
计量经济模型建立的过程,是综合应用理论、统计和数学方法的过程。
因此计量经济学是经济理论、统计学和数学三者的统一。
二、计量经济学的内容体系1、按范围分为广义计量经济学和狭义计量经济学。
2、按研究内容分为理论计量经济学和应用计量经济学。
理论计量经济学的核心内容是参数估计和模型检验。
应用计量经济学的核心内容是模型设定和模型应用。
第三节基本概念(4、5、7、8了解即可)1.经济变量:经济变量是用来描述经济因素数量水平的指标。
2.解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因”。
3.被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。
它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。
4.内生变量:内生变量是由模型系统内部因素所决定的变量,表现为具有一定概率颁的随机变量,其数值受模型中其他变量的影响,是模型求解的结果。
计量经济学复习资料(重要)
一、回归分析的基本方法和原理1、计量经济学的建模分析步骤和要点 (1) 确定模型所包含的变量 (2) 确定模型的数学模式(3) 拟定理论模型中待估参数的理论期望值 二、二、回归分析的含义?回归分析的含义? 回归分析基本概念回归分析基本概念• 变量间的相互关系变量间的相互关系(1)函数关系)函数关系 (2)相关关系)相关关系• 相关分析与回归分析相关分析与回归分析相关分析:主要研究随机变量间的相关形式及相关程度。
相关分析:主要研究随机变量间的相关形式及相关程度。
回归分析:研究存在因果关系的变量间的依存关系。
回归分析:研究存在因果关系的变量间的依存关系。
回归分析是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。
其目的在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值前一个变量称为被解释变量或因变量,后一个变量成为解释变量或自变量。
三、总体回归函数三、总体回归函数• 在给定解释变量X 的条件下,被解释变量Y 的期望轨迹,称为总体回归线,或总体回归曲线。
其相应的函数则称为总体回归函数回归曲线。
其相应的函数则称为总体回归函数 • 函数一般式:函数一般式: E(Y/X)=f (X )• 总体回归函数表明被解释变量Y 的平均状态随解释变量X 变化的规律。
变化的规律。
• 线性总体回归函数:线性总体回归函数: E(Y/X)=β0+β1x • 总体回归函数引入随机干扰项,总体回归函数引入随机干扰项,则变成计量经济学模型,则变成计量经济学模型,则变成计量经济学模型,也称为总体回归模型。
也称为总体回归模型。
也称为总体回归模型。
即:即:• Y=β0+β1x +μ 四、样本回归函数四、样本回归函数• 由于总体回归函数未知,通过从抽样,得到总体的样本,再以样本的信息来估计总体回归函数。
体回归函数。
• 以样本的资料反映总体的情况,所形成的散点连线,称为样本回归线,其函数形式则称为样本回归函数则称为样本回归函数样本回归函数的随机形式:样本回归函数的随机形式:也称样本回归函数也称样本回归函数 e 的含义的含义• e 为随机干扰项μ的估计值,称为残差项。
(完整word版)计量经济学知识点总结
(1)经济变量之间具有共同变化趋势(2)模型中包含滞后变量(3)利用截面数据建立模型也可能出现多重共线性(4)样本数据自身的原因
完全多重共线性的后果?
(1)参数的估计值不确定(2)参数估计值的方差无限大
不完全多重共线性下产生得到后果?
(1)参数估计值的方差与协方差增大(2)对参数区间估计时,置信区间趋于变大
异方差性的补救措施?
(1)对模型变换(2)加权最小二乘法(3)模型的的对数变换
自相关:指总体回归模型的随机误差项ui之间存在的相关关系
自相关产生的原因?
(1)经济系统的惯性(2)经济活动的滞后效应(3)数据处理造成的相关(4)蛛网现象(5)模型设定偏误
自相关的后果?
(1)一阶自回归形式的性质:自协方差均不为零。
可决系数 =1-
修正的决定系数 及其作用。
解答: (2分)其作用有:(1)用自由度调整后,可以消除拟合优度评价中解释变量多少对决定系数计算的影响;(2分)(2)对于包含解释变量个数不同的模型,可以用调整后的决定系数直接比较它们的拟合优度的高低,但不能用原来未调整的决定系数来比较(1分)。
多重共线性:指解释变量之间存在精确或近似的线性关系
(4)数据转换(5)获取补充数据或新数据(6)选择有偏估计量
异方差性:其他假设均不变,但模型中随机误差项 的方差Var( )= (i=1,2..n)
则 具有异方差性
异方差性产生的原因?
(1)模型设定误差(2)测量误差的变化(3)截面数据中总体名单的差异
异方差性产生的后果?
(1)对参数估计式统计特性的影响:参数的OLS估计仍然具有无偏性。参数OLS估计式得到方差不再是最小的
(4)随机扰动项ui与解释变量Xi不想管
(完整word版)计量经济学知识点总结
(完整word版)计量经济学知识点总结第一章:1计量经济学研究方法:模型设定,估计参数,模型检验,模型应用2.计量经济模型检验方式:①经济意义:模型与经济理论是否相符②统计推断:参数估计值是否抽样的偶然结果③计量经济学:是否复合基本假定④预测:模型结果与实际杜比3.计量经济学中应用的数据类型:①时间序列数据(同空不同时)②截面数据(同时不同空)③混合数据(面板数据)④虚拟变量数据(学历,季节,气候,性别)第二章:1.相关关系的类型:①变量数量:简单相关/多重相关(复相关)②表现形式:线性相关(散布图接近一条直线)/非线性相关(散布图接近一条直线)③变化的方向:正相关(变量同方向变化,同增同减)/负相关(变量反方向变化,一增一减不相关)2.引入随机扰动项的原因:①未知影响因素的代表(理论的模糊性)②无法取得数据的已知影响因素的代表(数据欠缺)③众多细小影响因素综合代表(非系统性影响)④模型可能存在设定误差(变量,函数形式设定)⑤模型中变量可能存在观测误差(变量数据不符合实际)⑥变量可能有内在随机性(人类经济行为的内在随机性)3.OLS回归线数学性质:①剩余项的均值为零②OLS回归线通过样本均值③估计值的均值等于实际观测值的均值④被解释变量估计值与剩余项不相关⑤解释变量与剩余项不相关4.OLS估计量”尽可能接近”原则:无偏性,有效性,一致性5.OLS估计式的统计性质/优秀品质:线性特征,无偏性特征,最小方差性特征第三章:1.偏回归系数:控制其他解释变量不变的条件下,第j个解释变量的单位变动对被解释变量平均值的影响,即对Y平均值直接或净的影响2.多元线性回归中的基本假定:①零均值②同方差③无自相关④随机扰动项与解释变量不相关⑤无多重共线性⑥正态性…一元中有123463. OLS回归线数学性质:同第二章34. OLS估计式的统计性质:线性特征,无偏性特征,最小方差性特征5.为什么用修正可决系数不用可决系数?可决系数只涉及变差没有考虑自由度,如果用自由度去校正所计算的变差,可纠正解释变量个数不同引起的对比困难第四章:1.多重共线性背景:①经济变量之间具有共同变化趋势②模型中包含滞后变量③利用截面数据建立模型可出现..④样本数据自身原因2.后果:A完全①参数估计值不确定②csgj值方差无限大B不完全①csgj量方差随贡献程度的增加而增加②对cs区间估计时,置信区间区域变大③假设检验用以出现错误判断④可造成可决系数较高,但对各cs 估计的回归系数符号相反,得出错误结论3.检验:A简单相关系数检验法:COR 解释变量.大于0.8,就严重B方差膨胀因子法:因子越大越严重;≥10,严重C直观判断法:增加或剔除一个解释变量x,估计值y发生较大变化,则存在;定性分析,重要x标准误差较大并没通过显著性检验时,则存在;x回归系数所带正负号与定性分析结果违背,则存在;x相关矩阵中,x之间相关系数较大,则存在D逐步回归检验法:将变量逐个引入模型,每引入一个x,都进行F检验,t检验,当原来引入的x由于后面引入的x不显著是,将其剔除.以确保每次引入新的解释变量之前方程种植包含显著变量.4.补救措施:①剔除变量法②增大样本容量③变换模型形式:自相关④利用非样本先验信息⑤截面数据与时序数据并用:异方差⑥变量变换第五章:1.异方差产生原因:①模型中省略了某些重要的解释变量②模型设定误差③数据测量误差④截面数据中总体各单位的差异2.后果:A参数估计统计特性:参数估计的无偏性仍然成立;参数估计方差不再是最小B参数显著性检验:t统计量进行参数检验失去意义C 预测影响:将无效3检验:A图示①相关图形分析data x y,看散点图,quick→graph→x,y→OK→scatter diagram→OK,可以看到x,y散点图②残差图形分析data x y,sort x;ls y c x;再回归结果的子菜单点resid,可以看残差分析图Bgoldfeld-quanadt:data x y;sort x;smpl 1 n1;ls y c x(RSS1);smpl n2 n;ls y c x(RSS2);计算F*=RSS2/RSS1,取α=0.05,查F分布表,得F0.05((n-c)/2,(n-c)/2),将F值与此对比.若F*>F(0.05),拒绝原假设,存在异方差Cwhite:data x y;ls y c x;在回归结果的子菜单中点击view-residual test-white heteroskedasticity,可以看到辅助回归模型的估计结果D arch;E:glejser:data x y;ls y c x;genr E1=resid;genr E2=abs(E1);genr XH=X^h;ls E2 c xh;依次根据XH的T值判断E2与XH之间是否存在异方差4.补救措施:A模型变换法:genr y1=y/根号x^h; genr x2=1/根号x^h ; genr x3=x/根号x^h;ls y1 x2 x3;B加权最小二乘法wls:权数:w1t=1/xt;w2t=1/xt^2;w3t=1/根号xt.电脑操作:genr w1=1/x;genr w2=1/(x^2);genr w3=1/sqr(x);ls (w=w1t) y c x;ls (w2=w2t) y c x;ls (w3=w3t) y c x. 第六章:1.自相关产生原因:①经济系统的惯性②经济活动的滞后效应③数据处理造成的相关④蛛网现象⑤模型设定偏误2.表现形式:自相关性质可以用自相关系数符号判断.即ρ<0为负相关, ρ>0为正相关.当|ρ|接近1时,表示相关的程度很高.自相关形式:见公式.3.后果:见公式.4.检验:A图示检验:data x y;ls y c x;再回归模型的子菜单点击resids,可以看到模型残差分布图;genr e=resid;data e e(-1);view-graph-scatter-simple scatter.B.DW检验:data x y;ls y c x;根据回归结果得出DW值,然后判断是否自相关.(正相关0~dl,无法判断dl~du,正相关du~2~4-du,无法判断4-du~4-dl,负相关4-dl~4).5.补救:A广义差分法:data x y;ls y c x;根据DW求ρ尖>(ρ尖=1-DW/2);smpl 2 n;genr yi=y-ρ尖*y(-1); genr xi=x-ρ尖*x(-1);ls y1 c x1;运用DW检验判断是否消除了自相关B:Cochrane orcutt迭代法:data x y;la y c x ar(1);运用DW检验判断C其他方法:①一阶差分法:data x y;ls y c x;smpl 2 n;genr y1=y-y(-1); genr x1=x-x(-1);ls y1 c x1; 运用DW检验判断②德宾两步法:data x y;smpl 2 n;ls y c y(-1)根据输出结果看y(-1)前系数,求出ρ尖; genr yi=y-ρ尖*y(-1); genr xi=x-ρ尖*x(-1);ls y1 c x1;运用DW检验判断第七章:1.虚拟变量0和1选取原则:0基期,比较的基础,参照物;1报告期:被比较类型2.虚拟变量数量的设置规则:①若定性因素具有m≥2个相互排斥属性,当回归模型有截距项时,只能引入m-1个变量②当回归模型无截距项时,引入m个变量3.虚拟解释变量的回归:加法截距:①解释变量只有一个分为两种相互排斥类型的定性变量而无定量变量②解释变量包含一个定量变量和一个分为两种类型的定性变量③解释变量包含一个定量变量和一个两种以上类型的定性变量④解释变量包含一个定量变量和两个定性变量.乘法斜率:①截距不变情形②结局斜率均发生变化③分段回归分析描述的精度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学复习要点参考教材:伍德里奇 《计量经济学导论》 第1章 绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念 习题:C1、C2第2章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。
简单线性回归模型是只有一个解释变量的线性回归模型。
回归中的四个重要概念1. 总体回归模型(Population Regression Model ,PRM)t t t u x y ++=10ββ--代表了总体变量间的真实关系。
2. 总体回归函数(Population Regression Function ,PRF )t t x y E 10)(ββ+=--代表了总体变量间的依存规律。
3. 样本回归函数(Sample Regression Function ,SRF )tt t e x y ++=10ˆˆββ--代表了样本显示的变量关系。
4. 样本回归模型(Sample Regression Model ,SRM )tt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律。
总体回归模型与样本回归模型的主要区别是:①描述的对象不同。
总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系。
②建立模型的依据不同。
总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。
③模型性质不同。
总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。
总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。
线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数) 线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定)普通最小二乘法(原理、推导)最小二乘法估计参数的原则是以“残差平方和最小”。
Min21ˆ()niii Y Y =-∑01ˆˆ(,)ββ: 1121()()ˆ()nii i n ii XX Y Y X X ==--β=-∑∑ ,01ˆˆY X β=-βOLS 的代数性质拟合优度R 2离差平方和的分解:TSS=ESS+RSS“拟合优度”是模型对样本数据的拟合程度。
检验方法是构造一个可以表征拟合程度的指标——判定系数又称决定系数。
(1)21SSE SST SSR SSRR SST SST SST-===-,表示回归平方和与总离差平方和之比;反映了样本回归线对样本观测值拟合优劣程度的一种描述; (2) 2[0,1]R ∈;(3) 回归模型中所包含的解释变量越多,2R 越大!改变度量单位对OLS 统计量的影响函数形式(对数、半对数模型系数的解释)(1)01ˆˆˆi iY X =β+β:X 变化一个单位Y 的变化 (2)01ˆˆˆln ln i i Y X =β+β: X 变化1%,Y 变化1ˆβ%,表示弹性。
(3)01ˆˆˆln i i Y X =β+β:X 变化一个单位,Y 变化百分之1001ˆβ (4)01ˆˆˆln i i Y X =β+β:X 变化1%,Y 变化1ˆβ%。
OLS 无偏性,无偏性的证明OLS 估计量的抽样方差 误差方差的估计 OLS 估计量的性质(1)线性:是指参数估计值0β和1β分别为观测值t y 的线性组合。
(2)无偏性:是指0β和1β的期望值分别是总体参数0β和1β。
(3)最优性(最小方差性):是指最小二乘估计量0β和1β在在各种线性无偏估计中,具有最小方差。
高斯-马尔可夫定理 OLS 参数估计量的概率分布OLS 随机误差项μ的方差σ2的估计简单回归的高斯马尔科夫假定 对零条件均值的理解习题:4、5、6;C2、C3、C4第3章 多元回归分析:估计1、变量系数的解释(剔除、控制其他因素的影响)01122ˆˆˆˆi i iY X X =β+β+β 对斜率系数1ˆβ的解释:在控制其他解释变量(X2)不变的条件下,X1变化一个单位对Y 的影响;或者,在剔除了其他解释变量的影响之后,X1的变化对Y 的单独影响! 2、多元线性回归模型中对随机扰动项u 的假定,除了零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定以外,还要求满足无多重共线性假定。
3、多元线性回归模型参数的最小二乘估计式;参数估计式的分布性质及期望、方差和标准误差;在基本假定满足的条件下,多元线性回归模型最小二乘估计式是最佳线性无偏估计式。
最小二乘法 (OLS) 公式:Y ' X X)' (X ˆ-1=β估计的回归模型:的方差协方差矩阵:残差的方差 :ˆˆY =X β+u βˆ2ˆˆ'u u n k -s =2ˆvar(σ-1(X'X)β)=2^22()i Var x σβ=∑2^22ie n σ=-∑估计的方差协方差矩阵是:拟合优度 遗漏变量偏误多重共线性多重共线性的概念多重共线性的后果 多重共线性的检验 多重共线性的处理习题:1、2、6、7、8、10;C2、C5、C6第4章 多元回归分析:推断经典线性模型假定 正态抽样分布变量显著性检验,t 检验 检验β值的其他假设 P 值实际显著性与统计显著性 检验参数的一个线性组合假设 多个线性约束的检验:F 检验理解排除性约束 报告回归结果习题:1、2、3、4、6、7、10、11;C3、C5、C8第6章 多元回归分析:专题测度单位对OLS 统计量的影响 进一步理解对数模型 二次式的模型2ˆvar(s -1(X'X)β)=交互项的模型 拟合优度修正可决系数的作用和方法。
22222()111()(1)()ii i i en k e n R Y Y n n k Y Y --=-=-----∑∑∑∑ 习题:1、3、4、7;C2、C3、C5、C9、C12第7章 虚拟变量虚拟变量的定义如何引入虚拟变量:如果一个变量分成N 组,引入该变量的虚拟变量形式是只能放入N-1个虚拟变量虚拟变量系数的解释虚拟变量系数的解释:不同组均值的差(基准组或对照组与处理组) 以下几种模型形式表达的不同含义;1)tt t t u D X Y +++=210βββ:截距项不同; 2)tt t t t u X D X Y +++=210βββ:斜率不同;3)tt t t t t u X D D X Y ++++=3210ββββ:截距项与斜率都不同;其中D 是二值虚拟变量,X 是连续的变量。
虚拟变量陷阱 虚拟变量的交互作用习题:2、4、9;C2、C3、C6、C7、C11第8章 异方差异方差的后果 异方差稳健标准误 BP 检验异方差的检验(White 检验) 加权最小二乘法习题:1、2、3、4;C1、C2、C8、C9Eviews 回归结果界面解释表/()se ββ/1ESS TSS ==-2i e n kσ=-∑RSS e =∑计量经济学复习题第1章习题:C1、C2第2章习题:4、5、6;C2、C3、C4第3章习题:1、2、6、7、8、10;C2、C5、C6 第4章习题:1、2、3、4、6、7、10、11;C3、C5、C8 第6章习题:1、3、4、7;C2、C3、C5、C9、C12 第7章习题:2、4、9;C2、C3、C6、C7、C11 第8章习题:1、2、3、4;C1、C2、C8、C91、判断下列表达式是否正确010*******, 1,2,,ˆˆˆ, 1,2,,(), 1,2,,(), 1,2,,ˆˆ(), 1,2,,i i i i i i i i i i i i i i y x i ny x i n E y x x i nE y x x i n E y x x i nββββββμββββ=+==+==++==+==+=0101010101, 1,2,,ˆˆˆ, 1,2,,ˆˆ, 1,2,,ˆˆˆ, 1,2,,ˆˆˆˆ, 1,2,,i i i i i i i i i iiii ii y x i n y x i n y x i n y x i n y x i nββμββμββμββμββμ=++==++==++==++==++=2、给定一元线性回归模型:t t t X Y μββ++=10 n t ,,2,1 =(1)叙述模型的基本假定;(2)写出参数0β和1β的最小二乘估计公式; (3)说明满足基本假定的最小二乘估计量的统计性质; (4)写出随机扰动项方差的无偏估计公式。
3、对于多元线性计量经济学模型:t kt k t t t X X X Y μββββ+++++= 33221 n t ,,, 21=(1)该模型的矩阵形式及各矩阵的含义; (2)对应的样本线性回归模型的矩阵形式; (3)模型的最小二乘参数估计量。
4、根据美国1961年第一季度至1977年第二季度的数据,我们得到了如下的咖啡需求函数的回归方程:D D D P I P t t t t t t tT Q 321'0097.0157.00961.00089.0ln 1483.0ln 5115.0ln 1647.02789.1ˆln ----++-= (-2.14) (1.23) (0.55) (-3.36) (-3.74) (-6.03) (-0.37)80.02=R其中,Q=人均咖啡消费量(单位:磅);P=咖啡的价格(以1967年价格为不变价格);I=人均可支配收入(单位:千元,以1967年价格为不变价格);P '=茶的价格(1/4磅,以1967年价格为不变价格);T=时间趋势变量(1961年第一季度为1,…,1977年第二季度为66);D 1=1:第一季度;D 2=1:第二季度;D 3=1:第三季度。
请回答以下问题:① 模型中P 、I 和P '的系数的经济含义是什么? ② 咖啡的需求是否很有弹性? ③ 咖啡和茶是互补品还是替代品? ④ 你如何解释时间变量T 的系数? ⑤ 你如何解释模型中虚拟变量的作用? ⑥ 哪一个虚拟变量在统计上是显著的? ⑦ 咖啡的需求是否存在季节效应?5、为研究体重与身高的关系,我们随机抽样调查了51名学生(其中36名男生,15名女生),并得到如下两种回归模型:h W5662.506551.232ˆ+-= (5.1) t=(-5.2066) (8.6246)h D W7402.38238.239621.122ˆ++-= (5.2) t=(-2.5884) (4.0149) (5.1613)其中,W(weight)=体重 (单位:磅);h(height)=身高 (单位:英寸)⎩⎨⎧= 01女生男生D请回答以下问题:① 你将选择哪一个模型?为什么?② 如果模型(5.2)确实更好,而你选择了(5.1),你犯了什么错误? ③ D 的系数说明了什么?6、简述异方差对下列各项有何影响:(1)OLS 估计量及其方差;(2)置信区间;(3)显著性t 检验和F 检验的使用。