等比数列前N项和说课PPT课件

合集下载

等比数列的前n项和PPT课件

等比数列的前n项和PPT课件
等比数列的前n项和ppt课件
xx年xx月xx日
contents
目录
• 引言 • 等比数列的前n项和公式推导 • 等比数列的前n项和的应用 • 特殊等比数列的前n项和 • 等比数列的前n项和求解方法 • 习题解答与练习
01
引言
课程背景
教学内容的重要性
等比数列是数学中的一个重要概念,其前n项和在数学、物理 、工程等领域有着广泛的应用。
特殊情况
当公比q不等于1时,等比数列的前n项和公式为 Sn=a1(1-q^n)/(1-q)。
05
等比数列的前n项和求解方法
利用公式求解等比数列的前n项和
公式法
利用等比数列的前n项和公式求解,当已知等比数列的首项a1和公比q时,可以直 接套用公式求出前n项和。
记忆口诀
为了方便记忆,可以总结一个简单的记忆口诀:“首项乘1减公比除以1减公比的 n次方”,这个口诀可以快速帮助我们记忆公式。
02
等比数列的前n项和公式推导
公比为r的等比数列求和公式推导
公式推导
$S_n = \frac{a_1}{1-r} * (1 - r^n)$
VS
推导步骤
将等比数列的每一项分别代入求和公式中 ,得到$S_n = a_1 + a_2 + \cdots + a_n$,再将$a_1 = ar, a_2 = ar^2, \cdots, a_n = ar^n$代入$S_n$中,经过 化简得到最终的求和公式。
04
特殊等比数列的前n项和
等差数列的前n项和公式
公式总结
等差数列的前n项和公式为Sn=n/2(a1+an),其中n为项数, a1为首项,an为末项。
公式证明
通过采用倒序相加法,将前n项和与后n项和相加,得到 2Sn=n(a1+an),从而得到前n项和公式。

《等比数列前n项和》课件

《等比数列前n项和》课件

2 其他公式
通项公式的推导过程可以帮助我们得到其他与等比数列相关的公式。
等比数的前n项和
1 求和公式
我们可以通过数学推导得到等比数列前n项和的公式。
2 实例计算
通过使用公式,我们可以计算具体等比数列的前n项和。
应用实例
经济应用
了解等比数列在经济领域中的应 用,如金融市场中的资产增长模 型。
自然科学应用
《等比数列前n项和》 PPT课件
掌握等比数列前n项和的概念和计算方法,以及在经济、自然科学和计算机科 学中的实际应用。
什么是等比数列?
1 定义
等比数列是指数列中的每一项与其前一项的 比都相等。
2 性质
等比数列具有独特的性质,如比值相等、前 项与后项之比等于公比等。
等比数列的通项公式
1 推导公式
根据等比数列的定义和性质,可以推导出等比数列的通项公式。
发现等比数列在自然科学中的应 用,如生物群体的增长规律。
计算机科学应用
探索等比数列在计算机科学领域 中的实际应用,如算法设计和数 据结构。
总结
关键概念和公式回顾
回顾等比数列的关键概念和 通项公式,巩固知识。
应用回顾
再次思考等比数列在经济、 自然科学和计算机科学中的 实际应用。
总结
总结本课件的主要内容,强 调等比数列前n项和的重要性。

4.3.2.1等比数列的前n项和公式课件(人教版)

4.3.2.1等比数列的前n项和公式课件(人教版)
1-3n 解:(1)由题设知{an}是首项为 1,公比为 3 的等比数列,所以 an=3n-1,Sn= 1-3 =
12(3n-1). (2)因为 b1=a2=3,b3=1+3+9=13,b3-b1=10=2d,
所以公差 d=5, 故 T20=20×3+20×219×5=1 010.
6.将数列{an}中的所有项按“第一行三项,以下每一行比上一行多一项”的规则 排成如下数表. 记表中的第一列数a1,a4,a8,…构成的数列为{bn},已知: ①在数列{bn}中,b1=1,对于任何n∈N*,都有(n+1)·bn+1-nbn=0; ②表中每一行的数从左到右均构成公比为q(q>0)的等比数列; ③a66=25.
当已知a1,q与an时,用Sn=a11--aqnq 比较方便.
在公差不为零的等差数列{an}中,a1=1,且a1,a2,a5成等比数列. (1)求{an}的通项公式. (2)设bn=2an,求数列{bn}的前n项和Sn.
【解析】(1)设等差数列{an}的公差为d,由已知得a22 =a1a5, 则(a1+d)2=a1(a1+4d),将a1=1代入并化简得d2-2d=0,解得d=2或d=0(舍去). 所以an=1+(n-1)×2=2n-1. (2)由(1)知bn=22n-1,所以bn+1=22n+1,所以bbn+n 1 =22n+1-(2n-1)=4,所以数列{bn} 是首项为2,公比为4的等比数列.
∴an=3an-1(n≥2),
∴数列{an}是首项 a1=-2,公比 q=3 的等比数列,
∴S5=a1
1-q5 1-q
-2× 1-35 =
1-3
=-242.故选 B.
5.设数列{an}满足:a1=1,an+1=3an,n∈N*. (1)求{an}的通项公式及前n项和Sn; (2)已知{bn}是等差数列,Tn为其前n项和,且b1=a2,b3=a1+a2+a3,求T20.

数列等比数列及其前n项和课件文ppt

数列等比数列及其前n项和课件文ppt
构成要素
通常用符号“{ a_n }”或“a_n”表示。
表示方法
有穷数列和无穷数列
递增数列、递减数列和常数列
等差数列和等比数列
数列的分类
数列的应用
描述数量变化规律
解决实际问题
数学分析、统计学等领域
02
等比数列的定义及性质
等比数列的定义
数学符号表示
等比数列的首项和公比
等比数列的定义
当公比q>1时,数列为递增数列;当0<q<1时,数列为递减数列
前n项和公式的证明
实际应用:等比数列的前n项和公式在实际生活中有广泛的应用。例如,在投资理财中,如果将本金按照一定的年利率进行复利计算,就可以使用等比数列的前n项和公式来计算未来的本金和利息之和。
前n项和公式的应用
04
等比数列的前n项和的实际应用
简单利息
等比数列可以用来计算简单利息,即只考虑本金和利率的情况下,利息随时间线性增长。
等比数列与指数函数的联系
等比数列的通项公式和求和公式与指数函数有密切的联系,可以帮助我们更好地理解指数函数的性质和应用。
等比数列与三角函数的联系
等比数列的项数公式和求和公式与三角函数有一定的联系,可以帮助我们更好地理解三角函数的性质和应用。
与其他数学知识的交叉应用
THANKS
感谢观看
等比数列在金融领域的应用
01
等比数列可以用于计算复利、折旧等金融问题,帮助我们更好地理解金融市场的运行规律。
拓展应用介绍
等比数列在物理领域的应用
02
等比数列可以用于描述指数衰变、放射性衰变等物理现象,帮助我们更好地理解自然界中的规律。
等比数列在计算机领域的应用
03
等比数列可以用于计算机算法设计、数据结构等方面,提高计算机程序的效率和性能。

等比数列前n项和公式课件PPT

等比数列前n项和公式课件PPT
等比数列的特殊前n项和
对于等比数列,当公比q=1时,前n项和公式为Sn=na1;当q=-1时,Sn=a1a1*q^n/1+q。
等比数列前n项和公式的变种
倒序相加法
错位相减法
将等比数列的前n项和公式倒序相加, 可以得到新的求和公式。
通过错位相减法,可以求出等比数列 的通项公式。
分组求和法
将等比数列分组求和,可以简化计算 过程。
公式与其他数学知识的结合
总结词:综合运用
详细描述:等比数列前n项和公式可以与其他数学知识结合使用,以解决更复杂的数学问题。例如,可以与等差数列、函数、 极限等知识结合,用于解决一些综合性数学问题。
03
等比数列前n项和公式的扩展
特殊等比数列的前n项和
等差数列的前n项和
等差数列是一种特殊的等比数列,其前n项和公式为Sn=n/2 * (a1+an),其中 a1为首项,an为第n项。
等比数列前n项和公式的证明方法
数学归纳法
通过数学归纳法证明等比数列的前n 项和公式。
累乘法
通过累乘法证明等比数列的前n项和公 式。
04
等比数列前n项和公式的练习 与巩固
基础练习题
详细描述:通过简单的等比数列求和问题,让 学生熟悉并掌握等比数列前n项和的公式。
解题思路:利用等比数列前n项和公式,将数列中的 每一项表示为2的幂,然后求和。
05
等比数列前n项和公式的总结 与回顾
本节课的重点回顾
等比数列前n项和公 式的推导过程
等比数列前n项和公 式的适用范围和限制 条件
如何应用等比数列前 n项和公式解决实际 问题
本节课的难点解析
如何理解和掌握等比数列前n项和公 式的推导过程

等比数列前n项和说课课件

等比数列前n项和说课课件

例1:已知等比数列{a n },首项为a1,公比为q,Sn为前n项和
(1)若a 2
2, a5
16,
求S 5
(2)若a 1
an
66, a3an2
128,
S
n =126,求q, n
(3)若a1 1, S6 4S3, 求a4
变式练习:求和:x+x2 ... xn
解:Sn x x2 … xn. x 0时,Sn 0 ;
Sn= a1 + a2 + a3 +… + an-2 + an-1 + an Sn= an + an-1+ an-2 +… + a3 + a2 + a1
a1 an a2 an1 a3 an2 ......
算 法
两式相加得: 2Sn = (a1+an )×n


S n(a a ) 1
n
思考:两式相加行吗? 两式相减呢?
由 ① - ②得: – S64= 1 – 264
即 S64= 264 – 1. (错位相减法)
问题2:Sn
1 2
1 22
1 23
1 2n
=?
解:
Sn
1 2
1 22
1 23
1 2n

1 2
Sn
1 22
1 23
1 2n
1 2n1

由 ① - ②得:
1 11 2 Sn 2 2n1
课后作业,分层练习
必做:教材的练习第1,2题 补充:求和:
=
课后思考: 已知等差数列{an},Sn为其前n项和
则Sk ,S2k -Sk ,S3k -S2k (k N)成等差数列 你能否以类比的方法探究:已知等比数列 {an},Sn为其前n项和

第6章第3节等比数列及其前n项和课件共66张PPT

第6章第3节等比数列及其前n项和课件共66张PPT

等比数列基本量的运算 等比数列的判定与证明 等比数列性质的应用
第三节 等比数列及其前n项和
1
2
3
4
走进教材·夯实基础 细研考点·突破题型 数学文化 课后限时集训
考点一 等比数列基本量的运算 等比数列基本量运算的解题策略
(1)等比数列的通项公式与前n项和公式共涉及五个量a1,an,q, n,Sn,已知其中三个就能求另外两个(简称“知三求二”).
∴{an+bn}是首项为32,公比为34的等比数列,
两式相减,得an+1-bn+1=14(an-bn). 又∵a1-b1=12≠0,
∴{an-bn}是首项为12,公比为14的等比数列.
第三节 等比数列及其前n项和
1
2
3
4
走进教材·夯实基础 细研考点·突破题型 数学文化 课后限时集训
(2)由(1)得,an+bn=3234n-1,①
a11-qn
2142=2,所以q=2,所以Sann=
1-q a1qn-1
=22n-n-11=2-21-n,故选B.]
第三节 等比数列及其前n项和
1ቤተ መጻሕፍቲ ባይዱ
2
3
4
走进教材·夯实基础 细研考点·突破题型 数学文化 课后限时集训
3.(2018·全国卷Ⅲ)等比数列{an}中,a1=1,a5=4a3. (1)求{an}的通项公式; (2)记Sn为{an}的前n项和,若Sm=63,求m. [解] (1)设{an}的公比为q,由题设得an=qn-1. 由已知得q4=4q2,
第三节 等比数列及其前n项和
1
2
3
4
走进教材·夯实基础 细研考点·突破题型 数学文化 课后限时集训
2.在等比数列{an}中,a3=32,S3=92,则a2的值为(

等比数列的前n项和ppt课件

等比数列的前n项和ppt课件

等比数列前1 qn ) a1 anq
1 q
1 q
(q
1)
判 创设情境 类比探究 断
新知应用 归纳巩固
总结提升

5(1 1n )
非 555 5
0
11
n个
1 2 4 8 16
(2)n1 1 (1 22nn ) ( 2)n
1 (2)
n+1
创设情境 创类设比情探境究 新知应用 深化巩固 总结提升
求和 1+ a + a2 + a3 +

当a 0时,原式=1+0+0+ +0=1
当a 1时, 原式=1+1+ +1=n
当a 1时,原式= 1 1 an 1 a
+ an-1.
创设情境 类比探究 新知应用 深化巩固 总结提升
一个公式
Sn
a1
na1 (q 1)
(1 qn ) a1 anq
1 q
1 q
(q
1)
两种方法
错位相减 分类讨论
三种数学思想
类比 分类讨论 方程
作业 课本 选做1 选做2
1, 2, 22, 23, +30 S30 1 2 22 23
等比数列的前30项和
第一天给1万,每天 比前一天多给1万元,
连续一个月(30天)
第一天返还1分, 第二天返还2分, 第三天返还4分…… 后一天返还数为前一天的
2倍.
, 229 229
=?
创设情境 类比探究 新知应用 深化巩固 总结提升
等比数列前n项和(一)
学习目标
1
学习 目标
2

第七章 第三节 等比数列及其前n项和 课件(共54张PPT)

第七章 第三节 等比数列及其前n项和  课件(共54张PPT)

(2)等比中项 如果 a,G,b 成等比数列,那么_G_叫做 a 与 b 的等比中项.即:G 是 a
与 b 的等比中项⇔a,G,b 成等比数列⇒_G_2_=__a_b_.
2.等比数列的有关公式 (1)通项公式:an=_a_1_q_n_-_1___.
__n_a_1 ,q=1; (2)前 n 项和公式:Sn=a1(11--qqn)=a11--aqnq,q≠1.
第七章 数 列
第三节 等比数列及其前n项和
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.通过实例,理解等比数列的概念. 考情分析: 等比数列的基本运算,
2.探索并掌握等比数列的通项公式 等比数列的判断与证明,等比数列的
与前 n 项和的公式.
性质与应用仍是高考考查的热点,三
3.等比数列的性质 已知数列{an}是等比数列,Sn 是其前 n 项和. (1)若 m+n=p+q=2r,则 aman=apaq=a2r . (2)若数列{an}、{bn}(项数相同)是等比数列,则{λan}、a1n 、{a2n }、{anbn}、 abnn (λ≠0)仍然是等比数列. (3)在等比数列{an}中,等距离取出若干项也构成一个等比数列,即 an, an+k,an+2k,an+3k,…为等比数列,公比为 qk.
(1)证明:{an+bn}是等比数列,{an-bn}是等差数列; (2)求{an}和{bn}的通项公式.
解析: (1)证明:由题设得 4(an+1+bn+1)=2(an+bn),即 an+1+bn+1=12 (an+bn).
又因为 a1+b1=1,所以{an+bn}是首项为 1,公比为12 的等比数列. 由题设得 4(an+1-bn+1)=4(an-bn)+8,即 an+1-bn+1=an-bn+2. 又因为 a1-b1=1,所以{an-bn}是首项为 1,公差为 2 的等差数列.

等比数列前n项和 说课ppt

等比数列前n项和 说课ppt


教学目标
知识与技 能
目标
过程与方 法
情感态度 与价值观
知识与技能
理解并掌握等比数列前 n 项和公式的推导过程 、公式的特点,在此基 础上,并能初步应用公 式解决与之有关的问题 。
过程与方法
通过对公式推导方法的 探索与发现,向学生渗 透特殊到一般、类比与 转化、分类讨论等数学 思想。
情感态度与价值观
3.得出结论
* 引出求等比数列前n项和的方法——错位相减 法:等式左右各项乘以公比q,两式相减去掉相 同项,得求和公式 。
*
Sn = ɑ1+ ɑ1q+ɑ1q2+...+ɑ1qn-1 qSn = ɑ1q+ɑ1q2+...+ɑ1qn-1 +ɑ1qn ③-④ , (1-q)Sn=ɑ1-ɑ1qn
a1 (1 q n ) S n= (q≠1) 1 q
(三)实践应用
练习: 1.在等比数列{an}中, 1 (1)已知a1=-4,q=2 ,求S10。 (2)已知a1=1,ak=243,q=3,求Sk。 2.某制糖厂第一年制糖5万吨,如果平均每年的产 量比上一年增加10 %,那么从第一年起,约几年 内能使总产量达到30万吨(保留到万位)?
设计意图:第一题是对求和公式的直接运 用,第二题是对求和公式的实际运用,在 与实际生活息息相关的利率付款问题中, 既考察学生把实际问题建立成数学模型的 能力,也检验了学生对求和公式的掌握情 况。练习的设计由易到难,由理论到实际 ,符合学生认知规律。
通过对公式推导方法的 探索与发现,优化学生 的思维品质,渗透事物 之间等价转化和理论联 系实际的辩证唯物主义 观点。

教学重难点
教学重点:等比数列前n项和公式的推导、 公式的特点和公式的运用。

等比数列前n项和公式ppt课件

等比数列前n项和公式ppt课件


Sn qSn a1 a1qn
(1 q)Sn a1(1 qn )
公比q能否为1
Sn
a1(1 qn ) 1 q
乘公比错位相减法
新知讲解
当q 1时,Sn na1
等比数列的前n项和公式
na1
q=1
Sn
a1
(1
q
n
)
1 q
q≠1
典型例题-例1
已知an 是等比数列,若
a1
1 2
,
q
1 2
, 求S8
S8
a1(1 qn ) 1 q
1 2
(1
1 2
8

1( -
1
)8
1-
1- 1
2
1 256
1 255
2
S8
1 255
典型例题-例2
已知an43
,q
0, 求S8
a1
27, a9
1 ,27 q8 243
1 243
q8 (1)8 3
q 0,q 1 3
新知探究
问题1:请问如何表示西萨到底要求的麦粒数?
1 2 22 23 263
问题2:仔细观察,1,2,22 ,23,24...... 263是什么数列
等比数列
问题3:1 2 22 23 263可以归结为什么数学问 题?
等比数列的前n项和求和问题
新知探究
S64 1 2 22 23 24...... 263
S8
27 [1 ( 1)8 ] 3
1(- 1)
1640 81
3
典型例题-例3
例3已知等比数列 {an }的首项为
-1,前
n项和为
S

4321等比数列的前n项和公式课件共60张PPT

4321等比数列的前n项和公式课件共60张PPT

课堂篇·互动学习
类型一 等比数列基本量的计算
[例 1] 在等比数列{an}中, (1)若 a1=1,a5=16,且 q>0,求 S7; (2)若 Sn=189,q=2,an=96,求 a1 和 n; (3)若 a3=3,S3=9,求 a1 和公比 q. [思路分析] 根据题设条件,将已知量代入等比数列的通项公式与前 n 项和公 式进行求解.
(3)①当 q≠1 时,S3=a111--qq3=9,
又 a3=a1·q2=3,
∴a1(1+q+q2)=9,即q32(1+q+q2)=9,
解得 q=-12(q=1 舍去),∴a1=12.
②当 q=1 时,S3=3a1,∴a1=a3=3.
a1=12, 综上得q=-12
或aq1==13. ,
1.在等比数列中,对于 a1,q,n,an,Sn 五个量,若已知其中三个量就可求 出其余两个量,常常列方程组来解答问题,有时会涉及高次方程或指数方程,求解 可能遇到困难,这时要注意表达式有什么特点,再采取必要的数学处理方法,如换 元.
2.在解决与等比数列前 n 项和有关的问题时,首先要对公比 q=1 或 q≠1 进 行判断,若两种情况都有可能,则要分类讨论.
[变式训练 1] (1)在等比数列{an}中,若 a1+a3=10,a4+a6=54,求 a4 和 S5.
(2)在等比数列{an}中,若 q=2,S4=1,求 S8. (3)设等比数列{an}的前 n 项和为 Sn,已知 a2=6,6a1+a3=30.求 an 和 Sn.
3将实际问题抽象为数学问题,将已知与所求联系起来,列出满足题意的数 学关系式.
[变式训练 2] 小华准备购买一台售价为 5 000 元的电脑,采用分期付款方式, 并在一年内将款全部付清.商场提出的付款方式为:购买 2 个月后第 1 次付款,再 过 2 个月后第 2 次付款,……,购买 12 个月后第 6 次付款,每次付款金额相同, 约定月利率为 0.8%,每月利息按复利计算,求小华每期付款金额是多少? (1.00812≈1.10)

4.3.2等比数列的前n项和课件(人教版)

4.3.2等比数列的前n项和课件(人教版)
2

+2 +2
28
29
2S30 = 2 + 22 + 23 + … + 229 + 230
1
2
S30 = 1 + 2 + 2 +
2
2S30 =
+2 +2
29
2+2 +2 + … +2 +2
2
2 一 1 得:S 30


28

3
29
1


30 法 2
1.07 10
= 2 1≈10.7亿元
30
1

2
)
① 1 + 2 + 22 + 23 + L + 2n =
n
1 2


2

n
n
2
1

(
1

)
n 1
②1 2 + 4 8 + 16 L + (2) =
1 ( 2 )
2
2 n
c
[
1

(
c
) ]
2
4
6
2n
③若c 0 且 c 1 ,则c + c + c + L + c =
T 30 = 100 × 30
= 3000 ( 万元
每月投资100万元,
连续30个月
)
=
第一个月月末返还1元,
第二个月月末返还2元,
第三个月月末返还4元……
每月返还数为前一月的2倍.

等比数列前n项和公式ppt名师公开课获奖课件百校联赛一等奖课件

等比数列前n项和公式ppt名师公开课获奖课件百校联赛一等奖课件

1 (1)已知 a1 4 , q 2 ,求S10。
(2)已知 a1 1 , ak 243 , q 3 ,求Sk。
解:(1)
S10
a1(1 q10 ) 1 q
4[1 (1)10 ] 2
1 1
1023 128
2
(2)
Sk
a1 ak q 1 q
1 243 3 13
364
拓展训练 、深化认识
(1)-(2) Sn qSn a1 anq 整顿 (1 q)S n a1 anq
a a q 当q
1时,Sn
a1 anq 1 q
n
n1 1
Sn
a1(1 qn 1 q
)
当q 1时,Sn na1.
错位相减法
深化学生对公式旳认识和了解:
等比数列旳前n项和公
式当q 1时,
Sn
a1 anq 1 q
例。1 .写出等比数列 1,-3,9,-27…旳前n项和公式并求
出数列旳前8项旳和。
解:因为a1
1,q
3 1
3,所以等比数列的前
n项和公式为:
Sn
1[1 (3)n ] 1 (3)
1 (3)n 4

S8
1 ( 3)8 4
1640
变式强化: 深化对公式旳了解与灵活利用,巩固强化。
课堂练习 1.求等比数列中,
陛下,请您在这张棋盘旳第一 种小格内,赐给我一粒麦子; 在第二个小格内给两粒,第三 格内给四粒,照这么下去,每 一小格都比前一小格加一倍。 陛下啊,把这么摆满棋盘上所 有64格旳麦粒,都赐给您旳仆 人罢!
鼓励学生合作讨论, 经过自己旳努力处理问题, 激发进一步进一步学习旳爱好和欲望。
第1格: 1 第2格: 2

4.3.2等比数列的前n项和公式课件(人教版)

4.3.2等比数列的前n项和公式课件(人教版)
( 1) (1 q )
32
m
Sm 1 q


. q 1)
n
1
Sn 1 q
∴q .
不要忘记考
2
虑q=1与q≠1
两种情况.
跟踪训练


在等比数列{an}中,设前n项和为Sn,S3= ,S6= ,求公比q .


解 : (1)q 1时, S 6 6a1 , S3 3a1 , 则S 6 2S3 , 不符合题意.
3
课堂小结
获取知识的方法
知识内容
这节课
收获了什么
思想、素

课堂小结
,q 1
na1

n
S

a
1

q
a1 an q
➢ 数学知识:等比数列的前n项和公式 n 1
=


q 1
1

q
1

q



➢数学方法: 错位相减法
➢数学思想:
转化和化归
➢数学素养:
逻辑推理、数学抽象素养、数学运算、数学
学抽象素养。
2.通过等比数列的前n项和公式
的运用,培养数学运算素养。
3.借助等比数列的前n项和公式
解决简单的实际问题,培养数学
建模素养。
新课导入
数学小故事
相传,古印度的国王打算重赏国际象棋的发明者——宰相西
萨。问他想要什么。于是,这位宰相跪在国王面前说:
2
3
1 2 2 2 2
4
263
思考:
问题1:1,2,2 2 ,23 , ,263 构成什么数列?
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)书面作P 1 1 业9 :P115
(3) 弹性作业:
作业分为三种形式,体现作业的巩 固性和发展性原则。阅读作业中的 问题思考是后续课堂的铺垫,而弹 性作业不作统一要求,供学有余力 的学生课后研究。同时,它也是新 课标里研究性学习的一部分。
2020年10月2日
17
五. 板书设计
投影 屏幕
课题 引入 推导
2020年10月2日
4
一. 教材分析
(二)课时安排
等比数列的前n项和可安排两课时。第一课时 重在研究推导前n项和公式的方法,第二课时 重在例题精析和巩固公式。教学中注重方法的 引入,公式的应用。在这个过程中培养学生分 析解决问题的能力,培养学生讨论交流的合作 意识。
2020年10月2日
5
二. 教法分析
等比数列的 前n项和(说课) (第一课时)
2020年10月2日
1
教材分析
教法分析
教学目标
教学过程
设计说明
2020年10月2日
2
一. 教材分析
(1) 教材的地位和作用 (2) 课时安教材分析 (一)教材的地位和作用
“等比数列的前n项和”是高中数学新 教材的一个重要问题,它位于第一册第三 章第五节,它是函数的延续,又为进一步 学习数列的极限等内容打下基础。通过这 部分内容的学习,可以帮助学生更好的理 解特殊到一般、类比与转化、分类讨论的 思想。
2020年10月2日
7
二. 教法分析
(二)教学方法及具体措施
本节课宜采用讲解练习相结合,交流 讨论互穿插的活动形式,以学生为主体, 教师创设和谐、愉悦的环境及辅以适当的 引导激活学习气氛,同时,利用投影仪和 多媒体课件形象动态的演示功能提高教学 的直观性和趣味性,以分组小讨论的形式 激活学习气氛,配直观完整的板书设计来 突出本节教材的重难点。

练习源于例题,以本为本。例题由教师板 书,体现示范功能。练习由学生板演,关 注学生的数学表达,提供反馈校正的素材。 尤其是作业的设计与例题呼应,揭示了教 与学的一致性。
14
技能演练


2020年10月2日

通过讨论交流,总结求解步骤,进一步 熟练公式,完善认知结构,让学生在 “平衡--不平衡--新平衡”中不断 得到丰富和发展。通过讨论交流,实现 生生互助,丰富情感体验;实现师生互15 助,活跃课堂气氛。
Sn
a1(1qn)(q1) 1q
或Sn2020年10月2a日11aqnq(q1)
当q=1时, 等比数列的 前n项和是什
么?
Sn na1
12
技能演练

演--提供范例,规范解题格式; 演--设置平台,促进讨论交流; 演--学法指导,提炼求解步骤.
求 练
2020年10月2日
13
技能演练

2020年10月2日
Ⅳ、小结与作业
求和 公式
求和 方法
2020年10月2日
以核心概念“等比数列的前n项” 为中心,形成知识模块,通过 链接图,从知识、方法、思想 三个方面简要回顾,形成知识 网络,便于信息的储存和提取。 同时,突出核心概念,强化思 想方法。
等比数列的 前n项和
核心概念
求法
选取
16
Ⅳ、小结与作业
(1)阅读作业:预习
2S64= 2 + 22 + 23+······+ 263 +264 ②
由② - ①,得
S64=264 - 1
2020年10月2日
☆ 11
◆ 等比数列的前n项和公式的推导
Sn = a1 + a1q + a1q2 +…+a1qn-2 + a1qn-1 (1)
q Sn = a1q + a1q2 + a1q3 + … +a1qn-1 + a1qn (2) 两式相减有 ( 1 – q )Sn = a1 – a1 q n
2020年10月2日
9
四. 教学过程
(一)教学流程图
(二)教学程序
复习 引入
等差
麦粒
求和
总数
公式
建构
小结
2020年10月2日
演 练 求
作 业
故事 引入
Ⅰ、新课引入 Ⅱ、公式推导及 说明 Ⅲ、技能演练 Ⅳ、小结与作业
10
实际上这是一个等比数列求和的问题
S64=1+ 2 + 22 + 23+···+262+263 ①
2020年10月2日
8
三. 教学目标
知识目标:理解等比数列的前n项和公式及简单
应用,掌握等比数列前n项和公式的推导方法。
能力目标:培养学生观察、思考和解决问题的
能力;加强特殊到一般、类比与转化、分类讨论 等数学思想的培养。
情感目标:培养学生合作交流、独立思考等良
好的个性品质;以及勇于批判、敢于创新的科学 精神。
汇报人:XXX 汇报日期:20XX年10月10日
19
(一)学情分析 (二)教学方法及具体措施
2020年10月2日
6
二. 教法分析
(一)学情分析
从知识、能力和情感态度三个方面分 析学生的基础、优势和不足,它是制 定教学目标的重要依据。
学生已经学习了等差数列、等差数列的前n项 和、等比数列,掌握了等差数列前n项和公式的求 法,这些是学习本节的基础,同时,学生已经具备一 定的自学能力,多数同学对数学的学习有相当的 兴趣和积极性。但在探究问题的能力,合作交流 的意识等方面发展不够均衡,尚有待加强。
说明
例题 小结……
2020年10月2日
18
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
相关文档
最新文档