89《圆锥曲线-抛物线》基础知识--教师版

合集下载

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。

其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。

定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。

标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。

定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。

标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。

(完整word版)高中数学圆锥曲线知识点(word文档良心出品)

(完整word版)高中数学圆锥曲线知识点(word文档良心出品)

高中数学知识点 一圆锥曲线部分、平面解析几何的知识结构:炭|»■汕旷崔乂 —■ 才程,人闻性息、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长 2a 大于焦距2c 。

用集合表示为:{刊昭+昭 =2肚,<2c?,巩出为定点}②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e ,那么这个点的轨迹叫做椭圆。

其中定点叫焦点,定直线叫准线,常数e 是离心率。

用集合表示为:厂国丽F •诵和廊阿 HSi^HSSJ^Tjj L|闿箫MWBUW 旧展rBe aglr ff<* 人卄武 -TRU :在虹 L-fttW —ifeBSMKEA■・—奥・/RAgTE Em严闌* IS 幣内CL 耐 严・寰丫Lesgg*&和 <«)MtLlweA^B€ff«^B>g* < lt> 的比较4 山RHHA5il曲测6“旳左丈吞穴育啟/UMfl■相FT?F- = % 0 < f < k F为定点9 £为动点到定言线的距离e越小,椭圆越圆;e越大,椭圆越扁(2)标准方程和性质:2 2①范围:由标准方程^2 爲1知|x| a,|y| b,说明椭圆位于直线x a,a by b所围成的矩形里;②对称性:在曲线方程里,若以y代替y方程不变,所以若点(x, y)在曲线上时,点(x, y)也在曲线上,所以曲线关于x轴对称,同理,以x代替x方程不变,则曲线关于y 轴对称。

若同时以x代替x,y代替y方程也不变,则曲线关于原点对称。

所以,椭圆关于x轴、y轴和原点对称。

这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x轴、y轴的交点坐标。

在椭圆的标准方程中,令x 0,得y b,则B1(0, b),B2(0,b)是椭圆与y轴的两个交点。

圆锥曲线(椭圆、双曲线、抛物线)知识点总结

圆锥曲线(椭圆、双曲线、抛物线)知识点总结

双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-by a x (a >0,b >0)(焦点在x 轴上);12222=-bx a y (a >0,b >0)(焦点在y 轴上); 1. 如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。

三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2 直线与双曲线:(代数法)设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点);b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,若0222=-k a ba bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点; 若k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 2020b x k a y >(00y ≠)或2020b x b k a a y <<(00y ≠)或bk a <-或k 不存在,直线与双曲线在一支上有两个交点; 当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 3).当点00(,)P x y 在双曲线外部时:当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =时,过点00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。

圆锥曲线知识点

圆锥曲线知识点

圆锥曲线知识点圆锥曲线是数学中一类重要的曲线,它们是平面上所有与两个固定点(焦点)距离之和为常数的点的集合。

这些曲线包括椭圆、抛物线和双曲线。

以下是圆锥曲线的知识点总结:1. 椭圆:椭圆是平面上所有与两个焦点距离之和等于常数的点的集合。

这个常数大于两个焦点之间的距离。

椭圆的标准方程可以表示为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中,\( a \) 是椭圆的半长轴,\( b \) 是椭圆的半短轴。

2. 抛物线:抛物线是平面上所有与一个焦点和一个定点(顶点)距离相等的点的集合。

抛物线的标准方程可以表示为:\[ y^2 = 4ax \]或者\[ x^2 = 4ay \]其中,\( a \) 是抛物线的参数,表示顶点到焦点的距离。

3. 双曲线:双曲线是平面上所有与两个焦点距离之差的绝对值等于常数的点的集合。

这个常数小于两个焦点之间的距离。

双曲线的标准方程可以表示为:\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \]或者\[ \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \]其中,\( a \) 是双曲线的实半轴,\( b \) 是双曲线的虚半轴。

4. 圆锥曲线的性质:- 椭圆具有两个焦点,所有点到两个焦点的距离之和是常数。

- 抛物线具有一个焦点和一个顶点,所有点到焦点的距离等于到顶点的距离。

- 双曲线具有两个焦点,所有点到两个焦点的距离之差的绝对值是常数。

- 圆锥曲线的焦点可以通过方程的参数确定。

5. 圆锥曲线的应用:- 椭圆在天文学中描述行星的轨道。

- 抛物线在光学中描述光线通过抛物面反射后的路径。

- 双曲线在工程学中用于设计某些类型的天线。

6. 圆锥曲线的参数化:- 椭圆的参数方程可以表示为:\[ x = a \cos(t) \]\[ y = b \sin(t) \]- 抛物线的参数方程可以表示为:\[ x = at^2 \]\[ y = 2at \]- 双曲线的参数方程可以表示为:\[ x = a \sec(t) \]\[ y = b \tan(t) \]7. 圆锥曲线的几何特征:- 椭圆的长轴和短轴是对称的,且椭圆是封闭的。

圆锥曲线方程-抛物线(知识点、典型例题、考点、练习)

圆锥曲线方程-抛物线(知识点、典型例题、考点、练习)

抛物线 典例剖析知识点一 抛物线概念的应用已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求出取最小值时P 点的坐标.解将x=3代入抛物线方程 y 2=2x ,得y=〒6.6>2,∴点A 在抛物线内部.设抛物线上点P 到准线l : x=21的距离为d ,由定义知|PA|+|PF|=|PA|+d , 当PA ⊥l 时,|PA|+d 最小, 最小值为27,即|PA|+|PF|的最小值为27, 此时P 点纵坐标为2,代入y 2=2x ,得x=2, ∴点P 坐标为(2,2).知识点二 求抛物线的标准方程求适合下列条件的抛物线的标准方程:(1)过点(-3,2);(2)焦点在直线x -2y -4=0上.分析 设出抛物线的标准形式,依据条件求出p 的值.解 (1)设抛物线标准方程为y 2=-2px 或x 2=2py (p >0),则将点(-3,2)代入方程得2p =43,或2p =92,故抛物线的标准方程为y 2=-43x ,或x 2=92y .(2)①令x =0,由方程x -2y -4=0,得y =-2. ∴抛物线的焦点为F (0,-2).设抛物线方程为x 2=-2py ,则由p2=2,得2p =8.∴所求的抛物线方程为x 2=-8y .②令y =0,由x -2y -4=0,得x =4. ∴抛物线的焦点为F (4,0).设抛物线方程为y 2=2px ,由p2=4,得2p =16.∴所求抛物线方程为y 2=16x .知识点三 抛物线在实际中的应用汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线焦点处,已知灯口的直径是24 cm ,灯深10 cm ,那么灯泡与反射镜的顶点(即截得抛物线顶点)距离是多少?分析 确定抛物线方程,求出抛物线的焦点到其顶点的距离解 取反射镜的轴即抛物线的对称轴为x 轴,抛物线的顶点为坐标原点,建立直角坐标系xOy ,如图所示.因灯口直径|AB|=24.灯深|OP|=10, 所以点A 的坐标是(10,12).设抛物线的方程为y 2=2px(p>0).由点A(10,12)在抛物线上,得122=2p ×10, ∴p=7.2.抛物线的焦点F 的坐标为(3.6,0).因此灯泡与反射镜顶点的距离是3.6 cm.知识点四 抛物线几何性质的简单应用抛物线的顶点在原点,对称轴重合于椭圆9x 2+4y 2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程.分析 先确定抛物线方程的形式,再依条件求待定参数.解 椭圆9x 2+4y 2=36可化为x 24+y 29=1,得抛物线的对称轴为x 轴.设抛物线的方程为y 2=ax (a ≠0), 又抛物线的焦点到顶点的距离为3,则有|a4|=3,∴|a |=12,即a =±12.故所求抛物线方程为y 2=12x ,或y 2=-12x .知识点五 直线与抛物线已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,且|AB |=52p ,求AB 所在的直线方程.解 焦点F (p2,0),设A (x 1,y 1)、B (x 2,y 2),若AB ⊥Ox ,则|AB |=2p <52p ,不合题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p2),k ≠0.由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.韦达定理得,y 1+y 2=2pk,y 1y 2=-p 2.∴|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+1k 2)·(y 1-y 2)2=1+1k2·(y 1+y 2)2-4y 1y 2=2p (1+1k 2)=52p .解得k =±2.∴AB 所在直线方程为y =2(x -p 2),或y =-2(x -p 2).知识点六 抛物线的焦点弦问题AB 是过抛物线y 2=2px (p >0)焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,MN ⊥l ,N 为垂足.求证:(1)AN ⊥BN ; (2)FN ⊥AB ;(3)若MN 交抛物线于Q ,则Q 平分MN .证明 (1)作AC ⊥l ,垂足为C ,作BD ⊥l ,垂足为D ,在直角梯形ABDC 中, ∵|AF|=|AC|,|BF|=|BD|, ∴|MN|=21(|AC|+|BD|) =21(|AF|+|BF|) =21|AB|, 由平面几何知识可知△ANB 是直角三角形,即AN ⊥BN. (2)∵|AM|=|NM|, ∴∠MAN=∠MNA , ∵AC ∥MN ,∴∠CAN=∠MNA ,∴∠MAN=∠CAN.在△ACN 和△AFN 中,|AN|=|AN|,|AC|=|AF|, 且∠CAN=∠FAN ,∴△ACN ≌△AFN , ∴∠NFA=∠NCA=90°, 即FN ⊥AB.(3)在Rt △MNF 中,连结QF , 由抛物线的定义及(2)的结论得 |QN|=|QF|⇒∠QNF=∠QFN ,且∠QFN=90°-∠QFM ,∠QMF=90°-∠QNF , ∴∠QFM=∠QMF ,∴|QF|=|QM|, ∴|QN|=|QM|,即Q 平分MN.知识点七 抛物线的综合问题过抛物线y 2=2px (p >0)的焦点F 作倾斜角为θ的直线交抛物线于A 、B 两点,设△AOB 的面积为S (O 为原点).(1)用θ、p 表示S ;(2)求S 的最小值;当最小值为4时,求抛物线的方程.解 (1)设直线y =k ⎝⎛⎭⎫x -p2,代入y 2=2px , 得y 2=2p ⎝⎛⎭⎫y k +p 2,即y 2-2pk y -p 2=0,∴y 1+y 2=2pk,y 1y 2=-p 2.∴|AB |= 1+1k2·(y 1+y 2)2-4y 1y 2= k 2+1k 2·4p 2k2+4p 2=(1+1k 2)2p =(1+1tan 2θ)2p=2p sin 2θ.① 当直线AB ⊥x 轴时,①也成立.∴S =12|OF ||AF |sin θ+12|OF ||BF |sin(π-θ)=12|OF ||AB |sin θ =12·p 22p sin 2θsin θ=p 22sin θ. (2)当θ=90°时,S min =12p 2.若S min =4,则12p 2=4.∴p =2 2.∴此时抛物线的方程为y 2=42x .考题赏析1.(辽宁高考)已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172 B .3 C. 5 D.92解析 如图所示,由抛物线的定义知,点P 到准线x =-12的距离d 等于点P 到焦点的距离|PF |.因此点P 到点(0,2)的距离与点P 到准线的距离之和可转化为点P 到点(0,2)的距离与点P到点F 的距离之和,其最小值为点M (0,2)到点F ⎝⎛⎭⎫12,0的距离,则距离之和的最小值为4+14=172.答案 A2.(全国Ⅰ高考)已知抛物线y =ax 2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为________.解析 ∵y =ax 2-1,∴y +1=ax 2.令y +1=y ′,x =x ′,则y ′=ax ′2,∴x ′2=2×12ay ′,∴x ′2=1a y ′的焦点坐标为⎝⎛⎭⎫0,14a ,即y +1=14a , ∴y =ax 2-1的焦点坐标为⎝⎛⎭⎫0,14a -1. 又y =ax 2-1的焦点是原点,∴14a =1,∴a =14.∴y =14x 2-1.令x =0,得y =-1,令y =0,得x =±2.故y =14x 2-1与两坐标轴的三个交点为(0,-1),(2,0),(-2,0),∴围成三角形面积为S =12×4×1=2.答案 23.(全国Ⅱ高考)已知F 是抛物线C :y 2=4x 的焦点,A 、B 是抛物线C 上的两个点,线段AB 的中点为M (2,2),则△ABF 的面积等于________.解析 设A (x 1,y 1),B (x 2,y 2),则y 21=4x 1,y 22=4x 2. ∴(y 1+y 2)(y 1-y 2)=4(x 1-x 2).∵x 1≠x 2,∴y 1-y 2x 1-x 2=4y 1+y 2=1.∴直线AB 的方程为y -2=x -2,即y =x . 将其代入y 2=4x ,得A (0,0)、B (4,4).∴|AB |=4 2.又F (1,0)到y =x 的距离为22,∴S △ABF =12×22×42=2.答案 21.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是( ) A.|a |4 B.|a |2C .|a |D .-a2答案 B解析 因为y 2=ax ,所以p =|a |2,即该抛物线的焦点到其准线的距离为|a |2,故选B.2.抛物线y 2=2px (p >0)上一点M 到焦点的距离是a (a >p2),则点M 的横坐标是( )A .a +p 2B .a -p2C .a +pD .a -p 答案 B解析 由抛物线的定义知:点M 到焦点的距离a 等于点M 到抛物线的准线x =-p2的距离,所以点M 的横坐标即点M 到y 轴的距离为a -p2.3.已知抛物线的方程为标准方程,焦点在x 轴上,其上点P (-3,m )到焦点F 的距离为5,则抛物线方程为( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x 答案 B解析 点P (-3,m )在抛物线上,焦点在x 轴上,所以抛物线的标准方程可设为y 2=-2px (p >0).由抛物线定义知|PF |=3+p2=5.所以p =4,所以抛物线的标准方程是y 2=-8x .应选B.4.抛物线y 2=ax 的焦点与双曲线x 23-y 2=1的左焦点重合,则这条抛物线的方程是( )A .y 2=4xB .y 2=-4xC .y 2=-42xD .y 2=-8x 答案 D解析 因为x 23-y 2=1的左焦点为(-2,0),所以抛物线开口向左,所以a <0,且p =|a |2=4,所以a =-8,所以抛物线方程为y 2=-8x ,故选D.5.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交抛物线C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________.答案 3+2 2解析 ∵y 2=4x 的焦点坐标为 F (1,0),准线方程为x =-1,∴过F 且斜率为1的直线方程为y = x - 1.将其代入y 2= 4x 得 x 2 - 6x + 1=0.∴x 1, 2 =62± = 3〒22.∵|FA|>|FB|,∴x A =3+22,x B =3-22.又|FA|= x +1,|FB|= x B +1,∴|FA||FB|== 3+22. 答案 -36. 过抛物线y 2 = 4x 的焦点的直线交抛物线于A 、B 两点,O 为坐标原点,则· 的值是________.. 解析 当直线过焦点且垂直于x 轴时,直线方程为x =1,代入y 2=4x ,y 1,2=±2.A 、B 点的坐标分别为(1,2),(1,-2).∴·OB →=1-4=-3.当直线过焦点不垂直x 轴时,则直线的方程可设为y =k (x -1),设A ,B 坐标分别为(x 1,y 1)(x 2,y 2).则y 21·y 22=16x 1x 2.由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),得k 2x 2-(2k +4)x +k 2=0, ·OB →=x 1x 2+y 1y 2=1-4=-3. 7.已知圆A :(x +2)2+y 2=1与定直线l :x =1,若动圆C 与圆A 相外切,且与直线l 相切,求动圆圆心C 的轨迹方程.解 设圆心C 到直线l 的距离为d ,则由题意知|CA |=d +1从而可知圆心C 到点(-2,0)的距离和到定直线x =2的距离相等.所以动圆圆心C 的轨迹是抛物线,其焦点为(-2,0),准线为x =2,故设动圆圆心C 的轨迹方程为y 2=-2px (p >0),由p2=2,得p =4.因此动圆圆心C 的轨迹方程为y 2=-8x .8.已知点M (-2,4)及焦点为F 的抛物线y =18x 2,在此抛物线上求一点P 使|PM |+|PF |的值最小.分析 先根据已知条件画出图形,由定义知,抛物线上的点P 到焦点F 的距离等于P 到准线l 的距离d ,所以求|PM |+|PF |的最小值问题可转化为求|PM |+d 的最小值问题,让点P 在抛物线上运动,容易发现当点P 运动到过点M 且与x 轴垂直的直线与抛物线的交点处时,|PM |+d 最小.解 如图,设MN ⊥x 轴,与准线交于N ,与抛物线交于点P ,在抛物线上任取一点P ′,连P ′M ,P ′F ,作P ′N 垂直于准线,垂足为N ′.由抛物线的定义,|PN|=|PF|,|P ′N ′|=|P ′F||P ′M|+|P ′N ′|=|P ′M|+|P ′F| |PN|+|PM|=|PM|+|PF|∵|P ′M|+|P ′N ′|≥|PN|+|PM| ∴|P ′M|+|P ′F|≥|PM|+|PF|这就是说,当P ′与P 重合时,|PM|+|PF|的值最小解方程组22,1,8x y x =-⎧⎪⎨=⎪⎩得P(-2,12). 9.已知抛物线y 2=2x ,过点Q (2,1)作一条直线交抛物线于A 、B 两点,试求弦AB 中点的轨迹方程.解 设弦AB 的中点M (x ,y ),A (x 1,y 1),B (x 2,y 2),则有y 21=2x 1,y 22=2x 2, ∴y 1-y 2x 1-x 2=2y 1+y 2,又y 1+y 2=2y ,∴y 1-y 2x 1-x 2=1y,即k AB =1y .又k MQ =y -1x -2,由题意知k MQ =k AB .∴y -1x -2=1y,整理, 得y 2-x -y +2=0.所以,弦AB 中点的轨迹方程为y 2-x -y +2=0.10.抛物线的顶点在原点,以x 轴为对称轴,经过焦点且倾斜角为135°的直线,被抛物线所截得的弦长为8,试求抛物线方程.解 如右图所示,依题意设抛物线方程为y 2=2px(p>0),则直线方程为y=-x+12p. 设直线交抛物线于A(x 1,y 1), B(x 2,y 2),则由抛物线定义得|AB|=|AF|+|FB|=|AC|+|BD| =x 1+2P + x 2 + 2P , 即x 1+x 2 +p=8.①又A (x 1,y 1)、B (x 2,y 2)是抛物线和直线的交点.由⎩⎪⎨⎪⎧y =-x +12p ,y 2=2px ,消去y 得x 2-3px +p 24=0,∴x 1+x 2=3p ,将其代入①得p =2. ∴所求抛物线方程为y 2=4x .当抛物线方程设为y 2=-2px (p >0)时,同理可求得抛物线方程为y 2=-4x . 故抛物线的方程为y 2=4x 或y 2=-4x .讲练学案部分2.4.1 抛物线及其标准方程.对点讲练知识点一 求抛物线的标准方程分别求出满足下列条件的抛物线的标准方程.(1)过点(3,-4).(2)焦点在直线x +3y +15=0上. 解 (1)∵点(3,-4)在第四象限,∴抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0),把点(3,-4)的坐标分别代入得(-4)2=2p ×3,32=-2p 1×(-4)即2p =163,2p 1=94∴所求抛物线的方程为y 2=163x 或x 2=-94y .(2)令x =0得y =-5;令y =0得x =-15 ∴抛物线的焦点为(0,-5)或(-15,0)∴所求抛物线的标准方程为y 2=-60x 或x 2=-20y .【反思感悟】 求抛物线方程应首先确定焦点的位置,进而确定方程的形式,然后利用已知条件求p 的值.求满足下列条件的抛物线的方程.(1)以坐标轴为对称轴,且过点A (2,3);(2)以坐标轴为对称轴,焦点到准线的距离为52.解 (1)由题意,方程可设为y 2=mx 或x 2=ny , 将点A (2,3)的坐标代入,得32=m ·2或22=n ·3,∴m =92或n =43.∴所求的抛物线方程为y 2=92x 或x 2=43y .(2)由焦点到准线的距离为52,可知p =52.∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .知识点二 抛物线定义的应用已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.解 设抛物线的方程为y 2=-2px (p >0),则准线方程为x =p2.∵点M (-3,m )是抛物线上的点,根据抛物线定义,M 点到焦点的距离等于M 点到准线的距离∴|-3|+p2=5 ∴p =4.∴抛物线方程为y 2=-8x .又点M (-3,m )在抛物线上故m 2=-8×(-3) ∴m =±2 6.【反思感悟】 涉及抛物线上一点与焦点的距离问题要注意用定义转化为该点到准线的距离,可简化计算.若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是( )A .椭圆B .双曲线C .双曲线的一支D .抛物线答案 D解析 设动圆的圆心为M ,半径为r ,动圆与圆(x -2)2+y 2=1相外切,则M 到定点(2,0)的距离为r +1,动圆与直线x =-1相切,则点M 到定直线x =-1的距离为r ,所以M 到定点(2,0)和到定直线x =-2的距离相等,由抛物线定义知,答案选D.知识点三 抛物线知识在实际中的应用喷灌的喷头装在直立管柱OA 的顶点A 处,喷出水流的最高点B 高5 m ,且与OA 所在的直线相距4 m ,水流落在以O 为圆心,半径为9 m 的圆上,则管柱OA 的长是多少?解 如图所示,建立直角坐标系,设水流所形成的抛物线的方程为x 2= -2py(p>0),点C(5, -5)在抛物线上,所以25= -2p ·(-5),2p=5,所以抛物线的方程为x 2= -5y ,点A(-4,y 0)在抛物线上,所以16= -5y 0,y 0 = -165,所以OA 的长为5 - 165=1.8 (m).∴管柱OA 的长是1.8 m.【反思感悟】 根据题意,建立直角坐标系,用待定系数法求出抛物线方程,再利用抛物线方程解决实际问题.抛物线型拱桥顶距离水面2米,水面宽4米,当水下降1米后,水面宽________米.答案 2 6解析 可设抛物线方程为x 2=-2py ,则点(-2,-2)在抛物线上,则有:4=4p . ∴p =1,抛物线方程为x 2=-2y ,当y =-3时,x =±6. ∴水面宽为2 6. 课堂小结:1.四个标准方程的区分:焦点在一次项字母对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口方向为坐标轴的正方向;系数为负时,开口方向为坐标轴的负方向.2.焦点在y 轴上的抛物线的标准方程x 2=2py 通常又可以写成y=ax 2,这与以前学习的二次函数的解析式是完全一致的,但需要注意的是,由方程y=ax 2来求其焦点和准线时,必须先化成标准形式.3.经过抛物线的焦点的弦称为抛物线的焦点弦,它有以下特性:设焦点弦AB 的端点坐标分别为A (x 1 , y 1),B(x 2,y 2),则y 1y 2= - p 2, x 1x 2 = 24p ,|AB|= x 1 + x 2 + p.课时作业一、选择题1.已知抛物线的顶点在原点,对称轴为x 轴,焦点在曲线x 24-y 22=1上,则抛物线方程为( )A .y 2=8xB .y 2=4xC .y 2=2xD .y 2=±8x 答案 D解析 由题意知抛物线的焦点为双曲线x 24-y 22=1的顶点,即(-2,0)、(2,0),所以抛物线的方程为y 2=8x 或y 2=-8x .2.抛物线y =mx 2(m <0)的焦点坐标是( )A .(0,m 4)B .(0,14m )C .(0,-m 4)D .(0,-14m)答案 B解析 由于抛物线方程可化为x 2=1my (m <0),所以抛物线的焦点在y 轴的负半轴上,且2p =-1m ,所以p 2=-14m ,所以抛物线的焦点坐标是(0,14m),答案选B.3.过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有( ) A .0条 B .1条 C .2条 D .3条 答案 C解析 容易发现点M (2,4)在抛物线y 2=8x 上,这样l 过M 点且与x 轴平行时,l 与抛物线有一个公共点,或者l 在M 点上与抛物线相切,故选C.4.已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y 2=2px (p >0)上不同的两点,则y 1·y 2=-p 2是直线P 1P 2通过抛物线焦点的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件 答案 B解析 设直线P 1P 2的斜率为k ,在x 轴上的截距为x 0,则P 1P 2的方程为y =k (x -x 0), x =1ky +x 0(k =0时只有一个交点不合题意), 所以y 2=2p ⎝⎛⎭⎫1k y +x 0,即y 2-2pky -2px 0=0. 当直线P 1P 2过焦点时,x 0=p2,则y 1y 2=-p 2.当y 1y 2=-p 2时,即-2px 0=-p 2,则x 0=p2,直线过焦点.当斜率不存在时也可验证是充要条件.5.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .4 答案 B解析 方法一 由已知得抛物线焦点为(1,0),过焦点的直线设为y =k (x -1)(由x 1+x 2=6知,此直线不平行于y 轴,因而k 存在).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,消去y 得k 2x 2-2(k 2+2)x +k 2=0. 由⎩⎪⎨⎪⎧x 1+x 2=2(k 2+2)k 2=6,x 1·x 2=1得k =±1.所以|AB |2=(1+k 2)(x 1-x 2)2=2(x 1-x 2)2=64,故|AB |=8.方法二 由焦半径公式|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=8.二、填空题6.抛物线2y 2+5x =0的焦点坐标为____________,准线方程为______________.答案 ⎝⎛⎭⎫-58,0 x =58解析 化抛物线2y 2+5x =0为标准方程y 2=-52x,2p =52,p 2=58,所以焦点坐标为(-58,0),准线方程为x =58.7.设点M ⎝⎛⎭⎫3,103与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线l 的距离为d 2,则当d 1+d 2取最小值时,P 点坐标为____________.答案 (2,2)解析 当P 点是M 与焦点F ⎝⎛⎭⎫12,0连线与抛物线交点时,d 1+d 2最小,MF 的方程为y =43x -23,与抛物线y 2=2x 联立得P (2,2). 三、解答题8.过点Q (4,1)作抛物线y 2=8x 的弦AB ,若弦恰被Q 平分,求AB 所在直线方程. 解 设A (x 1,y 1),B (x 2,y 2),因点Q (4,1)为A ,B 的中点则有⎩⎪⎨⎪⎧x 1+x 2=8y 1+y 2=2将A 、B 两点坐标代入y 2=8x .则有⎩⎪⎨⎪⎧y 21=8x 1 ①y 22=8x 2 ②①-②得:(y 1-y 2)(y 1+y 2)=8(x 1-x 2),由y 1+y 2=2,则有y 1-y 2x 1-x 2=4,∴k AB =4.∴所求直线方程为y -1=4(x -4),即4x -y -15=0.9.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上有一宽4米、高6米的矩形大木箱,问能否安全通过?解建立坐标系如图,设抛物线方程为 x 2= -2py ,则点(26, -6.5)在抛物线上, ∴262= -2p ·(-6.5),∴p=52,抛物线的方程为x 2= -104y ,当y=-0.5时,x=〒213,则有413>4, 所以木箱能安全通过.10.已知过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点. 求证:(1)x 1x 2为定值;(2)1|F A |+1|FB |为定值. 证明 (1)抛物线y 2=2px 的焦点为F ⎝⎛⎭⎫p 2,0,当AB 不垂直于x 轴时,设直线AB 的方程为y =k ⎝⎛⎭⎫x -p2 (k ≠0). 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2y 2=2px消去y , 得k 2x 2-p (k 2+2)x +k 2p 24=0.由根与系数的关系得x 1x 2=p 24(定值).当AB ⊥x 轴时,x 1=x 2=p2,x 1x 2=p24也成立.(2)由抛物线的定义知,|F A |=x 1+p 2,|FB |=x 2+p2.又由(1)得x 1x 2=p24,所以1|F A |+1|FB |=1x 1+p 2+1x 2+p2=x 1+x 2+pp 2(x 1+x 2)+x 1x 2+p 24 =x 1+x 2+p p 2(x 1+x 2)+p 22=x 1+x 2+p p 2(x 1+x 2+p )=2p(定值). 2.4.2 抛物线的简单几何性质.对点讲练知识点一 由性质求方程已知抛物线的顶点为坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交的公共弦长等于23,求这条抛物线的方程.解 设所求抛物线方程为y 2=2px (p >0)或y 2=-2px (p >0),设交点A (x 1,y 1),B (x 2,y 2),(y 1>0,y 2<0),则|y 1|+|y 2|=23,即y 1-y 2=23,由对称性知,y 2=-y 1,代入上式得y 1=3,把y 1=3代入x 2+y 2=4得x =±1.所以点(1,3)在抛物线y 2=2px 上,点(-1,3)在抛物线y 2=-2px 上,所以3=2p 或3=-2p ×(-1).所以p =32,所以所求抛物线方程为y 2=3x 或y 2=-3x .【反思感悟】 (1)由已知的几何条件求抛物线方程,常用待定系数法.(2)由于抛物线是轴对称图形,所以与对称轴垂直的弦一定被对称轴平分.已知抛物线的焦点在x 轴上,直线y =2x +1被抛物线截得的线段长为15,求此抛物线的标准方程.解 ∵抛物线的焦点在x 轴上,∴设它的标准方程为y 2=2px由方程组⎩⎪⎨⎪⎧y 2=2pxy =2x +1得4x 2+(4-2p )x +1=0.∴|x 1-x 2|=(4-2p )2-164=p 2-4p2.∴1+22|x 1-x 2|=52p 2-4p .∴52p 2-4p =15.∴p =6或p =-2. ∴抛物线的方程为y 2=12x 或y 2=-4x .知识点二 与抛物线有关的证明问题过抛物线焦点F 的直线交抛物线于A ,B 两点,通过点A 和抛物线顶点的直线交抛物线的准线于点D ,求证:直线DB 平行于抛物线的对称轴.证明如图所示,以抛物线的对称轴为x 轴,它的顶点为原点,建立直角坐标系. 设抛物线的方程为y 2=2px ,①点A 的坐标为⎝⎛⎭⎫y 202p ,y 0,则直线OA 的方程为 y =2py 0x (y 0≠0),②抛物线的准线方程是x =-p2.③联立②③,可得点D 的纵坐标为y =-p 2y 0④因为点F 的坐标是⎝⎛⎭⎫p 2,0,当AB ⊥x 轴时,|y 0|=p 此时,|OA |=|OD |,∴DB ∥x 轴当AB 与x 轴不垂直时,即y 20≠p 2时,直线AF 的方程为y =2py 0y 20-p 2⎝⎛⎭⎫x -p 2,⑤ 联立①⑤,可得点B 的纵坐标为y =-p 2y 0.⑥由④⑥可知,DB ∥x 轴.【反思感悟】 因抛物线方程的独特形式,较之椭圆与双曲线,它上面的点便于用一个变量表示出来,如y 2=2px 上任一点,可表示为⎝ ⎛⎭⎪⎫y 22p ,y ,注意恰当运用.设抛物线y 2=2px (p >0)的焦点为F ,Q 是抛物线上除顶点外的任意一点,直线QO 交准线于P 点,过Q 且平行于抛物线对称轴的直线交准线于R 点,求证:PF ⊥RF .证明如图所示,设点Q ⎝⎛⎭⎫y 202p ,y 0,则R.(-2p,y 0 ) 直线OQ 的方程为y=02y p x , 当x=-2p 时,解得y=-02y p,∴P =2,20p p y ⎛⎫-- ⎪⎝⎭,又F (2p ,0),∴RF →=⎝⎛⎭⎫p ,p 2y 0,RF →=(p ,-y 0) ∴RF →·RF →=0,∴PF ⊥RF .知识点三 直线与抛物线的交点问题已知抛物线的方程为y 2=4x ,直线l 过定点P (-2,1),斜率为k .k 为何值时,直线l 与抛物线y 2=4x :只有一个公共点;有两个公共点;没有公共点?解 由题意,设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2)y 2=4x ,可得:ky 2-4y +4(2k +1)=0.① (1)当k =0时,由方程①得y =1.把y =1代入y 2=4x ,得x =14.这时,直线l 与抛物线只有一个公共点⎝⎛⎭⎫14,1. (2)当k ≠0时,方程①的判别式为 Δ=-16(2k 2+k -1). 1°由Δ=0,即2k 2+k -1=0,解得k =-1,或k =12.于是,当k =-1,或k =12时,方程①只有一个解,从而方程组(*)只有一个解.这时,直线l 与抛物线只有一个公共点.2°由Δ>0,即2k 2+k -1<0,解得-1<k <12.于是,当-1<k <12,且k ≠0时,方程①有两个解,从而方程组有两个解.这时,直线l与抛物线有两个公共点.3°由Δ<0,即2k 2+k -1>0,解得k <-1,或k >12.于是,当k <-1,或k >12时,方程①没有实数解,从而方程组(*)没有解.这时,直线l与抛物线没有公共点.综上,我们可得当k =-1,或k =12,或k =0时,直线l 与抛物线只有一个公共点;当-1<k <12,且k ≠0时,直线l 与抛物线有两个公共点;当k <-1,或k >12时,直线l 与抛物线没有公共点.【反思感悟】 当直线与抛物线的对称轴平行或重合时,抛物线和直线相交,只有一个交点.解决直线与抛物线位置关系问题时,不要忽视这一点,否则容易漏解.直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,l 与C 分别相切、相交、相离?解 将l 和C 的方程联立⎩⎪⎨⎪⎧y =kx +1, ①y 2=4x , ②①式代入②式,并整理,得 k 2x 2+(2k -4)x +1=0.当k ≠0时,是一元二次方程, ∴Δ=(2k -4)2-4k 2=16(1-k ).(1)当Δ=0时,即k =1时,l 与C 相切. (2)当Δ>0时,即k <1时,l 与C 相交. (3)当Δ<0时,即k >1时,l 与C 相离.当k =0时,直线l :y =1与曲线C :y 2=4x 相交.综上所述,当k =0或k <1时,l 与C 相交,当k =1时,l 与C 相切,当k >1时,l 与C 相离.课堂小结:1.在已知抛物线的顶点在坐标原点,对称轴为x 轴,求抛物线的标准方程时,为避免讨论张口的方向可设抛物线的方程为y 2=2ax (a ≠0).此时,不论a>0或a<0,焦点坐标都是(2a,0),准线方程都为x=-2a . 2.抛物线y 2= 2px (p>0)上任一点的坐标可用一个量y 1表示为21(1),2y y p;x 2 = 2py (p>0)上任一点坐标可设为(x 1 , 212x p).3.直线与抛物线的位置关系设直线l :y=kx+m ,抛物线:y 2=2px(p>0),将直线方程与抛物线方程联立整理成关于x 的方程:ax 2+bx+c=0,(1)若a ≠0,当Δ>0时,直线与抛物线相交,有两个交点; 当Δ=0时,直线与抛物线相切,有一个交点; 当Δ<0时,直线与抛物线相离,无公共点.(2)若a=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合,因此直线与抛物线有一个交点是直线与抛物线相切的必要不充分条件.一、选择题1.P (x 0,y 0)是抛物线y 2=2px (p ≠0)上任一点,则P 到焦点的距离是( )A .|x 0-p 2|B .|x 0+p2|C .|x 0-p |D .|x 0+p | 答案 B解析 当p >0时,由抛物线定义得点P (x 0,y 0)到焦点的距离为x 0+p2,当p <0时由抛物线定义知P (x 0,y 0)到焦点的距离为-p 2-x 0,综上得所求距离为|x 0+p2|,故选B.2.过抛物线y 2=4x 的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为4,则|AB |等于( )A .10B .8C .6D .4 答案 A解析 设A 、B 两点的横坐标分别为x A 、x B ,则有x A +x B =8,|AB |=|AF |+|BF |=x A +p 2+x B +p2=8+p =8+2=10.3.抛物线y 2=2px 与直线ax +y -4=0的一个交点是(1,2),则抛物线的焦点到该直线的距离为( )A.32 3B.25 5C.710 5D.172 答案 B解析 由已知得抛物线方程为y 2=4x ,直线方程为2x +y -4=0,抛物线y 2=4x 的焦点坐标是F (1,0),到直线2x +y -4=0的距离d =|2+0-4|22+1=255.4.若抛物线y 2=2px (p >0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物线焦点的距离的关系是( )A .成等差数列B .既成等差数列又成等比数列C .成等比数列D .既不成等比数列也不成等差数列 答案 A解析 设三点为P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则y 21=2px 1,y 22=2px 2,y 23=2px 3,因为2y 22=y 21+y 23, 所以x 1+x 3=2x 2,即|P 1F |-p 2+|P 3F |-p2=2⎝⎛⎭⎫|P 2F |-p 2, 所以|P 1F |+|P 3F |=2|P 2F |. 二、填空题5.抛物线的顶点在原点,准线垂直于x 轴,且焦点到顶点的距离为4,则其方程为______________________.答案 y 2=16x 或y 2=-16x解析 焦点到顶点的距离即p2=4,p =8.6.抛物线y =x 2上的点到直线2x -y -4=0的距离最短的点的坐标是____________. 答案 (1,1)解析 设点A (x ,y )是符合题设条件的点,则由点到直线的距离公式,得d =55|2x -y -4|=55|2x -x 2-4| =55|-(x -1)2-3|≥355. 当且仅当x =1时,d 取得最小值,故所求点为(1,1).7.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是____________.答案 [-1,1]解析 Q 点坐标为(-2,0),直线l 的斜率不存在时,不满足题意,所以可设直线l 的斜率为k ,方程为y =k (x +2).当k =0时满足.当k ≠0时,x =1ky -2,代入y 2=8x ,得y 2-8k y +16=0.Δ=64k2-64≥0,k 2≤1,即-1≤k ≤1(k ≠0).综上,-1≤k ≤1.三、解答题8.过点(-3,2)的直线与抛物线y 2=4x 只有一个公共点,求此直线方程. 解 显然,直线存在斜率k , 设其方程为y -2=k (x +3), 由⎩⎪⎨⎪⎧y -2=k (x +3)y 2=4x 消去x ,整理得ky 2-4y +8+12k =0①(1)当k =0时,方程①化为-4y +8=0,即y =2, 此时过(-3,2)的直线方程为y =2,满足条件. (2)当k ≠0时,方程①应有两个相等实根. 由⎩⎪⎨⎪⎧ k ≠0Δ=0即⎩⎪⎨⎪⎧k ≠016-4k (8+12k )=0,得k =13或k =-1.∴直线方程为y -2=13(x +3)或y -2=-(x +3),即x -3y +9=0或x +y +1=0.故所求直线有三条,其方程分别为: y =2,x -3y +9=0或x +y +1=0.9.A ,B 是抛物线y 2=2px (p >0)上两点,满足OA ⊥OB ,其中O 为抛物线顶点.求证: (1)A ,B 两点的纵坐标乘积为定值; (2)直线AB 恒过一定点. 证明(1)设A(x 1,y 1),B(x 2,y 2),x 1≠0,x 2≠0,则y 12=2px 1, y 22=2px 2. ∵OA ⊥OB ,∴x 1x 2 + y 1y 2=0.∴y 12y 22、= 4p 2 x 1x 2 = 24p -y 1y 2.∴y 1y 2 =24p -为定值, x 1x 2=-y 1y 2=4p 2也为定值.∴A 、B 两点的纵坐标乘积为定值.(2)若AB ⊥x 轴,则易知直线AB 方程为x = 2p , 过点(2p,0);若AB 与x 轴不垂直,则x 1≠x 2,y 1+y 2≠0.由y 12-y 22=2p(x 1-x 2),得1212122y y px x y y -++=. ∴直线AB 的方程是y= 122py y + (x -x 1)+y 1,即y = 211121222px px y y y y y ++-+。

圆锥曲线基础知识手册

圆锥曲线基础知识手册

圆锥曲线一、椭圆及其性质第一定义平面内一动点P 与两定点F 1、F 2距离之和为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yxF 1F 2abc O A 1A 2B 2B 1x =a 2cx =-a 2c y x F 1F 2ab c A 1A 2B 2B 1y =a2cy =-a2c标准方程x 2a 2+y 2b 2=1a >b >0y 2a 2+x 2b2=1a >b >0范围-a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点A 1-a ,0 ,A 2a ,0 ,B 10,-b ,B 20,bA 10,-a ,A 20,a ,B 1-b ,0 ,B 2b ,0轴长长轴长=2a ,短轴长=2b ,焦距=F 1F 2 =2c ,c 2=a 2-b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径PF 1 =a +e x 0,PF 2 =a -e x 0PF 1 =a -e y 0,PF 2 =a +e y 0焦点弦左焦点弦|AB |=2a +e (x 1+x 2),右焦点弦|AB |=2a -e (x 1+x 2).离心率e =c a=1-b 2a20<e <1 准线方程x =±a 2cy =±a 2c切线方程x 0x a 2+y 0y b 2=1x 0xb 2+y 0y a 2=1通径过椭圆焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|+|PF 2|=2a ,周长为:2a +2c (2)焦点三角形面积:S △F 1PF 2=b 2×tan θ2(3)当P 在椭圆短轴上时,张角θ最大,θ≥1-2e 2cos (4)焦长公式:PF 1 =b 2a -c αcos 、MF 1 =b 2a +c αcos MP =2ab 2a 2-c 22αcos =2ab 2b 2+c 22αsin (5)离心率:e =(α+β)sin α+βsin sin yxF 1F 2θαP OMβ第一定义平面内一动点P与两定点F1、F2距离之差为常数(大于F1F2)的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF1d1=MF2d2=e焦点焦点在x轴上焦点在y轴上图形yxF1F2bc虚轴实轴ayxF1F2实轴虚轴标准方程x2a2-y2b2=1a>0,b>0y2a2-x2b2=1a>0,b>0范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 顶点A1-a,0、A2a,0A10,-a、A20,a轴长虚轴长=2b,实轴长=2a,焦距=F1F2=2c,c2=a2+b2焦点F1-c,0、F2c,0F10,-c、F20,c焦半径|PF1|=a+e x0,|PF2|=-a+e x0左支添“-”离心率e=ca=1+b2a2e>1准线方程x=±a2c y=±a2c渐近线y=±ba x y=±ab x切线方程x0xa2-y0yb2=1x0xb2-y0ya2=1通径过双曲线焦点且垂直于对称轴的弦长AB=2b2a(最短焦点弦)焦点三角形(1)由定义可知:|PF1|-|PF2|=2a(2)焦点直角三角形的个数为八个,顶角为直角与底角为直角各四个;(3)焦点三角形面积:S△F1PF2=b2÷tanθ2=c∙y(4)离心率:e=F1F2PF1-PF2=sinθsinα-sinβ=sin(α+β)sinα-sinβyxF1F2Pθαβ定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.方程y 2=2px p >0y 2=-2px p >0x 2=2py p >0x 2=-2py p >0图形yxF x =-p2yxFx =p2y xFy =-p2yxFy =p2顶点0,0对称轴x 轴y 轴焦点F p2,0 F -p 2,0 F 0,p 2 F 0,-p 2准线方程x =-p 2x =p2y =-p 2y =p 2离心率e =1范围x ≥0x ≤0y ≥0y ≤0切线方程y 0y =p x +x 0y 0y =-p x +x 0x 0x =p y +y 0x 0x =-p y +y 0通径过抛物线焦点且垂直于对称轴的弦AB =2p (最短焦点弦)焦点弦AB 为过y 2=2px p >0 焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =x 1+p 2BF =x 2+p2AB =x 1+x 2+p ,(2)x 1x 2=p 24y 1y 2=-p 2(3)AF =p 1-αcos BF =p 1+αcos 1|FA |+1|FB |=2P (4)AB =2psin 2αS △AOB =p 22αsin AB 为过x 2=2py (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =p 1-αsin BF =p1+αsin (2)AB =2p 2αcos S △AOB=p 22αcos (3)AF BF=λ,则:α=λ-1λ+1sin yxFx =-p 2αABO yxFαABOy 2=2px (p >0)y 2=2px (p >0)四、圆锥曲线的通法F 1F 2POxyOxyFP MOxyF 1F 2P椭圆双曲线抛物线点差法与通法1、圆锥曲线综述:联立方程设交点,韦达定理求弦长;变量范围判别式,曲线定义不能忘;弦斜中点点差法,设而不求计算畅;向量参数恰当用,数形结合记心间.★2、直线与圆锥曲线的位置关系(1)直线的设法:1若题目明确涉及斜率,则设直线:y =kx +b ,需考虑直线斜率是否存在,分类讨论;2若题目没有涉及斜率或直线过(a ,0)则设直线:x =my +a ,可避免对斜率进行讨论(2)研究通法:联立y =kx +bF (x ,y )=0得:ax 2+bx +c =0判别式:Δ=b 2−4ac ,韦达定理:x 1+x 2=−b a ,x 1x 2=ca(3)弦长公式:AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)⋅[(x 1+x 2)2-4x 1x 2]=1+1k2(y 1+y 2)2−4y 1y 2 3、硬解定理设直线y =kx +φ与曲线x 2m +y 2n=1相交于A (x 1,y 1)、B (x 2,y 2)由:y =kx +φnx 2+my 2=mn,可得:(n +mk 2)x 2+2kφmx +m (φ2-n )=0判别式:△=4mn (n +mk 2-φ2)韦达定理:x 1+x 2=-2kmφn +mk 2,x 1x 2=m (φ2-n )n +mk 2由:|x 1-x 2|=(x 1+x 2)2-4x 1x 2,代入韦达定理:|x 1-x 2|=△n +mk 2★4、点差法:若直线l 与曲线相交于M 、N 两点,点P (x 0,y 0)是弦MN 中点,MN 的斜率为k MN ,则:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=−b 2a2;在双曲线x 2a 2−y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=b 2a2;在抛物线y 2=2px (p >0)中,有k MN ⋅y 0=p .(椭圆)设M 、N 两两点的坐标分别为(x 1,y 1)、(x 2,y 2),则有x 12a 2+y 12b 2=1,⋯⋯(1)x 22a 2+y 22b 2=1.⋯⋯(2) (1)−(2),得x 12−x 22a 2+y 12−y 22b 2=0.∴y 2−y 1x 2−x 1⋅y 2+y 1x 2+x 1=−b 2a2.又∵k MN =y 2−y 1x 2−x 1,y 1+y 2x 1+x 2=2y 2x =y x .∴k MN ⋅y x =−b 2a2.圆锥曲线的参数方程1、参数方程的概念在平面直角坐标系中,曲线上任意一点的坐标x ,y 都是某个变数t 的函数x =f (t )y =g (t )并且对于t 的每一个允许值,由这个方程所确定的点M (x ,y )都在这条曲线上,该方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.※2、直线的参数方程(1)过定点P (x 0,y 0)、倾斜角为α(α≠π2)的直线的参数方程x =x 0+t cos αy =y 0+t sin α (t 为参数)(2)参数t 的几何意义:参数t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段的长度再加上表示方向的正负号,也即|M 0M|=|t |,|t |表示直线上任一点M 到定点M 0的距离.当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0;(3)直线方程与参数方程互化:y −y o =tan α(x −x o )⇔x =x 0+t cos αy =y 0+t sin α(t 为参数)(4)直线参数方程:x =x 0+aty =y 0+bt (t 为参数),当a 2+b 2=1时,参数方程为标准型参数方程,参数的几何意义才是代表距离.当a 2+b 2≠1时,将参数方程化为x =x 0+aa 2+b 2t y =y 0+ba 2+b 2t 然后在进行计算.★3、圆的参数方程(1)圆心(a ,b ),半径r 的圆(x -a )2+(y -b )2=r 2参数方程x =a +r cos θy =b +r sin θ (θ为参数);特别:当圆心在原点时,半径为r 的圆x 2+y 2=r 2的参数方程为:x =r cos θy =r sin θ (θ是参数).(2)参数θ的几何意义:θ表示x 轴的正方向到圆心和圆上任意一点的半径所成的角.(3)消参的方法:利用sin 2θ+cos 2θ=1,yxF 1F 2PN OMyxM 0tαO M 1αP (x ,y )rxy可得圆方程:(x -a )2+(y -b )2=r 2★4、椭圆的参数方程(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为x =a cos φy =b sin φ (φ为参数);椭圆y 2a 2+x 2b2=1(a >b >0)的参数方程为x =b cos φy =a sin φ (φ为参数);(2)参数θ的几何意义:参数θ表示椭圆上某一点的离心角.如图所示,点P 对应的离心角为θ=∠QOx (过P 作PQ ⊥x 轴,交大圆即以2a 为直径的圆于Q ),切不可认为是θ=∠POx .5、双曲线的参数方程(1)双曲线x 2a 2-y 2b 2=1(a >b >0)的参数方程x =a sec φy =b tan φ (φ为参数);sec φ=1cos φ双曲线y 2a 2-x 2b2=1(a >b >0)的参数方程x =b cot φy =a csc φ (φ为参数);csc φ=1sin φ(2)参数θ的几何意义:参数θ表示双曲线上某一点的离心角.※6、抛物线的参数方程(1)抛物线y 2=2px 参数方程x =2pt 2y =2pt(t 为参数,t =1tan α);(2)参数t 的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数.t =1k OP仿射变换与齐次式1、仿射变换:在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间.※2、椭圆的变换:椭圆b 2x 2+a 2y 2=a 2b 2变换内容x =x y=a b y x =xy =b a yx =b a x y=yx =a b x y =y圆方程x 2+y 2=a 2x 2+y 2=b 2图示yxAB OCyxABOCyxAB OCyxAB OC 点坐标A (x 0,y 0)→A '(x 0,a by 0)A (x 0,y 0)→A '(b ax 0,y 0)斜率变化k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a 2k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a2弦长变化则AB =1+k 2x 1-x 2 ⇒A 'B '=1+k '2x 1-x 2 =1+(a b)2k 2x 1-x 2 yxαPOQ面积变化S△ABC=b a S△A'B'C'(水平宽不变,铅锤高缩小)S△ABC=a b S△A'B'C'(水平宽扩大,铅垂高不变)3、中点弦问题,k OP⋅k AB=−b2a2,中垂线问题k OPk MP=b2a2,且x M=c2x0a2y N=-c2y0b2,拓展1:椭圆内接△ABC中,若原点O为重心,则仿射后一定得到△OB'C'为120°的等腰三角形;△A'B'C'为等边三角形;拓展2:椭圆内接平行四边形OAPB(A、P、B)在椭圆上,则仿射后一定得菱形OA'P'B' 4、面积问题:(1)若以椭圆x2a2+y2b2=1对称中心引出两条直线交椭圆于A、B两点,且k OA⋅k OB=−b2a2,则经过仿射变换后k OA'⋅k OB'=−1,所以S△AOB为定值.(2)若椭圆方程x2a2+y2b2=1上三点A,B,M,满足:①k OA⋅k OB=−b2a2②S△AOB=ab2③OM=sinαOA+cosαOBα∈0,π2,三者等价※5、平移构造齐次式:(圆锥曲线斜率和与积的问题)(1)题设:过圆锥曲线上的一个定点P作两条直线与圆锥曲线交于A、B,在直线PA和PB斜率之和或者斜率之积为定值的情况下,直线AB过定点或者AB定斜率的问题.(2)步骤:①将公共点平移到坐标原点(点平移:左加右减上减下加)找出平移单位长.②由①中的平移单位长得出平移后的圆锥曲线C ,所有直线方程统一写为:mx+ny=1③将圆锥曲线C 展开,在一次项中乘以mx+ny=1,构造出齐次式.④在齐次式中,同时除以x2,构建斜率k的一元二次方程,由韦达定理可得斜率之积(和).圆锥曲线考点归类(一)条件方法梳理1、椭圆的角平分线定理(1)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆长轴交点为N,在长轴上一定存在一个点M,当仅当则x M⋅x N=a2时,∠AMN=∠BMN,即长轴为角平分线;(2)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆短轴交点为N,在短轴上一定存在一个点M,当仅当则y M⋅y N=b2时,∠AMN=∠BMN,即短轴为角平分线;※2、关于角平分线的结论:若直线AO的斜率为k1,直线CO的斜率为k2,EO平分∠AOC则有:k1+k2=tanα+tan(π-α)=0角平分线的一些等价代换条件:作x轴的对称点、点到两边的距离相等.3、四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A ,B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.4、圆系方程(1)过直线l :Ax +By +C =0与圆C :x 2+y 2+Dx +Ey +F =0的交点的圆系方程是x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0,λ是待定的系数.(2)过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程是x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0,λ是待定的系数.★(二)圆锥曲线过定点问题1、直线过定点的背景:(1)直线过定点模型:A ,B 是圆锥曲线上的两动点,M 是一定点,其中α,β分别为MA ,MB 的倾斜角,则:①、MA ⋅MB 为定值⇔直线AB 恒过定点;②、k MA ⋅k MB 为定值⇔直线AB 恒过定点;③、α+β=θ(0<θ<π)⇔直线AB 恒过定点.(2)抛物线中直线过定点:A ,B 是抛物线y 2=2px (p >0)上的两动点,α,β分别为OA ,OB 的倾斜角,则:OA ⊥OB ⇔k OA ⋅k OB =-1⇔α-β =π2⇔直线AB 恒过定点(2p ,0).(3)椭圆中直线过定点模型:A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)上异于右顶点D 的两动点,其中α,β分别为DA ,DB 的倾斜角,则可以得到下面几个充要的结论:DA ⊥DB ⇔k DA ⋅k DB =-1⇔α-β =π2⇔直线AB 恒过定点(ac 2a 2+b 2,0)2、定点的求解方法:1含参形式简单的直线方程,通过将直线化为y -y 0=k (x -x 0)可求得定点坐标(x 0,y 0)2含参形式复杂的通过变换主元法求解定点坐标.变换主元法:将直线化为h (x ,y )+λf (x ,y )=0,解方程组:h (x ,y )=0f (x ,y )=0 可得定点坐标.eg :直线方程:(2m +1)x +(m -5)y +6=0,将m 看作主元,按照降幂排列:(2x +y )m+x -5y +6=0,解方程组:2x +y =0x -5y +6=0,解得:x =-611y =1211,求得直线过定点(-611,1211).3、关于以AB 为直径的圆过定点问题:(1)直接法:设出参数后,表示出圆的方程.圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(2)由特殊到一般:利用赋值法,先求出几个位置的圆方程,联立圆方程解出公共交点,该交点即为圆所过的定点,再利用向量数量积为0证明点恒在圆上.★(三)圆锥曲线面积问题1、面积的求解方法:(1)S △ABC =12MN ∙d ,从公式可以看出,求面积重在求解弦长和点到线的距离.(2)S △ABC =12×水平宽×铅锤高,主要以点的坐标运算为主.(3)S △AOB =12x 1y 2-x 2y 1例题1.在平面直角坐标系xOy 中,已知点O 0,0 ,A x 1,y 1 ,B x 2,y 2 不共线,证明:△AOB 的面积为S △AOB =12x 1y 2-x 2y 1 .2、面积中最值的求解(1)f (x )=αx 2+βx +φx +n型:令t =x +n ⇒x =t -n 进行代换后裂项转化为:y =at +bt (2)f (x )=x +n αx 2+βx +φ型:先在分母中配出分子式f (x )=x +n α(x +n )2+λ(x +n )+υ令t =x +n ,此时:y =t αt 2+λt +υ,分子分母同时除t ,此时y =1αt +υt+λ,再利用对勾函数或不等式分析最值.(3)f (x )=αx +βx +n型:令t =x +n ⇒x =t 2-n 进行代换后裂项,可转化为:y =at +bt五、椭圆的二级结论1.PF1+PF2=2a2.标准方程x2a2+y2b2=13.PF1d1=e<14.点P处的切线PT平分△PF1F2在点P处的外角.5.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相离.7.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.8.设A1、A2为椭圆的左、右顶点,则△PF1F2在边PF2(或PF1)上的旁切圆,必与A1A2所在的直线切于A2 (或A1).9.椭圆x2a2+y2b2=1(a>b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2-y2b2=1.10.若点P0(x0,y0)在椭圆x2a2+y2b2=1a>b>0上,则在点P0处的切线方程是x0xa2+y0yb2=1.11.若P0(x0,y0)在椭圆x2a2+y2b2=1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2+y0yb2=1.12.AB是椭圆x2a2+y2b2=1的不平行于对称轴的弦,M为AB的中点,则k OM⋅k AB=-b2a2.13.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则被PO所平分的中点弦的方程是x0xa2+y0yb2=x02a2+y02b2.14.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则过PO的弦中点的轨迹方程是x2a2+y2b2=x0xa2+y0yb2.15.若PQ是椭圆x2a2+y2b2=1(a>b>0)上对中心张直角的弦,则1r12+1r22=1a2+1b2(r1=|OP|,r2=|OQ|).16.若椭圆x2a2+y2b2=1(a>b>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2+1 b2=A2+B2;(2)L=2a4A2+b4B2a2A2+b2B2.17.给定椭圆C1:b2x2+a2y2=a2b2(a>b>0),C2:b2x2+a2y2=a2-b2a2+b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2-b2a2+b2x0,-a2-b2a2+b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为椭圆(或圆)C:x2a2+y2b2=1(a>0,.b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=-1+m1-m⋅b2a2.19.过椭圆x2a2+y2b2=1(a>0,b>0)上任一点A(x0,y0)任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且k BC=b2x0a2y0(常数).20.椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点∠F1PF2=γ,则椭圆的焦点三角形的面积为S△F1PF2=b2tanγ2,P±ac c2-b2tan2γ2,±b2c tanγ2.21.若P为椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则a-ca+c=tanα2tanβ2.22.椭圆x2a2+y2b2=1(a>b>0)的焦半径公式:|MF1|=a+ex0,|MF2|=a-ex0(F1(-c,0),F2(c,0),M(x0,y0)).23.若椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当2-1≤e<1时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.24.P为椭圆x2a2+y2b2=1(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则2a-|AF2|≤|PA|+|PF1|≤2a+|AF2|,当且仅当A,F2,P三点共线时,等号成立.25.椭圆x2a2+y2b2=1(a>b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02≤(a2-b2)2a2+b2k2.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是椭圆x=a cosϕy=b sinϕ(a>b>0)上一点,则点P对椭圆两焦点张直角的充要条件是e2=11+sin2ϕ.29.设A,B为椭圆x2a2+y2b2=k(k>0,k≠1)上两点,其直线AB与椭圆x2a2+y2b2=1相交于P,Q,则AP=BQ.30.在椭圆x 2a 2+y 2b 2=1中,定长为2m (o <m ≤a )的弦中点轨迹方程为m 2=1-x 2a 2+y 2b 2a 2cos 2α+b 2sin 2α ,其中tan α=-bx ay ,当y =0时,α=90∘.31.设S 为椭圆x 2a 2+y 2b2=1(a >b >0)的通径,定长线段L 的两端点A ,B 在椭圆上移动,记|AB |=l ,M(x 0,y 0)是AB 中点,则当l ≥ΦS 时,有(x 0)max =a 2c -l 2e c 2=a 2-b 2,e =c a;当l <ΦS 时,有(x 0)max =a 2b4b 2-l 2,(x 0)min=0.32.椭圆x 2a 2+y 2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥C 2.33.椭圆(x -x 0)2a 2+(y -y 0)2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥(Ax 0+By 0+C )2.34.设椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记∠F 1PF 2=α,∠PF 1F 2=β,∠F 1F 2P =γ,则有sin αsin β+sin γ=c a =e.35.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|P 1A 1|⋅|P 2A 2|=b 2.36.已知椭圆x 2a 2+y 2b2=1(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP ⊥OQ .(1)1|OP |2+1|OQ |2=1a 2+1b2;(2)|OP |2+|OQ |2的最小值为4a 2b 2a 2+b 2;(3)S ΔOPQ 的最小值是a 2b 2a 2+b 2.37.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则|AB |2=2a |MN |.38.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP ⊥MN ,则2a |MN |+1|OP |2=1a 2+1b2.39.设椭圆x 2a 2+y 2b2=1(a >b >0),M (m ,o )或(o ,m )为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q (A 1,A 2为对称轴上的两顶点)的交点N 在直线l :x =a2m(或y =b 2m)上.40.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .41.过椭圆一个焦点F的直线与椭圆交于两点P、Q,A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.42.设椭圆方程x2a2+y2b2=1,则斜率为k(k≠0)的平行弦的中点必在直线l:y=kx的共轭直线y=k x上,而且kk =-b2 a2 .43.设A、B、C、D为椭圆x2a2+y2b2=1上四点,AB、CD所在直线的倾斜角分别为α,β,直线AB与CD相交于P,且P不在椭圆上,则PA⋅PBPC⋅PD=b2cos2β+a2sin2βb2cos2α+a2sin2α.44.已知椭圆x2a2+y2b2=1(a>b>0),点P为其上一点F1,F2为椭圆的焦点,∠F1PF2的外(内)角平分线为l,作F1、F2分别垂直l于R、S,当P跑遍整个椭圆时,R、S形成的轨迹方程是x2+y2=a2c2y2=a2y2+b2x x±c2 a2y2+b2x±c2.45.设△ABC内接于椭圆Γ,且AB为Γ的直径,l为AB的共轭直径所在的直线,l分别交直线AC、BC于E和F,又D为l上一点,则CD与椭圆Γ相切的充要条件是D为EF的中点.46.过椭圆x2a2+y2b2=1(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则|PF||MN|=e2.47.设A(x1,y1)是椭圆x2a2+y2b2=1(a>b>0)上任一点,过A作一条斜率为-b2x1a2y1的直线L,又设d是原点到直线L的距离,r1,r2分别是A到椭圆两焦点的距离,则r1r2d=ab.48.已知椭圆x2a2+y2b2=1(a>b>0)和x2a2+y2b2=λ(0<λ<1),一直线顺次与它们相交于A、B、C、D四点,则│AB│=|CD│.49.已知椭圆x2a2+y2b2=1(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0),则-a2-b2a<x0<a2-b2 a.50.设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记∠F1PF2=θ,则(1)|PF1||PF2|=2b21+cosθ.(2)SΔPF1F2=b2tanθ2.51.设过椭圆的长轴上一点B(m,o)作直线与椭圆相交于P、Q两点,A为椭圆长轴的左顶点,连结AP和AQ分别交相应于过H点的直线MN:x=n于M,N两点,则∠MBN=90∘⇔a-ma+m=a2n-m2 b2(n+a)2.52.L是经过椭圆x2a2+y2b2=1(a>b>0)长轴顶点A且与长轴垂直的直线,E、F是椭圆两个焦点,e是离心率,点P∈L,若∠EPF=α,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=b时取等号).53.L是椭圆x2a2+y2b2=1(a>b>0)的准线,A、B是椭圆的长轴两顶点,点P∈L,e是离心率,∠EPF=α,H是L与X轴的交点c是半焦距,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=ab c时取等号).54.L是椭圆x2a2+y2b2=1(a>b>0)的准线,E、F是两个焦点,H是L与x轴的交点,点P∈L,∠EPF=α,离心率为e,半焦距为c,则α为锐角且sinα≤e2或α≤arcsin e2(当且仅当|PH|=b c a2+c2时取等号).55.已知椭圆x2a2+y2b2=1(a>b>0),直线L通过其右焦点F2,且与椭圆相交于A、B两点,将A、B与椭圆左焦点F1连结起来,则b2≤|F1A|⋅|F1B|≤(2a2-b2)2a2(当且仅当AB⊥x轴时右边不等式取等号,当且仅当A、F1、B三点共线时左边不等式取等号).56.设A、B是椭圆x2a2+y2b2=1(a>b>0)的长轴两端点,P是椭圆上的一点,∠PAB=α,∠PBA=β,∠BPA=γ,c、e分别是椭圆的半焦距离心率,则有(1)|PA|=2ab2|cosα|a2-c2cos2α.(2)tanαtanβ=1-e2.(3)SΔPAB=2a2b2b2-a2cotγ.57.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点)、外部的两点,且x A、x B的横坐标x A⋅x B=a2,(1)若过A点引直线与这椭圆相交于P、Q两点,则∠PBA=∠QBA;(2)若过B引直线与这椭圆相交于P、Q两点,则∠PAB+∠QAB=180∘.58.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A点引直线与这椭圆相交于P、Q两点,(若BP交椭圆于两点,则P、Q不关于x轴对称),且∠PBA=∠QBA,则点A、B的横坐标x A、x B满足x A⋅x B=a2;(2)若过B点引直线与这椭圆相交于P、Q两点,且∠PAB+∠QAB=180∘,则点A、B的横坐标满足x A⋅x B=a2.59.设A,A 是椭圆x2a2+y2b2=1的长轴的两个端点,QQ 是与AA 垂直的弦,则直线AQ与A Q 的交点P的轨迹是双曲线x2a2-y2b2=1.60.过椭圆x2a2+y2b2=1(a>b>0)的左焦点F作互相垂直的两条弦AB、CD则8ab2a2+b2≤|AB|+|CD|≤2(a2+b2)a.61.到椭圆x 2a 2+y 2b2=1(a >b >0)两焦点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆(x ±a )2+y 2=b 2.62.到椭圆x 2a 2+y 2b2=1(a >b >0)的长轴两端点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆x ±a e 2+y 2=b e 2.63.到椭圆x 2a 2+y 2b2=1(a >b >0)的两准线和x 轴的交点的距离之比为a -c b (c 为半焦距)的动点的轨迹是姊妹圆x ±a e 2 2+y 2=b e 2 2(e 为离心率).64.已知P 是椭圆x 2a 2+y 2b2=1(a >b >0)上一个动点,A ,A 是它长轴的两个端点,且AQ ⊥AP ,A Q ⊥AP ,则Q 点的轨迹方程是x 2a 2+b 2y 2a4=1.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的端点为A ,A ,P (x 1,y 1)是椭圆上的点过P 作斜率为-b 2x 1a 2y 1的直线l ,过A ,A 分别作垂直于长轴的直线交l 于M ,M ,则(1)|AM ||A M |=b 2.(2)四边形MAA M 面积的最小值是2ab .67.已知椭圆x 2a 2+y2b2=1(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC ⎳x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆(x -a )2a 2+y 2b 2=1(a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB必经过一个定点2ab 2a 2+b 2,0 .(2)以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2a 2+b 2 2+y 2=ab 2a 2+b 2 2(x ≠0).69.P (m ,n )是椭圆(x -a )2a 2+y 2b2=1(a >b >0)上一个定点,PA 、PB 是互相垂直的弦,则(1)直线AB 必经过一个定点2ab 2+m (a 2-b 2)a 2+b 2,n (b 2-a 2)a 2+b 2 .(2)以PA 、PB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2+a 2m a 2+b 2 2+y -b 2n a 2+b 2 2=a 2[b 4+n 2(a 2-b 2)](a 2+b 2)2(x ≠m 且y ≠n ).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)d 1d 2=b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)d 1d 2>b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)d 1d 2<b 2,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D两点,则梯形ABDC的对角线的交点M的轨迹方程是x2a2+4y2b2=1(y≠0).72.设点P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0)的内部一定点,AB是椭圆x2a2+y2b2=1过定点P(x0,y0)的任一弦,当弦AB平行(或重合)于椭圆长轴所在直线时(|PA|⋅|PB|)max=a2b2-(a2y02+b2x02)b2.当弦AB垂直于长轴所在直线时,(|PA|⋅|PB|)min=a2b2-(a2y02+b2x02)a2.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切.74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c与a-c.76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线.87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89.已知椭圆x2a2+y2b2=1(a>0,b>0)(包括圆在内)上有一点P,过点P分别作直线y=b a x及y=-b a x的平行线,与x 轴于M ,N ,与y 轴交于R ,Q .,O 为原点,则:(1)|OM |2+|ON |2=2a 2;(2)|OQ |2+|OR |2=2b 2.90.过平面上的P 点作直线l 1:y =b a x 及l 2:y =-b ax 的平行线,分别交x 轴于M ,N ,交y 轴于R ,Q .(1)若|OM |2+|ON |2=2a 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).(2)若|OQ |2+|OR |2=2b 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).91.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.92.点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记△OMQ 与△ONR 的面积为S 1,S 2,已知S 1+S 2=ab 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).93.过椭圆焦点垂直于长轴的弦(通径)是最短的弦,长为2b 2a,过焦点最长弦为长轴.94.过原点最长弦为长轴长2a ,最短弦为短轴长2b .95.与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(a >b >0,λ>-b 2).96.与椭圆y 2a 2+x 2b 2=1(a >b >0)有共焦点的椭圆方程为y 2a 2+λ+x 2b 2+λ=1(a >b >0,λ>-b 2).97.焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 为短轴端点时,θ最大;cos θ=r 21+r 22-4c 22r 1r 2=r 1+r 2 2-2r 1r 2-4c22r 1r 2=4b 22r 1r 2-1=2b 2r 1r 2-1≥2b 2r 1+r 222-1=2b 2-a 2a 2=b 2-c 2a 2当且仅当r 1=r 2时,等号成立.②S =12|PF 1||PF 2|sin θ=c |y 0|=sin θ1+cos θb 2=b 2tan θ2,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).98.AB 为过F 的焦点弦,则1FA +1FB =2ab 299.已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2.椭圆Γ在点P 处的切线为l ,Q ∈l .且满足∠AQF1=θ0<θ<π2,则点Q在以C0,±cθcot为圆心,a θsin为半径的圆上.六、双曲线的二级结论1.PF1-PF2=2a2.标准方程x2a2-y2b2=13.PF1d1=e>14.点P处的切线PT平分△PF1F2在点P处的内角.5.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相交.7.以焦点半径PF1为直径的圆必与以实轴为直径的圆外切.8.设P为双曲线上一点,则△PF1F2的内切圆必切于与P在同侧的顶点.9.双曲线x2a2-y2b2=1(a>0,b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2+y2b2=1.10.若点P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)上,则在点P0处的切线方程是x0xa2-y0yb2=1.11.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)外,则过P0作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2-y0yb2=1.12.若AB是双曲线x2a2-y2b2=1(a>0,b>0)的不平行于对称轴且过原点的弦,M为AB的中点,则k OM⋅k AB=b2a2.13.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则被P0所平分的中点弦的方程是x0xa2-y0yb2=x02a2-y02 b2 .14.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则过Po的弦中点的轨迹方程是x2a2-y2b2=x0xa2-y0y b2.15.若PQ是双曲线x2a2-y2b2=1(b>a>0)上对中心张直角的弦,则1r12+1r22=1a2-1b2(r1=|OP|,r2=|OQ|).16.若双曲线x2a2-y2b2=1(b>a>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2-1 b2=A2+B2;(2)L=2a4A2+b4B2|a2A2-b2B2|.17.给定双曲线C1:b2x2-a2y2=a2b2(a>b>0),C2:b2x2-a2y2=a2+b2a2-b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2+b2a2-b2x0,-a2+b2a2-b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为双曲线x2a2-y2b2=1(a>0,b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=1+m1-m⋅b2a2.19.过双曲线x2a2-y2b2=1(a>0,b>o)上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且k BC=-b2x0a2y0(常数).20.双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,点P为双曲线上任意一点∠F1PF2=γ,则双曲线的焦点角形的面积为S△F1PF2=b2cotγ2=b2γ2tan,P±ac c2+b2cot2γ2,±b2c cotγ2.21.若P为双曲线x2a2-y2b2=1(a>0,b>0)右(或左)支上除顶点外的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则c-ac+a=tan α2cotβ2(或c-ac+a=tanβ2cotα2).22.双曲线x2a2-y2b2=1(a>0,b>o)的焦半径公式:F1(-c,0),F2(c,0)当M(x0,y0)在右支上时,|MF1|=ex0+a,|MF2|=ex0-a.当M(x0,y0)在左支上时,|MF1|=-ex0-a,|MF2|=-ex0+a.23.若双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤2+1时,可在双曲线上求一点P,使得PF1是P到对应准线距离d1与PF2的比例中项.24.P为双曲线x2a2-y2b2=1(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线左支内一定点,则|AF2|-2a≤|PA|+|PF1|,当且仅当A,F2,P三点共线且P在左支时,等号成立.25.双曲线x2a2-y2b2=1(a>0,b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02>(a2+b2)2 a2-b2k2k≠0且k≠±a b .26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是双曲线x=a secϕy=b tanϕ(a>0,b>0)上一点,则点P对双曲线两焦点张直角的充要条件是e2=11-tan2ϕ.29.设A,B为双曲线x2a2-y2b2=k(a>0,b>0,k>0,k≠1)上两点,其直线AB与双曲线x2a2-y2b2=1相交于P,Q,则AP=BQ.30.在双曲线x2a2-y2b2=1中,定长为2m(m>0)的弦中点轨迹方程为m2=1-x2a2-y2b2a2cosh2t+b2sinh2t,coth t=-aybx,x=0时t=0,弦两端点在两支上x2a2-y2b2-1a2sinh2t+b2cosh2t,coth t=-bxay,y=0时t=0,弦两端点在同支上31.设S为双曲线x2a2-y2b2=1(a>0,b>0)的通径,定长线段L的两端点A,B在双曲线右支上移动,记|AB|=l,M(x0,y0)是AB中点,则当l≥ΦS时,有(x0)min=a2c+l2e c2=a2+b2,e=c a;当l<ΦS时,有(x0)min=a2b4b2+l2.32.双曲线x2a2-y2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤C2.33.双曲线(x-x0)2a2-(y-y0)2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤(Ax0+By0+C)2.34.设双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记∠F1PF2=α,∠PF1F2=β,∠F1F2P=γ,则有sinα±(sinγ-sinβ)=c a=e.35.经过双曲线x2a2-y2b2=1(a>0,b>0)的实轴的两端点A1和A2的切线,与双曲线上任一点的切线相交于P1和P2,则|P1A1|⋅|P2A2|=b2.36.已知双曲线x2a2-y2b2=1(b>a>0),O为坐标原点,P、Q为双曲线上两动点,且OP⊥OQ.(1)1|OP|2+1 |OQ|2=1a2-1b2;(2)|OP|2+|OQ|2的最小值为4a2b2b2-a2;(3)SΔOPQ的最小值是a2b2b2-a2.37.MN是经过双曲线x2a2-y2b2=1(a>0,b>0)过焦点的任一弦(交于两支),若AB是经过双曲线中心O且平行于MN的弦,则|AB|2=2a|MN|.38.MN是经过双曲线x2a2-y2b2=1(a>b>0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP⊥。

圆锥曲线抛物线的基本知识点

圆锥曲线抛物线的基本知识点

圆锥曲线抛物线的基本知识点一、什么是抛物线?抛物线是一种特殊的圆锥曲线,它是由一个固定点(焦点)和一个固定直线(准线)确定的所有点到焦点距离等于该点到准线距离的轨迹。

二、抛物线的基本性质1. 抛物线的对称轴是准线,焦点在对称轴上;2. 抛物线上任意一点与其对称轴的距离相等;3. 焦点到抛物线上任意一点的距离与该点到准线的距离相等;4. 抛物线在对称轴上有最小值,即顶点;5. 抛物线开口方向由焦点和准线位置决定。

三、抛物线方程1. 标准式:y = ax^2 (a>0)其中 a 为常数,表示开口方向和开口大小。

2. 顶点式:y - k = a(x - h)^2其中 (h, k) 为顶点坐标。

3. 参数式:x = at^2, y = 2at其中 t 为参数。

四、抛物线应用1. 物理学中,抛物运动就是指在重力作用下,以一定初速度沿着一个确定角度投掷出去后,运动轨迹为抛物线的运动方式。

2. 工程学中,抛物线常用于设计拱形桥、天桥、高架桥等建筑结构。

3. 数学中,抛物线是圆锥曲线中最简单的一种,也是研究圆锥曲线的基础。

五、抛物线相关概念1. 焦距:焦点到顶点的距离。

2. 焦直线:过焦点且与准线垂直的直线。

3. 焦半径:从焦点到抛物线上任意一点的距离。

4. 垂直平分线:过顶点且与对称轴垂直的直线。

六、抛物线相关定理1. 抛物定理:从焦点到抛物线上任意一点的距离等于该点到准线距离的一半。

2. 切角定理:从焦点引一条切线,该切线与准线之间的夹角等于该切点处法向量与准线方向向量之间夹角(即反射角等于入射角)。

3. 两个相交抛物面交于一条直母线。

圆锥曲线知识点整理

圆锥曲线知识点整理

圆锥曲线知识点整理圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。

下面我们来详细整理一下圆锥曲线的相关知识点。

一、椭圆1、定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。

焦点在y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} =1\)(\(a > b > 0\))3、椭圆的性质(1)范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b \leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。

(2)对称性:椭圆关于 x 轴、y 轴和原点对称。

(3)顶点:椭圆有四个顶点,焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。

(4)离心率:椭圆的离心率\(e =\frac{c}{a}\),\(0 < e < 1\),\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。

二、双曲线1、定义平面内与两个定点 F₁、F₂的距离之差的绝对值等于常数(小于|F₁F₂|)的点的轨迹叫做双曲线。

这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。

2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\),其中\(a > 0\),\(b > 0\),\(c^2 = a^2 + b^2\)。

(完整版)《圆锥曲线》主要知识点

(完整版)《圆锥曲线》主要知识点

圆锥曲线与方程知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点尸卜F 2,点P 满足IP 用+1尸/2∣=2α>2∣,则点P 的轨迹是 平面内与两个定点尸八F 2,点尸满足IP 居|+|Pq=2z=∣FE ∣,则点尸的轨迹是 平面内与两个定点尸I 、F 2,点P 满足IPFJ+1PKI=2〃<忻八|,则点P 的轨迹是 2X 2V 2若户是椭圆:-τ+J=I 上的点为焦点,若NF1P 户产氏则AT//2的面积为ab3、点与椭圆、直线与椭圆的位置关系9 2⑴点Pa0,比)与椭圆E+g=1(α>b>0)的位置关系:①点尸在椭圆上O;②点P 在椭圆内部=;③点P 在椭圆外部Q.(2)直线尸履+〃?与椭圆,+方=1(α>Z>O)的位置关系判断方法:消y 得一个一元二次方程是: _____________________________________________________v(3)弦长公式:设直线方程为),=履+加(%0),椭圆方程为/+方=1(α>b>0)或方+∕=1(α>b>0),直线与椭圆的两个交点为A(X1,yι),3(X2,)力则∣A8∣=N(为一7)2+(小一”)2,Λ∖AB∖=7(X1X2)2+(如一g)2=<1+F∙d(X1-X2)2=y∣I+*7(X1+切)4_¥1囚,或HB1=d(i>1⅛2)+(上_1)2=[]+、•'(%_")2=^1+.XJ(>1+>2)2_领/其中,即+“2,汨M 或“+”,V”的值,可通过由直线方程与椭圆方程联立消去y或X后得到关于X或y的一元二次方程得到.2 2(4)直线/:y=Ax+m与椭圆:二+与=1(α>/?>0)的两个交点为Aa1,y),8(如力),a'b~弦A8的中点M(X0,州),则2=(用X0,州表示)二、双曲线方程.1、双曲线的定义:平面内与两个定点尸I、F2,点尸满足归/JTPgh2々<囚尸21则点尸的轨迹是平面内与两个定点尸卜尸2,点尸满足仍PJTPW=2α>巴川,则点P的轨迹是平面内与两个定点尸1、尸2,点P满足归尸]|-|尸/』=2〃=|尸尸小则点P的轨迹是21等轴双曲线:双曲线“2_,2=±『称为等轴双曲线,其渐近线方程为,离心率《=2 2(2)共渐近线的双曲线系方程:二-1?=”之0°)的渐近线方程为_________________a~Zr如果双曲线的渐近线为±±2=0时,它的双曲线方程可设为 ____________________ .ab(3)从双曲线一个焦点到一条渐近线的距离等于.3、直线与双曲线的位置关系r2V2(1)一般地,设直线/:y=kxΛ-m……①双曲线C:^-p=1(α>O,bX))……②把①代入②得关于X的一元二次方程为.①当〃一"仆=O时,直线/与双曲线的渐近线,直线与双曲线C.②当/一/炉和时,/>0=直线与双曲线有公共点,此时称直线与双曲线:/=0=直线与双曲线有公共点,此时称直线与双曲线:/<0=直线与双曲线公共点,此时称直线与双曲线.注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.AB的中点M(xo>h),则A=(用必,yo表示)三、抛物线方程.1、抛物线的定义平面内与一个定点尸和一条定直线/(不经过点F)的点的轨迹叫做抛物线.点尸叫做抛物线的,直线/叫做抛物线的.思考1:平面内与一个定点F和一条定直线/(/经过点F),点的轨迹是2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,A8是抛物线y2=2pMp>0)过焦点尸的一条弦,设Aa∣,》)、8(及,工),AB的中点MX°,并),相应的准线为/.(1)以AB为直径的圆必与准线/的位置关系是:(2)HB1=(焦点弦长用中点M的坐标表示);(3)若直线AB的倾斜角为α,则∣A8∣=(焦点弦长用倾斜角为α表示);如当α=90。

(完整word版)圆锥曲线解题技巧方法总结(教师版)

(完整word版)圆锥曲线解题技巧方法总结(教师版)

圆锥曲线解题技巧方法总结1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件: 椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

例:方程2222(6)(6)8x y x y -+-++=表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>),焦点在y 轴上时2222b x a y +=1(0a b >>)。

方程22Ax By C +=表示椭圆的充要条件是什么?(ABC≠0,且A ,B ,C 同号,A≠B )。

例: 若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___(答:5,2)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。

方程22Ax By C+=表示双曲线的充要条件是什么?(ABC≠0,且A ,B 异号)。

例:设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

《圆锥曲线》第一章基础知识篇

《圆锥曲线》第一章基础知识篇

Word-可编辑圆锥曲线目录共分成四大章: 基础知识篇, 技巧套路篇, 题型结论篇, 极点极线篇第一章基础知识篇 .4§1椭圆 .41.1 椭圆的定义(和比积) .41.2 椭圆的方程 .61.3 椭圆的基本参数 .8方程和基本参数 10第一定义 10离心率 .11参数方程 . 12构造椭圆解题 .14综合题 . 15§2双曲线 .232.1 双曲线的定义(和比积) .232.2 双曲线的方程 . 242.3 双曲线的基本参数 .25第一定义 . 26方程和基本参数 .28通径 . 30离心率 .31千里之行,始于足下渐近线 .33渐近线勾股三角形 . 34渐近线与焦点圆的交点 . 40构造双曲线解题 . 41综合题 . 432.4 等轴双曲线 . 492.5 双曲线的渐近线专题 . 53渐近线的常用性质四条 . 53渐近三角形 . 61§ 3 离心率专题 . 653.1 离心率 vs 定值 . 65直译型 . 65直接利用定义 691先补焦点再利用第一定义 .75利用平几知识 .81算两次 .93用尺子量 .96和抛物线混合 .97点差法相关 .99其他类型 .993.2 离心率 vs 范围 104朽木易折,金石可镂利焦半径的有界性 104利用椭圆双曲线坐标的有界性 107双曲线的渐近线 109米勒定理 .110其他类型 .112§4焦点三角形专题 1264.1 椭圆的焦点三角形 . 126面积公式(算多次) . 126张角最大与拓展 129焦点三角形 vs 正弦定理 133焦点三角形 vs 角平分线定理 . 135椭圆焦点三角形外接圆与内切圆的半径比 . 136 4.2 双曲线的焦点三角形 137面积公式(算多次) 137焦点三角形 vs 内切圆(包括相关平几知识补充) 140双焦点三角形 vs 内切圆 1434.3 椭圆焦点三角形的内心和旁心轨迹 1444.4 双曲线的内心轨迹 146§5圆锥曲线的光学性质 1495.1 光学性质 1495.2 焦点在圆雉曲线切线上的射影轨迹 1545.3 以圆雉曲线焦半径为直径的圆 162千里之行,始于足下5.4 光学性质的拓展二 164§6焦半径专题(第二定义) 1676.1 焦半径的代数式 . 1676.2 焦半径的极坐标式 . 1736.3 最短的焦点弦一通径? . 1736.4 焦半径和椭圆的短轴圆 .1746.5 以焦半径为直径的圆 . 1776.6 以焦点弦为直径的圆 . 1786.7 焦半径 vs 焦点弦的综合题 . 178§7 第一二定义与距离和最短 1837.1 三点共线(利用第一定义转化) 1837.2 垂线段最短(利用第二定义转化) 186§ 8 抛物线 .1888.1 抛物线的定义 .1888.2 抛物线的基本参数 .188方程的求解 .189定义的应用 . 191点、直线、抛物线模型 . 195酒杯小球 . 196罗列组合 .200综合题 .2018.3 抛物线的定长动弦 .207朽木易折,金石可镂8.4 抛物线的焦点弦模型 .2108.5 抛物线的点差法一一中点斜率公式 .2198.6 抛物线的等比性质和取负替换性质 .226斜率比值 .2298.7 抛物线的定点三角形面积公式 .2318.8 抛物线的两点式直线方程 .2348.9 抛物线的切线专题(极点极线) .2498.10 抛物线两条切线的交点一双切线模型 .2528.11 阿基米德三角形 .264第一章基础知识篇§1椭圆1.1 椭圆的定义(和比积)1. 第一定义之“和”平面内与两个定点F1、F2的距离的和等于常数2F (大于|F1F2| ) 的点的轨迹; 其中,两个定点称做椭圆的焦点, 焦点间的距离叫做焦距.椭圆方程的推导设F(F,F)是椭圆上随意一点,焦点F1(−F,0)和F2(F,0) ,由上述椭圆的定义可得: √(F+F)2+F2+√(F−F)2+F2=2F ,将这个方程移项,两边平方得: F2−FF=F√(F−F)2+F2 ,两边再平方, 收拾得: F2F2+F2F2=1(F>F>0) .注 (1) 2F>|F1F2|表示椭圆; (2) 2F=|F1F2|表示线段F1F2 ; (3) 2F<|F1F2|不存在轨迹.千里之行,始于足下2. 第二定义之 “比”平面内与一个定点的距离和到一条定直线的距离的比是常数 F (0<F <1) 的点的轨迹,其中,定点为焦 点,定直线叫做准线,常数 F 叫做离心率.椭圆方程的推导 设 F (F ,F ) 是椭圆上随意一点,定点为 F 1(−F ,0) ,定直线为 F =F 2F,常数 F =FF ,由 上述椭圆的定义可得:√(F −F )2+F 2|F 2F−F |=FF ,直译变形即可.例 在平面直角坐标系中,若方程 F (F 2+F 2+2F +1)=(F −2F +3)2 表示的曲线为椭圆,则 F 的取值范 围是 ( ) .A. (0,1)B. (1,+∞)C. (0,5)D. (5,+∞) 答案 选 D.解 将方程变形为:√F 2+(F +1)2|F −2F +3√1+4|=√5F ,此式可看成动点 (F ,F ) 到定点 (0,−1) 与到直线F −2F +3=0 的距离之比为 √5F,按照椭圆的定义,只须 √5F<1 即可.3. 第三定义之 “积”已知坐标轴上关于原点对称的两个定点,那么,到这两定点连线的斜率之积为定值 F 2−1(0<F <1) 的点 的轨迹是椭圆,其中,定点为短轴或长轴顶点. 【求轨迹的话,得去掉两个定点 ! 】椭圆方程的推导 设 F (F ,F ) 是椭圆上随意一点,两个定点为 F 1(−F ,0)、F 2(F ,0) ,定直线为 F =F 2F, 常数 F =FF ,由上述椭圆的定义可得: 将 F 2F 2+F 2F 2=1(F >F >0) ,变形成F 2(F −F )(F +F )=−F 2F 2 ,于是可得,椭 圆上动点到两顶点 (−F ,0)、(F ,0) 的连线的斜率之积等于常数.注 这个定义有 bug, 可以不必深究, 你只需要清晰地知道, 第三定义实质是对称点点差法的一个特 例而已, 后面的双曲线也是类似!朽木易折,金石可镂例 (1)已知圆 (F +2)2+F 2=36 的圆心为 F ,设 F 为圆上任一点,且点 F (2,0) ,线段 FF 的垂直平分 线交 FF 于点 F ,则动点 F 的轨迹是 ( ) .A. 圆B. 椭圆C. 双曲线D. 抛物线(2)已知圆 (F +2)2+F 2=1 的圆心为 F ,设 F 为圆上任一点,且点 F (2,0) ,线段 FF 的垂直平分线交 FF 于点 F ,则动点 F 的轨迹是 ( ) .A. 圆B. 椭圆C. 双曲线D. 抛物线 答案 (1) 选 B; (2)选 C.例 (1) 已知 △FFF 的顶点 F 、F 在椭圆 F 23+F 2=1 上,顶点 F 是椭圆的一个焦点,且椭圆的另外一 个焦点在 FF 边上,则 △FFF 的周长是 ( ) .A. 2√3B. 6C. 4√3D. 12(2)(2023年年 四川文理)如图,把椭圆 F 225+F 216=1 的长轴 FF 分成 8 分,过每个分点作 F轴的垂线交椭圆的 上半部分于 F 1、F 2、⋯、F 7 七个点, F 是椭圆的一个焦点,则 |F 1F |+|F 2F |+⋯+|F 7F |= .答案 (1) 选 C; (2)35.解 (1) 利用定义易得 △FFF 的周长是 4F =4√3 . (2) 构造另一个焦点, 利用对称性, 或倒序相加!1.2 椭圆的方程1. 椭圆的标准方程 {F 2F 2+F 2F 2=1(F >F >0)⇔中心在原点,焦点在F 轴上;F2F 2+F 2F 2=1(F >F >0)⇔中心在原点,焦点在F 轴上.千里之行,始于足下例 (1) 已知椭圆F 2F+F 217=1 的焦距为 8,则这个椭圆的方程是 (2) 已知椭圆方程 F 24+F 2F=1 的离心率 F =√33,则 F =解 (1) F >17⇒F =33;F <17⇒F =1 ; (2) 4>F ⇒F =83;4<F ⇒F =6 . 例 (2023年年 湖北理) 设集合 F ={(F ,F )| F 24+F 216=1},F ={(F ,F )∣F =3F } ,则 F ∩F 的子集的个数是 ( ) .A. 4B. 3C. 2D. 1 解 两个交点, 故选 A.例 若方程 (9−F )F 2+(F −4)F 2=1 表示椭圆,则实数 F 的取值范围是 解 4<F <9 且 F ≠132 .2. 椭圆的参数方程 {F 2F 2+F 2F 2=1(F >F >0)⇔{F =F cos FF =F sin F ;F 2F 2+F 2F 2=1(F >F >0)⇔{F =F cos F F =F sin F. 注 (1) 参数方程中的参数 F 不是所谓的 “椭圆心角”,而是物理上的离心角,可结合离心率理解; 同时, 要和圆的参数方程中的圆心角分开.(2) 椭圆的参数方程 vs 标准方程椭圆的参数方程在数据计算上偶尔会有很大的优势, 尤其是求解最值、相关参数的范围判断等相关题 型; 同时, 后面在 “直线与圆锥曲线” 和 “圆锥曲线与圆锥曲线” 章节, 还会有相关的串讲应用.例 (1)求椭圆 F 2F 2+F 2F 2=1(F >F >0) 的内接矩形的面积及周长的最大值. (2) 设点 F (F ,F ) 在椭圆 F 216+F 29=1 ,试求点 F 到直线 F +F −5=0 的距离 F 的最大值和最小值.答案 (1) F max =2FF ,F max =4√F 2+F 2 ; (2) F min =0,F max =2 .朽木易折,金石可镂3. 椭圆的普通式方程 FF 2+FF 2=1(F >0,F >0,F ≠F ) 【括号中的限制亦是 “充要条件” 1 注 (1) 焦点的位置判断 当 F <F 时,焦点在 F 轴上; 当 F >F 时,焦点在 F 轴上.(2) 使用技巧 在求椭圆的标准方程时, 偶尔不知道焦点在哪一个坐标轴上, 此时, 可尝试使用椭圆的 普通式方程,利用用待定系数法求出 F 、F 的值即可; 椭圆的普通式方程可有效的避免焦点位置的分类讨 论, 同时, 也可以简化运算.例 (1) 倘若方程 F 2+FF 2=2 表示焦点在 F 轴上的椭圆,那么实数 F 的取值范围是 (2) 已知方程 (2−F )F 2+FF 2=2F −F 2 表示焦点在 F 轴上的椭圆,则实数 F 的取值范围.答案 (1) (0,1) ; (2) 当 2F −F 2≠0 时,有 F 2F +F 22−F =1 . 因为方程表示焦点在 F 轴上的椭圆,所以 F >2−F >0 ,即 1<F <2 . 故实数 F 的取值范围是 1<F <2 .例 (1) 求过两点 (2,−√2),(−1,√142) ,中央在原点,焦点在坐标轴上的椭圆的方程. (2) 求过两点 F 1(√6,1),F 2(−√3,−√2) ,中央在原点,焦点在坐标轴上的椭圆的方程. 答案 (1) F 28+F 24=1 ; (2) F 29+F 23=1 .4. 椭圆的定义式方程(1)第一定义: √(F +F )2+F 2+√(F −F )2+F 2=2F ; (2)第二定义:√(F −F )2+F 2|F 2F−F |=FF .注 因为有些题目会给出此类定义方程作为条件, 因此, 要熟知其中的参数含义, 并能疾驰转化为标 准方程.5. 椭圆的极坐标方程 见后面 “圆雉曲线之极坐标方程” 的章节!6. 同离心率式的椭圆方程注重一点即可,即离心率相同,但焦点可以在不同的坐标轴; 因此,和椭圆 F 2F 2+F 2F 2=1(F >F >0) 有相 同离心率的椭圆方程可设为: F 2F 2+F 2F 2=F (F >0) 或 F 2F 2+F 2F 2=F (F >0) .千里之行,始于足下例 (1) 求和椭圆 9F 2+F 2=81 有相同离心率且过点 (3,9) 的椭圆方程.(2) 求和椭圆F 2225+F 2125=1 有相同离心率且通径 (过焦点且垂直于长轴的直线与椭圆所交的线段) 长等 于 5 的椭圆方程.(3) 求和椭圆 F 24+F 2=1 有相同离心率,且与直线 3F +2√7F −16=0 相切的椭圆方程. 答案 (1) F 218+F 2162=1 ; (2) 4F 281+4F 245=1 ; (3) 设所求椭圆方程为 F 24+F 2=F (F >0) ,解得F =4 ,故所 求椭圆方程为 F 216+F 24=1 .7. 共焦点式的椭圆方程和椭圆 F 2F 2+F 2F 2=1(F >F >0) 有相同焦点的椭圆方程可设为: F 2F 2−F +F 2F 2−F =1(F 2>F ) (形式(1); F 2F +F 2F −(F 2−F 2)=1(F >F 2−F 2) (形式(2)).注 上述形式相对照较繁琐, 实际上, 直接计算, 列出两个方程求解更容易. 例 (1)求与椭圆 4F 2+9F 2=36 有相同焦点,且过点 (3,−2) 的椭圆的标准方程为 (2) 过点 (√3,−√5) ,且与椭圆 F 225+F 29=1 有相同焦点的椭圆的标准方程为答案 (1) F 215+F 210=1 ; (2) F 220+F 24=1 ;法一 利用第一定义,结合点到直线的距离公式,直接求出 F =2√5 ,又 F =4 ,故 F =2 ; 法二 设椭圆的标准方程为 F 2F 2+F 2F 2=1(F >F >0) ,则 F 2−F 2=16 ,又 (−√5)2F 2+(√3)2F 2=1 ,解这两个方 程组即可!1.3 椭圆的基本参数1. 对称性 标准方程的图形,不仅关于 F 轴和 F 轴轴对称,同时,还关于原点中央对称.2. 顶点 F 1(−F ,0),F 2(F ,0),F 1(0,−F ),F 2(0,F ) ,或 F 1(−F ,0),F 2(F ,0),F 1(0,−F ),F 2(0,F ) .朽木易折,金石可镂3. 长轴和短轴 长轴为 2F ,短轴为 2F ,注重区别长半轴为 F ,短半轴为 F .4. 焦点 F 1(−F ,0),F 2(F ,0) ; 或 F 1(0,−F ),F 2(0,F ) .5. 焦距 |F 1F 2|=2F (F >0) ,同时,半焦距 F 、长半轴为 F 和短半轴为 F 是一组勾股数,满意关系式: F 2=F 2−F 2.注 对于基本概念要扎实控制, 一定要区别长轴、短轴、焦距, 和长半轴、短半轴、半焦距; 尤其在 大题中, 一定要看清!6. 离心率 F =FF (0<F <1) ; 离心率越大,椭圆越扁. 【 cos∠椭圆的离心率是描述椭圆扁平程度的一个重要数据. 因为 F >F >0 ,所以 F 的取值范围是 0<F <1 ; (1 F 越临近 1,则 F 就越临近 F ,从而 F =√F 2−F 2 越小,因此椭圆越扁; (2)反之, F 越临近于 0,F 就越临近 0,从而 F 越临近于 F ,这时椭圆就越临近于圆.注 如图,点 F 位于短轴的顶点,(1)当 F =√22 时,有 ∠F 1FF 2=F2,亦有 F 2=F 2; (2)当 F =√5−12,即黄金分割比时,有 ∠F 1FF =F2 ; 容易证实如下:cos∠FF 1F =F =|FF 1||FF 1|=F F +F =11+F⇒F 2+F −1=0. 例 (2000 年全回联赛)在椭圆 F 2F 2+F 2F 2=1(F >F >0) 中,记左焦点为 F ,右顶点为 F ,短轴上方的端点 为 F . 若该椭圆的离心率为√5−12,则 ∠FFF =千里之行,始于足下答案 90∘ . 7. (1)准线 F =±F 2F; 或 F =±F 2F; (2)焦准距 F =F 2F−F =F 2F; (3)通径 2FF =2F 2F(F 为焦准距),8. 焦半径 椭圆上的点到焦点的距离; 设 F (F 0,F 0) 为椭圆上的一点, F 1 在负半轴, F 2 在正半轴;A. 越临近于圆 B. 越扁C. 先临近于圆后越扁D. 先越扁后临近于圆 答案 选 D.解 因为焦点在 F 轴上,故 4F >F 2+1 ,解得 2−√3<F <2+√3 . 又 −F 2+14F=F 2−1 ,即 4(F 2−1)=−(F +1F ) ,利用对勾函数的性质可知: F (F )=F +1F在 (2−√3,1) 上 ↘ , 在 (1,2+√3) 上 ↗ ,因此, F 关于 F 先增大后减小.例 (2023年年 湖北文理压轴) 如图所示, “嫦娥一号” 探月卫星沿地月转移轨道飞向月球, 在月球附近一点 F 轨进入以月球球心 F 为一个焦点的椭圆轨道 I 绕月翱翔,之后卫星在 F 点第二次变轨进入仍以 F 为一个 焦点的椭圆轨道 II 绕月翱翔,总算卫星在 F 点第三次变轨进入以 F 为圆心的圆形轨道III 绕月翱翔,若用 2F 1 和 2F 2 分离表示椭轨道 I 和 II 的焦距,用 2F 1 和 2F 2 分离表示椭圆轨道 I 和 II 的长轴的长,给出下列式子: (1) F 1+F 1=F 2+F 2 ; (2) F 1−F 1=F 2−F 2 ; (3) F 1F 2>F 1F 2 ; (4) F 1F 1<F2F 2.其中准确式子的序号是 ( ) . A. (1)(3) B. (2)(3) C. (1)(4) D. (2)(4)答案 选 B.朽木易折,金石可镂解 焦点 F 到顶点 F 的距离不变,易知(2)准确; 从轨道 I 、II 、II 可知,椭圆越来越圆,总算变为圆, 结合椭圆的离心率变化逻辑 “越大越扁, 越小越圆”, 显然(3)准确, 故应选 B.参数方程例 (2023年年 上海大压轴) 记椭圆 F 24+FF 24F +1=1 围成的区域(含边界)为 F F (F =1,2,⋯) ,当点 (F ,F ) 分离 在 F 1、F 2、⋯ 上时, F +F 的最大值分离是 F 1、F 2、⋯ ,则 lim F →+∞F F =( ) .A. 0B. 14 C. 2 D. 2√2 答案 选.。

圆锥曲线知识点归纳汇总 - 抛物线

圆锥曲线知识点归纳汇总 - 抛物线

抛物线1.抛物线的概念定义:平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程和几何性质(教材定义)标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝⎛⎭⎫p 2,0F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p2 离心率 e =1准线方程 x =-p 2x =p 2 y =-p2y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右向左向上向下学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心, 以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

3.抛物线的补充的性质及二级结论以开口向右为例:y 2=2px (p >0)1)通径:(过焦点的所有弦长中通径最短为p MN 2=) 2)准线:2px l -=:准线 3)焦半径公式:如图二θp x p AF A cos -=+=12,θpx p BF B cos +=+=12 推导:A x pAP AF +==2,AFcos θRF FT RF RT AP AF +=+=== 所以:AFcos θp AF +=即θpAF cos -=1,同理可证BF4)过焦点弦长公式:如图二θsin px x p AB B A 22=++= 推导:B A B A x x p x px p BF AF AB ++=+++=+=22θsin p cos θp cos θp BF AF AB 2211=++-=+= 5)被焦点截的线段倒数之和=p24==通径 如图二所示:pBF AF 241111==+通径 推导:由焦半径公式可知θp AF cos -=1,θpBF cos +=1所以:通径421111==++-=+p p θp θBF AF cos cos 6)一般弦长公式:直线l :y =kx +m 与抛物线C 交于A (x 1,y 1)B (x 2,y 2)则弦长AB 的计算公式为()212212212411x x x x k x x k AB -++=-+=或者()21221221241111y y y y k y y k AB -++=-+=7)sin θp 2S 2OAB=∆(如图二,直线l 过F 交抛物线与A 、B 两点) 8)42p x x B A =,2p y y B A -=(如图二,直线l 过F 交抛物线与A 、B 两点)【知识拓展】1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝⎛⎭⎫p 2,0的距离|PF |=x 0+p2,也称为抛物线的焦半径. 2.y 2=ax 的焦点坐标为⎝⎛⎭⎫a 4,0,准线方程为x =-a4. (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.3.抛物线的离心率e =1,体现了抛物线上的点到焦点的距离等于到准线的距离.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简化. 抛物线上的点到焦点的距离根据定义转化为到准线的距离,即|PF |=|x |+p 2或|PF |=|y |+p2.。

[实用参考]抛物线(教师版).doc

[实用参考]抛物线(教师版).doc

授课学案一.自我检测1.(20GG ·四川)抛物线P 2=8G 的焦点到准线的距离是________. 2.若抛物线P 2=2pG 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为________.3.直线l 过抛物线P 2=2pG (p >0)的焦点,且与抛物线交于A 、B 两点,若线段AB 的长是8,AB 的中点到P 轴的距离是2,则此抛物线的方程是____________. 4.设F 为抛物线P 2=4G 的焦点,A 、B 、C 为该抛物线上三点,若FA →+FB →+FC →=0,则|FA→|+|FB →|+|FC →|=________.5.(20GG ·课标全国改编)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,AB =12,P 为C 的准线上一点,则△ABP 的面积为________. 答案:1.4 2.4 3.P 2=8G 4.65.36解析 不妨设抛物线的标准方程为P 2=2pG (p >0),由于l 垂直于对称轴且过焦点,故直线l 的方程为G =p2.代入P 2=2pG 得P =±p ,即AB =2p ,又AB =12,故p =6,所以抛物线的准线方程为G =-3,故S △ABP =12×6×12=36.二.知识点回顾 1.抛物线的概念平面内到一个定点F 和一条定直线l (F 不在l 上)的距离________的点的轨迹叫做抛物线.点F 叫做抛物线的________,直线l 叫做抛物线的________.答案:1.相等 焦点 准线 2范围G≥0,P∈RG≤0,P∈RP≥0,G∈RP≤0,G∈R开口方向向右向左向上向下三.经典例题探究点一抛物线的定义及应用例1已知抛物线P2=2G的焦点是F,点P是抛物线上的动点,又有点A(3,2),求PA+PF的最小值,并求出取最小值时P点的坐标.例1解题导引重视定义在解题中的应用,灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化,是解决抛物线焦点弦有关问题的重要途径.解将G=3代入抛物线方程P2=2G,得P=± 6.∵6>2,∴A在抛物线内部.设抛物线上点P到准线l:G=-12的距离为d,由定义知PA+PF=PA+d,当PA⊥l时,PA+d最小,最小值为72,即PA+PF的最小值为72,此时P点纵坐标为2,代入P2=2G,得G=2,∴点P坐标为(2,2).变式迁移1已知点P在抛物线P2=4G上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为________.变式迁移1 1(,1)4解析点P 到抛物线焦点的距离等于点P 到抛物线准线的距离,如图,PF +PQ =PS +PQ ,故最小值在S ,P ,Q 三点共线时取得,此时P ,Q 的纵坐标都是-1,点P 的坐标为⎝ ⎛⎭⎪⎪⎫14,-1.探究点二 求抛物线的标准方程例2 已知抛物线的顶点在原点,焦点在P 轴上,抛物线上一点M (m ,-3)到焦点的距离为5,求m 的值、抛物线方程和准线方程.例2 解题导引 (1)求抛物线方程时,若由已知条件可知所求曲线是抛物线,一般用待定系数法.若由已知条件可知所求曲线的动点的轨迹,一般用轨迹法;(2)待定系数法求抛物线方程时既要定位(即确定抛物线开口方向),又要定量(即确定参数p 的值).解题关键是定位,最好结合图形确定方程适合哪种形式,避免漏解;(3)解决抛物线相关问题时,要善于用定义解题,即把PF 转化为点P 到准线的距离,这种“化斜为直”的转化方法非常有效,要注意领会和运用.解 方法一 设抛物线方程为G 2=-2pP (p >0),则焦点为F (0,)2p-, 准线方程为P =p 2.∵M (m ,-3)在抛物线上,且MF =5,∴⎩⎪⎨⎪⎧m 2=6p , m 2+⎝ ⎛⎭⎪⎪⎫-3+p 22=5, 解得⎩⎪⎨⎪⎧p =4,m =±2 6. ∴抛物线方程为G 2=-8P ,m =±26, 准线方程为P =2.方法二 如图所示,设抛物线方程为G 2=-2pP (p >0), 则焦点F ⎝⎛⎭⎪⎪⎫0,-p 2,准线l:P=p2,作MN⊥l,垂足为N.则MN=MF=5,而MN=3+p 2,∴3+p2=5,∴p=4.∴抛物线方程为G2=-8P,准线方程为P=2.由m2=(-8)×(-3),得m=±2 6. 变式迁移2根据下列条件求抛物线的标准方程:(1)抛物线的焦点F是双曲线16G2-9P2=144的左顶点;(2)过点P(2,-4).变式迁移2 解(1)双曲线方程化为x29-y216=1,左顶点为(-3,0),由题意设抛物线方程为P2=-2pG(p>0)且-p2=-3,∴p=6.∴方程为P2=-12G.(2)由于P(2,-4)在第四象限且对称轴为坐标轴,可设方程为P2=mG (m>0)或G2=nP (n<0),代入P点坐标求得m=8,n=-1,∴所求抛物线方程为P2=8G或G2=-P.探究点三抛物线的几何性质例3过抛物线P2=2pG的焦点F的直线和抛物线相交于A,B两点,如图所示.(1)若A,B的纵坐标分别为P1,P2,求证:P1P2=-p2;(2)若直线AO与抛物线的准线相交于点C,求证:BC∥G轴.例3解题导引解决焦点弦问题时,抛物线的定义有着广泛的应用,而且还应注意焦点弦的几何性质.焦点弦有以下重要性质(AB为焦点弦,以P2=2pG(p>0)为例):①P1P2=-p2,G1G2=p2 4;②AB =G 1+G 2+p .证明 (1)方法一 由抛物线的方程可得焦点坐标为F (,0)2p.设过焦点F 的直线交抛物线于A ,B 两点的坐标分别为(G 1,P 1)、(G 2,P 2).①当斜率存在时,过焦点的直线方程可设为 P =k ⎝ ⎛⎭⎪⎪⎫x -p 2,由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎪⎪⎫x -p 2,y 2=2px , 消去G ,得kP 2-2pP -kp 2=0.(G)当k =0时,方程(G)只有一解,∴k ≠0,由韦达定理,得P 1P 2=-p 2;②当斜率不存在时,得两交点坐标为 ⎝ ⎛⎭⎪⎪⎫p 2,p ,⎝ ⎛⎭⎪⎪⎫p 2,-p ,∴P 1P 2=-p 2. 综合两种情况,总有P 1P 2=-p 2.方法二 由抛物线方程可得焦点F ⎝ ⎛⎭⎪⎪⎫p 2,0,设直线AB 的方程为G =kP +p 2,并设A (G 1,P 1),B (G 2,P 2), 则A 、B 坐标满足⎩⎪⎨⎪⎧x =ky +p 2,y 2=2px , 消去G ,可得P 2=2p ⎝ ⎛⎭⎪⎪⎫ky +p 2,整理,得P 2-2pkP -p 2=0,∴P 1P 2=-p 2.(2)直线AC 的方程为P =y 1x 1G , ∴点C 坐标为⎝ ⎛⎭⎪⎪⎫-p 2,-py 12x 1,P C =-py 12x 1=-p 2y 12px 1. ∵点A (G 1,P 1)在抛物线上,∴P 21=2pG 1.又由(1)知,P 1P 2=-p 2, ∴P C =y 1y 2·y 1y 21=P 2,∴BC ∥G 轴. 变式迁移3 已知AB 是抛物线P 2=2pG (p >0)的焦点弦,F 为抛物线的焦点,A (G 1,P 1),B (G 2,P 2).求证:(1)G 1G 2=p 24; (2)1AF +1BF 为定值.证明 (1)∵P 2=2pG (p >0)的焦点 F ⎝ ⎛⎭⎪⎪⎫p 2,0,设直线方程为P =k ⎝⎛⎭⎪⎪⎫x -p 2 (k ≠0),优质参考文档由⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎪⎫x -p 2y 2=2px ,消去G ,得kP 2-2pP -kp 2=0.∴P 1P 2=-p 2,G 1G 2=y 1y 224p 2=p 24, 当k 不存在时,直线方程为G =p2,这时G 1G 2=p 24. 因此,G 1G 2=p 24恒成立.(2)1AF +1BF =1x 1+p 2+1x 2+p 2 =x 1+x 2+p x 1x 2+p 2x 1+x 2+p 24.又∵G 1G 2=p 24, 代入上式得1AF +1BF =2p =常数, 所以1AF +1BF为定值.分类讨论思想例4 过抛物线P 2=2pG (p >0)焦点F 的直线交抛物线于A 、B 两点,过B 点作其准线的垂线,垂足为D ,设O 为坐标原点,问:是否存在实数λ,使AO →=λOD→? 多角度审题 这是一道探索存在性问题,应先假设存在,设出A 、B 两点坐标,从而得到D 点坐标,再设出直线AB 的方程,利用方程组和向量条件求出λ.【答题模板】解 假设存在实数λ,使AO→=λOD →.抛物线方程为P 2=2pG (p >0), 则F ⎝ ⎛⎭⎪⎪⎫p 2,0,准线l :G =-p 2,[2分](1)当直线AB 的斜率不存在, 即AB ⊥G 轴时,交点A 、B 坐标不妨设为:A ⎝ ⎛⎭⎪⎪⎫p 2,p ,B ⎝ ⎛⎭⎪⎪⎫p 2,-p .∵BD ⊥l ,∴D ⎝ ⎛⎭⎪⎪⎫-p 2,-p , ∴AO →=⎝ ⎛⎭⎪⎪⎫-p 2,-p ,OD →=⎝ ⎛⎭⎪⎪⎫-p 2,-p ,∴存在λ=1使AO→=λOD →.[6分](2)当直线AB 的斜率存在时,设直线AB 的方程为P =k ⎝ ⎛⎭⎪⎪⎫x -p 2 (k ≠0),设A (G 1,P 1),B (G 2,P 2),则D ⎝ ⎛⎭⎪⎪⎫-p 2,y 2,G 1=y 212p ,G 2=y 222p , 由⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎪⎫x -p 2y 2=2px得kP 2-2pP -kp 2=0,∴P 1P 2=-p 2,∴P 2=-p 2y 1,[8分]AO →=(-G 1,-P 1)=⎝ ⎛⎭⎪⎪⎫-y 212p ,-y 1,OD →=⎝ ⎛⎭⎪⎪⎫-p 2,y 2=⎝ ⎛⎭⎪⎪⎫-p 2,-p 2y 1, 假设存在实数λ,使AO →=λOD →,则⎩⎪⎨⎪⎧-y 212p =-p 2λ-y 1=-p 2y 1λ,解得λ=y 21p2,∴存在实数λ=y 21p2,使AO →=λOD →. 综上所述,存在实数λ,使AO →=λOD →.[14分] 【突破思维障碍】由抛物线方程得其焦点坐标和准线方程,按斜率存在和不存在讨论,由直线方程和抛物线方程组成方程组,研究A 、D 两点坐标关系,求出AO →和OD →的坐标,判断λ是否存在. 【易错点剖析】解答本题易漏掉讨论直线AB 的斜率不存在的情况,出现错误的原因是对直线的点斜式方程认识不足. 四、课堂总结 1.关于抛物线的定义要注意点F 不在定直线l 上,否则轨迹不是抛物线,而是一条直线. 2.关于抛物线的标准方程抛物线的标准方程有四种不同的形式,这四种标准方程的联系与区别在于: (1)p 的几何意义:参数p 是焦点到准线的距离,所以p 恒为正数. (2)方程右边一次项的变量与焦点所在坐标轴的名称相同,一次项系数的符号决定抛物线的开口方向. 3.关于抛物线的几何性质抛物线的几何性质,只要与椭圆、双曲线加以对照,很容易把握,但由于抛物线的离心率等于1,所以抛物线的焦点弦具有很多重要性质,而且应用广泛.例如:已知过抛物线P 2=2pG (p >0)的焦点的直线交抛物线于A 、B 两点,设A (G 1,P 1),B (G 2,P 2),则有下列性质:AB =G 1+G 2+p 或AB =2psin 2α(α为AB 的倾斜角),P 1P 2=-p 2,G 1G 2=p24等.五、课后练习分层训练A 级 基础达标演练(100分)一、填空题1.抛物线P =aG 2的准线方程是P =2,则a =________.解析 抛物线的标准方程为G 2=1a P ,由条件得2=-14a ,a =-18. 答案 -182.(20GG ·惠州调研)若抛物线P 2=2pG的焦点与椭圆x 26+y22=1的右焦点重合,则p =________.解析 因为椭圆x 26+y 22=1的右焦点为(2,0),所以抛物线P 2=2pG 的焦点为(2,0),则p =4. 答案 43.已知抛物线P 2=2pG (p >0)的准线与圆G 2+P 2-6G -7=0相切,则p =________. 解析 抛物线P 2=2pG (p >0)的准线为G =-p2,圆G 2+P 2-6G -7=0,即(G -3)2+P 2=16,则圆心为(3,0),半径为4;又因抛物线P 2=2pG (p >0)的准线与圆G 2+P 2-6G -7=0相切,所以3+p2=4,解得p =2.答案 24.(20GG ·广州调研)从抛物线P 2=4G 上一点P 引抛物线准线的垂线,垂足为M ,且PM =5,设抛物线的焦点为F ,则△MPF 的面积为________. 解析 由抛物线方程P 2=4G 易得抛物线的准线l 的方程为G =-1,又由PM =5可得点P 的横坐标为4,代入P 2=4G ,可求得其纵坐标为±4,故S △MPF=12×5×4=10. 答案 105.已知过抛物线P 2=4G 的焦点F 的直线交该抛物线于A 、B 两点,AF =2,则BF =________. 解析 ∵P 2=4G ,∴p =2,F (1,0),又∵AF =2,∴G A +p2=2,∴G A +1=2,∴G A =1.即AB ⊥G 轴,F 为AB 的中点.∴BF =AF =2. 答案 26.设F 为抛物线P 2=4G 的焦点,A 、B 、C 为该抛物线上三点,若FA →+FB →+FC →=0,则|FA→|+|FB →|+|FC →|=________.解析 由于抛物线P =4G 的焦点F 的坐标为(1,0),设A (G A ,P A ),B (G B ,P B ),C (G C ,P C ).则FA →=(G A -1,P A ),FB →=(G B -1,P B ),FC →=(G C -1,P C), 由FA →+FB →+FC →=0,所以G A +G B +G C =3,则|FA →|+|FB →|+|FC →|=G A +1+G B +1+G C +1=3+3=6. 答案 6 二、解答题7.抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,并与双曲线的实轴垂直,已知抛物线与双曲线的一个交点为⎝ ⎛⎭⎪⎪⎫32,6,求抛物线与双曲线的方程.解 由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,所以p =2c ,所以抛物线方程为P 2=4cG .因为抛物线过点⎝ ⎛⎭⎪⎪⎫32,6,所以6=4c ·32,所以c =1. 故抛物线方程为P 2=4G .又双曲线x 2a 2-y 2b 2=1过点⎝ ⎛⎭⎪⎪⎫32,6,所以94a 2-6b 2=1.又a 2+b 2=c 2=1,所以代入得94a 2-61-a 2=1,所以a 2=14或a 2=9(舍),所以。

解圆锥曲线知识点+习题---教师版

解圆锥曲线知识点+习题---教师版
(2) ( 点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。 例 2、F 是椭圆
x2 y2 1 的右焦点,A(1,1)为椭圆内一定点,P 为椭圆上一动点。 4 3
y A F 0 ′ F P H x
(1) PA PF 的最小值为 (2) PA 2 PF 的最小值为 分析:PF 为椭圆的一个焦半径,常需将另一焦半径 PF 或准线作出来考虑问题。 解: (1)4- 5 设另一焦点为 F ,则 F (-1,0)连 A F ,P F
x2 y2 1 的斜率为 1 的弦,求 a 的取值范围. 16 9
例 3:直线 l:ax+y+2=0 平分双曲线
分析:由题意,直线 l 恒过定点 P(0,-2),平分弦即过弦中点,可先求出弦中点的轨迹,再求轨迹上的点 M 与点 P 的连线的斜率即-a 的范围。 解:设 A(x1,y1),B(x2,y2)是双曲线上的点,且 AB 的斜率为 1,AB 的中点为 M(x0,y0)则:
H P F A Q B
y
1 4 2 0 (注:另一交点为( , 2 ),它为直线 AF 与抛物线 ( x 1) 即 y=2 2 (x-1),代入 y2=4x 得 P(2,2 2 ), 2 3 1
的另一交点,舍去)
1 ,1 )过 Q 作 QR⊥l 交于 R,当 B、Q、R 三点共线时, BQ QF BQ QR 最小,此时 Q 点的纵坐标 4 1 1 为 1,代入 y2=4x 得 x= ,∴Q( ,1 ) 4 4
2
法二:如图, 2 MM 2 AA2 BB2 AF BF AB 3
y M A A1 A2 0 M1 M2
B
∴ MM 2
3 1 3 , 即 MM 1 , 2 4 2

圆锥曲线抛物线的基本知识点

圆锥曲线抛物线的基本知识点

圆锥曲线抛物线的基本知识点一、什么是圆锥曲线抛物线?抛物线是一种特殊的圆锥曲线,它由一个平面与一个平行于该平面的直线相交而形成。

抛物线具有独特的形状,呈现出对称性和特定的数学性质。

二、抛物线的定义与特点1.定义:抛物线是平面上到一个定点距离与到一条定直线距离相等的点的轨迹。

2.特点:–抛物线具有对称性,它关于焦点和准线对称。

–抛物线的焦点是定点,准线是定直线。

–抛物线的离心率为1,是所有圆锥曲线中离心率等于1的一种情况。

–抛物线具有无穷远点,它是一条无限延伸的曲线。

三、抛物线方程的一般形式抛物线的方程通常可以表达为一般二次方程的形式:y=ax2+bx+c,其中a、b、c为常数,且a≠0。

四、抛物线的焦点与准线1.焦点:抛物线的焦点是定义抛物线的重要元素之一,与抛物线的离心率密切相关。

焦点的坐标可通过方程求解得到。

2.准线:抛物线的准线与焦点共同决定了抛物线的形状,准线的坐标也可通过方程求解得到。

五、抛物线的性质1.对称性:抛物线关于焦点对称,对称轴为准线。

这个性质使得抛物线在很多实际应用中具有重要意义。

2.焦距公式:定义抛物线焦点到准线的距离为焦距,通过焦距公式可以计算焦点到准线的距离。

3.切线方程:抛物线上任一点处的切线方程可以通过求导得到,切线斜率即为函数的导数值。

4.弧长与曲率:抛物线上任意两点之间的弧长可以通过积分计算得到,曲率表示曲线的弯曲程度。

六、抛物线的应用抛物线在现实生活和科学研究中具有广泛的应用,以下是一些例子: 1. 物理学中的抛物线轨迹:在无空气阻力的情况下,自由落体运动的轨迹为抛物线。

2. 抛物面反射:抛物面反射是一种利用抛物面的反射特性设计的照明系统,例如汽车大灯、探照灯等。

3. 投射问题:抛体在给定初始速度和角度下的运动轨迹就是抛物线,如炮弹飞行轨迹、游泳、跳水等。

七、抛物线与其他圆锥曲线的关系抛物线与其他圆锥曲线(椭圆、双曲线)具有一些相似和不同的地方: 1. 相似之处:抛物线、椭圆和双曲线都是圆锥曲线,它们的定义都可以归纳为距离比例关系。

圆锥曲线之抛物线知识点讲解(含解析)

圆锥曲线之抛物线知识点讲解(含解析)

抛物线的概念与几何性质一、知识梳理1.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. (2)其数学表达式:{M ||MF |=d }(d 为点M 到准线l 的距离). 2.抛物线的标准方程与几何性质3.通径:过焦点且垂直于对称轴的弦长等于2p ,通径是过焦点最短的弦.4.焦半径:抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝ ⎛⎭⎪⎫p 2,0的距离|PF |=x 0+p2,也称为抛物线的焦半径.二、例题精讲 + 随堂训练1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a 4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( )解析 (1)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线,而非抛物线.(2)方程y =ax 2(a ≠0)可化为x 2=1a y ,是焦点在y 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫0,14a ,准线方程是y =-14a .(3)抛物线是只有一条对称轴的轴对称图形. 答案 (1)× (2)× (3)× (4)√2.顶点在原点,且过点P (-2,3)的抛物线的标准方程是________________. 解析 设抛物线的标准方程是y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43,所以y 2=-92x 或x 2=43y .答案 y 2=-92x 或x 2=43y3. 抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.解析 设P (x 1,y 1),则|PF |=x 1+2=5,得x 1=3,y 1=±2 6.故满足条件的点的个数为2. 答案 24.(2019·黄冈联考)已知方程y 2=4x 表示抛物线,且该抛物线的焦点到直线x =m 的距离为4,则m 的值为( ) A.5B.-3或5C.-2或6D.6解析 抛物线y 2=4x 的焦点为F (1,0),它与直线x =m 的距离为d =|m -1|=4,∴m=-3或5.答案B5.(2019·北京海淀区检测)设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是()A.4B.6C.8D.12解析如图所示,抛物线的准线l的方程为x=-2,F是抛物线的焦点,过点P 作P A⊥y轴,垂足是A,延长P A交直线l于点B,则|AB|=2.由于点P到y轴的距离为4,则点P到准线l的距离|PB|=4+2=6,所以点P到焦点的距离|PF|=|PB|=6.故选B.答案B6.(2019·宁波调研)已知抛物线方程为y2=8x,若过点Q(-2,0)的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.解析设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,当k=0时,显然满足题意;当k≠0时,Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k<0或0<k≤1,因此k的取值范围是[-1,1].答案[-1,1]考点一抛物线的定义及应用【例1】(1)(2019·厦门外国语模拟)已知抛物线x2=2y的焦点为F,其上有两点A(x1,y1),B(x2,y2)满足|AF|-|BF|=2,则y1+x21-y2-x22=()A.4B.6C.8D.10(2)若抛物线y2=4x的准线为l,P是抛物线上任意一点,则P到准线l的距离与P到直线3x+4y+7=0的距离之和的最小值是()A.2B.135 C.145 D.3解析 (1)由抛物线定义知|AF |=y 1+12,|BF |=y 2+12,∴|AF |-|BF |=y 1-y 2=2,又知x 21=2y 1,x 22=2y 2,∴x 21-x 22=2(y 1-y 2)=4,∴y 1+x 21-y 2-x 22=(y 1-y 2)+(x 21-x 22)=2+4=6.(2)由抛物线定义可知点P 到准线l 的距离等于点P 到焦点F 的距离,由抛物线y 2=4x 及直线方程3x +4y +7=0可得直线与抛物线相离,∴点P 到准线l 的距离与点P 到直线3x +4y +7=0的距离之和的最小值为点F (1,0)到直线3x +4y +7=0的距离,即|3+7|32+42=2. 答案 (1)B (2)A规律方法 应用抛物线定义的两个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P (x 0,y 0)到焦点F 的距离|PF |=|x 0|+p2或|PF |=|y 0|+p 2.【训练1】 (1)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.(2)(2017·全国Ⅱ卷)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.解析 (1)设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,根据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .(2)如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2. ∵点M 为FN 的中点,PM ∥OF ,∴|MP |=12|FO |=1. 又|BP |=|AO |=2, ∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6. 答案 (1)y 2=4x (2)6考点二 抛物线的标准方程及其性质【例2】 (1)(2018·晋城模拟)抛物线C :y 2=4x 的焦点为F ,其准线l 与x 轴交于点A ,点M 在抛物线C 上,当|MA ||MF |=2时,△AMF 的面积为( ) A.1B. 2C.2D.22(2)已知圆C 1:x 2+(y -2)2=4,抛物线C 2:y 2=2px (p >0),C 1与C 2相交于A ,B 两点,且|AB |=855,则抛物线C 2的方程为( )A.y 2=85xB.y 2=165xC.y 2=325xD.y 2=645x 解析 (1)过M 作MP 垂直于准线,垂足为P , 则|MA ||MF |=2=|MA ||MP |=1cos ∠AMP ,则cos ∠AMP =22,又0°<∠MAP <180°, 则∠AMP =45°,此时△AMP 是等腰直角三角形, 设M (m ,4m ),由|MP |=|MA |,得|m +1|=4m , 解得m =1,M (1,2),所以△AMF 的面积为12×2×2=2. (2)由题意,知直线AB 必过原点, 则设AB 的方程为y =kx (易知k >0), 圆心C 1(0,2)到直线AB 的距离d =|-2|k 2+1=22-⎝ ⎛⎭⎪⎫4552=255,解得k =2,由⎩⎨⎧y =2x ,x 2+(y -2)2=4得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =85,y =165,把⎝ ⎛⎭⎪⎫85,165代入抛物线方程, 得⎝ ⎛⎭⎪⎫1652=2p ·85,解得p =165, 所以抛物线C 2的方程为y 2=325x . 答案 (1)C (2)C规律方法 1.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.2.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【训练2】 (1)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为________.(2)(2019·济宁调研)已知点A (3,0),过抛物线y 2=4x 上一点P 的直线与直线x =-1垂直相交于点B ,若|PB |=|P A |,则P 的横坐标为( ) A.1B.32C.2D.52解析 (1)设A ,B 在准线上的射影分别为A 1,B 1, 由于|BC |=2|BF |=2|BB 1|,则直线的斜率为3, 故|AC |=2|AA 1|=6,从而|BF |=1,|AB |=4,故p |AA 1|=|CF ||AC |=12,即p =32,从而抛物线的方程为y 2=3x .(2)由抛物线定义知:|PB |=|PF |,又|PB |=|P A |,所以|P A |=|PF |,所以x P =x A +x F2=2(△PF A 为等腰三角形). 答案 (1)y 2=3x (2)C考点三 直线与抛物线的综合问题【例3】 (2019·武汉调研)已知抛物线C :x 2=2py (p >0)和定点M (0,1),设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线交点为N . (1)若N 在以AB 为直径的圆上,求p 的值; (2)若△ABN 面积的最小值为4,求抛物线C 的方程. 解 (1)可设AB :y =kx +1,A (x 1,y 1),B (x 2,y 2), 将AB 的方程代入抛物线C ,得x 2-2pkx -2p =0,显然方程有两不等实根, 则x 1+x 2=2pk ,x 1x 2=-2p .① 又x 2=2py 得y ′=xp ,则A ,B 处的切线斜率乘积为x 1x 2p 2=-2p =-1, 则有p =2.(2)设切线AN 为y =x 1p x +b ,又切点A 在抛物线y =x 22p 上,∴y 1=x 212p ,∴b =x 212p -x 21p =-x 212p ,切线AN 的方程为y AN =x 1p x -x 212p ,同理切线BN 的方程为y BN =x 2p x -x 222p . 又∵N 在y AN 和y BN 上,∴⎩⎪⎨⎪⎧y =x 1p x -x 212p ,y =x 2p x -x 222p,解得N ⎝ ⎛⎭⎪⎫x 1+x 22,x 1x 22p .∴N (pk ,-1). |AB |=1+k 2|x 2-x 1|=1+k 24p 2k 2+8p , 点N 到直线AB 的距离d =|kx N +1-y N |1+k 2=|pk 2+2|1+k 2,S △ABN =12·|AB |·d =p (pk 2+2)3≥22p , ∴22p =4,∴p =2, 故抛物线C 的方程为x 2=4y .规律方法 1.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.2.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.【训练3】 (2017·全国Ⅰ卷)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( ) A.16B.14C.12D.10解析 抛物线C :y 2=4x 的焦点为F (1,0),由题意可知l 1,l 2的斜率存在且不为0.不妨设直线l 1的斜率为k ,则l 2直线的斜率为-1k ,故l 1:y =k (x -1),l 2:y =-1k (x -1).由⎩⎨⎧y 2=4x ,y =k (x -1),消去y 得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2+4k 2=2+4k 2, 由抛物线定义可知,|AB |=x 1+x 2+2=4+4k 2. 同理得|DE |=4+4k 2,∴|AB |+|DE |=8+4k 2+4k 2≥8+216=16. 当且仅当1k 2=k 2,即k =±1时取等号. 故|AB |+|DE |的最小值为16. 答案 A[思维升华]1.抛物线定义的实质可归结为“一动三定”:一个动点M ,一个定点F (抛物线的焦点),一条定直线l (抛物线的准线),一个定值1(抛物线的离心率).2.抛物线的焦点弦:设过抛物线y 2=2px (p >0)的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则:(1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ;|AB |=x 1+x 2+p ; (3)若F 为抛物线焦点,则有1|AF |+1|BF |=2p . [易错防范]1.认真区分四种形式的标准方程(1)区分y =ax 2(a ≠0)与y 2=2px (p >0),前者不是抛物线的标准方程.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx 或x 2=my (m ≠0).2.直线与抛物线结合的问题,不要忘记验证判别式.数学抽象——活用抛物线焦点弦的四个结论1.数学抽象素养水平表现为能够在关联的情境中抽象出一般的数学概念和规则,能够将已知数学命题推广到更一般情形.本课时中研究直线方程时常用到直线系方程就是其具体表现之一.2.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则 (1)x 1·x 2=p 24. (2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α(α是直线AB 的倾斜角). (4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点).【例1】 过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A.4B.92C.5D.6[一般解法]易知直线l 的斜率存在,设为k ,则其方程为y =k (x -1). 由⎩⎨⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0,得x A ·x B =1,①因为|AF |=2|BF |,由抛物线的定义得x A +1=2(x B +1), 即x A =2x B +1,②由①②解得x A =2,x B =12, 所以|AB |=|AF |+|BF |=x A +x B +p =92.[应用结论]法一 由对称性不妨设点A 在x 轴的上方,如图设A ,B 在准线上的射影分别为D ,C ,作BE ⊥AD 于E ,设|BF |=m ,直线l 的倾斜角为θ, 则|AB |=3m ,由抛物线的定义知 |AD |=|AF |=2m ,|BC |=|BF |=m ,所以cos θ=|AE ||AB |=13,所以tan θ=2 2.则sin 2θ=8cos 2θ,∴sin 2θ=89.又y 2=4x ,知2p =4,故利用弦长公式|AB |=2p sin 2θ=92.法二 因为|AF |=2|BF |,1|AF |+1|BF |=12|BF |+1|BF |=32|BF |=2p =1, 解得|BF |=32,|AF |=3,故|AB |=|AF |+|BF |=92. 答案 B【例2】 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B.938C.6332D.94[一般解法]由已知得焦点坐标为F ⎝ ⎛⎭⎪⎫34,0,因此直线AB 的方程为y =33⎝ ⎛⎭⎪⎫x -34,即4x -43y -3=0.与抛物线方程联立,化简得4y 2-123y -9=0, 故|y A -y B |=(y A +y B )2-4y A y B =6.因此S△OAB =12|OF||y A-y B|=12×34×6=94.[应用结论]由2p=3,及|AB|=2p sin2α得|AB|=2psin2α=3sin230°=12.原点到直线AB的距离d=|OF|·sin 30°=3 8,故S△AOB =12|AB|·d=12×12×38=94.答案D【例3】(2019·益阳、湘潭调研)如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若F是AC的中点,且|AF|=4,则线段AB的长为()A.5B.6C.163 D.203[一般解法]如图,设l与x轴交于点M,过点A作AD⊥l交l于点D,由抛物线的定义知,|AD|=|AF|=4,由F是AC的中点,知|AD|=2|MF|=2p,所以2p=4,解得p=2,所以抛物线的方程为y2=4x.设A(x1,y1),B(x2,y2),则|AF|=x1+p2=x1+1=4,所以x1=3,可得y1=23,所以A(3,23),又F(1,0),所以直线AF的斜率k=233-1=3,所以直线AF 的方程为y=3(x-1),代入抛物线方程y2=4x得3x2-10x+3=0,所以x1+x2=103,|AB |=x 1+x 2+p =163.故选C.[应用结论]法一 设A (x 1,y 1),B (x 2,y 2),则|AF |=x 1+p 2=x 1+1=4,所以x 1=3,又x 1x 2=p 24=1,所以x 2=13,所以|AB |=x 1+x 2+p =3+13+2=163.法二 因为1|AF |+1|BF |=2p ,|AF |=4,所以|BF |=43,所以|AB |=|AF |+|BF |=4+43=163.答案 C三、课后练习1.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点,|AF |+|BF |=233|AB |,则∠AFB 的最大值为( )A.π3B.3π4C.5π6D.2π3解析 设|AF |=m ,|BF |=n ,∵|AF |+|BF |=233|AB |,∴233|AB |≥2mn ,∴mn ≤13|AB |2,在△AFB 中,由余弦定理得cos ∠AFB =m 2+n 2-|AB |22mn =(m +n )2-2mn -|AB |22mn =13|AB |2-2mn 2mn ≥-12,∴∠AFB 的最大值为2π3. 答案 D2.(2019·武汉模拟)过点P (2,-1)作抛物线x 2=4y 的两条切线,切点分别为A ,B ,P A ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则△PEF 与△OAB 的面积之比为( )A.32B.33C.12D.34解析 设A (x 1,y 1),B (x 2,y 2),则点A ,B 处的切线方程为x 1x =2(y +y 1),x 2x =2(y +y 2),所以E ⎝ ⎛⎭⎪⎫2y 1x 1,0,F ⎝ ⎛⎭⎪⎫2y 2x 2,0,即E ⎝ ⎛⎭⎪⎫x 12,0,F ⎝ ⎛⎭⎪⎫x 22,0,因为这两条切线都过点P (2,-1),则⎩⎨⎧2x 1=2(-1+y 1),2x 2=2(-1+y 2),所以l AB :x =-1+y ,即l AB 过定点(0,1),则S △PEF S OAB=12×1×⎪⎪⎪⎪⎪⎪x 12-x 2212×1×|x 1-x 2|=12. 答案 C3.已知抛物线方程为y 2=-4x ,直线l 的方程为2x +y -4=0,在抛物线上有一动点A ,点A 到y 轴的距离为m ,到直线l 的距离为n ,则m +n 的最小值为________.解析 如图,过A 作AH ⊥l ,AN 垂直于抛物线的准线,则|AH |+|AN |=m +n +1,连接AF ,则|AF |+|AH |=m +n +1,由平面几何知识,知当A ,F ,H 三点共线时,|AF |+|AH |=m +n +1取得最小值,最小值为F 到直线l 的距离,即65=655,即m +n 的最小值为655-1.答案655-14.(2019·泉州一模)在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0)的焦点为F ,点A 在C 上,若|AO |=|AF |=32.(1)求抛物线C 的方程;(2)设直线l 与C 交于P ,Q ,若线段PQ 的中点的纵坐标为1,求△OPQ 的面积的最大值.解 (1)因为点A 在C 上,|AO |=|AF |=32,所以点A 的纵坐标为p 4,所以p 4+p 2=32,所以p =2,所以C 的方程为x 2=4y .(2)由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b (b ≥0),代入抛物线方程,可得x 2-4kx-4b =0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4b ,所以y 1+y 2=4k 2+2b , 因为线段PQ 的中点的纵坐标为1,所以2k 2+b =1,即2k 2=1-b ≥0,所以0<b ≤1,S △OPQ =12b |x 1-x 2|=12b (x 1+x 2)2-4x 1x 2=12b 16k 2+16b =b 2+2b =2·b 3+b 2(0<b ≤1),设y =b 3+b 2,y ′=3b 2+2b >0,函数单调递增,所以b =1时,△OPQ 的面积最大,最大值为2.5.已知点A (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N ,若|FM ||MN |=55,则p 的值等于( ) A.14 B.2 C.4 D.8解析 过点M 作抛物线的准线的垂线,垂足为点M ′,则易得|MM ′|=|MF |,所以cos ∠NMM ′=|MM ′||MN |=|MF ||MN |=55,则k AM =-tan ∠NMM ′=-1-cos 2∠NMM ′cos 2∠NMM ′=-2,则直线AM 的方程为y -2=-2x ,令y =0得抛物线的焦点坐标F (1,0),则p =2×1=2,故选B.答案 B。

圆锥曲线--抛物线

圆锥曲线--抛物线
∴ △DRF∽△FRC ∴∠DFR=∠RCF, ∴∠DFR+∠RFC=90 ∴∠DFC=90
【例 4】如图 7,过抛物线 y2=2px(P>0)的焦点 F 的直线与抛物线相交于 M、N 两点, 自 M、N 向准线 l 作垂线,垂足分别为 M1、N1,求证:FM1⊥FN1
★⑵
1 1 2 + =p | AF | | BF |
p2 p p 【证法一】由⑴x1x2= ,且| AF |=x1+ ,| BF |=x2+ . 4 2 2 x1+x2+p x1+x2+p 1 1 1 1 ∴ + = + = = | AF | | BF | p p p p p p2 x1+ x2+ (x1+ )·(x2+ ) x1x2+ (x1+x2)+ 2 2 2 2 2 4 x1+x2+p x1+x2+p 2 = 2 = = p p p2 p p + (x +x )+ (x +x +p) 4 2 1 2 4 2 1 2 p p p 【证法二】由| AF |=1= ,| BF |=2= = . 1-cos 1-cos(+ ) 1+cos 1 1 1 1 1-cos 1+cos 2 ∴ + = + = + = | AF | | BF | 1 2 p p p
2 2 2 2
p p 1 1 1 在直线 AB 方程 x=my+ 中令 x=0,得 y3=- ,代入上式得 + = 2 2m y1 y2 y3
p p ④【证法一】根据抛物线的定义,| AF |=| AD |=x1+ ,| BF |=| BC |=x2+ , 2 2 | AB |=| AF |+| BF |=x1+x2+p 又| AB |= (x2-x1)2+(y2-y1)2= = = 1+m2 1+m2 1+m2| y2-y1 |
【证法五】由下面证得∠DFC=90,连结 FM,则 FM=DM. 又 AD=AF,故△ADM≌△AFM,如图 4 ∴∠1=∠2,同理∠3=∠4 1 ∴∠2+∠3= ×180=90 2 ∴∠AMB=90

圆锥曲线图表与性质(教师版)

圆锥曲线图表与性质(教师版)

基本专题:
(1)求曲线的标准方程 方法一:待定系数法 方法二.求c b a ,,
(2)判断曲线的类型 12
2=+B
y A x 类型 022=++C By Ax 类型
(3)定义的应用 判断所求轨迹的点的性质
(4)求曲线的离心率 要求曲线离心率,找出关系消去b ,化简之后变成e ,注意范围取正值 (5)中点弦问题 点差法(设而不求)
(6)焦点三角形 (正弦定理.余弦定理的应用)
(7)弦长公式 |
|1||11||1||2122
122m k y y k
x x k AB ∆+=-+=-+=
(8)最值问题 注意几何意义
(9)圆锥曲线应用题 读题--->反复读题--->建立模型--->求解结果--->写出结论 (10)直线与圆锥曲线的位置关系 (点在曲线外/内/上)(直线:联立,化简,判断△)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三.抛物线
注意:牢记抛物线的定义,在解题时,要善于应用几何上或代数上的意义。

1.特别注意:
1)2
y ax = 与2
2x py =这类不同形式之间的区别和对应关系
2y ax =的焦点为),41,
0(a F 准线方程为a y 41=
;2
2x py =的焦点为),2,0(p F 准线方程为2
p y -= 2)抛物线my x mx y ==2
2,的焦点,准线
mx y =2的焦点为),0,4(m F 准线为4m x -=; my x =2的焦点为),4,0(m F 准线为4m
y -=
2.参数p 的含义:焦点到准线之间的距离
3.c bx ax y ++=2
的焦点,准线,顶点,对称轴:配方得a
b c a b x a y 4)2(2
2-++= 顶点为)4,2(2a b c a b --, 对称轴a b x 2-= 焦点为)414,2(2a b ac a b F +--, 准线为a
b a
c y 4142--=
4.抛物线的重要结论:
如图所示,过抛物线px y 22
=(p>0)的焦点F 作直线l 和此抛物线相交于A ),(11y x 、B ),(22y x 两点。

1结论:过抛物线px y 22=(p>0)的焦点F 的弦长p x x AB ++=21 2结论:若直线L 的倾斜角为θ,则弦长θ
2sin 2p
AB =
焦点F 到直线L 的距离为θsin 2
⨯=
p
d 焦点三角形FAB 的面积为θ
sin .22
p S FAB
=

评注:由此式可知,过焦点的弦中通径长最短。

3结论:(1)221p y y -=
(2)4221p x x = 4
3.)3(2
2121p y y x x OB OA -=+=
4结论:以AB 为直径的圆与抛物线的准线相切
评注:易证得,椭圆中以焦点弦为直径的圆与相应的准线相离,双曲线中以焦点弦为直径的圆与相应的准线相交 过焦点弦AB 的端点B A ,分别作准线l 的垂线,垂足依次为11,B A ,则有下列结论:如图
5结论:连接A 1F 、B 1 F ,则 A 1F ⊥B 1F
焦点弦AB 的中点为M ,AB 的中点M 作准线l 的垂线,垂足为1M ,则有下列结论:如图
6结论:(1)AM 1⊥BM 1 (2)M 1F ⊥AB 7结论:(1)A 、O 、B 1 三点共线;
(2)B,O,A 1 三点共线;
(3)设直线AO 与抛物线的准线的交点为B 1,则BB 1平行于X 轴; (4)设直线BO 与抛物线的准线的交点为A 1,则AA 1平行于X 轴
8结论:
p
FB FA 211=+ 9结论:(1)过抛物线22(0)y px p =>上某点00(,)P x y 的切线斜率为0
;p
k y =
(2) 过抛物线2
2(0)x py p =>上某点00(,)P x y 的切线斜率为0
.x k p
=。

相关文档
最新文档