基于MATLAB的图像处理的课程设计
太原理工大学 matlab课程设计 图像处理

课程设计报告课程名称:实验项目:实验地点:专业班级:学号:学生姓名:同组人员:指导教师:年月日设计三MATLAB用于图像处理设计目的通过该设计,要求对图像的采集、显示、处理和存储等有一个系统的掌握和理解。
并且掌握对二维数据进行处理的方法。
一、设计内容及其主要MATLAB函数1.图像的采集与显示采集一张格式为各种类型的任一幅图像,用matlab的imread函数读入图像文件,并用image函数显示图像。
Matlab函数:imread功能是读入图像文件image显示图像文件要求采集一幅图像,把该图像读入在MATLAB中,并且显示出来。
2.图像的插值1)最近邻插值最近邻插值是最简单的插值,在这种算法中,每一个插值输出像素的值就是在输入图像中与其最近临近的采样点的值2)双线性插值双线性插值法的输出像素是它在输入图像中2*2领域采样点的平均值。
它是根据某像素点周围4个像素的灰度值在水平和垂直两个方向上对其插值。
3)双三次插值对三次插值的插值核为三次函数,其插值值领域的大小为4*4,它的插值效果比较好,但相应的计算量较大。
Matlab函数:imresize使用格式:b=imresize使用格式:b=imresize(a,m,method),返回原图的M倍放大图像;(小于1时返回缩小图像)b=imresize(a,[m,n],method),返回M行,n列的图像b=imresize(a,m,method,h),使用用户设计的插值核h进行插值,h可以看做是一个二维的FIR滤波器。
要求:1)对采集的图像使用imresize函数,分别对其进行最近邻插值,双线性插值和双三次插值,返回二倍放大图像,并且分别显示出来与原图进行对比。
2)试着编写—M文件,对采集的图像进行最近邻插值,并且显示出来与原图像进行对比。
二、源程序及图像处理结果1)首先读入我保存在F盘的图片文件>> yuantu=imread('F:\yuantu','bmp');>> image(yuantu);(原图)2)、进行最近邻插值>> jinlinchazhi=imresize(yuantu,2,'nearest');>> subplot(1,2,1);image(yuantu);subplot(1,2,2);image(jinlinchazhi);(左边为原图,右边为最近邻插值后的图片)可以从“太原理工大学”六个字中看出插值的效果,但不是特别明显。
基 于MATLAB的图像 处理的课程设计

基于MATLAB的图像处理的课程设计一、课程设计的目的:综合运用MATLAB工具箱实现图像处理的GUI程序设计。
二、课程设计的基本要求1)熟悉和掌握MA TLAB 程序设计方法2)掌握MATLAB GUI 程序设计3)熟悉MATLAB图像处理工具箱4)学会运用MATLAB工具箱对图像进行处理和分析三、课程设计的内容要求利用MATLAB GUI设计实现图像处理的图形用户界面,利用MATLAB图像处理工具箱实现以下的图像处理功能:双击打开MATLAB 7.0→File→New→GUI→单击,调整axes1大小→单击OK,调整按钮大小和颜色,修改名称→再建axes2→单击OK,调整按钮大小和颜色,修改名称→保存→View→M-file Edit→写程序1)图像的读取和保存。
在function open_Callback(hObject, eventdata, handles)后面输入如下程序[name,path]=uigetfile('*.*','');file=[path,name];axes(handles.axes1);x=imread(file); %读取图像handles.img=x;guidata(hObject, handles);imshow(x); %显示图像title('打开');在function save_Callback(hObject, eventdata, handles)后面输入如下程序[name,path]=uigetfile('*.*','');file=[path,name];axes(handles.axes1);x=imread(file);handles.img=x;guidata(hObject, handles);imshow(x);imwrite(x,'new.jpg'); %保存图像title('保存');2)设计图形用户界面,让用户能够对图像进行任意的亮度和对比度变化调整,显示和对比变换前后的图像。
数字图像处理课程设计基于Matlab的数字图像处理

数字图像处理课程设计--基于Matlab的数字图像处理数字图像处理课程设计基于Matlab的数字图像处理——图像的运算院系信息技术学院专业班级电气6班学号 201107111282姓名何英娜指导教师章瑞平课程设计时间 2012年11月目录一、摘要 (3)二、图像代数运算1、1图像的加法运算 (4)1、2图像的减法运算 (4)1、3图像的除法运算 (4)1、4绝对差值运算 (7)1、 5 图像的求补运算 (7)3三、图像的几何运算2、1 图像插值 (7)2、2图像的旋转 (8)2、3图像的缩放 (9)2、4图像的投影变换 (10)2、4图像的剪切 (11)四、课程设计总结与体会 (13)五、参考文献 (14)摘要图像运算涵盖程序设计、图像点运算、代数运算、几何运算等多种运算;设计目的和任务:1、熟悉图像点运算、代数运算、几何运算的基本定义和常见方法;2、掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法3、掌握在MATLAB中进行插值的方法4、运用MATLAB语言进行图像的插值缩放和插值旋转5、学会运用图像的投影变换和图像的剪切46、进一步熟悉了解MATLAB语言的应用,将数字图像处理更好的应用于实际7、通过各类算法加强图像各种属性、一、图像的几何运算何运算图像代数运算是指对两幅或两幅以上输入图像对应的像素逐个进行和差积商运算以产生增强效果的图像。
图像运算是一种比较简单有效的增强处理手段是图像处理中常用方法。
四种图像处理代数运算的数学表达式如下:C(x,y)=A(x,y)+B(x,y)C(x,y)=A(x,y)-B(x,y)C(x,y)=A(x,y)*B(x,y)C(x,y)=A(x,y)/B(x,y)1图像加法运算一般用于多幅图像求平均效果,以便有效降低具有叠加性的随机噪声,在matlab中imadd用于图像相加,其调用格式为z=imadd(X,Y);程序演示如下:I=imread('rice.png');subplot(2,2,1),imshow(I),title('原图像1'); J=imread('cameraman.tif');subplot(2,2,2),imshow(J),title('原图像52');K=imadd(I,J,'uint16'););subplot(2,2,3),imshow(K,[]),title('相加后图像'2、图像减法运算也称差分运算,是用于检测图像变化及运动物体的方法;用imsubtract函数实现。
matlab用于图像处理的课程设计

matlab用于图像处理的课程设计一、教学目标本课程旨在通过MATLAB软件,让学生掌握基本的图像处理方法,培养学生的编程能力和实际操作能力。
在知识目标方面,要求学生掌握MATLAB的基本操作,了解图像处理的基本概念和常用算法。
在技能目标方面,要求学生能够运用MATLAB进行简单的图像处理操作,如图像滤波、边缘检测等。
在情感态度价值观目标方面,通过实践操作,培养学生的创新意识和团队协作精神。
二、教学内容本课程的教学内容主要包括MATLAB基本操作、图像处理的基本概念和常用算法。
具体包括:MATLAB的启动和退出、命令窗口的使用、变量和矩阵的操作、图像的基本概念、图像的表示和存储、图像的滤波、边缘检测等。
三、教学方法本课程采用讲授法、实验法和讨论法相结合的教学方法。
首先,通过讲授法向学生介绍MATLAB的基本操作和图像处理的基本概念;然后,通过实验法让学生动手实践,掌握图像处理的常用算法;最后,通过讨论法引导学生进行思考和交流,提高学生的创新能力和团队协作精神。
四、教学资源本课程的教学资源包括教材《MATLAB图像处理》、多媒体教学课件、实验设备(计算机、投影仪等)和网络资源(相关论文、教程等)。
这些教学资源将有助于学生更好地理解和掌握课程内容,提高学生的学习效果。
五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分。
平时表现占30%,主要评估学生的课堂参与度和团队协作能力;作业占30%,主要评估学生的理解和应用能力;考试占40%,主要评估学生的知识掌握和综合运用能力。
评估方式客观、公正,能够全面反映学生的学习成果。
六、教学安排本课程的教学安排如下:共计32课时,每周2课时,共16周完成。
教学地点为计算机实验室,以便学生进行实践操作。
教学进度安排合理、紧凑,确保在有限的时间内完成教学任务。
同时,教学安排还考虑学生的实际情况和需要,如学生的作息时间、兴趣爱好等。
七、差异化教学根据学生的不同学习风格、兴趣和能力水平,本课程设计了差异化的教学活动和评估方式。
matlab用于图像处理课程设计

matlab用于图像处理课程设计一、课程目标知识目标:1. 掌握MATLAB软件的基本操作和图像处理工具箱的使用方法;2. 学习并理解图像处理的基本概念,如图像的读取、显示、存储和类型转换;3. 学习图像处理中的基本运算,如图像的算术运算、逻辑运算和几何变换;4. 掌握图像增强、滤波、边缘检测和图像分割等基本图像处理技术;5. 了解图像处理在实际应用中的案例,如人脸识别、指纹识别等。
技能目标:1. 能够运用MATLAB软件进行图像的读取、显示和存储操作;2. 能够运用MATLAB实现图像的基本运算和几何变换;3. 能够运用MATLAB进行图像增强、滤波、边缘检测和图像分割等处理技术;4. 能够独立分析图像处理问题,设计并实现相应的MATLAB程序;5. 能够运用所学的图像处理技术解决实际问题,具备一定的图像处理项目实践能力。
情感态度价值观目标:1. 培养学生对图像处理技术的兴趣和热情,激发他们主动探索和创新的欲望;2. 培养学生严谨的科学态度和良好的团队协作精神,使他们能够积极参与讨论和分享;3. 培养学生运用所学知识解决实际问题的能力,增强他们的自信心和成就感;4. 引导学生关注图像处理技术在生活中的应用,提高他们对科技与生活的认识和理解;5. 培养学生的信息素养,使他们能够遵循道德规范,合理使用图像处理技术。
二、教学内容1. MATLAB基础操作:介绍MATLAB软件的界面与操作,学习图像处理工具箱的安装与使用方法。
教材章节:第一章 MATLAB基础操作2. 图像读取、显示与存储:学习图像的读取、显示、类型转换和存储方法。
教材章节:第二章 图像的读取、显示与存储3. 图像基本运算:学习图像的算术运算、逻辑运算和几何变换。
教材章节:第三章 图像基本运算4. 图像增强与滤波:介绍图像增强技术,学习线性滤波和非线性滤波方法。
教材章节:第四章 图像增强与滤波5. 边缘检测与图像分割:学习边缘检测算法,如Sobel、Canny等,以及图像分割技术。
基于matlab的图像处理课程设计

基于matlab的图像处理课程设计一、课程目标知识目标:1. 学生能理解图像处理的基本概念,掌握图像的数字化表示方法。
2. 学生能掌握Matlab软件的基本操作,运用其图像处理工具箱进行图像的读取、显示和保存。
3. 学生能掌握图像处理的基本算法,如灰度变换、图像滤波、边缘检测等,并理解其原理。
技能目标:1. 学生能运用Matlab进行图像处理操作,解决实际问题。
2. 学生能通过编程实现图像处理算法,具备一定的程序调试和优化能力。
3. 学生能运用所学知识,结合实际问题,设计简单的图像处理程序。
情感态度价值观目标:1. 学生通过学习图像处理,培养对计算机视觉和人工智能领域的兴趣,激发创新意识。
2. 学生在课程实践中,培养团队协作精神,提高沟通与表达能力。
3. 学生能认识到图像处理技术在生活中的广泛应用,增强学以致用的意识。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握基本图像处理知识的基础上,通过Matlab软件的实践操作,培养其编程能力和解决实际问题的能力。
同时,注重培养学生的团队协作和情感态度,使其在学习过程中获得成就感,激发学习兴趣。
课程目标将具体分解为学习成果,以便后续教学设计和评估。
二、教学内容1. 图像处理基础理论:- 数字图像概念及表示方法- 图像处理的基本操作:读取、显示、保存- 像素运算与邻域处理2. Matlab基础操作:- Matlab软件安装与界面介绍- 数据类型与基本运算- 矩阵运算与函数编写3. 图像处理算法:- 灰度变换与直方图处理- 图像滤波:低通滤波、高通滤波- 边缘检测:Sobel算子、Canny算子4. 实践项目:- 图像增强与去噪- 图像分割与特征提取- 目标检测与跟踪5. 教学大纲:- 第一周:图像处理基础理论,Matlab基础操作- 第二周:灰度变换与直方图处理,图像滤波- 第三周:边缘检测,实践项目一- 第四周:图像分割与特征提取,实践项目二- 第五周:目标检测与跟踪,课程总结与展示教学内容根据课程目标,结合教材章节进行选择和组织,确保科学性和系统性。
MATLAB课程设计(基于MATLAB的图像处理的基本运算)

MATLAB课程设计(基于MATLAB的图像处理的基本运算)课程设计任务书学⽣姓名:专业班级:指导教师:⼯作单位:题⽬: 基于MATLAB的图像处理的基本运算初始条件①MATLAB软件②数字信号处理与图像处理基础知识要求完成的主要任务:(1)能够对图像亮度和对⽐度变化调整,并⽐较结果。
(2)编写程序通过最近邻插值和双线性插值等算法将⽤户所选取的图像区域进⾏放⼤和缩⼩整数倍的和旋转操作,并保存,⽐较⼏种插值的效果。
(3)图像直⽅图统计和直⽅图均衡,要求显⽰直⽅图统计,⽐较直⽅图均衡后的效果。
(4)对图像加⼊各种噪声,⽐较效果。
时间安排:第1周:安排任务,分组第2-17周:设计仿真,撰写报告第18周:完成设计,提交报告,答辩地点:鉴主3楼计算机实验室指导教师签名: 2010年⽉⽇系主任(或责任教师)签名: 2010年⽉⽇摘要MATLAB是—套⾼性能的数值计算和可视化软件,它集数值分析、矩阵运算、信号处理和图形显⽰于⼀体,构成—个⽅便的、界⾯友好的⽤户环境。
MATLAB强⼤的扩展功能为各个领域的应⽤提供了基础,由各个领域的专家相继给出了MATLAB ⼯具箱,其中主要有信号处理,控制系统,神经⽹络,图像处助,鲁棒控制,⾮线性系统控制设计,最优化,⼩波,通信等⼯具箱,这此⼯具箱给各个领域的研究和⼯程应⽤提供了有⼒的⼯具。
借助于这些“巨⼈肩膀上的⼯具”,各个层次的研究⼈员可直现⽅便地进⾏分析、计算及设计⼯作,从⽽⼤⼤地节省了时间。
本次课程设计的⽬的在于较全⾯了解常⽤的数据分析与处理原理及⽅法,能够运⽤相关软件进⾏模拟分析。
通过对采集的图像进⾏常规的图像的亮度和对⽐度的调整,并进⾏最近邻插值和双线性插值等算法将⽤户所选取的图像区域进⾏放⼤和缩⼩整数倍的和旋转操作,并保存,⽐较⼏种插值的效果,以及对图像进⾏直⽅图和直⽅图均衡并加⼊噪声进⾏对⽐,达到本次课程设计的⽬的关键词:MATLAB 亮度和对⽐度插值放⼤旋转噪声AbstractMATLAB is - set of high-performance numerical computation and visualization software, which combines numerical analysis, matrix computation, signal processing and graphics in one form - a convenient, user-friendly user environment.MATLAB is a powerful extension application in various fields to provide a basis by experts in various fields have been given a MATLAB toolbox, which are signal processing, control systems, neural networks, image processing support, robust control, nonlinearcontrol system design, optimization, wavelets, communications toolkit, which this kit to the various areas of research and engineering applications a powerful tool.With these "tools on the shoulders of giants," researchers at all levels can now be easily analyzed directly, calculation and design work, which greatly saves time.The training aims to strengthen the basis of a more comprehensive understanding of commonly used data analysis and processing principles and methods related to the use of simulation software.Images collected by conventional image brightness and contrast adjustments, and the nearest neighbor interpolation and bilinear interpolation algorithm to the user selected image area to zoom in and out several times and rotate the whole operation, and save, comparethe effect of several interpolation and the image histogram and histogram and compared with noise, to the purpose of this course design.Keywords: MATLAB brightness and contrast rotation interpolation noise amplification ⽬录1.MATLAB简介 (1)1.1 MATLA的基本⽤途 (1)1.2 MATLAB的语⾔特点 (1)1.3 MATLAB系统构成 (1)2.数据采集 (2)2.1图像的选取 (2)2.2 图像亮度和对⽐度的调整 (2)2.2.1 编辑M⽂件 (2)2.2.2 MATLAB⽀持的图像格式和类型 (3)2.2.3 图像的读取 (3)2.2.4调整图像亮度和对⽐度 (4)3.图像的⼏何操作 (6)3.1插补操作 (6)3.1.1 插补功能介绍 (6)3.1.2 插补具体操作 (6)3.2 放缩操作 (8)3.2.1放缩功能介绍 (8)3.2.2 具体操作 (9)3.3 旋转操作 (10)3.3.1 旋转功能介绍 (10)3.3.2 具体操作 (10)4.直⽅图统计 (12)4.1灰度图的获取 (12)4.1.1 灰度图的转换功能介绍 (12)4.1.2 具体操作 (12)4.2直⽅图以及直⽅图均衡 (13)4.2.1 直⽅图函数功能介绍 (13)4.2.2 直⽅图具体操作 (14)5.图像的噪声处理 (15)5.1添加噪声的功能介绍 (15)5.2添加噪声的具体操作 (16)6.总结(⼼得体会) (18)7.参考⽂献 (19)1.MATLAB简介1.1 MATLA的基本⽤途MATLAB是矩阵实验室(Matrix Laboratory)之意。
图像处理matlab的课程设计

图像处理matlab的课程设计一、教学目标本课程的教学目标是使学生掌握图像处理的基本原理和方法,能够使用MATLAB软件进行图像处理和分析。
具体目标如下:1.了解图像处理的基本概念和常用算法。
2.掌握MATLAB图像处理工具箱的使用。
3.理解图像处理在实际应用中的重要性。
4.能够使用MATLAB进行图像读取、显示和保存。
5.能够使用MATLAB进行图像滤波、边缘检测、图像增强等基本操作。
6.能够运用所学知识解决实际图像处理问题。
情感态度价值观目标:1.培养学生的创新意识和实践能力。
2.培养学生的团队合作精神和沟通协调能力。
3.培养学生的科学思维和解决问题的能力。
二、教学内容根据课程目标,教学内容主要包括以下几个方面:1.图像处理基本概念:图像的定义、图像的表示、图像的属性等。
2.MATLAB图像处理工具箱:MATLAB图像处理工具箱的介绍、常用函数和工具的使用方法等。
3.图像处理基本算法:图像滤波、边缘检测、图像增强、图像分割等。
4.图像处理应用案例:图像处理在实际应用中的案例分析,如医学影像处理、工业检测等。
三、教学方法为了达到课程目标,将采用多种教学方法相结合的方式进行教学。
包括:1.讲授法:通过讲解图像处理的基本概念和原理,使学生掌握基本知识。
2.案例分析法:通过分析实际图像处理案例,使学生了解图像处理的应用和实际意义。
3.实验法:通过实验操作,使学生掌握MATLAB图像处理工具箱的使用和基本算法。
4.讨论法:通过小组讨论和交流,促进学生思考和解决问题,培养团队合作精神。
四、教学资源为了支持教学内容和教学方法的实施,将准备以下教学资源:1.教材:《图像处理matlab教程》等。
2.参考书:《数字图像处理》、《MATLAB图像处理》等。
3.多媒体资料:PPT课件、实验演示视频等。
4.实验设备:计算机、MATLAB软件、图像处理相关硬件设备等。
通过以上教学资源的支持,将能够丰富学生的学习体验,提高学生的学习效果。
基于matlab的课程设计

基于matlab的课程设计一、课程目标知识目标:1. 掌握MATLAB的基本操作,包括数据类型、矩阵运算和基本编程结构;2. 学习运用MATLAB进行数据处理、图像绘制和仿真分析;3. 了解MATLAB在工程领域的应用,如信号处理、控制系统分析等。
技能目标:1. 能够运用MATLAB编写程序,解决实际问题;2. 学会使用MATLAB进行数据可视化,绘制图表,并进行分析;3. 培养运用MATLAB进行工程计算和仿真的能力。
情感态度价值观目标:1. 培养学生对工程技术的兴趣,激发创新意识;2. 增强学生的团队协作能力,提高沟通表达能力;3. 培养学生严谨的科学态度,注重实际问题的解决。
课程性质:本课程为实践性较强的学科,结合课本理论知识,以MATLAB为工具,培养学生的实际操作能力。
学生特点:高年级学生,具备一定的数学基础和编程经验,对工程技术有一定了解。
教学要求:结合课本内容,注重理论与实践相结合,通过课程设计,提高学生的实际操作能力和解决实际问题的能力。
将目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容1. MATLAB基础知识:数据类型、矩阵运算、基本编程结构(顺序、循环、选择结构);相关教材章节:第一章至第三章。
2. 数据处理与图像绘制:数据导入导出、数组操作、绘图函数及其应用;相关教材章节:第四章、第五章。
3. MATLAB仿真分析:控制系统仿真、信号处理、数值计算;相关教材章节:第六章、第七章。
4. MATLAB综合应用:结合实际案例,运用MATLAB解决工程技术问题;相关教材章节:第八章至第十章。
教学大纲安排:第一周:MATLAB基础知识学习,完成相关练习;第二周:数据处理与图像绘制,完成实例分析;第三周:MATLAB仿真分析,进行上机操作;第四周:MATLAB综合应用,开展课程设计。
教学内容注重科学性和系统性,结合教材章节,循序渐进地组织教学。
在教学过程中,将理论与实践相结合,确保学生能够掌握MATLAB的核心功能,并能将其应用于解决实际问题。
基于matlab的课程设计题目

基于matlab的课程设计题目题目:基于matlab的图像处理与分析设计内容:1. 图像读取与显示:使用matlab读取图像文件,并将其显示在matlab界面上。
2. 图像处理:对读取的图像进行处理,包括图像的灰度化、二值化、滤波、边缘检测等操作。
3. 图像分析:对处理后的图像进行分析,包括图像的特征提取、目标检测、图像识别等操作。
4. 图像保存:将处理后的图像保存为新的图像文件。
5. 界面设计:设计一个简单的matlab界面,包括图像读取、处理、分析和保存等功能按钮,方便用户进行操作。
设计步骤:1. 首先,使用matlab的imread函数读取图像文件,并使用imshow函数将其显示在matlab界面上。
2. 对读取的图像进行处理,包括图像的灰度化、二值化、滤波、边缘检测等操作。
可以使用matlab的im2gray函数将图像转换为灰度图像,使用im2bw函数将灰度图像转换为二值图像,使用imfilter函数进行滤波操作,使用edge函数进行边缘检测操作。
3. 对处理后的图像进行分析,包括图像的特征提取、目标检测、图像识别等操作。
可以使用matlab的regionprops函数提取图像的特征,使用imfindcircles函数进行圆形目标检测,使用imread函数读取训练好的图像库进行图像识别。
4. 将处理后的图像保存为新的图像文件。
可以使用matlab的imwrite函数将处理后的图像保存为新的图像文件。
5. 最后,设计一个简单的matlab界面,包括图像读取、处理、分析和保存等功能按钮,方便用户进行操作。
可以使用matlab的GUI设计工具进行界面设计。
设计要求:1. 界面简洁明了,操作方便。
2. 图像处理和分析的算法要求准确可靠。
3. 代码规范,注释清晰,易于理解。
4. 提供详细的使用说明文档。
5. 可以自行选择图像进行处理和分析,也可以使用提供的测试图像进行测试。
matlab数字图像处理课程设计

matlab数字图像处理课程设计一、课程目标知识目标:1. 学生能理解数字图像处理的基本概念,掌握图像的表示方法和存储格式。
2. 学生能掌握MATLAB软件的基本操作,并运用其进行数字图像处理。
3. 学生能掌握图像的灰度变换、图像滤波、边缘检测等基本图像处理技术。
4. 学生能了解频域图像处理的基本原理,并运用MATLAB进行频域滤波。
技能目标:1. 学生能够运用MATLAB软件进行数字图像的读取、显示和保存。
2. 学生能够运用MATLAB实现基本的图像处理算法,如灰度变换、滤波等。
3. 学生能够分析图像处理算法的效果,并进行相应的参数调整。
4. 学生能够运用所学知识解决实际问题,如图像增强、边缘检测等。
情感态度价值观目标:1. 学生对数字图像处理产生兴趣,培养主动学习和探究的精神。
2. 学生通过实践操作,培养团队合作意识和解决问题的能力。
3. 学生能够认识到数字图像处理在科技、医疗、安全等领域的广泛应用,增强社会责任感。
4. 学生能够遵循学术道德,尊重他人成果,树立正确的价值观。
课程性质:本课程为数字图像处理相关学科的教学实践,旨在通过MATLAB软件的使用,使学生掌握数字图像处理的基本方法和技能。
学生特点:学生具备一定的数学基础和编程能力,对图像处理有一定了解,但实践经验不足。
教学要求:结合课本内容,注重理论与实践相结合,强调学生的动手实践能力,培养解决实际问题的能力。
通过课程目标的具体分解,使学生在学习过程中能够达到预期的学习成果,为后续深入学习打下坚实基础。
二、教学内容本课程教学内容围绕以下几部分展开:1. 数字图像处理基础理论- 图像的表示与存储格式- 图像处理的基本操作(读取、显示、保存)2. MATLAB软件操作- MATLAB界面与基本操作- MATLAB图像处理工具箱的使用3. 灰度变换与图像增强- 灰度变换函数及其应用- 直方图均衡化与规定化4. 图像滤波- 空域滤波器设计- 频域滤波器设计- 常用滤波算法(如高斯滤波、中值滤波等)5. 边缘检测- 基本边缘检测算法(如Sobel、Prewitt)- 高级边缘检测算法(如Canny)6. 频域图像处理- 频域变换(傅里叶变换、DCT等)- 频域滤波(低通、高通、带通滤波器)教学大纲安排如下:1. 基础理论(1课时)2. MATLAB软件操作(2课时)3. 灰度变换与图像增强(2课时)4. 图像滤波(2课时)5. 边缘检测(2课时)6. 频域图像处理(2课时)教学内容与教材章节紧密关联,通过以上安排,使学生系统掌握数字图像处理的基本概念、方法和技能。
基于matlab的课程设计题目

基于matlab的课程设计题目基于matlab的课程设计题目正文:在matlab中,有许多有趣且实用的课程设计题目可以选择。
以下是一个基于matlab的课程设计题目示例:基于图像处理的人脸识别系统。
人脸识别是一种广泛应用于安全监控、身份验证等领域的技术。
该课程设计旨在利用matlab的图像处理功能,开发一个能够识别人脸的系统。
首先,你需要收集一批含有人脸的图像数据集。
可以从公开的人脸数据库中获取,如LFW(Labeled Faces in the Wild)数据库。
然后,使用matlab的图像处理工具箱,对这些图像进行预处理,包括人脸检测、图像归一化等。
接下来,你可以选择使用PCA(Principal Component Analysis)或LDA(Linear Discriminant Analysis)等算法进行特征提取和降维。
这些算法可以将人脸图像转换为一个更低维度的特征向量,以方便后续的分类。
然后,你可以使用matlab的机器学习工具箱,训练一个分类器来识别人脸。
可以选择支持向量机(SVM)、K近邻算法(KNN)或神经网络等方法。
通过使用训练数据集,将提取的特征向量与相应的标签进行训练。
最后,你可以使用训练好的分类器来测试你的人脸识别系统。
将测试图像输入系统,通过分类器进行分类,并与测试图像的真实标签进行比较,以评估系统的准确性。
拓展:除了人脸识别系统,还有许多其他基于matlab的课程设计题目可以选择,如音频信号处理、数字图像处理、机器学习、模式识别等。
你可以根据自己的兴趣和专业方向,选择与之相关的课程设计题目。
例如,你可以设计一个音频信号处理系统,用于语音识别。
通过使用matlab的信号处理工具箱,对输入的语音信号进行预处理,包括去除噪声、语音分段等。
然后,使用mfcc(Mel-Frequency Cepstral Coefficients)等特征提取算法,将语音信号转换为特征向量。
数字信号处理课程设计--基于Matlab的数字图像处理

目录摘要 (II)第1章绪论...................................... 错误!未定义书签。
第2章数字图像处理系统设计...................... 错误!未定义书签。
2.1设计概括 (5)2.2文件 (6)2.2.1打开 (6)2.2.2保存 (6)2.2.3退出 (6)2.3编辑 (7)2.3.1灰度 (7)2.3.2亮度 (8)2.3.3截图 (10)2.3.4缩放 (10)2.4旋转 (13)2.4.1上下翻转 (13)2.4.2左右翻转 (14)2.4.3任意角度翻转 (15)2.5噪声 (16)2.6滤波 (17)2.6.1中值滤波 (17)2.6.2自适应滤波 (17)2.6.3 平滑滤波 (18)2.7直方图统计 (19)2.8频谱分析 (21)2.8.1、频谱图 (21)2.8.2通过高通滤波器 (22)2.8.3通过低通滤波器 (23)2.9灰度图像处理 (24)2.9.1二值图像 (24)2.9.2创建索引图像 (25)2.10颜色模型转换 (26)2.11操作界面设计 (27)第3章程序调试及结果分析 (28)总结 (29)参考文献 (30)摘要数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
在数字图像处理过程中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。
它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。
根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或编程以完成各自的计算。
本文利用MATLAB图像处理工具箱,根据需求进行程序的功能分析和界面设计,实现数字图像的灰度处理、亮度处理、截图、缩放、旋转、噪声、滤波、直方图统计、频谱分析、颜色模型转换等。
matleb图像处理课程设计

matleb图像处理课程设计一、教学目标本课程的教学目标是使学生掌握Matlab图像处理的基本原理和方法,具备使用Matlab进行图像处理和分析的能力。
具体目标如下:1.理解图像处理的基本概念和原理。
2.掌握Matlab图像处理的基本函数和工具箱。
3.了解图像处理在实际应用中的重要性。
4.能够使用Matlab进行基本的图像处理操作,如图像读取、显示、转换和滤波。
5.能够运用Matlab图像处理工具箱进行高级图像处理,如边缘检测、特征提取和图像分割。
6.能够结合实际问题,设计和实现Matlab图像处理算法。
情感态度价值观目标:1.培养学生的创新意识和解决问题的能力。
2.培养学生的团队合作精神和沟通协调能力。
3.培养学生的科学态度和严谨的学术风气。
二、教学内容根据教学目标,本课程的教学内容主要包括以下几个方面:1.图像处理基本概念和原理:包括图像的表示、图像的运算和图像的属性等。
2.Matlab图像处理基本函数:包括图像读取、显示、转换和滤波等操作。
3.Matlab图像处理工具箱:包括边缘检测、特征提取和图像分割等高级处理技术。
4.实际应用案例:结合具体问题,介绍Matlab图像处理在实际应用中的解决方案。
三、教学方法为了达到教学目标,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过教师的讲解,使学生掌握图像处理的基本概念和原理,以及Matlab图像处理的基本函数和工具箱。
2.讨论法:通过小组讨论,培养学生的团队合作精神和沟通协调能力,同时促进学生对图像处理问题的深入思考和理解。
3.案例分析法:通过分析实际应用案例,使学生能够将图像处理理论和方法应用于解决实际问题,培养学生的创新意识和解决问题的能力。
4.实验法:通过实验操作,使学生能够亲手实践图像处理操作,加深对图像处理原理和方法的理解,培养学生的实验技能和动手能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,本课程将使用以下教学资源:1.教材:选择权威、实用的Matlab图像处理教材,作为学生学习的基础资料。
基于matlab的图像处理的课程设计

基于matlab的图像处理的课程设计一、课程目标知识目标:1. 理解图像处理的基本概念,掌握图像处理的基本原理;2. 学习使用MATLAB软件进行图像处理,掌握相关函数和工具箱的使用方法;3. 掌握图像增强、边缘检测、图像分割等常用图像处理技术;4. 了解图像处理在实际应用中的典型案例,如数字图像处理、计算机视觉等领域。
技能目标:1. 能够运用MATLAB软件进行图像读取、显示、保存等基本操作;2. 熟练运用MATLAB进行图像增强、边缘检测、图像分割等处理技术;3. 能够结合实际问题,运用所学知识解决图像处理中的具体问题;4. 培养编程思维和动手能力,提高实际操作和解决问题的能力。
情感态度价值观目标:1. 培养学生对图像处理技术的兴趣,激发学生的学习热情;2. 培养学生的团队合作精神,提高沟通与协作能力;3. 增强学生对我国图像处理技术发展的自豪感,树立科技创新意识;4. 引导学生关注图像处理技术在现实生活中的应用,培养学以致用的意识。
课程性质:本课程为选修课,适合对图像处理和计算机视觉感兴趣的 学生,具有一定的编程基础。
学生特点:学生具备一定的数学基础和编程能力,对新鲜事物充满好奇,喜欢探索和实践。
教学要求:结合课程特点,注重理论与实践相结合,强调动手实践,培养学生的实际操作能力。
通过案例分析,使学生更好地理解图像处理技术的应用价值。
在教学过程中,注重启发式教学,引导学生主动思考,提高解决问题的能力。
二、教学内容1. 图像处理基本概念:图像类型、图像格式、颜色空间等;2. MATLAB软件入门:安装与配置、基本操作、函数与脚本编写;3. 图像读取与显示:imread、imshow、imwrite等函数的使用;4. 图像增强:线性变换、直方图均衡化、自适应直方图均衡化等;5. 边缘检测:Sobel算子、Prewitt算子、Canny算子等;6. 图像分割:阈值分割、区域生长、分水岭算法等;7. 特征提取与描述:颜色特征、纹理特征、形状特征等;8. 图像处理在实际应用中的案例分析:数字图像处理、计算机视觉等;9. 综合实践:结合所学内容,完成一个图像处理项目。
matlab图像处理课程设计

matlab图像处理课程设计一、课程目标知识目标:1. 理解并掌握Matlab软件在图像处理领域的基本功能与操作方法。
2. 学习并掌握图像处理的基本概念,包括图像的表示、类型转换、灰度变换、滤波等。
3. 掌握图像处理中常用的算法,如边缘检测、图像增强、图像分割等。
技能目标:1. 能够独立使用Matlab软件进行图像读取、显示、保存等基本操作。
2. 能够运用Matlab进行图像的灰度变换、滤波处理,实现图像增强。
3. 能够运用边缘检测、图像分割等方法对图像进行处理,解决实际问题。
情感态度价值观目标:1. 培养学生对图像处理领域的兴趣,激发其探索精神,使其乐于学习、主动探究。
2. 培养学生的团队协作意识,使其在课程实践过程中学会与他人合作、共同解决问题。
3. 引导学生认识到图像处理技术在现实生活中的广泛应用,提高学生的技术应用意识。
课程性质分析:本课程为高中年级的选修课程,以实践操作为主,理论讲解为辅。
课程内容紧密联系实际,注重培养学生的动手能力和解决实际问题的能力。
学生特点分析:高中年级学生具备一定的数学基础和编程能力,对新鲜事物充满好奇,但学习时间有限,需要在课程设计中充分考虑学生的学习负担。
教学要求:1. 确保课程内容与教材紧密关联,注重实用性和操作性。
2. 课程设计要符合学生特点,难度适中,注重激发学生的学习兴趣。
3. 教学过程中要注重理论与实践相结合,引导学生将所学知识应用于实际问题。
二、教学内容1. 图像处理基础知识:- 图像的表示与类型转换- 图像的读取、显示与保存2. 图像灰度变换与滤波:- 灰度变换方法(线性、对数、幂次)- 图像滤波(低通、高通、带通滤波器)3. 图像增强:- 直方图均衡化- 自适应直方图均衡化- 图像锐化4. 边缘检测:- 索贝尔算子- 拉普拉斯算子- Canny边缘检测5. 图像分割:- 阈值分割- 区域生长- 水平集方法6. 实践案例分析:- 选择具有代表性的图像处理案例,如车牌识别、人脸识别等,结合所学的理论知识进行实践操作。
matlab数字图像处理课程设计

matlab 数字图像处理课程设计一、课程目标知识目标:1. 掌握Matlab中数字图像处理的基本概念和常用算法;2. 学习并理解数字图像处理中的图像增强、边缘检测和图像分割等关键技术;3. 了解数字图像处理在实际应用中的发展及其在各领域的应用。
技能目标:1. 能够运用Matlab软件进行数字图像的读取、显示和保存等基本操作;2. 熟练运用Matlab实现图像增强、边缘检测和图像分割等算法;3. 能够运用所学知识解决实际问题,对图像进行处理和分析。
情感态度价值观目标:1. 培养学生对数字图像处理的兴趣,激发学生的学习热情;2. 培养学生的团队合作意识和创新精神,使其在学习和实践中不断探索新知识;3. 使学生认识到数字图像处理技术在科技发展和国防建设中的重要作用,增强学生的社会责任感和使命感。
课程性质:本课程为选修课,适用于高年级本科生或研究生。
课程内容紧密结合实际,强调实践操作和动手能力。
学生特点:学生已具备一定的编程基础和数学知识,对数字图像处理有一定了解,但实践能力有待提高。
教学要求:注重理论与实践相结合,强调学生的主体地位,鼓励学生积极参与讨论和动手实践。
通过课程学习,使学生能够将所学知识应用于实际问题中,提高解决实际问题的能力。
二、教学内容1. 数字图像处理基础- 图像的基本概念、类型和表达方式- Matlab中图像的读取、显示和保存- 图像的数学变换:灰度变换、几何变换2. 图像增强- 线性滤波和非线性滤波- 图像锐化技术- 频域滤波:低通滤波、高通滤波3. 边缘检测- 边缘检测的基本原理- 常用边缘检测算子:Sobel、Prewitt、Roberts、Canny4. 图像分割- 阈值分割法- 区域分割法- 边缘分割法5. 应用案例分析- 图像增强在医学图像处理中的应用- 边缘检测在机器视觉中的应用- 图像分割在目标识别中的应用教学内容安排与进度:1. 数字图像处理基础(2周)2. 图像增强(3周)3. 边缘检测(2周)4. 图像分割(3周)5. 应用案例分析(2周)本教学内容基于教材章节进行组织,涵盖数字图像处理的核心知识点,注重理论与实践相结合,旨在提高学生的实际操作能力。
matleb图像处理课程设计

matleb图像处理课程设计一、课程目标知识目标:1. 理解MATLAB中图像处理的基本概念,掌握图像的读取、显示和保存方法。
2. 学习图像的基本运算,包括算术运算、逻辑运算以及几何变换。
3. 掌握图像滤波、边缘检测和图像分割等常用图像处理技术。
技能目标:1. 能够运用MATLAB软件进行图像的读取、显示和保存,并熟练操作图像处理工具箱。
2. 培养学生运用MATLAB进行图像处理算法编程的能力,实现图像的基本运算和常用处理技术。
3. 提高学生分析问题、解决问题的能力,使其能够针对实际图像处理问题选择合适的算法并优化。
情感态度价值观目标:1. 激发学生对图像处理领域的兴趣,培养其主动探索、积极进取的学习态度。
2. 培养学生的团队协作能力,使其在合作中学会相互尊重、分享经验。
3. 增强学生的实践意识,使其认识到理论知识在实际应用中的重要性。
课程性质:本课程为选修课,旨在让学生在学习过程中掌握MATLAB图像处理的基本知识和技能。
学生特点:学生具备一定的编程基础,对图像处理有一定了解,但对MATLAB软件的使用和图像处理算法的实践应用尚不熟练。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,充分调动学生的积极性,引导学生在实践中掌握图像处理技术。
通过课程学习,使学生能够独立完成图像处理相关任务,并具备一定的实际问题解决能力。
二、教学内容1. 图像处理基础- 图像的表示和分类- MATLAB图像处理工具箱介绍- 图像的读取、显示和保存2. 图像基本运算- 算术运算与逻辑运算- 几何变换原理及实现3. 图像滤波- 基本滤波原理及分类- 常用滤波器设计与应用4. 边缘检测- 边缘检测算法原理- 常用边缘检测算子及应用5. 图像分割- 图像分割方法概述- 基于阈值的分割方法- 基于边缘的分割方法6. 实践应用- 实践项目一:图像增强与滤波- 实践项目二:边缘检测与图像分割- 实践项目三:综合应用案例分析教学内容安排与进度:- 第1周:图像处理基础,图像读取、显示和保存- 第2周:图像基本运算,算术运算与逻辑运算- 第3周:图像基本运算,几何变换- 第4周:图像滤波,基本滤波原理及分类- 第5周:图像滤波,常用滤波器设计与应用- 第6周:边缘检测,边缘检测算法原理及算子- 第7周:图像分割,分割方法概述及实践- 第8周:实践应用,三个实践项目的实施与讨论教学内容与教材关联性:本教学内容紧密结合教材,按照教材章节进行组织,涵盖图像处理的基础知识、核心技术和实践应用。
matla在图片处理课程设计

matla在图片处理课程设计一、课程目标知识目标:1. 学生能理解并掌握MATLAB在图片处理中的基本操作,如读取、显示、保存图片。
2. 学生能运用MATLAB进行基本的图像变换,包括灰度转换、二值化处理等。
3. 学生能了解并运用MATLAB进行图像滤波、边缘检测等图像处理技术。
技能目标:1. 学生能熟练使用MATLAB软件进行图片的读取、显示和保存。
2. 学生能运用MATLAB进行图片的灰度转换、二值化处理,并对处理结果进行分析。
3. 学生能通过MATLAB实现图像滤波、边缘检测等操作,提高图像处理技能。
情感态度价值观目标:1. 学生通过学习MATLAB图片处理技术,培养对图像处理领域的兴趣,激发学习热情。
2. 学生在学习过程中,培养团队协作意识,学会分享、讨论和解决问题。
3. 学生通过实践操作,认识到科技在现实生活中的应用,增强实践能力,提高创新精神。
课程性质:本课程为实践性较强的课程,以MATLAB软件为工具,结合图片处理技术,使学生掌握图像处理的基本方法。
学生特点:学生具备一定的计算机操作基础,对图像处理有一定了解,但对MATLAB软件操作较陌生。
教学要求:教师需结合学生特点,由浅入深地进行教学,注重理论与实践相结合,关注学生个体差异,提高学生的实践操作能力。
通过教学设计和评估,确保学生达到课程目标,实现具体学习成果。
二、教学内容1. MATLAB软件基础操作:包括软件安装、界面认识、基本命令介绍,重点讲解图片读取(imread)、显示(imshow)、保存(imwrite)等函数。
教材章节:第一章 MATLAB基础操作2. 图像灰度转换与二值化处理:介绍灰度转换的原理,讲解im2gray函数的使用;阐述二值化处理的方法,讲解imbinarize函数的应用。
教材章节:第二章 图像预处理3. 图像滤波技术:讲解各种滤波器(如高斯滤波、中值滤波等)的原理和适用场景,演示filter2、medfilt2等函数的使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB GUI 设计目录一、课程设计目的 (3)二、课程设计要求 (3)三、课程设计的内容 (3)四、题目分析 (3)五、总体设计 (4)六、具体设计 (5)6.1、文件 (5)6.1.1、打开 (5)6.1.2、保存 (5)6.1.3、退出 (5)6.2、编辑 (5)6.2.1、灰度 (5)6.2.2、亮度 (6)6.2.3、截图 (7)6.2.4、缩放 (7)6.3、旋转 (9)6.3.1、上下翻转 (9)6.3.2、左右翻转 (9)6.3.3任意角度翻转 (9)6.4、噪声 (10)6.5、滤波 (10)6.6、直方图统计 (11)6.7、频谱分析 (12)6.7.1、频谱图 (12)6.7.2、通过高通滤波器........................... .. (12)6.7.3、通过低通滤波器...................................... . (13)6.8、灰度图像处理................................................ . . (14)6.8.1、二值图像……………………………………………….. .146.8.2、创建索引图像............................................. (14)6.9、颜色模型转换 (14)6.10、操作界面设计 (15)七、程序调试及结果分析 (15)八、心得体会 (16)九、参考文献 (17)十、附录 (18)基于MATLAB的图像处理的课程设计摘要:数字图像处理技术是20世纪60年代发展起来的一门新兴学科,随着图像处理理论和方法的进一步完善,使得数字图像处理技术在各个领域得到了广泛应用,并显示出广阔的应用前景。
MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。
它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。
根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或编程以完成各自的计算。
MATLAB中集成了功能强大的图像处理工具箱。
由于MATLAB语言的语法特征与C语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式,而且这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以MATLAB在图像处理的应用中具有很大的优势。
关键词:MATLAB,数字图像处理一、课程设计目的综合运用MATLAB工具箱实现图像处理的GUI程序设计。
二、课程设计要求1)熟悉和掌握MA TLAB 程序设计方法2)掌握MATLAB GUI 程序设计3)学习和熟悉MA TLAB图像处理工具箱4)学会运用MATLAB工具箱对图像进行处理和分析三、课程设计的内容学习MATLAB GUI程序设计,利用MATLAB图像处理工具箱,设计和实现自己的Photoshop 。
要求:按照软件工程方法,根据需求进行程序的功能分析和界面设计,给出设计详细说明。
然后按照自己拟定的功能要求进行程序设计和调试。
以下几点是程序必须实现的功能。
1)图像的读取和保存。
2)设计图形用户界面,让用户能够对图像进行任意的亮度和对比度变化调整,显示和对比变换前后的图像。
3)设计图形用户界面,让用户能够用鼠标选取图像感兴趣区域,显示和保存该选择区域。
4)编写程序通过最近邻插值和双线性插值等算法将用户所选取的图像区域进行放大和缩小整数倍的操作,并保存,比较几种插值的效果。
5)图像直方图统计和直方图均衡,要求显示直方图统计,比较直方图均衡后的效果。
6)能对图像加入各种噪声,并通过几种滤波算法实现去噪并显示结果。
比较去噪效果。
四、题目分析信息化社会中,计算机在各种信息处理中发挥着重要的作用。
我们可以借助计算机,对数字图像进行处理,以达到不同的效果。
根据题目的要求,除了实现要求的功能外,还有很多的功能需要用到。
(1)、将一个RGB图像转换为灰度图像。
(2)、可以对图像做各种变换,如旋转等。
(3)、有时并不需要图像显示其细节部分,只要其轮廓,这时候不要很高的灰度级。
可以把图像转换为二值图像,进行图像腐蚀,或是创建索引图像等。
(4)、分析一个图像的频谱特征,利用傅里叶变换,将图像从空间域变换到频域,然后进行各种处理,经过高通滤波器或是低通滤波器。
(5)、为了科学地定量描述和使用颜色,人们提出了各种颜色模型,按用途可分为三类:计算颜色模型,视觉颜色模型和工业颜色模型。
有时为了不同的需要,要对颜色模型进行转换。
五、总体设计由于要实现的功能并不是很多,所以在排版的过程中,把各个功能都安排在目录栏上,整体安排如下图所示:同时在调节亮度时,虽然可以同对话框的形式输入调节的比例系数,但是这样效果不好了,不容易调节,因此这里考虑用滚动条来调节。
因此,总体的设计界面如下图所示:六、具体设计6.1、文件6.1.1、打开为了让使用者更方便的使用,所以在设计的时候,通过对话框的形式来选择文件,选择uigetfile函数来实现,uigetfile函数显示一个打开文件对话框,该对话框自动列出当前路径下的目录和文件,由于这个GUI程序的操作对象是图像文件,所以设置这里的缺省后缀名为“.bmp”。
Uigetfile函数的调用格式为[name,path]=yigetfile(…), 在按下对话框中的执行按钮“打开”后,返回选择的文件名和路径,分别保存到“name”和“path”中。
如果按下取消按钮或是发生错误,则返回值是0。
根据返回值的情况,如果是0,则弹出提示错误的对话框,否则,通过imread函数读出图像数据,把图像数据赋值给全局变量handles.img。
6.1.2、保存同样也通过对话框的形式来保存图像数据,通过uigetfile函数选择文件名和路径,用getimage(gca)取出坐标2变换后的图像数据保存到变量i,最后用imwrite 函数,把数据i存到指定的文件。
6.1.3、退出退出比较简单,程序如下所示:clc;close all;close(gcf);6.2、编辑6.2.1、灰度由于RGB图像是三维图像,所以图像数据是一个三维数组,为了显示灰度图像,把三维图像降为二维,可以只取其中的二维数据,实现方法程序为:y=(handles.img(:,:,1)); %当然也可以选择(:,:,2) 或(:,:,3)••••imshow(y);但是这样的话,根据程序所选的不同,图像数据也不同,显示也就不一样。
另一种方法就是,运用rgb2gray函数实现彩色图像到灰度图像的转换。
程序为:y=rgb2gray(handles.img); •••••imshow(y);这个程序只能用于RGB图像转换灰度图像,当原始图像本来就是灰度图像时,运行该程序时就会出错,但是使用者在使用时有时并不知道这些,为了使该程序更加完善,应该在使用者原先图像时灰度图像时使用该功能时,应该要显示提示类信息。
所以在开始时应该要有一个RGB图像或是灰度图像的判断过程。
完整的程序如下:if isrgb(handles.img)y=rgb2gray(handles.img);•••••imshow(y);elsemsgbox('这已经是灰度图像','转换失败');end如果原图是RGB,执行该操作的结果如下图:如果原图本身已经是灰度图像了,执行该操作弹出如右图所示的提示对话框6.2.2、亮度用imadjust函数,其调用格式如下:g=imadust(f,[low_in high_in],[low_out high_out]),gamma)gamma 表示映射性质,默认值是1 表示线性映射。
由于该函数有五个参数需要输入,为了方便用户改变,所以这里设计一个输入对话框,用户通过对话框把五个参数赋值给[low_in high_in],[low_out high_out],gamma这五个参数,如下一组命令建立了如图所示的输入对话框:prompt={'输入参数1','输入参数2','输入gamma'};defans={'[0 0.7]','[0 1]','1'};p=inputdlg(prompt,'输入参数',1,defans);但是,这种方法并不能很好的让用户能够对图像进行任意的亮度和对比度变化调整,有时并不事先知道参数的值要多少,也不关心,而是任意调节的,直到满意为止。
所以应该用滑动条来调节图像的亮度和对比度,这样更适合用户的使用习惯。
由于imadjust函数有五个参数,所以原则上需要设计五个滑动条来调节对比度,这对用户来说显然比较麻烦,因此在设计的时候固定其中的三个参数,通过调节两个参数的值来改变亮度和对比度。
[0 handles.beta],[0 1],handles.gm,这里的变量handles.beta和handles.gm就通过滑动条得到,滑动条设计如下图:亮度调整的tag名为ld,取值范围0~1,gamma值的tag名为gamma,取值范围为0~5。
获取滑动条参数的程序如下:handles.beta=get(handles.ld,'value');handles.gm=get(handles.gamma,'value');执行该操作,调节滑动条到上图所示位置,结果如下图:6.2.3、截图在MATLAB中,用函数imcrop实现对图像的剪切操作。
该操作剪切的是图像中的一个矩形子图,用户可以通过参数指定这个矩形四个顶点的坐标,也可以交互地用鼠标选取这个矩形。
Imcrop函数的调用格式如下:y=imcrop(handles.img);不管handles.img是三维的还是二维数据,该函数都能进行操作。
下图就是对三维图像的截图:6.2.4、缩放在MATLAB中,用函数imresize来实现对图像的放大或缩小。
插值方法可选用三种方法,最近邻插值,双线性插值,双三次插值。
该函数的调用格式如下:B=imresize(A,m,method)其中:参数method用于指定插值的方法,可选的值为“nearest”(最近邻法),“bilinear”(双线性插值)、“bicubic”(双三次插值),缺省值为“nearest”。
B=imresizee(A.m,method)表示返回原图A的m倍放大图像(m小于1时实际上是缩小);下图就是采用邻近插值法的放大和缩小图像,参数值保持默认设置:虽然处理后看不出放大的效果,这是由于坐标轴限制的原因,如果把处理后的图片保存起来,再把处理后的文件打开,就可以看到比较明显的放大效果。