数学分析定积分
定积分的算法及其特殊形式
定积分的算法及其特殊形式定积分是数学分析中非常重要的一种工具,它不仅可以用来求解函数的面积、体积等重要概念,还可以应用于众多实际问题的解决。
本文将主要讲述定积分的算法,以及一些特殊形式的定积分。
一、定积分的算法定积分的算法可以分为两种:牛顿-莱布尼茨公式法和基本公式法。
1. 牛顿-莱布尼茨公式法牛顿-莱布尼茨公式是定积分的核心衍生公式之一,它是由牛顿和莱布尼茨独立发明的。
该公式的形式如下:∫a~b f(x)dx=F(b)−F(a)其中,f(x)为原函数,F为f(x)的不定积分。
该公式是一个非常重要的抽象概念,虽然很多人并不清楚它的实际应用意义,但它在实际问题的解决中发挥着重要的作用。
2. 基本公式法基本公式法是一种可以求解多种不同形式的定积分的算法。
它通过根据求解特定的积分形式来选择合适的基本公式进行计算,从而实现高效、准确地求解定积分。
常见的基本公式有:- 积分中含有幂函数该类型积分可以应用幂函数的反函数来求解。
例如:∫a~b x^2dx = [x^3/3]_a^b- 函数含有多项式的乘积该类型积分可以应用几何级数的原理进行求解。
例如:∫a~b (2x+1)(x+2)dx = [(x^2+5x)/2]_a^b- 积分为三角函数该类型积分可以应用三角函数的和差化积、倍角公式等来进行求解。
例如:∫0~π/2 sinx dx = [−cosx]_0^π/2二、特殊形式的定积分除了上述的基本算法之外,定积分还有一些特殊形式,这些形式的积分比较特殊,常常难以直接求解,需要使用特殊的算法进行处理。
1. 瑕积分瑕积分是指在一定区间内,函数在某一个点或多个点发生了突变或不连续的情况,这种函数在该区间上的积分即为瑕积分。
例如:∫0~1 1/√x dx该式中的分母在x=0处是无限大的,因此我们需要对该瑕积分进行处理。
方法有二,一种是进行主部分的积分,另一种是直接代入Cesaro可积条件进行计算。
2. 科特迪瓦积分科特迪瓦积分是一类复积分,它可以把一个点集划分成多个小块,然后在每个小块内使用复积分来求解。
数学分析第十章 定积分的应用
x x(t) y y(t)
t [, ]
给出,在[, ]上y(t)连续, x(t)连续可微,
且x'(t) 0,记a x( ),b x( ),则
曲边梯形的面积
A y(t)x' (t) dt.
例2
求椭圆 x2 a2
y2 b2
1的面积.
解
椭圆的参数方程
x y
a cos t bsin t
对一个立体,如果知道该立体上垂直于一 定轴的各个截面面积,那么,这个立体的体积 也可用定积分来计算.
如图,设 A( x)
表示过点 x且 a o
垂直于 x轴的
x
bx
截面面积。
A( x)为 x的已知连续函数,
取积分变量为 x,变化范围[a,b]
相应于[a, b]上的任一小区间[ x, x dx],
立体位于该小区间部分而成的薄片的体积近似看成是 以 A(x) 为底面积、 dx 为高的扁圆柱体的体积,即
1.由连续曲线
y f ( x)( f ( x) 0)、x 轴与两条直线 x a、 x b所围成的平面图形
的面积。
y
y f (x)
oa
bx
2.如果y=f(x)在[a,b]上不都是非负时,如下图
定积分 公式
定积分公式
1、定积分公式:积分是微积分学与数学分析里的一个核心概念。
通常分为定积分和不定积分两种。
直观地说,对于一个给定的实函数f (x) ,在区间a,b]上的定积分记为: .(a,b)[f(x)+g(x)]dx=J(a,b)f(x)J(a,b)g(x)dxJ(a,b)kf(x)dx=k/(a,b)f(x)dx,若f (x) 在a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f (x)) 、直线x=a、
x=b以及x轴围成的面积值(一种确定的实数值)。
初等定积分就是计算曲线下方大的面积大小,方法将背积变量区间分成无限小的小格,再乘以响应函数值近似求和取极限,可以证明在积分变量是自变量的话,积分和导数运算是逆运算(牛顿莱布尼兹公式)
2、定积分简介: 积分是微分的逆运算,即知道了函数的导函数,反求原函数。
在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
主要分为定积分、不定积分以及其他积分。
积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。
数学分析完整版本ppt课件
返回
牛 顿(I.Newton 1642.12.25—1727.3.3)
英国数学家和物理学家出生在一个农民家庭,出生前父亲就去世了, 三岁母亲改嫁,由外祖母抚养。1661年入剑桥大学,1665年获学士学位, 1668年获硕士学位。由于他出色的成就,1669年巴鲁(Barrow)把数学 教授的职位让给年仅26岁的牛顿。1703 年被选为英国皇家学会会长。牛 顿一生成就辉煌,堪称科学巨匠。最突出的有四项重大贡献:创立微积 分,为近代数学奠定了基础,推动了整个科学技术的发展。他发现了力 学三大定律,为经典力学奠定了基础;他发现了万有引力为近代天文学 奠定了基础;他对光谱分析的实验,为近代光学奠定了基础 。他的巨著 《自然哲学的数学原理》影响深远,他被公认为历史上伟大的科学家。可 惜他晚年研究神学,走了弯路。
n
n
1
i
2
n
1 n
它的面积
ΔSi
(1
i2 n2
)
1 n
所求的总面积
Sn
n (1 i1
i2 n2
)
1 n
1
1 n3
n
i
2
i 1
1
2n
2 3n 6n 2
1
2 3
我 们 分 别 取 n=10, 50, 100 用 计 算 机 把 它 的 图 象 画 出 来 , 并 计
算出面积的近似值:
clf, n=10; x=0:1/n:1;
四.小结: 学习定积分,不仅要理解、记住定积分的定义,还要学习建立定积分概念
的基本思想,我们以后的学习中还会遇到其它类型的积分,比如勒贝格积分、
斯蒂疌斯积分等,只要理解了定积分的思想,其他类型的积分就很容易理解了。
现在我们再来总结一下定积分建立的的思想和方法:从定积分的实例和概念中
数学分析定积分课件5
所以可积函数不一定有原函数。
f
(
x)
x
2
sin
1 x2
,
0,
x 0且x [1,1] x0
f
( x)
2x sin
1 x2
2 x
cos
1 x2
,
x 0且x [1,1]
上午9时15分13秒
0,
x0
上一页 下一页 主 页 返回 退出
f ( x)在[1,1]无界,从而不可积, 但f ( x)在[1,1]的原函数是f ( x), 即说明有原函数的函数不一定可积。
但并非可积函数只有这3类。如:黎曼函数 不属于这3类的任何一类,但它是可积的。
在[a,b]上函数的间断点形成收敛的数列, 则函数在[a,b]可积。
上午9时15分13秒
上一页 下一页 主 页 返回 退出
8、利用不定积分计算定积分 ——牛-莱公式
(1)线性;恒等变形;换元;分部积分; 一些特殊类型函数的积分。
尼氏体 Nissl body
H-E染
镀银染
色
色 上一页 下一页 主 页 返回 退出
不同形态
小块状的尼氏体
细颗粒样的尼氏体
上一页 下一页 主 页 返回 退出
突触 粗面内质网
核蛋白体 脂褐素 微管
上一页 下一页 主 页 返回 退出
尼氏体(Nissl body):又称为嗜染质 (chromophil substance), 是分布于 胞质或树突内的小块状或颗粒状的 嗜碱性物质。电镜下,尼氏体为发 达的粗面内质网和游离核蛋白体, 是蛋白质合成的场所。
上午9时15分13秒
上一页 下一页 主 页 返回 退出
6、可积条件
必要条件 若函数f在[a,b]上可积,则f在[a,b]上必定有界。
数学分析9.4定积分的性质
第九章 定积分 4 定积分的性质一、定积分的基本性质性质1:若f 在[a,b]上可积,k 为常数,则kf 在[a,b]上也可积,且⎰bakf(x )dx=k ⎰baf(x )dx.证:当k=0时结论成立. 当k ≠0时,∵f 在[a,b]上可积,记J=⎰ba f(x )dx , ∴任给ε>0,存在δ>0,当║T ║<δ时,|i n1i i x △)ξ(f ∑=-J|<|k |ε; 又|i n 1i i x △)ξ(kf ∑=-kJ|=|k|·|i n1i i x △)ξ(f ∑=-J|<|k|·|k |ε=ε,∴kf 在[a,b]上可积, 且⎰b a kf(x )dx=k ⎰ba f(x )dx.性质2:若f,g 都在[a,b]上可积,则f ±g 在[a,b]上也可积,且⎰±bag(x )][f(x )dx=⎰b af(x )dx ±⎰bag(x )dx.证:∵f,g 都在[a,b]上可积,记J 1=⎰ba f(x )dx ,J 2=⎰ba g(x )dx. ∴任给ε>0,存在δ>0,当║T ║<δ时,有|i n1i i x △)ξ(f ∑=-J 1|<2ε,|i n1i i x △)ξ(g ∑=-J 2|<2ε.又|i n1i i i x △)]ξ(g )ξ([f ∑=+-(J 1+J 2) |=|(i n1i i x △)ξ(f ∑=-J 1)+(i n1i i x △)ξ(g ∑=-J 2)|≤|i n1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε;|i n 1i i i x △)]ξ(g )ξ([f ∑=--(J 1-J 2) |=|(i n 1i i x △)ξ(f ∑=-J 1)+( J 2-i n1i i x △)ξ(g ∑=)|≤|i n 1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε.∴f ±g 在[a,b]上也可积,且⎰±b a g(x )][f(x )dx=⎰b a f(x )dx ±⎰ba g(x )dx.注:综合性质1与性质2得:⎰±ba βg(x )]αf(x ) [dx=α⎰b a f(x )dx ±β⎰ba g(x )dx.性质3:若f,g 都在[a,b]上可积,则f ·g 在[a,b]上也可积.证:由f,g 都在[a,b]上可积,从而都有界,设A=]b ,a [x sup ∈|f(x)|,B=]b ,a [x sup ∈|g(x)|,当AB=0时,结论成立;当A>0,B>0时,任给ε>0,则存在分割T ’,T ”, 使得∑'T i i f x △ω<B 2ε,∑''T i i g x △ω<A 2ε. 令T=T ’+T ”,则对[a,b]上T 所属的每一个△i ,有 ωi f ·g =]b ,a [x ,x sup ∈'''|f(x ’)g(x ’)-f(x ”)g(x ”)|≤]b ,a [x ,x sup ∈'''[|g(x ’)|·|f(x ’)-f(x ”)|+|f(x ”)|·|g(x ’)-g(x ”)|]≤B ωi f +A ωi g .又∑⋅Ti g f i x △ω≤B ∑Ti f i x △ω+A ∑Ti g i x △ω≤B ∑'T i f i x △ω+A ∑''T i g i x △ω<B ·B 2ε+A ·A2ε=ε. ∴f ·g 在[a,b]上可积.注:一般情形下,⎰ba f(x )g(x )dx ≠⎰b af(x )dx ·⎰bag(x )dx.性质4:f 在[a,b]上可积的充要条件是:任给c ∈(a,b),f 在[a,c]与[c,b]上都可积. 此时又有等式:⎰ba f(x )dx=⎰c a f(x )dx+⎰bc f(x )dx. 证:[充分性]∵f 在[a,c]与[c,b]上都可积.∴任给ε>0,分别存在对[a,c]与[c,b]的分割T ’,T ”,使得∑'''T i i x △ω<2ε,∑''''''T i i x △ω<2ε. 令[a,b]上的分割T=T ’+T ”,则有∑Tiix△ω=∑'''Tiix△ω+∑''''''Tiix△ω<2ε+2ε=ε,∴f在[a,b]上可积.[必要性]∵f在[a,b]上可积,∴任给ε>0,存在[a,b]上的某分割T,使∑Tiix△ω<ε. 在T上增加分点c,得分割T⁰,有∑︒︒︒Tiix△ω≤∑Tiix△ω<ε.分割T⁰在[a,c]和[c,b]上的部分,分别构成它们的分割T’和T”,则有∑'' 'Tiix△ω≤∑︒︒︒Tiix△ω<ε,∑''''''Tiix△ω≤∑︒︒︒Tiix△ω<ε,∴f在[a,c]与[c,b]上都可积.又有∑︒︒︒Tiix)△f(ξ=∑'''Tiix)△ξf(+∑''''''Tiix)△ξf(,当║T⁰║→0时,同时有║T’║→0,║T”║→0,对上式取极限,得⎰b a f(x)dx=⎰c a f(x)dx+⎰b c f(x)dx. (关于积分区间的可加性)规定1:当a=b时,⎰baf(x)dx=0;规定2:当a>b时,⎰baf(x)dx=-⎰a b f(x)dx;以上规定,使公式⎰baf(x)dx=⎰c a f(x)dx+⎰b c f(x)dx对于a,b,c的任何大小顺都能成立.性质5:设f在[a,b]上可积. 若f(x)≥0, x∈[a,b],则⎰baf(x)dx≥0. 证:∵在[a,b]上f(x)≥0,∴f的任一积分和都为非负.又f在[a,b]上可积,∴⎰ba f(x)dx=in1iiTx△)f(ξlim∑=→≥0.推论:(积分不等式性)若f,g在[a,b]上都可积,且f(x)≤g(x), x∈[a,b],则有⎰baf(x)dx≤⎰b a g(x)dx.证:记F(x)=g(x)-f(x)≥0, x ∈[a,b],∵f,g 在[a,b]上都可积,∴F 在[a,b]上也可积.∴⎰b a F(x )dx=⎰b a g(x )dx-⎰b a f(x )dx ≥0,即⎰b a f(x )dx ≤⎰ba g(x )dx.性质5:若f 在[a,b]上可积,则|f|在[a,b]上也可积,且 |⎰b a f(x )dx|≤⎰ba |f(x )|dx.证:∵f 在[a,b]上可积,∴任给ε>0,存在分割T ,使∑Ti i f x △ω<ε,由不等式||f(x 1)|-|f(x 2)||≤|f(x 1)-f(x 2)|可得i ||f ω≤i f ω, ∴∑Ti i ||f x △ω≤∑Ti i f x △ω<ε,∴|f|在[a,b]上可积.又-|f(x)|≤f(x)≤|f(x)|,∴|⎰b a f(x )dx|≤⎰ba |f(x )|dx.例1:求⎰11-f(x )dx ,其中f(x)= ⎩⎨⎧<≤<≤.1x 0 ,e ,0x 1-1-2x x-, 解:⎰11-f(x )dx=⎰01-f(x )dx+⎰10f(x )dx=(x 2-x)01-+(-e -x )10=-2-e -1+1=-e -1-1.例2:证明:若f 在[a,b]上连续,且f(x)≥0,⎰ba f(x )dx =0,则 f(x)≡0, x ∈[a,b].证:若有x 0∈[a,b], 使f(x 0)>0,则由连续函数的局部保号性, 存在的x 0某邻域U(x 0,δ)(当x 0=a 或x 0=b 时,则为右邻域或左邻域), 使f(x)≥21f(x 0)>0,从而有⎰baf(x )dx =⎰δ-x a0f(x )dx+⎰+δx δ-x 00f(x)dx+⎰+bδx 0f(x)dx ≥0+⎰+δx δ-x 0002)f(x dx+0=δf(x 0)>0, 与⎰ba f(x )dx =0矛盾,∴f(x)≡0, x ∈[a,b].二、积分中值定理定理:(积分第一中值定理)若f 在[a,b]上连续,则至少存在一点 ξ∈[a,b],使得⎰ba f(x )dx =f(ξ)(b-a).证:∵f 在[a,b]上连续,∴存在最大值M 和最小值m ,由 m ≤f(x)≤M, x ∈[a,b],得m(b-a)≤⎰ba f(x )dx ≤M(b-a),即m ≤⎰baf(x)a -b 1dx ≤M. 又由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=⎰baf(x)a -b 1dx ,即⎰b a f(x )dx =f(ξ)(b-a).积分第一中值定理的几何意义:(如图)若f 在[a,b]上非负连续,则y=f(x)在[a,b]上的曲边梯形面积等于以f(ξ)为高,[a,b]为底的矩形面积.⎰ba f(x)a-b 1dx 可理解为f(x)在[a,b]上所有函数值的平均值.例3:试求f(x)=sinx 在[0,π]上的平均值. 解:所求平均值f(ξ)=⎰π0f(x)π1dx=π1(-cosx)π0|=π2.定理:(推广的积分第一中值定理)若f 与g 在[a,b]上连续,且g(x)在[a,b]上不变号,则至少存在一点ξ∈[a,b],使得g(x )f(x )ba⎰dx =f(ξ)⎰bag(x )dx.证:不妨设g(x)≥0, x ∈[a,b],M,m 分别为f 在[a,b]上的最大,最小值. 则有mg(x)≤f(x)g(x)≤Mg(x), x ∈[a,b],由定积分的不等式性质,有 m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰b a g(x )dx. 若⎰ba g(x )dx=0,结论成立.若⎰bag(x )dx>0,则有m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=dxg(x )g(x )dxf(x )b aba⎰⎰,即g(x )f(x )b a ⎰dx =f(ξ)⎰ba g(x )dx.习题1、证明:若f 与g 在[a,b]上可积,则i n1i i i 0T x △))g(ηf(ξlim ∑=→=⎰⋅ba g f , 其中ξi , ηi 是△i 内的任意两点. T={△i }, i=1,2,…,n.证:f 与g 在[a,b]上都可积,从而都有界,且fg 在[a,b]上可积. 设|f(x)|<M, x ∈[a,b],则对[a,b]上任意分割T ,有in 1i iix △))g(ηf(ξ∑==in1i iiiix△)]g(ξ-)g(η))[g(ξf(ξ∑=+=i n1i i i x △))g(ξf(ξ∑=+i g in1i i x △ω)f(ξ∑=≤i n1i i i x △))g(ξf(ξ∑=+M i n1i g i x △ω∑=.∴|i n 1i i i x △))g(ηf(ξ∑=-i n 1i i i x △))g(ξf(ξ∑=|≤M i n1i g i x △ω∑=.∴|i n 1i i i 0T x △))g(ηf(ξlim ∑=→-i n 1i i i 0T x △))g(ξf(ξlim ∑=→|≤0T lim →M i n1i g i x △ω∑==0 ∴i n 1i i i 0T x △))g(ηf(ξlim ∑=→=i n1i i i 0T x △))g(ξf(ξlim ∑=→=⎰⋅ba g f .2、不求出定积分的值,比较下列各对定积分的大小.(1)⎰10x dx 与⎰102x dx ;(2)⎰2π0x dx 与⎰2π0sinx dx.解:(1)∵x>x 2, x ∈(0,1),∴⎰10x dx>⎰102x dx.(2)∵x>sinx, x ∈(0,2π],∴⎰2π0x dx>⎰2π0sinx dx.3、证明下列不等式:(1)2π<⎰2π02x sin 21-1dx <2π;(2)1<⎰10x 2e dx<e ;(3)1<⎰2π0x sinx dx<2π;(4)3e <⎰4e e xlnx dx<6. 证:(1)∵1<x sin 21-112<21-11=2, x ∈(0,2π);∴⎰2π0dx <⎰2π02x sin 21-1dx <⎰2π02dx ,又⎰2π0dx =2π;⎰2π02dx=2π; ∴2π<⎰2π2x sin 21-1dx<2π.(2)∵1<2x e <e, x ∈(0,1);∴1=⎰10dx <⎰10x 2e dx<⎰10edx =e.(3)∵π2<x sinx <1,x ∈(0,2π);∴1=⎰2π0dx π2<⎰10x2e dx<⎰2π0dx =2π.(4)令'⎪⎭⎫ ⎝⎛x lnx =x 2lnx -2=0,得x lnx 在[e,4e]上的驻点x=e 2,又e x x lnx ==e 1,e 4x x lnx ==e 2ln4e ,∴在[e,4e]上e 1<x lnx <22elne =e 2;∴3e =⎰4eee1dx <⎰4eexlnx dx<⎰4eee2dx =6.4、设f 在[a,b]上连续,且f(x)不恒等于0. 证明:⎰ba 2[f(x )]dx>0. 证:∵f(x)不恒等于0;∴必有x 0∈[a,b],使f(x 0)≠0. 又由f 在[a,b]上连续,必有x ∈(x 0-δ, x 0+δ),使f(x)≠0,则⎰+δx δ-x 200f >0,∴⎰ba 2[f(x )]dx=⎰δ-x a20f +⎰+δx δ-x 200f +⎰+b δx 20f =⎰+δx δ-x 200f +0>0.注:当x 0为a 或b 时,取单侧邻域.5、若f 与g 都在[a,b]上可积,证明:M(x)=b][a,x max ∈{f(x),g(x)},m(x)=b][a,x min ∈{f(x),g(x)}在[a,b]上也都可积.证:M(x)=21(f(x)+g(x)+|f(x)-g(x)|);m(x)=21(f(x)+g(x)-|f(x)-g(x)|). ∵f 与g 在[a,b]上都可积,根据可积函数的和、差仍可积,得证.6、试求心形线r=a(1+cos θ), 0≤θ≤2π上各点极径的平均值.解:所求平均值为:f(ξ)=⎰2π0a 2π1(1+cos θ)d θ=2πa(θ+sin θ)2π=a.7、设f 在[a,b]上可积,且在[a,b]上满足|f(x)|≥m>0. 证明:f1在[a,b]上也可积. 证:∵f 在[a,b]上可积,∴任给ε>0,有∑Ti i x △ω<m 2ε.任取x ’,x ”∈△i ,则)x f(1''-)x f(1'=)x )f(x f()x f(-)x f(''''''≤2i mω.设f1在△i 上的振幅为ωi -,则ωi -≤2imω. ∴∑Ti -i x △ω≤∑Ti i 2x △ωm 1<2m1·m 2ε=ε,∴f 1在[a,b]上也可积.8、证明积分第一中值定理(包括定理和中的中值点ξ∈(a,b). 证:设f 在[a,b]的最大值f(x M )=M, 最小值为f(x m )=m , (1)对定理:当m=M 时,有f(x)≡m, x ∈[a,b],则ξ∈[a,b]. 当m<M 时,若m(b-a)=⎰b a f(x )dx ,则⎰ba m]-[f(x )dx=0,即f(x)=m , 而f(x)≥m ,∴必有f(x)≡m ,矛盾. ∴⎰ba f(x )dx >m(b-a). 同理可证:⎰ba f(x )dx <M(b-a).(2)对定理:不失一般性,设g(x)≥0, x ∈[a,b]. 当m=M 或g(x)≡0, x ∈[a,b]时,则ξ∈[a,b].当m<M 且g(x)>0, x ∈[a,b]时,若M ⎰ba g dx-⎰ba fg dx=⎰ba f)g -(M dx=0, 由(M-f)g ≥0,得(M-f)g=0. 又g(x)>0,∴f(x)≡M ,矛盾. ∴⎰ba fg dx <M ⎰ba g dx. 同理可证:⎰ba fg dx>m ⎰ba g dx. ∴不论对定理还是定理,都有ξ≠x M 且ξ≠x m .由连续函数介值定理,知ξ∈(x m ,x M )⊂(a,b)或ξ∈(x M ,x m )⊂(a,b),得证.9、证明:若f 与g 都在[a,b]上可积,且g(x)在[a,b]上不变号,M,m 分别为f(x)在[a,b]上的上、下确界,则必存在某实数μ∈[m,M],使得g(x )f(x )ba⎰dx =μ⎰bag(x )dx.证:当g(x)≡0, x ∈[a,b]时,g(x )f(x )ba ⎰dx =μ⎰bag(x )dx=0.当g(x)≠0时,不妨设g(x)>0,∵m ≤f(x)≤M, x ∈[a,b], ∴m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰bag(x )dx ,即m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.∴必存在μ∈[m,M],使g(x )f(x )b a ⎰dx =μ⎰ba g(x )dx.10、证明:若f 在[a,b]上连续,且⎰b a f(x )dx=⎰ba x f(x )dx=0,则在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0. 又若⎰ba 2f(x )x dx=0,则f 在(a,b)内是否至少有三个零点证:由⎰ba f =0知,f 在(a,b)内存在零点,设f 在(a,b)内只有一个零点f(x 1), 则由⎰ba f =⎰1x a f +⎰b x 1f 可得:⎰1x a f =-⎰bx 1f ≠0. 又f 在[a,x 1]与[x 1,b]不变号,∴⎰ba x f =⎰1x a x f +⎰b x 1xf =ξ1⎰1x a f +ξ2⎰b x 1f =(ξ2-ξ1)⎰bx 1f ≠0, (a<ξ1<x 1<ξ2<b),矛盾.∴f 在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0.记函数g=xf(x),则g 在[a,b]上连续,且⎰b a g(x )dx=⎰ba x f(x )dx=0, 又⎰ba x g(x )dx=⎰ba 2f(x )x dx=0,即有⎰b a g(x )dx=⎰ba x g(x )dx=0,∴g=xf(x)在(a,b)内至少存在两个零点,若f 在(a,b)内至少存在三个零点f(x 1)=f(x 2)=f(x 3)=0,则 g(x 1)=x 1f(x 1)=g(x 2)=x 2f(x 2)=g(x 3)=x 3f(x 3)=0,即g=xf(x)在(a,b)内至少存在三个零点g(x 1)=g(x 2)=g(x 3)=0,矛盾, ∴f 在[a,b]上连续,且⎰ba f(x )dx=⎰b a x f(x )dx=⎰ba 2f(x )x dx=0,则 f 在(a,b)内至少存在两个零点.11、设f 在[a,b]上二阶可导,且f ”(x)>0. 证明:(1)f ⎪⎭⎫⎝⎛+2b a ≤⎰-b a f(x)a b 1dx ; (2)又若f(x)≤0, x ∈[a,b],则有f(x)≥⎰-baf(x)a b 2dx, x ∈[a,b].证:(1)令x=a+λ(b-a), λ∈(0,1),则⎰-baf(x)a b 1dx=⎰+10a)]-λ(b f[a d λ, 同理,令x=b-λ(b-a),也有⎰-ba f(x)ab 1dx=⎰-10a)]-λ(b f[b d λ,则 ⎰-b a f(x)a b 1dx=⎰-++10a)]}-λ(b f[b a)]-λ(b {f[a 21d λ. 又f 在[a,b]上二阶可导,且f ”(x)>0,∴f 在[a,b]上凹,从而有21{f[a+λ(b-a)]+f[b-λ(b-a)]}≥f{21[a+λ(b-a)]+21f[b-λ(b-a)]}=f ⎪⎭⎫ ⎝⎛+2b a . ∴⎰-b a f(x)a b 1dx ≥⎰⎪⎭⎫ ⎝⎛+102b a f d λ=f ⎪⎭⎫⎝⎛+2b a . (2)令x=λb+(1-λ)a ,由f 的凹性得⎰-ba f(x)ab 1dx=⎰+10λ)a]}-f[(1b) {f(λd λ≤⎰+10λ)f(a)]-(1f(b) [λd λ =f(b)1022λ+ f(a)1022λ)-(1-=2f(b)f(a)+. 不妨设f(a)≤f(b),则f(a)≤f(x)≤0, x ∈[a,b],又f(b)≤0, ∴⎰-ba f(x)ab 2dx ≤f(a) +f(b)≤f(x).12、证明:(1)ln(1+n)<1+21+…+n1<1+lnn ;(2)lnnn 1211limn +⋯++∞→=1. 证:(1)对函数f(x)=x1在[1,n+1]上取△i =1作分割,并取△i 的左端点为ξi ,则和数∑=n1i i 1是一个上和,∴⎰+1n 1x 1dx<∑=n 1i i1,即ln(n+1)< 1+21+…+n1;同理,取△i 的右端点为ξi ,则和数∑=+1-n 1i 1i 1是一个下和,∴∑=+1-n 1i 1i 1<⎰n 1x 1dx , 即21+…+n 1<lnn ,∴1+21+…+n1<1+lnn. 得证.(2)由(1)知ln(1+n)<1+21+…+n 1<1+lnn ,∴lnn 1)ln(n +<lnnn 1211+⋯++<1+lnn 1; 又lnn 1)ln(n lim n +∞→=1n n lim n +∞→=1;∞→n lim (1+lnn 1)=1;∴lnnn 1211lim n +⋯++∞→=1.。
9-4——华东师范大学数学分析课件PPT
0, [a,c]与[c,b]上分割T与T, 使得
T
ixi
2
,
T
ixi
2
.
令 T T T, 它是 [a, b] 的一个分割,
ixi ixi ixi .
T
T
T
数学分析 第九章 定积分
高等教育出版社
§1 定积分的性质
定积分的性质
积分中值定理
因此, f 在 [a, b] 上可积.
(必要性) 已知 f 在[a,b]上可积, 则 0, T ,
b
f ( x)dx.
a
a
数学分析 第九章 定积分
高等教育出版社
§1 定积分的性质
定积分的性质
积分中值定理
性质2
若 f , g 在 [a, b] 上可积, 则 f g 在 [a, b] 上可积,
且
b
( f ( x) g( x))dx
b
f ( x)dx
b
g( x)dx.
a
a
a
证
记 J1
0,
存在分割T,使if xi T
; 又存在分
2M
割 T ,使
T
ig Δxi
2M
.
令T T T ( T 表示把 T 与 T 的所有分割点合
并而成的新分割 ), 则
数学分析 第九章 定积分
高等教育出版社
§1 定积分的性质
定积分的性质
积分中值定理
fg i
sup
f ( x)g( x) f ( x)g( x)
n
f (i )Δ xi J
i 1
. k 1
从而
数学分析 第九章 定积分
后退 前进 目录 退出
数学分析-定积分的应用
故
3.
求曲线
图形的公共部分的面积 .
解:
与
所围成
得
所围区域的面积为
设平面图形 A 由
与
所确定 提示:
选 x 为积分变量.
旋转体的体积为
4.
若选 y 为积分变量, 则
则有
一般地 , 当曲边梯形的曲边由参数方程
给出时,
则曲边梯形面积
二、参数方程情形
例3. 求由摆线
的一拱与 x 轴所围平面图形的面积 .
解:
且曲线不在自相交,
则曲线围成面积为:
所表示的曲线是封闭的,即
如果参数方程
例3. 求椭圆
解:
所围图形的面积 .
利用椭圆的参数方程
得
当 a = b 时得圆面积公式
三、极坐标情形
求由曲线
及
围成的曲边扇形的面积 .
在区间
上任取小区间
则对应该小区间上曲边扇形面积的近似值为
所求曲边扇形的面积为
对应 从 0 变
例5. 计算阿基米德螺线
解:
到 2 所围图形面积 .
例6. 计算心形线
所围图形的
面积 .
解:
(利用对称性)
例7. 计算心形线
与圆
所围图形的面积 .
提示:
方法1 利用对称性
旋转而成的环体体积 V
方法2 用柱壳法
说明: 上式可变形为
上
半圆为
下
此式反映了环体微元的另一种取法(如图所示).
备用题
解:
1. 求曲线
所围图形的面积.
显然
面积为
同理其它.
又
故在区域
数学分析定积分的概念
定积分概念一问题的提出不定积分和定积分是积分学中的两大基本问题,求不定积分是求导数的逆运算,而定积分则是某种特殊和式的极限,它们之间既有本质的区别,但也有紧密的联系。
先看两个实例。
1.曲边梯形的面积设函数)(x f 在闭区间],[b a 上连续,且0)(≥x f 。
则由曲线)(x f y =,直线a x =,b x =以及x 轴所围成的平面图形(如下左图),称为曲边梯形。
下面将讨论该曲边梯形的面积(这是求任何曲线边界图形的面积的基础)。
在区间],[b a 内任取1-n 个分点,依次为bx x x x x a n n =<<<<<=-1210 它们将区间],[b a 分割成n 个小区间],[1i i x x -,n i ,,2,1 =。
记为i x ∆,即],[1i i i x x x -=∆,n i ,,2,1 =。
并用i x ∆表示区间],[1i i x x -的长度,记},,,max{21n x x x T ∆∆∆= ,再用直线i x x =,1,,2,1-=n i 把曲边梯形分割成n 个小曲边梯形(如上右图)。
在每个小区间],[1i i x x -,n i ,,2,1 =上任取一点i ξ,n i ,,2,1 =,作以)(i f ξ为高,i x ∆为底的小矩形,其面积为)(i f ξi x ∆,当分点不断增多,又分割得较细密时,由于)(x f 连续,它在每个小区间],[1i i x x -上的变化不大,从而可用这些小矩形的面积近似代替相应的小曲边梯形的面积。
于是,该曲边梯形面积的近似值为∑=∆≈n i i i x f S 1)(ξ。
从而i n i i T x f S ∆=∑=→)(lim 10ξ。
2.变力所作的功W设质点受力F 的作用沿x 轴由点a 移动到点b ,并设F 处处平行于x 轴(如下图),同上述,有i ni i x F W ∆≈∑=)(1ξ,而i ni i T x F W ∆=∑=→)(lim 10ξ。
《数学分析》第九章 定 积 分
第9章 定 积 分 ( 2 2 时 )§1 定积分的定义 ( 2 时 )一. 背景:1. 曲边梯形的面积:2. 变力所作的功:3. 函数的平均值:4. 原函数的构造型定义: ( [1]P 274—277 )二. 定积分的定义: 三. 举例:例1 已知函数)(x f 2x =在区间] , 0 [b )0(>b 上可积. 用定义求积分⎰bdx x 02.解 取n 等分区间] , 0 [b 作为分法T , n b x i =∆ . 取 , nibx i i ==ξ)1(n i ≤≤. ⎰bdx x 02=∑∑==∞→∞→∆⎪⎭⎫ ⎝⎛=∆n i ni i n i i n x n ib x x 1122lim lim ∞→=n lim ∑=⎪⎭⎫ ⎝⎛ni n b i 132 ∞→=n lim ∑=⎪⎭⎫⎝⎛ni i n b 123∞→=n lim 3)12)(1(6133b n n n n b =++⋅⎪⎭⎫ ⎝⎛. 由函数)(x f 在区间] , 0 [b 上可积 , 每个特殊积分和之极限均为该积分值 .例2 已知函数)(x f 211x +=在区间] 1 , 0 [上可积, 用定义求积分⎰+1021xdx . 解 分法与介点集选法如例1 , 有⎰+1021xdx∞→=n lim ∑=⋅⎪⎭⎫ ⎝⎛+ni n n i 12111∞→=n lim ∑=+ni in n122 . 上式最后的极限求不出来,但却表明该极限值就是积分⎰+121x dx. 例3 讨论Dirichlet 函数)(x D 在区间] 1 , 0 [上的可积性. Ex [1]P 204 1,2 .§2 可积条件( 3 时 )一. 必要条件:Th 1 R x f ∈)(],[b a ,⇒ )(x f 在区间] , [b a 上有界.二. 充要条件:1. 思路与方案:思路:鉴于积分和与分法和介点有关,先简化积分和.用相应于分法T 的“最大”和“最小”的两个“积分和”去双逼一般的积分和,即用极限的双逼原理考查积分和有极限, 且与分法T 及介点i ξ无关的条件.方案: 定义上和)(__T S 和下和)(T s .研究它们的性质和当0→T 时有相同极限的充要条件 .2. Darboux 和: 以下总设函数)(x f 在区间] , [b a 上有界.并设M x f m ≤≤)(,其中m 和M 分别是函数)(x f 在区间] , [b a 上的下确界和上确界.定义 Darboux 和, 指出Darboux 和未必是积分和.但Darboux 和由分法T 唯一确定. 分别用)(__T S 、)(T s 和∑)(T 记相应于分法T 的上(大)和、下(小)和与积分和.积分和∑)(T 是数集(多值) . 但总有 )(T s ≤∑)(T ≤ )(__T S , 因此有 )(T s ≤)(__T S .)(T s 和)(__T S 的几何意义 .3. Darboux 和的性质: 本段研究Darboux 和的性质, 目的是建立Darboux 定理.先用分点集定义分法和精细分法: T ≤T '表示T '是T 的加细 . 性质1 若T ≤T ', 则)(T s )(T s '≤,)(__T S ≥)(__T S '. 即:分法加细, 大和不增,小和不减. 性质2 对任何T ,有 ≤-)(a b m )(__T S ,)(a b M -≥)(T s . 即:大和有下界,小和有上界. 性质3 对任何1T 和 2T , 总有)(1T s ≤)(2__T S .即:小和不会超过大和. 证 )(1T s ≤ )(21T T s + ≤ )(21__T T S + ≤ )(2__T S . 性质4 设T '是T 添加p 个新分点的加细. 则有)(T s ≤)(T s '≤)(T s + p )(m M -T ,)(__T S ≥)(__T S '≥)(__T S T m M p )( --.证 设1T 是只在T 中第i 个区间] , [1i i x x -内加上一个新分点x 所成的分法, 分别设 )(sup ],[11x f M x x i -=, )(sup ],[2x f M i x x =, )(s u p ],[1x f M i i x x i -= .显然有1M m ≤ 和 M M M i ≤≤2.于是)()()()()(021111x x M x x M x x M T S T S i i i i i -----=-≤-- ≤--+--=-))(())((211x x M M x x M M i i i i))(())(())((11----=--+--≤i i i i x x m M x x m M x x m M T m M )(-≤. 添加p 个新分点可视为依次添加一个分点进行p 次. 即证得第二式.同理可证第一式.推论 设分法T '有p 个分点,则对任何分法T ,有)( ||||)()(T S T m M p T S '≤--, )( ||||)()(T s T m M p T s '≥-+.证 )( )( ||||)()(T S T T S T m M p T S '≤'+≤--. )( )( ||||)()(T s T T s T m M p T s '≥'+≥-+.4. 上积分和下积分:设函数)(x f 在区间] , [b a 上有界.由以上性质2,)(T s 有上界,)(__T S 有下界.因此它们分别有上确界和下确界. 定义 记⎰badx x f )()(inf T S T =,⎰badx x f )()(sup T s T=. 分别称⎰ba和⎰ba为函数)(x f 在区间] , [b a 上的上积分和下积分.对区间] , [b a 上的有界函数)(x f ,⎰ba和⎰ba存在且有限,⎰ba≥⎰ba.并且对任何分法T ,有)(T s ≤⎰ba≤⎰ba≤)(__T S .上、下积分的几何意义.例1 求⎰1dx x D )(和⎰1dx x D )(.其中)(x D 是Dirichlet 函数.5. Darboux 定理:Th 1 设函数)(x f 在区间] , [b a 上有界, T 是区间] , [b a 的分法.则有 0lim →T )(__T S =⎰badx x f )(, 0lim →T )(T s =⎰badx x f )(.证 (只证第一式. 要证:对 , 0 , 0>∃>∀δε使当δ<T 时有≤0-)(__T S ⎰baε<.≤0-)(__T S ⎰ba是显然的. 因此只证 -)(__T S ⎰baε<. )⎰ba)(inf T S T =⇒ 对T '∃>∀ , 0ε,使)(__T S '<⎰ba*) , 2ε+ 设T '有p 个分点,对任何分法T ,由性质4的系,有-)(__T S p )(m M -T ≤ )(__T S ', 由*)式, 得-)(__T S p )(m M -T ≤ )(__T S '<⎰ba, 2ε+ 即-)(__T S p )(m M -T <⎰ba, 2ε+亦即)(__T S ⎰-ba < 2+εp )(m M -T .于是取)(2m M p -=εδ, (可设m M >, 否则)(x f 为常值函数,⎰ba= )(__T S 对任何分法T 成立.) 对任何分法T , 只要 δ<T , 就有≤0-)(__T S ⎰baεεε=+<22.此即lim →T )(__T S =⎰badx x f )(.6. 可积的充要条件:Th 2 (充要条件1)设函数)(x f 在区间] , [b a 上有界.)(x f ] , [ b a R ∈ ⇔⎰ba=⎰ba.证)⇒ 设⎰badx x f )(=I,则有0l i m→T ∑∆iixx f )(=I .即对 , 0 , 0>∃>∀δε使当δ<T 时有 |∑∆i i x x f )(I -| <2ε对i i x ∆∈∀ ξ成立. 在每个 ] , [1i i x x -上取i η, 使)(0i i f M η-≤)(2a b -<ε, 于是,| )(__T S ∑-)(i f ηi x ∆| =))( (i i f M η-∑i x ∆ <2ε. 因此, δ<T 时有| )(__T S I -| ≤ | )(__T S ∑-)(i f ξi x ∆| + |∑∆i i x x f )(I -| <2ε + 2ε=ε. 此即0lim →T )(__T S =I . 由Darboux 定理 ,⇒⎰b a= I .同理可证⎰ba= I ⇒⎰ba=⎰ba.)⇐ 对任何分法T , 有)(T s ≤∑)(T ≤ )(__T S , 而l i m →T )(T s =⎰ba=⎰ba= 0lim →T )(__T S .令⎰ba和⎰ba的共值为I , 由双逼原理 ⇒ 0lim→T ∑)(T =I .Th 3 )(x f 有界. )(x f ] , [ b a R ∈ ⇔ 对 , , 0∍∃>∀T ε-)(__T S )(T s ε<. 证 )⇒)(x f ] , [ b a R ∈⇒0lim →T ( -)(__T S )(T s ) = 0. 即对 , 0 , 0>∃>∀δεδ<∀T T , 时, ⇒ ≤0-)(__T S )(T s ε<.)⇐ )(T s ≤⎰ba≤⎰ba≤)(__T S ,由-)(__T S )(T s ε<⇒≤0⎰ba–⎰baε<,⇒⎰ba=⎰ba.定义 称i ωi i m M -=为函数)(x f 在区间] , [1i i x x -上的振幅或幅度.易见有i ω≥ 0 . 可证i ω=.)()(sup],[,1x f x f i i x x x x ''-'-∈'''Th 3’ (充要条件2 ))(x f 有界.)(x f ] , [ b a R ∈⇔对, , 0∍∃>∀T ε∑<∆εωiIx.Th 3’ 的几何意义及应用Th 3’的一般方法:为应用Th 3’,通常用下法构造分法T :当函数)(x f 在区间] , [b a 上含某些点的小区间上i ω作不到任意小时, 可试用)(x f 在区间] , [b a 上的振幅m M -=ω作i ω的估计,有i ω≤ ω.此时,倘能用总长小于0 ( 2≠ωωε, 否则)(x f 为常值函数)的有限个小区间复盖这些点,以这有限个小区间的端点作为分法T的一部分分点,在区间] , [b a 的其余部分作分割,使在每个小区间上有i ω<)(2a b -ε, 对如此构造的分法T , 有∑=∆n i iix 1ω∑∑=-=∆+∆=mk mn j j j k kx x 11ωω<∑∑=-=≤∆+∆-mk mn j jkxx a b 11)(2ωε∑∑-==∆+∆-≤m n j j ni i x x a b 11)(2ωεεωεωε=+--≤2 )()(2a b a b . Th 4 ( (R )可积函数的特征) 设)(x f 在区间] , [b a 上有界.)(x f ] , [ b a R ∈⇔对0 >∀ε和0 , 0 >∃>∀δσ,使对任何分法T ,只要 δ<T ,对应于εω≥'i 的那些小区间i x '∆的长度之和σ<∆∑'i x.证)⇒)(x f 在区间] , [b a 上可积, 对0 >∀ε和 0 , 0 >∃>∀δσ,使对任何分法T , 只要δ<T , 就有σεσωωε<∆⇒<∆≤∆≤∆∑∑∑∑''''i iii i i x xx x .)⇐ 对 , , 0∍∃>∀T εεω≥'i 的区间总长小于,ωε此时有∑∑∑∑∑==''=='''+-≤∆+∆≤∆+∆=∆mk ni i mk k ni i i k k i i a b x x x x x 1111)( ωεωεωεωωω =).1(+-a b ε三. 可积函数类:1. 闭区间上的连续函数必可积: Th 5 ( 证 )2. 闭区间上有界且仅有有限个间断点的函数可积 . Th 6 ( 证 )推论1 闭区间上按段连续函数必可积.推论2 设函数)(x f 在区间] , [b a 上有界且其间断点仅有有限个聚点, 则函数)(x f 在区间] , [b a 上可积.例2 判断题: 闭区间上仅有一个间断点的函数必可积 . ( )闭区间上有无穷多个间断点的函数必不可积 . ( ) 3. 闭区间上的单调函数必可积: Th 7 ( 证 )例3 , 2 , 1 . 111 , 1, 0, 0)(=⎪⎩⎪⎨⎧<<+==n n x n nx x f 证明)(x f 在] 1 , 0 [上可积.Ex [1]P 288—289 3 — 7.§3 定积分的性质( 3 时 )一. 定积分的性质:1.线性性质:Th 1 k b a R f ],,[∈为常数⇒ ],,[b a R kf ∈且⎰⎰=b abaf k kf . ( 证 )Th 2 ],[,b a R g f ∈⇒ ],[b a R g f ∈±, 且⎰⎰⎰±=±bababag f g f )(.( 证 )综上, 定积分是线性运算 .2. 乘积可积性:Th 3 ],[,b a R g f ∈⇒],[b a R g f ∈⋅.证 f 和g 有界. 设)(sup , |)(|sup ],[],[x g B x f A b a b a ==, 且可设0 , 0>>B A .(否则f 或g恒为零). 插项估计∑∆⋅iix g f )(ω,有|)()()()(|sup )(,x g x f x g x f g f ix x x i ''''-''=⋅∆∈'''ωix x x ∆∈'''≤,sup )( )(|])()(| |)(| |)()(| |)(| [g A f B x g x g x f x f x f x g i i ωω+≤''-'''+''-''.但一般⎰⎰⎰⋅≠⋅bab abag f g f .3. 关于区间可加性:Th 4有界函数f 在区间],[c a 和],[b c 上可积⇔)(x f ] , [ b a R ∈,并有⎰⎰⎰+=bccaba.(证明并解释几何意义)规定:0=⎰aa,⎰⎰-=abba.推论 设函数f 在区间] , [B A 上可积. 则对∈∀b a , ] , [B A ,有⎰⎰⎰+=bccaba.( 证 )4. 积分关于函数的单调性:Th 5 设函数],[,b a R g f ∈, 且f ≤g , ⇒⎰baf ≤⎰bag .( 证 )(反之确否?)积分的基本估计:)(a b m -≤⎰baf ≤)(a b M -.其中m 和M 分别为函数f 在区间] , [b a 上的下确界与上确界.5. 绝对可积性:Th 6 设函数],[b a R f ∈⇒],[||b a R f ∈, 且⎰baf ||≥⎰baf .|| (注意b a <.)证 以)()(|)(||)(|x f x f x f x f ''-'≤''-' 证明∑≤∆iix f |)(|ω∑∆iixf )(ω;以 |)(| )( |)(|x f x f x f ≤≤-证明不等式.注: 该定理之逆不真. 以例 ⎩⎨⎧-=. , 1,, 1)(为无理数为有理数x x x f 做说明.6. 积分第一中值定理:Th 7 (积分第一中值定理)],[b a C f ∈⇒∈∃ξ] , [b a ,使⎰baf =)(ξf )(a b -.Th 8 (推广的积分第一中值定理) ],,[,b a C g f ∈ 且g 不变号.则∈∃ξ] , [b a ,使g f ba⎰=)(ξf ⎰bag . ( 证 )Ex [1]P 299—300 1 —7.二. 变限积分: 定义上限函数⎰=Φx adt t f x )()(,(以及函数⎰=ψbxdt t f x )()()其中函数],[b a R f ∈. 指出这是一种新的函数, 也叫做面积函数. Th 8 ( 面积函数的连续性 )三. 举例:例 1 设],[,b a R g f ∈. 试证明: ⎰∑=∆=→bani i i i T fg x g f 1)()(lim ηξ.其中i ξ和i η是i ∆内的任二点,=T {i ∆}, n i , , 2 , 1 =.例2 比较积分⎰1dx ex与⎰12dx e x 的大小.例3 设 ],,[b a C f ∈ 0)(≥x f 但0)(≡/x f . 证明⎰baf >0.例4 证明不等式⎰<-<222sin 2112πππx dx .证明分析: 所证不等式为⎰⎰⎰<-<2222.2sin 211πππdx x dx dx 只要证明在]2,0[π上成立不等式≤12sin 211212≤⎪⎭⎫ ⎝⎛--x , 且等号不恒成立, 则由性质4和上例得所证不等式.例5 证明 ⎰=∞→200cos lim πxdx nn .§4 定积分的计算( 4 时 )引入:由定积分计算引出 . 思路:表达面积函数⎰=Φxadt t f x )()(.一. 微积分学基本定理:1. 变限积分的可微性 —— 微积分学基本定理: Th 1 (微积分学基本定理)若函数],,[b a C f ∈ 则面积函数⎰=Φxadt t f x )()(在] , [b a 上可导,且)(x Φ'=⎰=xa x f dt t f dxd )()(. 即: 当],[b a C f ∈时, 面积函数⎰=Φxadt t f x )()(可导且在点∈x ] , [b a 的导数恰为被积函数在上限的值.亦即)(x Φ是)(x f 的一个原函数. 推论 连续函数必有原函数.2. Newton — Leibniz 公式: Th 2 ( N — L 公式 )( 证 )例1 ⅰ> ⎰bdx x 02; ⅱ> ⎰baxdx e ;例2⎰-ee xdx 1ln .例3⎰+121x dx. ( 与§1 例3 联系 ) 例4 设],,[b a C f ∈0)(≥x f 但0)(≡/x f . 证明⎰baf >0. ( §3 例3对照.)证明分析:证明⎰⎰<=aabadx x f dx x f )()(0.设⎰=Φx adt t f x )()(,只要证明)()(b a Φ<Φ.为此证明: ⅰ>)(x Φ↗ ( 只要0)(≥Φ'x ),ⅱ> 但)(x Φ不是常值函数(只要0)(≡/Φ'x ), ⅲ> 又0)(≥Φa . ( 证 )例5 证明 ⎰=+∞→1.01lim dx x x n n ( 利用[0,1]上的不等式.10x x x n≤+≤ ) Ex [1]P 309 1,2,4⑴─⑽二. 定积分换元法:Th 3 设],,[b a C f ∈ 函数φ满足条件:ⅰ> b a ==)(, )(βφαφ, 且 ],[ , )(βαφ∈≤≤t b t a ; ⅱ> )(t φ在],[βα上有连续的导函数.则⎰⎰'=badt t t f dx x f βαφφ)()]([)(. ( 证 )例6 ⎰-1021dx x .例7 ⎰2cos sin πtdt t .例8 计算 ⎰++=1021)1ln(dx xx J . 该例为技巧积分. 例9 ⎰-+a x a x dx 022. 该例亦为技巧积分.例10 已知 ⎰-=324)(dx x f , 求 ⎰+212.)1(dx x xf 例11设函数)(x f 连续且有⎰=10.3)(dx x f 求积分⎰⎰⎪⎪⎭⎫ ⎝⎛100.)()(dx x f dt t f x ) 23 ( 例12 设)(x f 是区间)0( ],[>-a a a 上连续的奇(或偶函数)函数,则⎰-=a a dx x f 0)(, (⎰⎰-=a a adx x f dx x f 0)(2)( . ) 例13 []⎰--=--+223235c o s 3s i n 2ππdx arctgx e x x x x x .. 三. 分部积分公式:Th 4 (分部积分公式)例14 ⎰1.dx xe x例15 计算 ⎰⎰==220c o s s i n ππx d x x d x J n n n .解 ⎰'-=-201)(c o s s i n πdx x x J n n = ⎰'+---201201)(sin cos |cos sinππdx x x x x n n ⎰---=--=--20222)1()1()sin 1(sin )1(πn n n J n J n dx x x n ;解得 ,12--=n n J n n J 直接求得 ⎰==2011sin πxdx J , ⎰==2002ππdx J . 于是, 当n 为偶数时, 有 ==--⋅-=-=-- 422311n n n J n n n n J n n J 2!!!)!1(224)2(135)3)(1(21432310ππ⋅-=⋅⋅-⋅⋅--=⋅⋅⋅--⋅-=n n n n n n J n n n n ; 当n 为奇数时, 有 !!!)!1(32542311n n J n n n n J n -=⋅⋅⋅--⋅-=. 四. Taylor 公式的积分型余项: [1]P 228—229.Ex [1]P 310 4⑾—⒇,5,6,7.。
数学分析定积分范文
数学分析定积分范文首先,让我们从定积分的定义开始。
给定一个函数f(x),在闭区间[a,b]上的定积分表示为:∫[a,b] f(x) dx其中,f(x)是定义在[a, b]上的连续函数。
在这个表达式中,∫是积分号,a和b是积分区间的上下限,f(x)是被积函数,dx表示在x轴上的微小长度。
定积分可以被理解为曲线f(x)与x轴之间的面积。
然而,定积分的原始定义是通过将积分区间划分为无穷多个小的子区间来求得。
定积分的定义如下:∫[a,b] f(x) dx = lim(n→∞) Σ(1→n) f(xi)Δx其中,xi是子区间中的一些点,Δx是子区间的长度。
通过令子区间的数量趋向无穷大,我们可以得到准确的定积分值。
接下来,让我们来讨论一些定积分的基本性质。
首先,定积分具有线性性质。
也就是说,对于任意两个函数f(x)和g(x),以及任意的实数a和b,有以下性质成立:∫[a,b] (af(x) + bg(x)) dx = a∫[a,b] f(x) dx + b∫[a,b] g(x) dx其次,定积分的区间可以进行换元。
例如,设x的取值范围是[a,b],而y是x的函数y=g(x),那么有以下等式成立:∫[a,b] f(g(x))g'(x) dx = ∫[g(a),g(b)] f(y) dy这个性质被称为变量替换法则。
另外,定积分满足区间可加性。
也就是说,如果把积分区间[a,b]划分为两个子区间[a,c]和[c,b],那么有以下等式成立:∫[a,b] f(x) dx = ∫[a,c] f(x) dx + ∫[c,b] f(x) dx这个性质是基于定积分的定义,通过对两个子区间分别进行积分,然后将结果相加得到的。
最后,我们来讨论一些常见的定积分的求解方法。
首先,最简单的情况是当被积函数是一个多项式的时候。
对于这种情况,我们可以使用幂的积分公式进行求解。
例如,对于函数f(x)=x^n,其中n是一个正整数,有以下公式成立:∫ x^n dx = (1/(n+1))x^(n+1) + C其中C是常数。
数学分析中的积分求解方法
数学分析中的积分求解方法在数学分析中,积分是一个重要的概念和工具。
它可以用来计算曲线下面的面积、求解定积分以及解决一些实际问题。
本文将介绍一些常见的积分求解方法,包括不定积分和定积分。
一、不定积分不定积分是指对一个函数进行积分,得到的结果是一个含有未知常数的函数。
不定积分的符号表示为∫f(x)dx,其中f(x)是要求积分的函数。
不定积分的求解方法有很多,下面将介绍其中的几种常见方法。
1. 基本积分法基本积分法是指根据一些已知的基本积分公式,将要求积分的函数转化为基本积分公式中的形式,从而求解积分。
例如,对于函数f(x) = x^n,其中n为任意实数,其基本积分公式为∫x^n dx = (1/(n+1))x^(n+1) + C,其中C为常数。
2. 分部积分法分部积分法是指将要求积分的函数进行分解,然后利用分部积分公式进行求解。
分部积分公式为∫u dv = uv - ∫v du,其中u和v是要求积分的函数。
通过适当选择u和dv,可以将原函数转化为更容易求解的形式。
3. 代换积分法代换积分法是指通过代换变量的方法将要求积分的函数转化为一个更容易求解的形式。
常见的代换变量有三角函数代换、指数函数代换和倒数代换等。
通过选择合适的代换变量,可以简化积分的计算过程。
二、定积分定积分是指对一个函数在给定区间上的积分,得到的结果是一个确定的数值。
定积分的符号表示为∫[a,b]f(x)dx,其中[a,b]表示积分区间。
定积分的求解方法有很多,下面将介绍其中的几种常见方法。
1. 几何解释法几何解释法是指将定积分的计算问题转化为几何问题,通过计算图形的面积或体积来求解定积分。
例如,对于一条曲线y=f(x),其在区间[a,b]上的定积分∫[a,b]f(x)dx可以表示为该曲线下方的面积。
2. 分割求和法分割求和法是指将定积分的区间分割成若干小区间,然后对每个小区间内的函数进行求和,最后将这些求和结果相加得到定积分的近似值。
数学分析之定积分的应用
第十章定积分的应用教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等。
教学重点:熟练地应用本章给出的公式,计算平面区域的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等教学时数:10学时§ 1 平面图形的面积( 2 时)教学要求:1.理解微元法的思想,并能够应用微元法或定积分定义将某些几何、物理等实际问题化成定积分;2.熟练地应用本章给出的公式,计算平面区域的面积。
教学重点:熟练地应用本章给出的公式,计算平面区域的面积一、组织教学:二、讲授新课:(一)直角坐标系下平面图形的面积:型平面图形 .1.简单图形:型和2.简单图形的面积 : 给出型和型平面图形的面积公式.对由曲线和围成的所谓“两线型”图形, 介绍面积计算步骤. 注意利用图形的几何特征简化计算.求由曲线围成的平面图形的面积.例1例2求由抛物线与直线所围平面图形的面上的曲边(二)参数方程下曲边梯形的面积公式:设区间梯形的曲边由方程给出 .又设, 就有↗↗, 于是存在反函数. 由此得曲边的显式方程.,亦即.具体计算时常利用图形的几何特征 .求由摆线的一拱与轴例3所围平面图形的面积.例4 极坐标下平面图形的面积:推导由曲线和射线所围“曲边扇形”的面积公式. (简介微元法,并用微元法推导公式 . 半径为,的扇形面积为 . )顶角为例5求由双纽线所围平面图形的面积 .解或. ( 可见图形夹在过极点,的两条直线之间 ) . 以代方程不变,倾角为图形关于因此.三、小结:§ 2 由平行截面面积求体积( 2 时)教学要求:熟练地应用本章给出的公式,用截面面积计算体积。
教学重点:熟练地应用本章给出的公式,用截面面积计算体积.(一)已知截面面积的立体的体积:设立体之截面面积为推导出该立体之体积.祖暅原理: 夫幂势即同 , 则积不容异 . ( 祖暅系祖冲之之子齐梁时人 , 大约在五世纪下半叶到六世纪初 )例1求由两个圆柱面和所围立体体积 .P244 例1 ( )例2 计算由椭球面所围立体 (椭球 )的体积 .[1] P244例2 ( )(二)旋转体的体积: 定义旋转体并推导出体积公式..例3 推导高为, 底面半径为的正圆锥体体积公式.例4 求由曲线和所围平面图形绕轴旋转所得立体体积.绕轴一周所得旋转体体积.( 1000)例5 求由圆§ 3 曲线的弧长( 1 时 )教学要求:熟练地应用本章给出的公式,计算平面曲线的弧长。
第2讲 定积分定义
任取ξi ∈[ xi−1, xi ], 作和:
n
∑ f (ξi )Δxi .
i =1
上述和式称为 f 在分割 T 下的一个积分和或黎曼和.
数学分析 第九章 定积分
高等教育出版社
§1 定积分的概念
若 ∀ε > 0,∃δ > 0, 使得对任意分割
T : a0 = x0 < x1 < < xn = b,
通过类似分析,速度 v(t) 质点运动的路程为
b
s = ∫a v(t)dt;
密度为 ρ( x) 线状物体的质量为
b
m = ∫a ρ( x)dx.
数学分析 第九章 定积分
高等教育出版社
§1 定积分的概念
关于定积分定义,应注意以下几点:
n
注1 ∑ 和式 f (ξi )Δxi 不仅与 n 和 T 有关,还与
∫ ∑ b
n
J=
a
f ( x)dx
=
lim
T →0
i =1
f (ξi )Δxi .
其中称 f 为被积函数,[a, b] 为积分区间, x 为积分变量,
a, b 分别为积分下限和上限.
数学分析 第九章 定积分
高等教育出版社
§1 定积分的概念
由定义,曲边为 f ( x)的曲边梯形的面积为
b
S = ∫a f ( x)dx.
高等教育出版社
§1 定积分的概念
以后将知道 f (x) 在[a, b] 上连续时, 利用 f (x) 在 [a, b] 上的一致连续性, 可证 f (x)在[a, b]上可积.
下面举例来加深理解用定义求定积分的方法.
∫ 例1 求 1 x2dx. 0
定积分的概念
把一个大曲边梯形分割成n个小曲边梯形
分割 在区间[a,b]内任意插入(n-1)个分点,称为区间[a,b]的一个分法(分割),记为T.
2.代替
(化曲为直)
在每个小区间[ xi-1, xi ] 上任取一点ξi ,于是,以 为底, 为高的小矩形面积 应为小曲边梯形面积的近似值,即
注:显然函数 f (x) 在 [a, b] 的积分和 与分法(割)T 有关,也与一组= { }(i Δi , i=1, … , n )的取法有关.
取法任意
记
如果不论对[a,b]怎样的分法(分割);
也不论在小区间 上,点 怎样的取法,
只要 时,积分和 存在确定的有限极限
根据定积分的定义,可以看出,前面所举的两个实例,都是定积分.
物体运动的路程s是速度函数v(t)在时间间隔 的定积分,即
黎曼(Georg Friedrich Bernhard Riemann,1826-1866)19世纪富有创造性的德国数学家、物理学家。对数学分析和微分几何做出了重要贡献 。
与区间及被积函数有关;B.与区间无关与被积函数有关 C.与积分变量用何字母表示有关;D.与被积函数的形式无关
a
b
x
y
o
a
b
x
y
o
用矩形面积近似取代曲边梯形面积
显然,小矩形越多,矩形总面积 越接近曲边梯形面积.
(四个小矩形)
(九个小矩形)
基本思想(以直代曲)
具体做法(如下)
(化整为零)
”
分法任意
分法T将区间[a,b]分成n个小区间,
过每个分点作x轴的垂线,这些垂线与曲线f(x)相交,相应地把大曲边梯形分为 n 个小曲边梯形,其面积分别记为ΔAi ( i=1, 2, …, n )
《数学分析》第九章定积分
《数学分析》第九章定积分数学分析是数学的一个重要分支,它主要研究函数的极限、连续性、可微性和积分等概念及其相互关系。
在数学分析中,定积分是一个重要的概念,它可以用来计算曲线下面的面积,求解物体的体积等。
定积分是一个数学上的运算符号,它可以表示一个函数在一些区间上的平均值和总值。
定积分的定义是通过分割区间,将函数的值与区间长度相乘,并将所有的乘积相加。
在数学中,定积分用符号∫来表示,其中被积函数写在∫的右边,积分区间写在∫的上下限中。
定积分的计算可以通过各种数学工具和方法来进行,其中包含了很多重要的定理和公式。
当被积函数是一个常函数时,定积分的计算可以直接用函数值乘以区间长度。
当被积函数是一个一次函数时,可以使用直线的面积公式来计算定积分。
对于更复杂的函数,可以利用反函数的性质,分部积分,换元积分等方法来计算定积分。
在定积分中,积分区间是一个重要的概念。
积分区间的选择对于定积分的结果有重要影响。
当积分区间为闭区间时,定积分可以表示函数在该区间上的总值。
当积分区间为开区间时,定积分可以表示函数在该区间上的平均值。
对于无界区间,定积分的计算需要利用极限的概念来进行。
定积分在数学中有着广泛的应用,特别是在几何学、物理学和工程学等领域。
在几何学中,定积分可以用来计算曲线的弧长和曲面的面积。
在物理学中,定积分可以用来计算物体的质量、速度和加速度等物理量。
在工程学中,定积分可以用来计算电路中的电流和电量,以及管道中的流量和压力等。
总之,定积分是数学分析中的一个重要概念,它可以用来描述函数的平均值和总值,计算曲线下面的面积和求解物体的体积等。
定积分的计算需要掌握各种数学工具和方法,包括分割区间、牛顿-莱布尼茨公式、分部积分和换元积分等。
定积分在数学和应用科学中有着广泛的应用,对于深入理解数学和解决实际问题具有重要意义。
定积分的积分公式
定积分是微积分学与数学分析里的一个核心概念,它是积分的一个重要分支。
与不定积分不同,定积分涉及到一个积分区间,并在这个区间上对函数进行积分。
定积分具有广泛的应用,特别是在求解面积、体积、弧长、功等实际问题中。
下面将详细介绍定积分的积分公式及其相关知识。
一、定积分的基本概念定积分是对一个函数在一个区间上的积分,它的结果是一个实数。
具体来说,设函数f(x)在区间[a, b]上有定义,且在这个区间上可积,则f(x)在[a, b]上的定积分为:∫[a, b] f(x) dx其中,∫表示积分符号,[a, b]表示积分区间,f(x)表示被积函数,dx表示积分变量。
定积分的值与被积函数、积分区间以及积分变量的选取有关。
二、定积分的积分公式定积分的积分公式是通过原函数或基本积分表来求解定积分的一种方法。
常用的定积分公式包括:1. ∫[a, b] k dx = k(b - a),其中k为常数。
这个公式表示在一个区间上对常数函数进行积分,积分结果等于常数与区间长度的乘积。
2. ∫[a, b] x^n dx = (1/(n+1)) x^(n+1) |[a, b],其中n≠-1。
这个公式表示在一个区间上对幂函数进行积分,积分结果等于幂函数的指数加1后的倒数与幂函数在区间端点值的差。
3. ∫[a, b] sin(x) dx = -cos(x) |[a, b]。
这个公式表示在一个区间上对正弦函数进行积分,积分结果等于余弦函数在区间端点值的差。
4. ∫[a, b] cos(x) dx = sin(x) |[a, b]。
这个公式表示在一个区间上对余弦函数进行积分,积分结果等于正弦函数在区间端点值的差。
5. ∫[a, b] e^x dx = e^x |[a, b]。
这个公式表示在一个区间上对指数函数进行积分,积分结果等于指数函数在区间端点值的差。
需要注意的是,这些公式中的|[a, b]表示在区间端点a和b处取函数值并进行相减。
此外,这些公式只是定积分的一部分,对于其他类型的函数,可能需要使用其他方法或技巧进行积分。
数学分析PPT课件第四版华东师大研制--第10章-定积分的应用(1)可编辑全文
围立体的体积.
z
a
x
a x0
O
a
y
解 先求出立体在第一卦限的体积V1. x0 [0,a] ,
x x0 与立体的截面是边长为 a2 x02 的正方形,
前页 后页 返回
所以 A( x) a2 x2 , x [0,a]. 于是求得
V
8V1 8
9 0
a2 x2
dx 16 a3. 3
以下讨论旋转体的体积.
4
S( A2 ) 1 x ( x 2) dx
2 3
x3
2
x2 2
4
2x
1
14 3
3 2
.
则
S(
A)
S(
A1 )
S(
A2
)
4 3
14 3
3 2
9 2
.
前页 后页 返回
若把 A 看作为 y 型区域,则
g1( y) y2 (1 y 2), g2( y) y 2 (1 y 2).
体积公式.
前页 后页 返回
§3 平面曲线的弧长与曲率
本节定义光滑曲线的弧长,并用定积分给出弧长计 算公式.
一、平面曲线的弧长
定义1 设平面曲线 C 由以下参数方程表示:
x x(t), y y(t), t [, ].
如果 x(t)与 y(t)在[ , ]上连续可微, 且 x(t)与 y(t)
•(4, 2)
A
x y2
O
4x
• (1, 1)
若把 A 看作 x 型区域, 则
f1(
x)
x
x 2
,0 ,1
x x
1 4
,
f2x x ,0 x 4.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这就是说,在“常值”、“均匀”、“不变” 的情况
前页 后页 返回
可以用简单的乘法进行计算. 而现在遇到的问题 是“非常值” 、“不均匀”、“有变化”的情形, 如何 来解决这些问题呢? 以下我们以求曲边梯形的面积为例,把这类问题 合理地归为一类特殊和式的极限. 中心思想: 把曲边梯形看作许许多多小的曲边梯形之和,每 个小曲边梯形面积,可近似地用矩形的面积来替
n
注1
表达式 J
lim
T 0 i 1
f (i )Δxi
不仅与 n 和 T
有
关,还与 {1, 2, L ,n } 有关, 因此定积分既不是数
列极限,也不是函数极限.
注2 并非每个函数在 [a,b] 上都可积.在近似过程
中,我们把小曲边梯形近似看作矩形时,显然要求
f (x)在每个小区间 [xi–1, xi] 上变化不大, 这相当于 要求 f (x) 有某种程度上的连续性.
用T x0 , x1 ,L , xn或T =Δ0 , ,Δn来记这个分割.
2. 近似: 把小曲边梯形 Ai 近似看作矩形,即任取
i [ xi1 , xi ], 在 [ xi1 , xi ] 上把 f ( x)近似看作常数
f (i ).此时 Ai 的面积 Si 约为 f (i )Δxi ,所以
区间 [ xi1 , xi ]的长度不趋于 0 . 要保证每个区间 [xi1 , xi ]的长度趋于0, 需引入分割 T 的细度(模):
T max Δxi i 1, 2,L , n.
则当 T 0 时,就能保证分割越来越细.
n
(2) 要刻画 f (i )Δxi 能无限逼近 S, 需对任意
, n,
此时黎曼和的极限化为数列
Sn
n i i1
n
1
2
1 n
的极限.
前页 后页 返回
于是
S lim
n
i
1
2
1
n i 1
n
n
lim 1
n
i 12
n n 3 i 1
lim
n
n
1n2n
6n3
1
1 3
.
注 这里利用了连续函数的可积性.因为可积,所
前页 后页 返回
代,虽然为此会产生误差,但当分割越来越细的
时候,矩形面积之和就越来越接近于曲边梯形面
积.
一分为二
y
y f x
Oa
S( A)
x1
bx
前页 后页 返回
一分为四
y
y f x
O a x1
S( A)
x2
x3
bx
前页 后页 返回
y 一分为八
y f x
S( A)
O a x1 x3
前页 后页 返回
以后将知道 f (x) 在[a, b] 上连续时, 利用 f (x) 在
[a, b] 上的一致连续性, 可证 f (x)在[a, b]上可积.
下面举例来加深理解用定义求定积分的方法.
例1 求 1 x2dx. 0
解 f ( x) x2 在 [0,1] 上连续,故
1
n
S
0
x 2dx
lim
T 0
i2Δxi
i 1
存在. 为方便起见,令
前页 后页 返回
Tn
:0
1 n
2 n
n 1 1, n 1,2, n
,
则
Tn
max
1 i n
Δxi
=
1 n
0
n
,
取
i
i
n
1
i
1, n
i n
,
i
1,2,
与 S 的差距就会越来越小.
i 1
问题是:
(1) 如何刻画分割越来 越细?
n
(2) 如何刻画 f (i )Δxi 越来越逼近于 S ? i 1
下面依次讨论这两个问题.
前页 后页 返回
(1) 对于一般的 T : a0 x0 x1 L xn b, 不能 用 n 来表示分割 T 越来越细,因为可能某些
以可取特殊的分割(等分)和特殊的介点i
i
1. n
前页 后页 返回
§1 定积分的概念
在很多数学和物理问题中,经常需要
求一类特殊和式的极限:
n
lim
T 0 i 1
f
(i ) xi ,
这类特殊极限问题导出了定积分的概念.
返回
三个典型问题 1. 设 y f ( x) , x [a, b], 求曲边梯形 A 的面积 S (A), 其中
A ( x, y) | x [a, b] , 0 y f ( x).
y
y f x
Oa
S( A)
bx
前页 后页 返回
2. 已知质点运动的速度为v(t) , t [a,b]. 求从时刻 a 到时刻 b,质点运动的路程 s. 3. 已知质量非均匀分布的线状物体的密度函数为 ( x) , x [a,b] , 求线状物体的质量 m . 显然, 当 f ( x) c 为常值函数时,S( A) c(b a); 当 v(t ) v0 为匀速运动时, s v0(b a); 当质量为
A1 , A2 , , An , 即在 [a, b] 上找到 n 1 个分点 { x1, x2 , L , xn1},
a x1 x2 L xn1 b,
a x1 x2
xn1 b
前页 后页 返回
为方便起见,记 x0 a, xn b,
i [ xi1 , xi ], Δxi xi xi1 , i 1, 2, L , n,
i 1
前页 后页 返回
给定的 0, 能够找到 0, 使得当
T max Δxi 时, 对任意i [xi1, xi ] ,
都有
n
f (i )Δxi-S .
i 1
对于另外两个实际问题,也可类似地归结为黎曼和 的极限.
总结以上分析,下面给出定积分定义.
分变量,a, b 分别为积分下限和上限.
由定义,曲边为 f ( x)的曲边梯形的面积为
b
S a f ( x)dx.
通过类似分析,速度 v(t) 质点运动的路程为
b
s a v(t)dt;
密度为 ( x) 线状物体的质量为
b
m a ( x)dx.
前页 后页 返回
关于定积分定义,应注意以下几点:
前页 后页 返回
定义1 设 f 是定义在 [a, b] 上的函数,J R.
若 L xn b,
及任意 i xi1 , xi , i 1, 2,L , n,
当 T maxxi 时,必有
n
f (i )xi J ,
i 1
则称 f 在 [a, b] 上可积,并称 J 为 f 在 [a,b]上的
定积分,记作 J
b
n
a
f ( x)dx
lim
T 0
i 1
f (i )Δxi .
前页 后页 返回
其中称 f 为被积函数, [a, b] 为积分区间, x 为积
n
n
S( A) S i f (i )Δxi .
i 1
i 1
n
上述和式 f (i )Δxi 称为积分和或黎曼和.
i 1
前页 后页 返回
3. 逼近:不管分割多么细,小曲边梯形终究不是
n
矩形,因此黎曼和 f (i )Δxi 与曲边梯形的面积
i 1
n
S 总有差别. 当分割越来越细时,和式 f (i )Δxi
x x81 b
前页 后页 返回
y 一分为 n
y f x
S( A)
O a x1
xi1 xi
i
xn1 b
x
可以看出小矩形面积之和越来越接近于曲边梯形
的面积.
前页 后页 返回
如何严格地定义这一越来越逼近曲边梯形面积的 过程呢? 这可以分三步进行. 1. 分割:把曲边梯形 A 分成 n 个小曲边梯形